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Abstract—In the Internet today, traffic engineering is per- traffic engineering and congestion control, and examine the

formed assuming that the offered traffic is inelastic. In redity, following key questions through both analysis and simatati
end hosts adapt their sending rates to network congestion,na

network operators adapt the routing to the measured traffic. This « Stability: Do the joint dynamics of congestion control
raises the question of whether the joint system of congestio and routing converge to an equilibrium?

control and routing is stable and optimal. Using establishe « Optimality : If the joint system does converge, does the
optimization models for TCP and traffic engineering as a bas, equilibrium maximize the aggregate user utility, over both

we find the joint system is stable and typically maximizes the routing parameters and source rates?
aggregate user utility through simulation. The joint systen may Better desi C difv th ) t t ¢
deviate from this solution when the topology is not uniform. ¢ DEler design Lan we modiy the current system 1o

A madification to the joint system will guarantee stability and guarantee stability and optimality?

optimality for applications that are sufficiently elastic, but at the In our joint congestion control and traffic engineering (CC-
cost of robustness. - L o TE) model TCP converges under a fixed routing configuration,
~ Keywords: Network utility maximization, Optimization, Conges-pefore any routing changes are made. From our analysis and
tion control, Routing, Traffic Engineering, Robustness. simulation experiments, we obtain the following insights:

« Confirming the intuition of network operators: Our
simulation results show the CC-TE model is stable for a

In the Internet today, end hosts running the Transmission Variety of topologies.
Control Protocol (TCP) adapt their sending rates in respons ¢ Tension between performance and robustnesg mod-
to network congestion. Separately, network operators tapni  ification to the CC-TE model can guarantee stability and
their networks for signs of overloaded links and adapt the Optimality (Theorem 1), but at the cost of robustness.
routing of traffic to alleviate congestion, in a process know The rest of the paper is organized as follows. Section Il
as traffic engineering. TCP congestion control assumeshbat introduces the network topology, congestion control and ou
network paths do not change, and traffic engineering assun@at congestion control and traffic engineering model. We
that the offered traffic does not change. Due to the layersiinulate the CC-TE model in Section Il and extend it with
network architecture, congestion control and routing afger analysis in Section IV. Finally, Section V concludes the grap
independently, though their individual decisions are italy and points to future work.
coupled. In this paper, we investigate whether the jointesys
is stable and optimal and there is a good alternative system. Il. NETWORK MODEL

Traffic engineering and congestion control both solve, ex- For analytic tractability, our study makes some simplifyin
plicitly or implicitly, optimization problems defined forhe assumptions. First, we focus on routing and congestiorrabnt
entire network. Traffic engineering consists of collectmga- in a single Autonomous System, where the operator has full
surements of the traffic matrix—the observed load betwegiew of the offered traffic load and complete control over
each pair of entry and exit points—and performing a cemeuting. Second, we consider a routing model where traffic
tralized minimization of a cost function that considers theetween source-destination pairs can be split arbitraghpss
resulting utilizations on all linksg.g, [1], [2]). In contrast, multiple paths. This is not the OSPF [9] or I1S-IS [10] prottsco
TCP congestion control can be viewed iawplicitly solving used today, but can be implemented using the emerging
an optimization problem in a distributed fashiand, [3], [4], MPLS [11] technology. Third, we assume that the sources
[5], [6]), where the many variants of TCP differ in the shaphave infinite backlog, i.e., long sessions modeling “elepha
of user utility as a function of the source rate. traffic in the Internet. In other words, we ignore sessiorelev

Previous analysis of congestion control and routing usetbchastic dynamics, and focus on the average behavioref TC
congestion price as link weight®.¢, [7], [8]) rather than traffic profile, even though the actual sessions themselkes a
modeling the current traffic engineering practices. In thifferent. Our notation follows the work in [7], [8]: in gerdd,
paper, we use the established optimization modelseig,( small letters are used to denote vectas, x with z; as its
[1], [2], [3], [4], [5], [6]) to study the interaction betwee i‘" component; capital letters to denote matrices}, R, or
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constantse.g, L, N. Also t is used to denote the iterationthe system in allocating bandwidth to the traffic. A partaul

number,e.g, x(t). family of widely-used utility functions is parameterizeg b
i a>0 [12]:
A. Network Topology and Routing
A network is modeled as a set éfbidirectional links with U () = { log z, a=1 3)
finite capacitiesc = (¢;,/ = 1,...,L), shared by a set of “« (1—a) ot~ a#1.
N source-destination pairs, indexed hywe often refer to a
source-destination pair simply as “sourice Maximizing thesea-fair utilities over linear flow constraints

The routing matrixR;; specifies the fraction of's flow leads to rate-allocation vectors that satisfy the defingiof
that traverses each link We consider a model of routing a-fairness in the economics literature.
that closely reflects today’s operational practice [1],.[2] A utility function with « = 2 was examined by [13], and
The operators measure the offered load between each ingrélsen linked to TCP Reno [14]. TCP Vegas can be interpreted
egress pair;. Based on the known network topology and thasa = 1, see [4]. Other TCP variants that can be interpreted as
traffic matrix, the operators try to find the best routing rixatr « = 1 are STCP [15] and FAST [16]. XCP has— oo in the
R to minimize network congestion. single-link case [17]. One widely-deployed TCP variant ika

For a given routing configuration, the utilization of lirk not modeled by am-fair utility function is TCP Tahoe, which
is u; = >, Rizi/c;. To penalize routing configurations thathas been reverse engineered and shown to be maximizing the
congest the links, candidate routing solutions are evatliattility function U(z) = arctanx [5].
based on a cost functiofi(v;) that increases steeply as
approaches (while staying finite):f (u;) is strictly convex and C
increasing. In additionf should map zero to zero, since there
should be no penalty for a link with’% utilization. The routing
updateR(t + 1) is the solution to the following optimization max ¥; U(x), s.t. 3 Rx = ¢
problem overR for fixed = andc: I ]

minimize Y, (3, Ruxi/a). 1) i R

X
By considering the total link cost rather than trying to min- l
imize a single bottleneck, the optimization framework vebul min 3, f(3; Rix/c)
prefer a solution that utilizes a single link@t% over one that
loads many links af0%. In practice, the network operators Fig. 1. A detailed view of the CC-TE model.
often use a piecewise-linedrfor faster computation time [1],
[2]. In this paper, we allowf to be any strictly convex,

increasing, and continuous function that maps zero to zero. The CC-TE model, as shown in Figure 1, has two steps
9 P in each iteration of the feedback loop. At time+ 1, the

B. TCP Model congestion-control step first computes new source rate=dbas
n the routing configuration from time

. Joint Congestion Control and Traffic Engineering Model

While the various TCP congestion-control algorithms we
originally designed based on engineering heuristics, mece .
work such as [5], [6] has shown through reverse engineering’(! +1) = argmax > _Ui(), subject toR(t)z < c. (4)
that they implicitly solve a convex optimization problem in i
a distributed fashion. Consider a network where each SOUFgga, the routing step computes new paths based on the source
¢ has a utility functionU;(xz;) as a function of its total rates
transmission rater;. The basic (concave) network utility
maximization problem over source rate vecigrfor a given

fixed routing matrix R, is R(t+1) = argmin, > f <Z Ryjai(t + 1)/Cz> )
maximize _, U;(x;) @ : ’

subjectto Rx =< c.
The goal is to maximize aggregate user utility by varying
(but notR), subject to the linear flow constraint that link load
cannot exceed capacity. TCP congestion-control algogthm
implicitly solve (2), with different TCP variants maximimj [1l. SIMULATION RESULTS
different increasing and concave utility functions.

The utility function can be used to describe the user's We first illustrate some interesting numerical observation
degree of satisfaction with a particular throughput, and céefore presenting theorems on stability and optimalityr Ou
also be viewed as a measure of the elasticity of the traffitumerical experiments use a combination of the Matlab and
The aggregate utility capture both the efficiency and faisref MOSEK [18] environments.

The iterations of (4,5) repeat over time, with congestion
control adapting the source rates to the new routes, arfittraf
gngineering adapting the routes to the measured traffic.
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Fig. 2. Two N-node ring topologies with different traffic patterns.

(a) Access-Core topology (b) Abilene topology

Fig. 3. Two realistic topologies.

A. Simulation Set-up and 1 — 11. For each source-destination pair, we choose the

We evaluate two variants of TCP congestion contaiok: 2 four minimum-hop paths as possible paths. For the access-
(e.g, TCP Reno) and: = 1 (e.g, TCP Vegas). For the cost-°Te and Abilene topologies, the simulations assume the lin
function f(u;), we use an exponential function, which is thé;apacities follow a truncated (so as to avoid negative &lue

continuous version of the function used in various studies gaqss_|an d|str|bu_t|on, with an avera_ge]mlo and a standard
traffic engineering [1], [2]. eviation that varies frorfi to 50. We simulate twenty random

Our initial experiments evaluate a simplé-node ring configurations for each value of the standard deviation. In

topology, where we can easily scale the size of the netwark. I expgriment_s, we start with an initial routing configuoat
evaluate the influence of the traffic patterns, we consider at _sph_ts traff_lc evenly among th&” paths for each source-
scenarios. In the first scenario, each node is a source @n(ﬂﬁstlnatmn paur.

to its clockwise neighbor; each source has two possiblespatB. Suboptimality Gap Simulations

a direct one-hop path and an indirgdf —1)-hop path. Inthe  Gjyen the structure of (2), it is natural to wonder if the inte

second scenario, nodeis the destination and the remaining,tion of congestion control and traffic engineering maxési

N —1 nodes are sources; each sousgehas ani-hop path  agqregate user utility. Previous work [20], [7] has propbtse
and an (V —¢)-hop path. Our experiments vary the number q{)llowing joint optimization problem:
nodesN and the capacity of link 1 (between nodeand N).

To study realistic topologies with greater path diversitg, maximize 2 Uil@i) (6)
also experiment with the two networks in Figure 3. On the left subjectto Rz < ¢, z =0
is a tree-mesh topology, which is representative of a commuamereboth R andx are variables.
network structure. In the middle is a full mesh representing Our experiments quantify the gap in aggregate utility be-
the core of the network with rich connectivity. On the edge atween the joint system and the optimal aggregate utility of
three access tree subnetworks. Of the twelve possible sour®). Table | summarizes the key results.
destination pairs] — 3,1 -5, 2 -4, 2 -6, 3 -5, and In Figure 4, we vary the capacity of link and plot
4 — 6 are chosen, and for each source-destination pair, tthe gap in aggregate utility for ring topologies with three,
three minimum-hop paths are chosen as possible paths. fi®a, and ten nodes, where each node communicates with its
the right is the Abilene backbone network [19]. Of the manglockwise neighbor. The two graphs plot results for= 1
possible source-destination pairs, we chobsé, 3—9, 7—11, (e.g, TCP Vegas) andv = 2 (e.g, TCP Reno), respectively.
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Key Message
Traffic pattern has a significant effect.
TCP variants give the same trend.

Relatively small suboptimality gap.
Homogeneity minimizes suboptimality ga

TABLE |
SUMMARY OF RESULTS ON SUBOPTIMALITY GAR

D.

The graphs show trends that are very similar across a ral
of topology sizes, suggesting that the number of sourcesal

o)

aggregate utity gap
: f

10 20 30
standard deviation

(b) Abilene topology

marker denote an individual test point and a -o- maidenote the average.

The vertical line in the middle of the two graphs high-
lights the configuration where all links have unit capacity.
The suboptimality gap is zero for a wide range of capacity
configurations. When one link has much lower capacity than
the other links, a suboptimality gap emerges. This occurs
because the traffic-engineering step in the joint systemssto
making use of this low-capacity link, since the penalty for
placing even a small amount of load on this link exceeds the
cost of forcing the traffic on a longer path that places load on
multiple links. When link1 has an extremely low capacity,
even the optimal solution cannot place much traffic on this
n : L
|%ﬁ leading to a small suboptimality gap.

does not have a significant influence on the suboptimality gap The graphs in Figure 5 confirm that variations in link

Similarly, the two TCP variants lead to very similar results

4

capacities affect the suboptimality gap. These graphsiatal



the N-node ring with one destination node, for two valueguarantee convergence. Finally the condition is examioed f
of N and two TCP variants. In contrast to Figure 4, having-fair utilities and arctan utility.

either a smaller or a larger capacity on linkleads to a  Consider the unconstrained minimization of
suboptimality gap. This is not surprising because link 1 is

a bottleneck link for this traffic pattern. If the link has aaim g, R)==> Ui(z:) +vY_f (Z Rlixi/cl> 7)
capacity, the traffic-engineering step does not make useeof t i 1 i

link, making the left part of these curves closely resembig, some~ > 0. The two steps in the alternating optimization

the plots in Figure 4. If the link has a high capacity, thgyethod of Gauss-Siedel algorithm [21] are as follows:
traffic-engineering step tries to direct more sources thincthe

link; however, this is not the best solution when the capacitc(t +1) = argmin, — Z Ui(z:) + vz f(z Ry (t)xi /)
of link 1 is just slightly larger than the other links because i 1 i
traffic traverses longer paths, placing load on a larger reimb(t + 1) = argmingg(z(t + 1), R(t))

of links. Comparing Figures 4 and 5 illustrates the impdrtan

role the traffic pattern plays in determining whether thefoi

system successfully maximizes aggregate utility. L . .
The graphs in Figure 6 illustrate the effects of a variatio&) The minimization ofg(z, I?) over 1t is clearly equivalent

in link capacities on realistic topologies. We show how the (1). We need to further show that minimizingz, )

suboptimality gap depends on the standard deviation of tﬂ\éer.x (an .unconstralne.d prpplem) is equivalent to the ut|!|ty-
. " . : . maximization problem implicitly solved by TCP congestion
link capacities, which are all varied according to a truedat

. N . control (2) overz (a constrained problem), for sufficiently
Gaussian distribution; we plot separate points for eacthef tlalrgey. By the penalty function method (see [22] for details),

500 experiments for each value of standard deviation, ak w : .
as a curve that highlights the mean values. The trend tktl%a?re exists a penalty functioRt and a constant so that (2)

a more homogeneous capacity distribution (smaller stahdésr equivalent to (8):
deviation) would lead to a smaller suboptimality gap exists o

but it is much more subdued than in the ring topology and MaxiMIZ&; > Uilz) =y ) P (Z Rywi/er — 1) , (8)

it is dominated by the variance. This suggests with realisti g ! i

topologies, the relationship between link capacity antityti provided thaty is sufficiently large and® is convex, increas-
gap is more complex. One possible explanation is that thwg, and zero forRz =< c (positive otherwise). Essentially,
bottleneck link on each path is what matters and while thisxt (8) —v>_, P (>_, Riizi/c; — 1) in the objective function

is easily correlated with varying a single link in the ringeplaces the constraitz < ¢ when+ is sufficiently large.
topology, the effect is coupled in a more complex topology. We now just need to establish a mapping between the link
addition, for the Abilene topology, a suboptimality gapstsi cost functionf and penalty function” while preserving the
even for a homogenous capacity distribution. While theltesudesired properties. Indeed, convexity Bfimplies convexity

of the ring topology suggested network operators can favef f (convexity is preserved through a linear operation)PIf
certain configurations to improve network efficiency, it isn@ is increasing, so igf. If operators chooses a cost functign

argming > f(O Ru(t)as(t+1)/cr).
l i

challenging when dealing with realistic topologies. which is zero untily; = 1, then it can matchP exactly.
So far we have constructed an optimization problem (min-
IV. CONVERGENCE ANDOPTIMALITY ANALYSIS imization of g(z, R)) whose Gauss-Siedel solution algorithm

is equivalent to the system model of joint congestion cdntro
Our simulations showed that the CC-TE model is stable agdd routing as described in the previous subsection. Now we
close to optimal for a range of topologies. We speculate, byffil examine the conditions for convergence of this Gauss-
cannot yet show it is provably stable for general topoladies sjedel Algorithm. From [21], the Gauss-Siedel Algorithmlwi
this section, we show how a change in the cost function cg@Bnverge to the minimizer of if ¢ is bounded from below,
lead to a provably stable and optimal joint system. This comgifferentiable, marginally strictly convex in: and R, and
at the cost of robustness, however, and is not recommenq{gﬁuy convex inz and R.
for implementation. The first three conditions are already satisfied through the
Theorem 1:1f the cost functionf is zero untilu; = 1, constraints placed in the system model definition. Conulitio
and positive afterwards, then the CC-TE model converges fplis satisfied since: = 0, R = 0 by definition. Condition2
sufficiently concave utilities (i.e., sufficiently elasticaffic): s satisfied sincé’ and f are differentiable, so ig. The third
UZ-” (z;) < —# In particular, it converges fon-fair condition is satisfied sinc& is strictly concave inz, and f
utilities whena > 1 and forarctan utility of TCP Tahoe. is marginally strictly convex inc and R. The last condition is
Proof: The proof consists of three main steps. First weot satisfied in general since the functigt) ", Ri;z;/c;) is
show that there exists an unconstrained optimization ow#r b not jointly convex inR and x.
x and R such that the joint congestion control and routing In order to satisfy the condition on joint convexity inand
system is equivalent to a successive, alternating optiiniza R, consider a log change of variable. L&t = log z;, R;; =
over z and thenR. Then we provide a sufficient condition tolog R;;, then Rjz; = exp(]fh- + ;). With the change of



variable, it can be readily verified thdtis still jointly convex user utilities and network operator penalty function. A-dis
in #; and Ry;, but the utility function may no longer betributed solution to this problem and its implementatioreiov
concave inz. If the utility function is concave int, theng existing TCP and traffic-engineering systems have recently
would be strictly convex inz since f is strictly convex in been presented [23]. This helps to balance the tension batwe
Z. Denote the new utility function (after the log change ofobustness and optimality in two ways. First, by incorpiogat
variable) asV;(z;). A sufficient condition for convergence ofthe operator’s penalty function into the objective, it it

the Gauss-Siedel algorithm is fé¥ to be concave int. A the network from short traffic bursts. Second, by finding a
simple derivation shows that such a condition reduces to thistributed solution, the algorithm can react to trafficftshon
following simple bound on the curvature of the utility furect:  a smaller timescale.

U; (2;) < =U}(w:) /s.

Now we specialize to the-fairness model for/' which
covers TCP Reno (currently deployed) and several proposedVe would like to thank Ma'ayan Bresler for her help with
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