Scalable Network Virtualization in Software-Defined
Networks

Dmitry Drutskoy

Princeton University

ABSTRACT

Network virtualization gives each “tenant” in a data center
its own network topology and control over the flow of its
traffic. By offering a standard interface between controller
applications and switch forwarding tables, Software Defined
Networking (SDN) is a natural platform for network virtual-
ization. Yet, supporting a large number of tenants with dif-
ferent topologies and controller applications raises scalabil-
ity challenges. In this paper, we present the FlowN architec-
ture, which provides each tenant the illusion of its own ad-
dress space, topology, and controller. The FlowN controller
platform leverages database technology to efficiently store
and manipulate mappings between the virtual networks and
the physical switches. Rather than running a separate con-
troller per tenant, FlowN performs lightweight container-
based virtualization. Experiments with our FlowN proto-
type, built as an extension to the NOX OpenFlow controller,
show that our solution scales to a large number of tenants.

1. INTRODUCTION

Hosted cloud computing has significantly lowered the
barrier for creating new networked services. Likewise,
experimental facilities like GENI (http://www.geni.net)
enable researchers to perform large-scale experiments
on a “slice” of a shared infrastructure. By enabling shar-
ing of physical resources, virtualization is key technol-
ogy in these infrastructures. While the virtual machine
is now the standard abstraction for sharing computing
resources, the right abstraction for the network is a sub-
ject of ongoing debate.

Existing solutions differ in the level of detail they
expose to the individual tenants. Amazon EC2 offers
a simple abstraction where all of a tenant’s virtual ma-
chines can reach each other. Nicira [1] extends this “one
big switch” model by offering providing programmatic
control at the network edge to enable, for example, im-
proved access control. Oktopus [2] exposes a network
topology so tenants can perform customized routing and
access control based on knowledge of their own applica-
tions and traffic patterns.

Each abstraction is most appropriate for a different
class of tenants. As more companies move “to the cloud,”

Eric Keller
University of Pennsylvania

Jennifer Rexford
Princeton University

providers must go beyond simple sharing of network
bandwidth to support a wider range of abstractions.
With a flexible network virtualization layer, a cloud
provider can support multiple abstractions ranging from
a simple “one big switch” abstraction (where tenants do
not need to configure anything) to arbitrary topologies
(where tenants run their own control logic). The key to
supporting a variety of abstractions is a flexible virtual-
ization layer that supports arbitrary topologies, address
and resource isolation, and custom control logic. Our
FlowN system provides this virtualization layer.

Supporting a large number of tenants with different
abstractions raises scalability challenges. For example,
supporting virtual topologies requires a way for ten-
ants to run their own control logic and learn about rel-
evant topology changes. Software Defined Networking
(SDN) is an appealing platform for network virtualiza-
tion, since each tenant’s control logic can run on a con-
troller rather than the physical switches. In particu-
lar, OpenFlow [3] offers a standard API for installing
packet-forwarding rules, querying traffic statistics, and
learning about topology changes. Supporting multiple
virtual networks with different topologies requires a way
to map a rule or query issued on a virtual network to
the corresponding physical switches, and to map a phys-
ical event (e.g., a link or switch failure) to the affected
virtual components. The virtualization solution must
perform these mapping operations quickly, to give each
tenant real-time control over its virtual network.

In this paper we present FlowN, an efficient and scal-
able virtualization solution. We build on top of SDN
technology for programmable control of a network of
switches. With FlowN, each tenant can specify its own
address space, topology, and control logic. The FlowN
architecture leverages advances in database technology
for scalably mapping between the virtual and physical
networks. Similarly, FlowN uses a shared controller
platform, analogous to container-based virtualization,
to efficiently run the tenants’ controller applications.
Experiments with our prototype FlowN system, built
as an extension to the NOX [4] OpenFlow controller,
show that these two design decisions lead to a fast, flex-



ible, and scalable solution for network virtualization.

2. NETWORK VIRTUALIZATION

For hosted and shared infrastructures, such as cloud
computing infrastructure, we argue that full virtualiza-
tion of a software-defined network is the correct way to
represent the network to tenants. In this section we dis-
cuss the requirements for virtualization in terms of (i)
specification of the virtual infrastructure and (ii) isola-
tion between virtual infrastructures.

2.1 SDN Controller Application

To support the widest variety of tenants, the cloud
provider should allow each tenant to specify custom
control logic on its own network topology. Software-
defined networking (SDN) is quickly gaining traction
as a way to program the network. In SDN, a logically-
centralized controller manages the collection of switches
through a standard interface, enabling the software to
control switches from a variety of vendors. With the
OpenFlow [3] standard, for example, the controller’s in-
terface to a hardware switch is effectively a flow table
with a prioritized list of rules. Each rule consists of a
pattern that matches bits of the incoming packets, and
actions that specify how to handle these packets. These
actions include, for example, forwarding out of a spe-
cific port, dropping the packet, or sending the packet to
the controller for further processing. The software con-
troller is responsible for interacting with the switches
(e.g., handling packets sent to the controller) and in-
stalling the flow table entries (e.g., installing rules in a
series of switches to establish a path between two hosts).

With FlowN, each tenant can run its own controller
application. Of course, not all tenants need this level
of control. Tenants wanting a simpler representation of
the network can simply choose from default controller
applications, such as all-to-all connectivity (similar to
what Amazon EC2 offers) or an interface similar to a
router (such as with RouteFlow [5]). This default con-
troller application would run on top of the virtualization
layer provided by FlowN. As such, the tenants can de-
cide whether they want full control of the network, or a
pre-existing abstraction that matches their needs.

2.2 Virtual Network Topology

In addition to running a controller application, each
tenant also specifies a network topology. This enables
each tenant to design a network for its own needs, such
as favoring low latency as in high-performance comput-
ing workloads or favoring a high bisection bandwidth in
data-processing workloads [6]. With FlowN, each vir-
tual topology consists of nodes, interfaces, and links.
Virtual nodes can be either a server (virtual machine)
or an SDN-based switch. Each node has a set of virtual
interfaces that connect to other virtual interfaces via

virtual links. Each virtual component can include re-
source constraints—e.g., the maximum number of flow
table entries on the switch, the number of cores on a
server, or the bandwidth and maximum latency for vir-
tual links. The cloud provider runs an embedding algo-
rithm [7] to map the requested virtual resources to the
available physical resources.

Importantly, with full virtualization, the virtual topolo-
gies are decoupled from the physical infrastructure. This
is in contrast to ‘slicing’ the physical resources (as done
with FlowVisor [8]) which also provides tenants with the
ability to run their own controller over a portion of the
traffic and a subset of the physical network. However,
with slicing, the mapping between virtual and physical
topologies is visible to the tenants. With FlowN, the
mappings are not exposed to the tenants. Instead, the
tenants simply see their virtual networks. With this de-
coupling, the cloud provider can offer virtual topologies
with richer connectivity than the physical network, or
remap the virtual networks to hide the effects of fail-
ures or planned maintenance. Virtual nodes, whether
switches or VMs, can move to different physical nodes
without changing the tenant’s view of the network.

2.3 Address Space and Bandwidth Isolation

Each tenant has an address space, defined by the
fields in the packet headers (e.g., source and destina-
tion IP address, TCP port numbers, etc.). Rather than
divide the available address space among the tenants,
we virtualize the address space by presenting virtual ad-
dress spaces to each application. This gives each tenant
control over all fields within the header (e.g., two ten-
ants can use the same private IP addresses). To do this,
the FlowN virtualization layer provides a mapping be-
tween the virtual addresses and the physical addresses.
To distinguish between the traffic and rules for different
tenants, the edge switches encapsulate incoming pack-
ets with a protocol-agnostic extra header, transparent
to the tenant’s virtual machines and controller appli-
cation. This extra header (e.g., VLAN) is simply to
identify the tenant — we do not run the associated pro-
tocol logic (e.g., per VLAN spanning-tree protocol).

In addition to address-space isolation, the virtualiza-
tion solution must support bandwidth isolation. While
current SDN hardware does not include the ability to
limit bandwidth usage, the recent OpenFlow specifica-
tion includes this capability [9]. Using embedding algo-
rithms, we guarantee bandwidth to each virtual link. As
support for enforcing these allocations becomes avail-
able, we can incorporate them into our FlowN system.

3. FLOWN ARCHITECTURE OVERVIEW

Hosted cloud infrastructures are typically large data-
centers that host many tenants. As such, our virtualiza-
tion solution must scale in both the size of the physical



network and the number of virtual networks. Being
scalable and efficient is especially critical in software-
defined networks, where packets are not only handled
in the hardware switches but also can be sent to the
centralized controller for processing.

There are two main performance issues with virtual-
ization in the context of SDN.

e An SDN controller must interact with switches
through a reliable communication channel (e.g.,
SSL over TCP) and maintain a current view of
the physical infrastructure (e.g., which switches
are alive). This incurs both memory and process-
ing overhead, and introduces latency.

e With virtualization, any interaction between a ten-

ant’s controller application and the physical switches

must go through a mapping between the virtual
and physical networks. As the number of virtual
and physical switches increases, performing this
mapping becomes a limiting factor in scalability.

In order to overcome these, the FlowN architecture
(depicted in Figure 1) is based around two key design
decisions. First, as discussed in Section 4, FlowN en-
ables tenants to write arbitrary controller software that
has full control over the address space and can target
an arbitrary virtual topology. However, we use a shared
controller platform (e.g., NOX [4]) rather than running
a separate controller for each tenant. This approach
is analogous to container-based virtualization such as
LXC for Linux or FreeBSD Jails. Second, as discussed
in Section 5, we make use of modern database tech-
nology for performing the mapping between virtual and
physical address space. This provides a scalable solution
that is easily extensible as new functionality is needed.

Tenant 2 Tenant 1
Application Application
&= e
= o]

\\l ™A

Container Based

Arbitrary Address Cach
Embedder Mapping ache Application Virtualization

SDN enabled —
Network \

Figure 1: System design

4. CONTAINER-BASED VIRTUALIZATION

Each tenant has a controller application that runs on
top of its virtual topology. This application consists of

handlers that respond to network events (e.g., topol-
ogy changes, packet arrivals, and new traffic statistics)
by sending new commands to the underlying switches.
Each application should have the illusion of running on
its own controller. However, running a full-fledged con-
troller for each tenant is unnecessarily expensive. In-
stead, FlowN supports container-based virtualization
by mapping API calls in the NOX controller back and
forth between the physical and virtual networks.

4.1 Overhead of Full Controller Virtualization

Running a separate controller for each tenant seems
like a natural way to support network virtualization. In
this solution, the virtualization system exchanges Open-
Flow messages directly with the underlying switches,
and exchanges OpenFlow messages with each tenant’s
controller. This system keeps track of the relationships
between physical and virtual components, and what-
ever encapsulation is applied to each tenant’s traffic.
When events happen in the network, the system trans-
lates these physical events to one or more virtual events
(e.g., the failure of a virtual link or switch, or a packet-
in event for a particular virtual network), and sends the
corresponding OpenFlow message to the appropriate
tenant(s). Similarly, when a tenant’s controller sends an
OpenFlow message, the virtualization system converts
the message (e.g., mapping virtual switch identifiers to
physical switch identifiers, including the tenant-specific
encapsulation header in the packet-handling rules) be-
fore sending a message to the physical switch.

The FlowVisor [8] system follows this approach, vir-
tualizing the switch data plane by mapping OpenFlow
messages sent between the switches and the per-tenant
controllers. Using the OpenFlow standard as the in-
terface to the virtualization system has some advan-
tages (e.g., tenants can select any controller platform),
but introduces unnecessary overhead. Repeatedly mar-
shalling and unmarshalling parameters in OpenFlow mes-
sages incurs extra latency. Running a complete instance
of a controller for each tenant involves running a large
code base which consumes extra memory. Periodically
checking for liveness of the separate controllers incurs
additional overhead. The overhead for supporting a sin-
gle tenant may not that significant. However, when you
consider that the virtualization layer will now have to
provide the full interface of switches for each virtual
switch (which will outnumber the number of physical
switches by at least an order of magnitude), the cumula-
tive overhead is significant—requiring more computing
resources and incurring extra, unnecessary latency.

4.2 Container-Based Controller Virtualization

Instead, we adopt a solution inspired by container-
based virtualization, where a shared kernel runs multi-
ple user-space containers with independent name spaces



and resource scheduling. FlowN is a modified NOX con-
troller that can run multiple applications, each with its
own address space, virtual topology, and event handlers.
Rather than map OpenFlow protocol messages, FlowN
maps between the NOX APT calls. In essence, FlowN is
a special NOX application that runs its own event han-
dlers that call tenant-specific event handlers. For exam-
ple, when a packet arrives at the controller, the FlowN
packet-in event handler runs. This handler identifies
the appropriate tenant (e.g., based on the VLAN tag
on the packet) and invokes that tenant’s own packet-in
handler. Similarly, if a physical port fails, FlowN’s port-
status event handler identifies the virtual links travers-
ing the failed physical port, and invokes the port-status
event handler for each affected tenant with the id of its
failed virtual port.

Similarly, when a tenant’s event handler invokes an
API call, FlowN intercepts the call and translates be-
tween the virtual and physical components. For ex-
ample, suppose a tenant calls a function that installs
a packet-handling rule in a switch. FlowN maps the
virtual switch id to the identifier of the corresponding
physical switch, checks that the tenant has not exceeded
its share of space for rules on that switch, and modifies
the pattern and action(s) in the rule. When modify-
ing a rule, FlowN changes the pattern to include the
tenant-specific VLAN tag, and the actions to forward
on the physical port(s) associated with the tenant’s vir-
tual port(s). Then, FlowN invokes the underlying NOX
function to install the modified rule in the associated
physical switch. FlowN follows a similar approach to
intercept other API calls for removing rules, querying
traffic statistics, sending packets, etc.

Each tenant’s event handlers run within its own thread.
While we have not incorporated any strict resource lim-
its, CPU scheduling does provide fairness among the
threads. Further, running a separate thread per tenant
protects against a tenant’s controller application from
not returning (e.g., having an infinite loop) and pre-
venting other controller applications from running.

S. DATABASE-DRIVEN MAPPINGS

Container-based controller virtualization reduces the

overhead of running multiple controller applications. How-

ever, any interaction between a virtual topology and
the physical network still requires performing a map-
ping between the virtual and physical spaces. This can
easily become a bottleneck. FlowN leverages advances
in database technology to overcome this bottleneck.

5.1 Overhead of Virtual Network Mapping

To provide each tenant with its own address space
and topology, FlowN performs a mapping between vir-
tual and physical resources. The tenants’ packets are
encapsulated with a unique header field (e.g., a VLAN

tag) as they enter the network. To support a large num-
ber of tenants, the switches swap the labels at each hop
in the network. This allows a switch to classify pack-
ets based on the (i) physical interface port, (ii) label
in the encapsulation header, and (iii) fields specified
by the tenant application. This enables each switch to
uniquely determine the appropriate actions to perform.

Determining these labels is the responsibility of the
virtualization software running on controller. A virtual-
to-physical mapping occurs when an application modi-
fies the flow table (e.g., adding a new flow rule). The
virtualization layer must alter the rules to uniquely iden-
tify the virtual link or virtual switch. A physical-to-
virtual mapping occurs when the physical switch sends
a message to the controller (e.g., when a packet does
not match any flow table rule). The virtualization layer
must demultiplex the packet to the right tenant (and
identify the right virtual port and virtual switch).

These mappings can either be one-to-one (as in the
case of installing a new rule or handling a packet sent
to the controller) or one-to-many (as in the case of link
failures that affect multiple tenants). In general, these
mappings are based on various combinations of input
parameters and output parameters. Using a custom
data structure with custom code to perform these map-
pings can easily become unwieldy, leading to software
that is difficult to maintain and extend.

More importantly, this custom software would need to
scale across multiple physical controllers. Depending on
the complexity of the mappings, a single controller ma-
chine eventually hits a limit on the number of mappings
per second that it can perform. To scale further, the
controller can run on multiple physical servers. With
custom code and in-memory data structures, distribut-
ing the state and logic in a consistent fashion becomes
extremely difficult.

This custom data structure is the approach taken by
FlowVisor [8]. Though FlowVisor does not provide full
virtualzation (it instead slices the network resources),
it must still map an incoming packet to the appropriate
slice. In some cases, hashing can be used to perform a
fast lookup, However, this is not always possible. For
example, for the one-to-many physical to virtual map-
pings (e.g., link failure), FlowVisor iterates over all ten-
ants, and for each tenant it performs a lookup with the
physical identifier.

5.2 Topology Mapping With a Database

Instead of using an in-memory data structure with
custom mapping code, FlowN uses modern database
technology. Both the topology descriptions and the as-
signment to physical resources lend themselves directly
to the relational model of a database. Each virtual
topology is uniquely identified by some key, and consists
of a number of nodes, interfaces, and links. Nodes con-



tain the corresponding interfaces, and links connect one
interface to another. The physical topology is described
in a similar fashion. Each virtual node is mapped to one
physical node; each virtual link becomes a path, which
is a collection of physical links and a hop counter giving
the ordering of physical links.

FlowN stores mapping information in two tables. The
first table stores the node assignments, mapping each
virtual node to one physical node. The second table
stores the path assignment, by mapping each virtual
link to a set of physical links, each with a hop count
number that increases in the direction of the path.

Mapping between virtual and physical space then be-
comes a simple matter of issuing an SQL query. For
example, for packets received at the controller for soft-
ware processing, we must remove the encapsulation tag
and modify the identifier of which switch and port the
packet was received on. This can be realized with the
following query:

SELECT L.Tenant_ID, L.node_ID1, L.node_porti
FROM Tenant_Link L, Node_T2P_Mapping M
WHERE VLAN_tag = x AND M.physical_node_ID =y
AND M.tenant_ID = L.tenant_ID
AND L.node_ID1 = M.tenant_node_ID

Other events are handled in similar manner, including
lookups which yield multiple results (e.g., when a phys-
ical switch fails and we must fail all virtual switches
currently mapped to that physical switch).

While using a relational database reduces code com-
plexity, the real advantage of using a database is that
we can capitalize on years of research to achieve durable
state and a highly scalable system. As we expect many
more reads than writes in this database, we can run a
master database server that handles any writes to the
database (e.g., for topology changes and adding new
virtual networks). Multiple slave servers are then used
to replicate the state across multiple servers. Since the
mappings do not change often, caching can then be uti-
lized to optimize for mappings that frequently occur.

With a replicated database, the FlowN virtualization
layer can be partitioned across multiple physical servers
(co-located with each replica of the database). Each
physical server interfaces with a subset of the physical
switches—and performs the necessary physical to vir-
tual mappings. Each physical server is also responsible
for running the controller application for a subset of
tenants and performing the associated virtual to physi-
cal mappings. In some cases, a tenant’s virtual network
may span physical switches handled by different con-
troller servers. In that case, FlowN simply sends a mes-
sage from one controller server (say, responsible for the
physical switch) to another (say, running the tenant’s
controller application), over a TCP connection. More
efficient algorithms for assigning tenants and switches
to servers is an interesting area for future research.

6. EVALUATION

FlowN a scalable and efficient software-defined net-
work virtualization system In this section, we compare
our FlowN prototype with unvirtualized NOX (to de-
termine the overhead of the virtualization layer) and
FlowVisor (to evaluate scalability and efficiency).

We built a prototype of FlowN by extending the Python
NOX version 1.0 OpenFlow controller [4]. This con-
troller runs without any applications initially, instead
providing an interface to add applications (i.e., for each
tenant) at run time. Our algorithm for embedding new
virtual networks is based on the work of Chowdhury, et.
al. [7]. The embedder populates a MySQL version 14.14
database with the mappings between virtual and physi-
cal spaces. We implement all schemes using the InnoDB
engine. For encapsulation, we use the VLAN header,
pushing a new header at the ingress of the physical net-
work, swapping labels as necessary in the core, and pop-
ping the header at the egress. Alongside each database
replica, we run a memcached instance which gets pop-
ulated with the database lookup results and provides
faster access times should a lookup be repeated.

We run our prototype on a virtual machine running
Ubuntu 10.04 LTS given full resources of three proces-
sors of a i5-2500 CPU @ 3.30GHz, 2 GB of memory,
and an SSD drive (Crucial m4 SSD 64GB). We per-
form tests by simulating OpenFlow network operation
on another VM (running on an isolated processor with
its own memory space) using a modified cbench [10] to
generate packets with the correct encapsulation tags.

We then measure the latency by measuring the time
between when cbench generates a packet-in event and
when cbench receives a response to the event. The vir-
tual network controllers for each network are simple
learning switches that operate on individual switches.
In our setup, each new packet-in event triggers a rule
installation, which is received by the cbench application.

While it is difficult to directly compare FlowN and
FlowVisor since they are performing different function-
ality, as seen in Figure 2, FlowN has a much slower
increase in latency than FlowVisor as more virtual net-
works are run. FlowVisor has lower latency for small
numbers of virtual networks as the overhead of using
a database, as compared to a custom data structure,
dominates at these small scales. However, at larger
sizes (e.g., around 100 virtual networks and greater),
the scalability of the database approach used in FlowN
wins out. We also note that the overall increase in la-
tency over the unvirtualized case is less than 0.2ms for
the prototype using memcached and 0.3ms for the one
without.

7. RELATED WORK

Network virtualization has been proposed in various
contexts. In early work, ATM switches are partitioned



Latency vs. # Virtual Networks

Latency, in ms

0.60

20 40 60 00
Numer of virtual networks

FlowN with memcached
FlowN without memcached
FlowVisor

Unvirtualized

Figure 2: Latency vs. Virtual Network count

into “switchlets” to enable dynamic creation of virtual
networks [11]. In industry, router virtualization is al-
ready available in commercial routers [12]. This then
enables the use of virtualization to enable multiple ser-
vice providers to share the same physical infrastructure,
as with VINT [13], or as a means for a single provider to
simplify management of a single physical infrastructure
among many services, as with ShadowNet [14].

More recently, network virtualization solutions in the
context of software-defined networks have been intro-
duced [1, 8, 15] to compliment the virtualized comput-
ing infrastructure in multi-tenant datacenters. While a
lot of work has been done for network virtualization in
the SDN environment, the current solutions differ from
our approach in their approach to splitting the address
space and virtual topology representation. With FlowN
we provide full virtualization of the address space and
the topology, with a scalable and efficient system.

8. CONCLUSIONS

In this paper we presented FlowN which provides
a full network virtualization solution for software de-
fined networks. The FlowN architecture is based around
the use of namespaces where the controller platform
is shared by each virtual network for an efficient so-
lution. We make use of database technology which has
been developed to support such features as replication
and caching for mappings between virtual and physi-
cal spaces. The evaluation of our prototype shows that
FlowN is a scalable and efficient solution.

9. REFERENCES

[1] Nicira, “Network virtualization platform.”
http://nicira.com/en/
network-virtualization-platform.

[2] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowstron, “Better never than late: Meeting

deadlines in datacenter networks,” in ACM
SIGCOMM, August 2011.

[3] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM CCR,
vol. 38, no. 2, pp. 69-74, 2008.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff,

M. Casado, N. McKeown, and S. Shenker, “NOX:
Towards an operating system for networks,” ACM
SIGCOMM CCR, vol. 38, no. 3, 2008.

[5] M. R. Nascimento, C. E. Rothenberg, M. R.
Salvador, C. N. A. Corréa, S. C. de Lucena, and
M. F. Magalhaes, “Virtual routers as a service:
The RouteFlow approach leveraging
software-defined networks,” in Conference on
Future Internet Technologies (CFI), June 2011.

[6] K. Webb, A. Snoeren, , and K. Yocum, “Topology
switching for data center networks,” 2011.

[7] N. Chowdhury, M. Rahman, and R. Boutaba,
“Virtual network embedding with coordinated
node and link mapping,” in IEEE INFOCOM,
pp. 783-791, April 2009.

[8] R. Sherwood, G. Gibb, K.-K. Yap,

G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar, “Can the production network be the
testbed?,” in Operating Systems Design and
Implementation, October 2010.

[9] “Openflow switch specification 1.3.0.”
https://www.opennetworking.org/images/
stories/downloads/specification/
openflow-spec-v1.3.0.pdf, April 2012.

[10] “Openflow operations per second controller
benchmark.” http:
//www.openflow.org/wk/index.php/0flops,
March 2011.

[11] J. van der Merwe and I. Leslie, “Switchlets and
dynamic virtual ATM networks,” in IFIP/IEEE
International Symposium on Integrated Network
Management, May 1997.

[12] “Configuring virtual routers.”
http://www. juniper.net/techpubs/software/
erx/junose80/swconfig-system-basics/html/
virtual-router-config.html.

[13] A. Bavier, N. Feamster, M. Huang, L. Peterson,
and J. Rexford, “In VINI veritas: Realistic and
controlled network experimentation,” in ACM
SIGCOMM, August 2006.

[14] X. Chen, Z. M. Mao, and J. van der Merwe,
“ShadowNet: A platform for rapid and safe
network evolution,” in USENIX Annual Technical
Conference, June 2009.

[15] NEC, “ProgrammableFlow Controller.”
http://www.necam.com/PFlow/doc.cfm?t=
PFlowController.



