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Abstract— In the Internet today, traffic engineering is per-
formed assuming that the offered traffic is inelastic. In reality,
end hosts adapt their sending rates to network congestion, and
network operators adapt the routing to the measured traffic.This
raises the question of whether the joint system of congestion
control and routing is stable and optimal. Using established
optimization models for TCP and traffic engineering as a basis,
we find the joint system is stable and typically maximizes
aggregate user utility through simulation. The joint system may
deviate from this solution when the topology is not uniform.
A modification to the joint system will guarantee stability and
optimality for applications that are sufficiently elastic, but at the
cost of robustness.

Keywords: Network utility maximization, Optimization, Conges-
tion control, Routing, Traffic Engineering, Robustness.

I. I NTRODUCTION

In the Internet today, end hosts running the Transmission
Control Protocol (TCP) adapt their sending rates in response
to network congestion. Separately, network operators monitor
their networks for signs of overloaded links and adapt the
routing of traffic to alleviate congestion, in a process known
as traffic engineering. TCP congestion control assumes thatthe
network paths do not change, and traffic engineering assumes
that the offered traffic does not change. Due to the layered
network architecture, congestion control and routing operate
independently, though their individual decisions are inevitably
coupled. In this paper, we investigate whether the joint system
is stable and optimal and there is a good alternative system.

Traffic engineering and congestion control both solve, ex-
plicitly or implicitly, optimization problems defined for the
entire network. Traffic engineering consists of collectingmea-
surements of the traffic matrix—the observed load between
each pair of entry and exit points—and performing a cen-
tralized minimization of a cost function that considers the
resulting utilizations on all links (e.g., [1], [2]). In contrast,
TCP congestion control can be viewed asimplicitly solving
an optimization problem in a distributed fashion (e.g., [3], [4],
[5], [6]), where the many variants of TCP differ in the shape
of user utility as a function of the source rate.

Previous analysis of congestion control and routing used
congestion price as link weights (e.g., [7], [8]) rather than
modeling the current traffic engineering practices. In this
paper, we use the established optimization models in (e.g.,
[1], [2], [3], [4], [5], [6]) to study the interaction between

traffic engineering and congestion control, and examine the
following key questions through both analysis and simulation:

• Stability : Do the joint dynamics of congestion control
and routing converge to an equilibrium?

• Optimality : If the joint system does converge, does the
equilibrium maximize the aggregate user utility, over both
the routing parameters and source rates?

• Better design: Can we modify the current system to
guarantee stability and optimality?

In our joint congestion control and traffic engineering (CC-
TE) model TCP converges under a fixed routing configuration,
before any routing changes are made. From our analysis and
simulation experiments, we obtain the following insights:

• Confirming the intuition of network operators : Our
simulation results show the CC-TE model is stable for a
variety of topologies.

• Tension between performance and robustness: A mod-
ification to the CC-TE model can guarantee stability and
optimality (Theorem 1), but at the cost of robustness.

The rest of the paper is organized as follows. Section II
introduces the network topology, congestion control and our
joint congestion control and traffic engineering model. We
simulate the CC-TE model in Section III and extend it with
analysis in Section IV. Finally, Section V concludes the paper
and points to future work.

II. N ETWORK MODEL

For analytic tractability, our study makes some simplifying
assumptions. First, we focus on routing and congestion control
in a single Autonomous System, where the operator has full
view of the offered traffic load and complete control over
routing. Second, we consider a routing model where traffic
between source-destination pairs can be split arbitrarilyacross
multiple paths. This is not the OSPF [9] or IS-IS [10] protocols
used today, but can be implemented using the emerging
MPLS [11] technology. Third, we assume that the sources
have infinite backlog, i.e., long sessions modeling “elephant”
traffic in the Internet. In other words, we ignore session level
stochastic dynamics, and focus on the average behavior of TCP
traffic profile, even though the actual sessions themselves are
different. Our notation follows the work in [7], [8]: in general,
small letters are used to denote vectors,e.g., x with xi as its
ith component; capital letters to denote matrices,e.g., R, or
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constants,e.g., L, N . Also t is used to denote the iteration
number,e.g., x(t).

A. Network Topology and Routing

A network is modeled as a set ofL bidirectional links with
finite capacitiesc = (cl, l = 1, . . . , L), shared by a set of
N source-destination pairs, indexed byi; we often refer to a
source-destination pair simply as “sourcei.”

The routing matrixRli specifies the fraction ofi’s flow
that traverses each linkl. We consider a model of routing
that closely reflects today’s operational practice [1], [2].
The operators measure the offered load between each ingress-
egress pairxi. Based on the known network topology and the
traffic matrix, the operators try to find the best routing matrix
R to minimize network congestion.

For a given routing configuration, the utilization of linkl
is ul =

∑

i
Rlixi/cl. To penalize routing configurations that

congest the links, candidate routing solutions are evaluated
based on a cost functionf(ul) that increases steeply asul

approaches1 (while staying finite):f(ul) is strictly convex and
increasing. In addition,f should map zero to zero, since there
should be no penalty for a link with0% utilization. The routing
updateR(t + 1) is the solution to the following optimization
problem overR for fixed x andc:

minimize
∑

l
f(
∑

i
Rlixi/cl). (1)

By considering the total link cost rather than trying to min-
imize a single bottleneck, the optimization framework would
prefer a solution that utilizes a single link at91% over one that
loads many links at90%. In practice, the network operators
often use a piecewise-linearf for faster computation time [1],
[2]. In this paper, we allowf to be any strictly convex,
increasing, and continuous function that maps zero to zero.

B. TCP Model

While the various TCP congestion-control algorithms were
originally designed based on engineering heuristics, recent
work such as [5], [6] has shown through reverse engineering
that they implicitly solve a convex optimization problem in
a distributed fashion. Consider a network where each source
i has a utility functionUi(xi) as a function of its total
transmission ratexi. The basic (concave) network utility
maximization problem over source rate vectorx, for a given
fixed routing matrixR, is

maximize
∑

i
Ui(xi)

subject to Rx � c.
(2)

The goal is to maximize aggregate user utility by varyingx
(but notR), subject to the linear flow constraint that link loads
cannot exceed capacity. TCP congestion-control algorithms
implicitly solve (2), with different TCP variants maximizing
different increasing and concave utility functions.

The utility function can be used to describe the user’s
degree of satisfaction with a particular throughput, and can
also be viewed as a measure of the elasticity of the traffic.
The aggregate utility capture both the efficiency and fairness of

the system in allocating bandwidth to the traffic. A particular
family of widely-used utility functions is parameterized by
α ≥ 0 [12]:

Uα(x) =

{

log x, α = 1
(1 − α)−1x1−α, α 6= 1.

(3)

Maximizing theseα-fair utilities over linear flow constraints
leads to rate-allocation vectors that satisfy the definitions of
α-fairness in the economics literature.

A utility function with α = 2 was examined by [13], and
then linked to TCP Reno [14]. TCP Vegas can be interpreted
asα = 1, see [4]. Other TCP variants that can be interpreted as
α = 1 are STCP [15] and FAST [16]. XCP hasα → ∞ in the
single-link case [17]. One widely-deployed TCP variant that is
not modeled by anα-fair utility function is TCP Tahoe, which
has been reverse engineered and shown to be maximizing the
utility function U(x) = arctanx [5].

C. Joint Congestion Control and Traffic Engineering Model
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Fig. 1. A detailed view of the CC-TE model.

The CC-TE model, as shown in Figure 1, has two steps
in each iteration of the feedback loop. At timet + 1, the
congestion-control step first computes new source rates based
on the routing configuration from timet:

x(t + 1) = argmax
x

∑

i

Ui(xi), subject toR(t)x � c. (4)

Then the routing step computes new paths based on the source
rates:

R(t + 1) = argmin
R

∑

l

f

(

∑

i

Rlixi(t + 1)/cl

)

. (5)

The iterations of (4,5) repeat over time, with congestion
control adapting the source rates to the new routes, and traffic
engineering adapting the routes to the measured traffic.

III. S IMULATION RESULTS

We first illustrate some interesting numerical observations
before presenting theorems on stability and optimality. Our
numerical experiments use a combination of the Matlab and
MOSEK [18] environments.
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(a) N nodes,N sources (b)N nodes,1 destination

Fig. 2. TwoN -node ring topologies with different traffic patterns.
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(a) Access-Core topology (b) Abilene topology

Fig. 3. Two realistic topologies.

A. Simulation Set-up

We evaluate two variants of TCP congestion control:α = 2
(e.g., TCP Reno) andα = 1 (e.g., TCP Vegas). For the cost-
function f(ul), we use an exponential function, which is the
continuous version of the function used in various studies of
traffic engineering [1], [2].

Our initial experiments evaluate a simpleN -node ring
topology, where we can easily scale the size of the network. To
evaluate the influence of the traffic patterns, we consider two
scenarios. In the first scenario, each node is a source sending
to its clockwise neighbor; each source has two possible paths:
a direct one-hop path and an indirect(N −1)-hop path. In the
second scenario, node1 is the destination and the remaining
N − 1 nodes are sources; each sourcexi has ani-hop path
and an (N − i)-hop path. Our experiments vary the number of
nodesN and the capacity of link 1 (between nodes1 andN ).

To study realistic topologies with greater path diversity,we
also experiment with the two networks in Figure 3. On the left
is a tree-mesh topology, which is representative of a common
network structure. In the middle is a full mesh representing
the core of the network with rich connectivity. On the edge are
three access tree subnetworks. Of the twelve possible source-
destination pairs,1 − 3, 1 − 5, 2 − 4, 2 − 6, 3 − 5, and
4 − 6 are chosen, and for each source-destination pair, the
three minimum-hop paths are chosen as possible paths. On
the right is the Abilene backbone network [19]. Of the many
possible source-destination pairs, we choose1−6, 3−9, 7−11,

and 1 − 11. For each source-destination pair, we choose the
four minimum-hop paths as possible paths. For the access-
core and Abilene topologies, the simulations assume the link
capacities follow a truncated (so as to avoid negative values)
Gaussian distribution, with an average of100 and a standard
deviation that varies from0 to 50. We simulate twenty random
configurations for each value of the standard deviation. In
all experiments, we start with an initial routing configuration
that splits traffic evenly among theK paths for each source-
destination pair.

B. Suboptimality Gap Simulations

Given the structure of (2), it is natural to wonder if the inter-
action of congestion control and traffic engineering maximizes
aggregate user utility. Previous work [20], [7] has proposed the
following joint optimization problem:

maximize
∑

i
Ui(xi)

subject to Rx � c, x � 0
(6)

whereboth R andx are variables.
Our experiments quantify the gap in aggregate utility be-

tween the joint system and the optimal aggregate utility of
(6). Table I summarizes the key results.

In Figure 4, we vary the capacity of link1 and plot
the gap in aggregate utility for ring topologies with three,
five, and ten nodes, where each node communicates with its
clockwise neighbor. The two graphs plot results forα = 1
(e.g., TCP Vegas) andα = 2 (e.g., TCP Reno), respectively.
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Fig. 4. Aggregate utility gap for theN -node,N -source ring.
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Fig. 5. Aggregate utility gap for theN -node,1-destination ring.
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Fig. 6. Aggregate utility gap for two realistic topologies (with α = 1). A -x- marker denote an individual test point and a -o- marker denote the average.

Figure(s) Key Message
4a versus 5a Traffic pattern has a significant effect.
4a versus 4b TCP variants give the same trend.
5a versus 5b
All figures Relatively small suboptimality gap.
All figures Homogeneity minimizes suboptimality gap.

TABLE I

SUMMARY OF RESULTS ON SUBOPTIMALITY GAP.

The graphs show trends that are very similar across a range
of topology sizes, suggesting that the number of sources alone
does not have a significant influence on the suboptimality gap.
Similarly, the two TCP variants lead to very similar results.

The vertical line in the middle of the two graphs high-
lights the configuration where all links have unit capacity.
The suboptimality gap is zero for a wide range of capacity
configurations. When one link has much lower capacity than
the other links, a suboptimality gap emerges. This occurs
because the traffic-engineering step in the joint system stops
making use of this low-capacity link, since the penalty for
placing even a small amount of load on this link exceeds the
cost of forcing the traffic on a longer path that places load on
multiple links. When link1 has an extremely low capacity,
even the optimal solution cannot place much traffic on this
link, leading to a small suboptimality gap.

The graphs in Figure 5 confirm that variations in link
capacities affect the suboptimality gap. These graphs evaluate
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the N -node ring with one destination node, for two values
of N and two TCP variants. In contrast to Figure 4, having
either a smaller or a larger capacity on link1 leads to a
suboptimality gap. This is not surprising because link 1 is
a bottleneck link for this traffic pattern. If the link has a small
capacity, the traffic-engineering step does not make use of the
link, making the left part of these curves closely resemble
the plots in Figure 4. If the link has a high capacity, the
traffic-engineering step tries to direct more sources through the
link; however, this is not the best solution when the capacity
of link 1 is just slightly larger than the other links because
traffic traverses longer paths, placing load on a larger number
of links. Comparing Figures 4 and 5 illustrates the important
role the traffic pattern plays in determining whether the joint
system successfully maximizes aggregate utility.

The graphs in Figure 6 illustrate the effects of a variation
in link capacities on realistic topologies. We show how the
suboptimality gap depends on the standard deviation of the
link capacities, which are all varied according to a truncated
Gaussian distribution; we plot separate points for each of the
500 experiments for each value of standard deviation, as well
as a curve that highlights the mean values. The trend that
a more homogeneous capacity distribution (smaller standard
deviation) would lead to a smaller suboptimality gap exists,
but it is much more subdued than in the ring topology and
it is dominated by the variance. This suggests with realistic
topologies, the relationship between link capacity and utility
gap is more complex. One possible explanation is that the
bottleneck link on each path is what matters and while that
is easily correlated with varying a single link in the ring
topology, the effect is coupled in a more complex topology. In
addition, for the Abilene topology, a suboptimality gap exists
even for a homogenous capacity distribution. While the results
of the ring topology suggested network operators can favor
certain configurations to improve network efficiency, it is more
challenging when dealing with realistic topologies.

IV. CONVERGENCE ANDOPTIMALITY ANALYSIS

Our simulations showed that the CC-TE model is stable and
close to optimal for a range of topologies. We speculate, but
cannot yet show it is provably stable for general topologies. In
this section, we show how a change in the cost function can
lead to a provably stable and optimal joint system. This comes
at the cost of robustness, however, and is not recommended
for implementation.

Theorem 1:If the cost functionf is zero until ul = 1,
and positive afterwards, then the CC-TE model converges for
sufficiently concave utilities (i.e., sufficiently elastictraffic):
U

′′

i
(xi) ≤ −

U
′

i
(xi)
xi

. In particular, it converges forα-fair
utilities whenα ≥ 1 and forarctan utility of TCP Tahoe.

Proof: The proof consists of three main steps. First we
show that there exists an unconstrained optimization over both
x and R such that the joint congestion control and routing
system is equivalent to a successive, alternating optimization
overx and thenR. Then we provide a sufficient condition to

guarantee convergence. Finally the condition is examined for
α-fair utilities and arctan utility.

Consider the unconstrained minimization of

g(x, R) = −
∑

i

Ui(xi) + γ
∑

l

f

(

∑

i

Rlixi/cl

)

(7)

for someγ ≥ 0. The two steps in the alternating optimization
method of Gauss-Siedel algorithm [21] are as follows:

x(t + 1) = argmin
x

−
∑

i

Ui(xi) + γ
∑

l

f(
∑

i

Rli(t)xi/cl)

R(t + 1) = argmin
R
g(x(t + 1), R(t))

= argmin
R

∑

l

f(
∑

i

Rli(t)xi(t + 1)/cl).

The minimization ofg(x, R) over R is clearly equivalent
to (1). We need to further show that minimizingg(x, R)
overx (an unconstrained problem) is equivalent to the utility-
maximization problem implicitly solved by TCP congestion
control (2) overx (a constrained problem), for sufficiently
largeγ. By the penalty function method (see [22] for details),
there exists a penalty functionP and a constantγ so that (2)
is equivalent to (8):

maximizex
∑

i

Ui(xi) − γ
∑

l

P

(

∑

i

Rlixi/cl − 1

)

, (8)

provided thatγ is sufficiently large andP is convex, increas-
ing, and zero forRx � c (positive otherwise). Essentially,
in (8) −γ

∑

l
P (
∑

i
Rlixi/cl − 1) in the objective function

replaces the constraintRx � c when γ is sufficiently large.
We now just need to establish a mapping between the link
cost functionf and penalty functionP while preserving the
desired properties. Indeed, convexity ofP implies convexity
of f (convexity is preserved through a linear operation). IfP
is increasing, so isf . If operators chooses a cost functionf
which is zero untilul = 1, then it can matchP exactly.

So far we have constructed an optimization problem (min-
imization of g(x, R)) whose Gauss-Siedel solution algorithm
is equivalent to the system model of joint congestion control
and routing as described in the previous subsection. Now we
will examine the conditions for convergence of this Gauss-
Siedel Algorithm. From [21], the Gauss-Siedel Algorithm will
converge to the minimizer ofg if g is bounded from below,
differentiable, marginally strictly convex inx and R, and
jointly convex inx andR.

The first three conditions are already satisfied through the
constraints placed in the system model definition. Condition
1 is satisfied sincex � 0, R � 0 by definition. Condition2
is satisfied sinceU andf are differentiable, so isg. The third
condition is satisfied sinceU is strictly concave inx, andf
is marginally strictly convex inx andR. The last condition is
not satisfied in general since the functionf(

∑

l
Rlixi/cl) is

not jointly convex inR andx.
In order to satisfy the condition on joint convexity inx and

R, consider a log change of variable. Letx̃i = log xi, R̃li =
log Rli, then Rlixi = exp(R̃li + x̃i). With the change of
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variable, it can be readily verified thatf is still jointly convex
in x̃i and R̃li, but the utility function may no longer be
concave inx̃. If the utility function is concave iñx, then g
would be strictly convex inx̃ since f is strictly convex in
x̃. Denote the new utility function (after the log change of
variable) asWi(x̃i). A sufficient condition for convergence of
the Gauss-Siedel algorithm is forW to be concave iñx. A
simple derivation shows that such a condition reduces to the
following simple bound on the curvature of the utility function:
U

′′

i
(xi) ≤ −U ′

i
(xi)/xi.

Now we specialize to theα-fairness model forU which
covers TCP Reno (currently deployed) and several proposed
variants. In this case,Wα(x̃) can be written as follows:

Wα(x̃) =

{

x̃, α = 1
(1 − α)−1 exp(x)1−α, α 6= 1.

(9)

ExaminingW
′′

(x̃) shows thatW (x̃) is concave forα ≥ 1.
Finally, TCP Tahoe is examined. Recall thatU(x) =

arctan(x) for TCP Tahoe, andW
′′

(x̃) = arctan(x). It follows
that W

′′

(x̃) = (exp(x̃) − exp(3x̃))/(1 + exp(2x̃))2 and W
is concave. Therefore, convergence of the system model is
guaranteed for TCP algorithms withα ≥ 1 and TCP Tahoe.

Following a similar argument as in this proof, Theorem 1
can be extended to utility functionsW which are not concave
in x̃, as long as link-cost functionsf are sufficiently convex.

While this change to the objective function of traffic en-
gineering can guarantee stability and optimality, we do not
recommend it in practice for robustness reasons. By letting
the cost function be zero up until link utilization hits capacity,
there is a risk of having multiple links operate at capacity.
This is a fragile point of operation for the network since a
small burst in traffic would cause the traffic on certain linksto
exceed capacity. Once the traffic exceeds capacity, congestion
is inevitable and so is the subsequent packet loss and delay
increase. So here we have a trade-off between performance
metrics on one hand (stability and optimality) and robustness
on the other.

V. CONCLUSION

In this paper, we have studied the interaction of congestion
control and routing from a network operator’s perspective.
TCP and traffic engineering both try to make efficient use
of link bandwidth to improve network performance for end
users. In today’s IP networks, however, these two mechanisms
operate independently, though they are coupled because they
both adapt to network congestion. In this paper, we find
through simulation that TCP and traffic engineering work ef-
fectively together to reach a stable equilibrium that maximizes
aggregate user utility under most network configurations. A
modification to the operator’s cost function leads to a provably
stable and optimal system, but at the cost of robustness. This
highlights the potential tension between performance and non
performance metrics.

In our ongoing work, we have defined an optimization
problem where the objective is a weighted difference of end-

user utilities and network operator penalty function. A dis-
tributed solution to this problem and its implementation over
existing TCP and traffic-engineering systems have recently
been presented [23]. This helps to balance the tension between
robustness and optimality in two ways. First, by incorporating
the operator’s penalty function into the objective, it protects
the network from short traffic bursts. Second, by finding a
distributed solution, the algorithm can react to traffic shifts on
a smaller timescale.
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