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Abstract. It has been recently established that particle 
dynamics in the magnetotail geometry can be described 
as a nonintegrable Hamiltonian system with well-defined 
entry and exit regions through which stochastic orbits 
can enter and exit the system after repeatedly crossing 
:he equatorial plane. It is shown that the phase space 
regions occupied by orbits of different numbers of equa~ 
t. arial crossings or dii•erent exit modes are separated by 
fractal boundaries. The fractal boundaries in an entry re- 
gion for stochastic orbits are examined and the capacity 
dimension is determined. 

Introduction 

Properties of magnetospheric plasmas play an essential 
r01e in a wide range of magnetospheric and ionospheric 
phenomena. One region of importance is the magnetotail 
where numerous plasma processes can take place, such 
as instabilities, reconnection, particle acceleration, and 
particle precipitation into the ionosphere. 

As a simple form, the magnetotail magnetic field is 
often modeled by a magnetic neutral sheet with a super- 
imposed magnetic field component (/•..) normal to the 
plane (x-y) of the neutral sheet. The nature of charged 
particle motion in such field configurations has long at- 
trac=ed wide attention (e.g., Speiser, 1965; Sonnerup, 
I}71: Wagner ei aI., 1979; Gray and Lee, 1982; Bitming- 
!am. 1984; Lyons, 1984; Basu and Rowlands, 1986). It 
was found (Chen and Palmadesso, 1986; hereafter Paper 
•5 =hat such a magnetotail topology is a nonintegrable 
Hamiltonian system •vith only two constants of motion 
in involution, a previously unrealized property. More re- 
cently, Chen and Mitchell (1990) have studied a simpler 
"tri-linear" model in which the particle motion can be 
reduced to an analytic mapping and which exhibits the 
essential structures of surfaces of section reported in Pa- 
per !. The chaotic particle motion in the magnetotail has 
a.•r•racted considerable attention in the literature recently 
.{e.g., Biiehner and Zelenyi, 1986, 1987, 1989; Chen ei aI., 
1990; Horton and Tajima, 1990). It is interesting that 
•he phase-space structures exhibited by certain chemi- 
½a• reaction dynamics (Skodje and Davis, 1988) are very 
similar to those described in Paper 1. 
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The magnetotail particle motion has well-defined entry 
and exit regions in the phase space (Paper 1). This is 
important because the Central Plasma Sheet field lines 
are finite in length. Particles execute different numbers of 
equatorial or midplane (z = 0) crossings between entry 
and escape. It has been shown in simple Hamiltonian 
systems that fraetal boundaries can exist with respect to 
multiple exit modes (Bleher eZ al., 1988). In this paper, 
we report the first documentation of fractal boundaries 
for the particle dynamics in the magnetotail geometry. 
In particular, we show fractal boundaries with respect to 
the crossing numbers and exit modes. 

Model 

The model we use is the modified Harris configuration. 
The magnetic field is given by 

B(z, z) = Bo tanh(j) fc + B• •,, (1) 

where Bo and B= are constant and 5 is the half-thickness 
of the current sheet. The usual magnetospheric coor- 
dinate system is used with the x axis in the sun-earth 
direction. The motion of charged particles is governed 
by mdv/dt = (q/c)v x B, where rn is the mass, q is the 
electric charge, c is the speed of light and v = clx/dt 
is the particle •'elocity. Hereafter, q will be taken to be 
positive. In this paper, we will use the normalized coor- 
dinates X = (z - Pv/m•2,),l(b=5), Y _• (y + 
Z -• z/(8,.,a) with b,, =_ B,,/Bo, and r -- f•=t. The nor- 
realized velocity is then V = dX/dr'. The normalized 
Hamiltonim• is • = H/(m•%•%a:). The constants 
the canonical momentum, and 6'• are associated with 
and x-motion, respectively. However, If, Pv and C'r are 
not all in involution; [C,, P•] = -rn•, 5• 0 (Paper 1). 

Fractal boundaries 

As a concrete example, we have chosen the value jr = 
500. Figure !, adapted from Paper 1, is a Poincare sur- 
face of section at Z = 0 and shows the entry, stochastic 
and exit regions. For this value of •, the stochastic par- 
ticles have two well-defined entry regions (S1 and TI) 
and two exit regions, represented by the cross-hatched 
regions. (See Paper 1 for more detail.) 5•% have chosen 
orbits in S1 and followed them numerically until their 
last crossing points (escape points) in the cross-hatched 
regions. 'We then classify the initial orbits according to 
whether they escape from the exit region on the right 
(X > 0) or from the one on the left (X < 0). The inital 
points (the pre-image) can be color-coded according to 
the exit regions or total number of crossings. Figure 2 
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Fig. 1. Phase space structures for the modified Harris 
field. • = 500. S1 and T1 are the entry regions and 
the cross-hatched regions are exit regions for stochastic 
orbits. Adapted from Paper 1. 

shows the fine structure inside S1. The horizontal axis 
ß 

is X and the vertical axis is X, as in the later figures. 
The red dots are those initial orbits that escape from 
the right exit region while the yellow dots are those that 
escape from the one on the left. The large solid yellow 
region corresponds to transient orbits and the blue region 
is in the stochastic region outside S1 (see Fig. 1). These 
regions are not considered. The boundary at the lower 
right corner corresponds to the circle in Fig. 1, outside of 
which orbits are not kinematically allowed. To highlight 
the basic structure, orbits with more than 20 equatorial 
crossings are colored black. 

Figure 2 shows that the pre-image in S1 on this scale 
consists of whorl-like striations. Figure 3(a) shows an en- 

I i ! 

t i 
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Fig. 3. Enlargement of a small "point" in Fig. 2. 
The grid is 400 x 400. Color scheme: grey = 9(+), 
red=•4(+), yellow=•3(-), blue=•&(-), green= •9(+•, 
white=IS(-), and pink=19(-). (a) Each side is 10 -5. 
(b) A square region of sides 1.3 x 10 -9. 

Fig. 2. Pre-image of exit region.s in S1. The horizontal 
axis is .X and the vertical axis is X. The grid is 800 x 800. 

largement of a region of side 10 -s. This region is located 
near X = 16.5 and Jf = -21.5 where the overall stria- 
tions are nearly vertical. The red bands are non-fractal, 
consisting of orbits crossing the equatorial plane a total 
of 14 times and escaping through the exit region on the 
right. Hereafter, we will use the notation n(+) to denote 
orbits which cross the midplane n times and escape from 
the right (X > 0). The notation n(-) refers to escape 
from the left (X < 0) with n crossings. Thus, the red 
bands will be denoted by 14(+). To the left of each red 
band is a thin non-fractal yellow band 13(-). To the left 
of the yellow band is a blue band 14(-). These bands 
are separated by narrow gaps containing even finer non- 
fractal bands with higher crossing numbers. The scat- 
tered points (green, etc.) are unresolved bands of higher 
crossing numbers to be discussed below. 

Figure 3(b) shows an enlargement of a region of side 
1.3 x 10 -ø. The structures are similar to those shown in 
Fig. 3(a). However, the corresponding crossing numbers 
are greater by 5. For example, bands of 19(+) (green) 
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correspond to bands of 14(+) (red) and bands of 18(-) 
o=:spod of lS(-) (ycno). 

3[a), the regions between the bands contain unresolved 
n0n-fractal bands of higher crossing numbers. Thus, the 
n0n-fractal bands are intertwined on finer and finer scales 
d infinitum. The fuzzy edges of the bands are due to 

:he roundoff errors at this magnification. 
There is a specific hierarchy of intertwined non-fractaI 

bands. Figure 3(a) represents the second level of enlarge- 
nlent. The first level consists of bands 9(+) to the right 
of bands 8(-) and 9(-). Figure 3(a)is on the left edge 
cf a wider (by a few o=de=• of magnitude) b•d 9(+) and 
to the right of a band 8(-) (not shown). Figure 3(b) is 
:'he third level enlargement. For this example, the mini- 
mum number of midplane crossings for stochastic orbits 
is 8(-). The next larger numbers are 9(+) and 9(-). 
These orbits traverse the midplane twice before escape 
(see Paper 1 for more detail on orbits). Each traversal 
adds five crossings for this example. The pre-images of 
successive traversals occur on finer scales. Thus, the next 
traversal leads to the bands 14(+), 13(-) and 14(-) [Fig. 
3,a)l. Figure 3(b) corresponds to the next iteration. 

Although this example has two exit regions, there are 
xxlues of 19 with single exit region. The fractal bound- 
xries with respect to the crossing numbers still occur. 

The non-fractal bands in Fig. 3 have certain nonlinear- 
ity which is not apparent. To determine the nonlinearity, 
we note that the banded structure is nearly periodic and 
that the periodicity changes slowly. Such structues can 
interact with the regular grid to produce characteristic 
patterns. The plots of Fig. 3 have been made to avoid 
such "aliasing" effects. Figure 4 shows a square region of 
side 2 x 10 -a such that the rightmost grey band of Fig. 
3[a) corresponds to the rightmost red band 9(+) of Fig. 
4. Only those orbits with crossing numbers less than 20 
are shown. This figure is on a 400 x 400 grid and shows 
prominent arch-like structures consisting of segments of 
n0n-fractal bands. All the bands are actually continuous. 
These arches are nearly periodic both in X and ./f. If the 
bands were straight, no such pattern would emerge. (The 
kactal nature refers to the "infinitely" intertwir/ed bands 

Fig. 4. Interference between the regular grid and non- 
lk:earity of the non-fractal bands (Fig. 3). Red: escape 
from the right. Yellow: escape from the left. Crossing 
r. urnbers are not distinguished. The arches are spaced by 
D• horizontally and Dv vertically [eq. (2)]. 

and not to the nonlinearity. The arches are related only 
to the nonlinearity.) In order to understand this pattern, 
we consider a function ;5(X, _•'). A line is then given by 
qb = C(,k) where C' is a constant parametrized by ,k. To 
represent quasi-periodic bands, we consider, as a simple 
form, exp(iqb) or d modulo 2rr. Let the grid spacing be 
A. If we expand qb about some point, call it, X = 0 and 
•' = 0, then 

2) = + ,oX + + 

,¾th = (a,/ax), = (a /ax and co = (aOlaœ). 
. 

If we write X = mA and X = n•, it can be shown that 
an •& is described by (bo/2)• • • + nco• = constant 
in the neighborhood of ape&, where m =mo + • wi•h 
• the number of grid points from the pe• mo. The 
peak of • at& is a parabola. Here, we neglect the small 
correction if the peak does not fall exactly on a grid point. 
It can be sho;• further that the X-distance D• •d the 
verticM dist•ce D• between adjacent peaks are 

D•: = (ao/bo) and D,, = 2trico. (2) 

This implies that the "artificial" pattern is a sensitive 
diagnostic of the nonlinearity of the structure. Both Ds 
and Dv are independent of the grid spacing A. We have 
enlarged a small region of Fig. 4 by a factor of 5 x 10 4 and 
obtained an essentially self-similar pattern (not shown), 
indicating that the nonlinearity is nearly self-similar and 
that the non-fractal bands are smooth along the edges. 
This process of diagnosing the nonlinearity can be hkened 
to the use of diffraction gratings. 

We have measured the capacity dimension for a sub- 
region of Fig. 4 using the final-state sensitivity method 
(Grebogi ½t al., 1983). (The arch pattern has no bearing 
on the dimension.) This subregion is a square of sides 
',- 1.15 X 10 -3 excluding the non-fractal region 9(+) on 
the right. We choose points randomly within the square 
and perturb their positions by a small number •. We 
then calculate the exi• modes for each pair to obtain the 
fraction f(e) • -•"//V7' where N' is the number of pairs 
;;-hose exit modes are altered as a result of the perturba- 
tion and At7. is the total number of pairs used. We have 
used 2000 to 4000 pairs to obtain _•" greater than 100. 
(3/' ranged from ,-, 100 to ,-. 200.) The statistical un- 
certain•y in f(e) is ,-, (At') -•/• percent. Figure 5 shows 
f(•) versus e on a log-log plot. The results are denoted 
by solid squares with a s•raight line A to fit them. We 
have also measured the dimension of a larger area of sides 
,-. 6 x 10 -2. The results are given by solid circles with 
a straight line B to fit them. From this figure, the un- 
certainty exponent a is obtained by assuming the scaling 
relation f(e) --, e •. Our fit gives a __. 0.22 for both A and 
B, giving the dimension of d = 1 -a '" 1.8. For different 
cutoff numbers less than 50, we have found nearly the 
same values for a. 

We have repeated the same procedure with no cutoff 
in the crossing numbers. The resulting f(½) is shown 
by open squares and circles, corresponding to the solid 
squares and circles, respectivel}: We find that a de- 
creases slightly as e is made smaller. The orbits with large 
crossing numbers (the highest found was 6979) execute 
many crossings just outside the outermost Kolmogorov- 
Arnol'd-Moser (KAM) surface, which has complicated 
small-scale structures (Greene, 1979) leading to "stick- 
iness". We believe that this stickiness is responsible for 
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- 1.5 

- 10.0 - 9.0 - 8.0 - 7.0 - 6.0 - 5.0 

Iog10 (d 

Fig. 5. f(•) versus • plotted on a log-log scale. Solid 
squares are obtained from a subregion of Fig. 4 (line A) 
and solid circles are obtained from a larger region (line 
B). Open squares and circles denote results with no cutoff 
in the total crossing numbers for the respective regions. 

the decreasing c•. Bleher et al. (1988) encountered a 
similar effect when they plotted f(e) for trapped orbits. 
They attributed this to the stickiness of the boundary of 
trapped orbits. 

Discussion 

In this paper, we have provided for the first time nu- 
merical evidence of fractal boundaries for particle dy- 
namics in the magnetotail topology. One value • = 500 
has been used as an example. We have also determined 
the capacity dimension to be approximately d • 1.8 for 
the region examined. We expect that the essential con- 
clusions of this paper are applicable to other values of •r 
and other similar systems. 

A number of potentially important effects of stochas- 
tic particle motion have been considered. Paper 1 sug- 
gested that the process of "differential memory" would 
generate non-Maxwellian free-energy in a dynaxnic envi- 
ronment. This process has been verified recently (Chen 
et al., 1990). Biichner and Zelenyi (1987) suggested that 
chaotic electron orbits could destabilize the collisionless 

tearing mode. Horton and Tajima (1990) have consid- 
ered the "collisionless conductivity" including stochastic 
orbits. It is thus important to understand the nature of 
this dynamical system. It has been suggested by Bfichner 
and Zelenyi (1989) that the crossing of separatrix in the 
effective potential is the essentiM mechanism for chaos. 
In contrast, Chen and Mitchell (1990) have used a•u ana- 
lytical "tri-!inear" model to show that a stretch-and-fold 
mapping associated with the gyration and reflection of 
orbits produces the essential phase space structures re- 
ported in Paper 1. This mapping is shown to produce 
fractal boundaries similar to those described in this pa- 
per. The fractal boundaries constitute a specific prop- 
erty which a proposed mapping should produce. Fur- 
thermore, viewed as a chaotic scattering mechanism, the ' 
fractal boundaries affect relationships between the destri- 
button of incoming orbits (e.g., of ionospheric origin) and 
that of the outgoing orbits, i.e., the final states. 
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