Solving Constrained Horn Clauses
Using Syntax and Data

Grigory Fedyukovich*, Sumanth Prabhu†, Kumar Madhukar†, Aarti Gupta*
*Princeton University, Princeton, USA {grigoryf, aartig}@cs.princeton.edu
†TCS Research, Pune, India {sumanth.prabhu, kumar.madhukar}@tcs.com

Abstract—A Constrained Horn Clause (CHC) is a logical implication involving unknown predicates. Systems of CHCs are widely used to verify programs with arbitrary loop structures: interpretations of unknown predicates, which make every CHC in the system true, represent the program’s inductive invariants. In order to find such solutions, we propose an algorithm based on Syntax-Guided Synthesis. For each unknown predicate, it generates a formal grammar from all relevant parts of the CHC system (i.e., using syntax). Grammars are further enriched by predicates and constants guessed from models of various unrollings of the CHC system (i.e., using data). We propose an iterative approach to guess and check candidates for multiple unknown predicates. At each iteration, only a candidate for one unknown predicate is sampled from its grammar, then it gets propagated to candidates of the remaining unknowns through implications in the CHC system. Finally, an SMT solver is used to decide if the system of candidates contributes towards a solution or not. We present an evaluation of the algorithm on a range of benchmarks originating from program verification tasks and show that it is competitive with state-of-the-art in CHC solving.

I. INTRODUCTION

To formally prove that a program meets a given safety specification, one needs to discover inductive invariants for every loop that appears in the program. Each loop invariant safely approximates the set of program states reachable before and after the corresponding loop. However, it is hard to synthesize them in isolation: if there is a program path through two loops, then invariants for these loops are likely related. For existing approaches to invariant synthesis, the increase in complexity of loop structure enlarges the search space drastically and lowers the chances of finding a suitable system of invariants.

We view the task of program verification as an instance of a more general problem of Constrained Horn Solving (e.g., [1], [2], [3], [4], [5], [6]). It takes as input a set of logical implications, called Constrained Horn Clauses (CHCs), over a set of unknown predicates, and aims at either finding a suitable interpretation for all predicates, that makes every CHC implication involving unknown predicates. Systems of CHCs are widely used to verify programs with arbitrary loop structures: interpretations of unknown predicates, which make every CHC in the system true, represent the program’s inductive invariants. In order to find such solutions, we propose an algorithm based on Syntax-Guided Synthesis. For each unknown predicate, it generates a formal grammar from all relevant parts of the CHC system (i.e., using syntax). Grammars are further enriched by predicates and constants guessed from models of various unrollings of the CHC system (i.e., using data). We propose an iterative approach to guess and check candidates for multiple unknown predicates. At each iteration, only a candidate for one unknown predicate is sampled from its grammar, then it gets propagated to candidates of the remaining unknowns through implications in the CHC system. Finally, an SMT solver is used to decide if the system of candidates contributes towards a solution or not. We present an evaluation of the algorithm on a range of benchmarks originating from program verification tasks and show that it is competitive with state-of-the-art in CHC solving.

In comparison to existing approaches to CHC solving, our approach has several unique features. First, to the best of our knowledge, it exploits data more extensively than any other tool: it allows generating candidates on the fly, for which it gets models from various formulas obtained from CHCs. Furthermore, our algorithm does not necessarily consider candidates of a fixed predetermined shape: due to the use of grammars to learn candidates, the shape of pre-computed predicates (using syntax and data) is modified during the run of the algorithm. Compared to the algorithm of generating data candidates for transition systems [9], our algorithm explores unrollings modularly (i.e., for each loop in isolation), and thus it avoids SMT solving for potentially large formulas.

Finally, our approach does not involve a potentially expen-
sive fixed-point computation. Although our propagation routine is algorithmically similar to that in Generalized Property Directed Reachability [11], [14], we do not apply it recursively. Thus, our algorithm can never diverge while unwinding loops. The tradeoff is that our approach is not guaranteed to find an invariant, but it often does due to the rich grammars we generate, as shown in our experimental evaluation.

Our algorithm has been implemented on top of FREQHORN, a SyGuS-based CHC solver [7]. We have evaluated its effectiveness on a range of benchmarks originated from the verification tasks (i.e., programs with two or more loops and their safety specifications). Compared to state-of-the-art, our prototype exhibits a competitive performance and delivers results for most of the examples where the competing tools diverge. Our tool is particularly effective while discovering complex invariants over non-linear arithmetic.

The rest of the paper is structured as follows. Sect. II gives definitions, notation, and useful lemmas. Then, Sect. III presents our algorithm for a SyGuS-based CHC solver, driven by syntax, data and the candidate propagation. Finally, Sect. IV summarizes the evaluation. Sect. V outlines the related work, and Sect. VI concludes the paper.

II. PRELIMINARIES

For a given formula \(\varphi \) in a first-order theory \(T \), the Satisfiability Modulo Theories (SMT) task is to decide whether there is an assignment \(m \) of values to variables in \(\varphi \) that makes \(\varphi \) true. If every satisfying assignment to \(\varphi \) is also a satisfying assignment to some formula \(\psi \), we write \(\varphi \models \psi \). By \(\top \) and \(\bot \) we denote constants true and false, respectively. By \(\text{Expr} \) we denote a space of all possible quantifier-free formulas in \(T \) and by \(\text{Vars} \) a range of possible variables in \(T \).

A. Constrained Horn Clauses

Definition 1. A linear constrained Horn clause (CHC) over a set of uninterpreted relation symbols \(\mathcal{R} \) is a formula in first-order logic that has the form of one of three implications (called respectively as a fact, an inductive clause, and a query):

\[
\begin{align*}
\varphi(x_1) & \implies \text{inv}_1(x_1) \\
\text{inv}_1(x_1) \land \varphi(x_1, x_2) & \implies \text{inv}_2(x_2) \\
\text{inv}_1(x_1) \land \varphi(x_1) & \implies \bot
\end{align*}
\]

where \(\text{inv}_1, \text{inv}_2 \in \mathcal{R} \) are uninterpreted symbols, \(x_1, x_2 \) are vectors of variables, and \(\varphi \), called a body, is a fully interpreted formula (i.e., \(\varphi \) does not have applications of \(\text{inv}_1 \) or \(\text{inv}_2 \)).

For a CHC \(C \), by \(\text{src}(C) \) we denote an application of \(\text{inv} \in \mathcal{R} \) in the premise of \(C \) (if \(C \) is a fact, we write \(\text{src}(C) \models \top \)). Similarly, by \(\text{dst}(C) \) we denote an application of \(\text{inv} \in \mathcal{R} \) in the conclusion of \(C \) (if \(C \) is a query, we write \(\text{dst}(C) \models \bot \)). We define functions \(\text{rel} \) and \(\text{args} \), such that for each \(\text{inv}(x) \), \(\text{rel}(\text{inv}(x)) \models \text{inv} \) and \(\text{args}(\text{inv}(x)) \models x \). For a CHC \(C \), by \(\text{body}(C) \) we denote the body (i.e., \(\varphi \)) of \(C \).

Example 1. Fig. [7] shows a small C-like program [10] with three loops and its CHC-encoding. Each loop corresponds to one of the uninterpreted relation symbols \(\mathcal{R} = \{ \text{inv}_1, \text{inv}_2, \text{inv}_3 \} \). CHC A encodes the initial assignments to variables (including a nondeterministic choice for \(m \) and \(n \)) and assumptions over values of \(m \) and \(n \). CHCs B, D, and F encode bodies of the first, the second, and the third loops, respectively. In order to represent a nondeterministic conditional in the first loop, CHC B contains the disjunction of encodings of both branches. CHCs C and E encode the fragments of the program between loops. Importantly, they include negations of the guards of preceding loops. Finally, CHC G encodes the negation of the assertion and the negation of the guard of the last loop.

Linear CHCs can encode programs with nested loops, but cannot encode programs with non-inlined function calls [15]. For simplicity of presentation, the paper considers systems of CHCs that have only one query.

Definition 2. Given a set of uninterpreted relation symbols \(\mathcal{R} \) and a set \(S \) of CHCs over \(\mathcal{R} \) we say that \(S \) is satisfiable if there exists an interpretation for each \(\text{inv} \in \mathcal{R} \) that makes all implications in \(S \) valid.

Strictly speaking, an interpretation assigns to each symbol \(\text{inv} \in \mathcal{R} \) with arity \(n \) a relation over \(n \)-tuples. This relation can be represented by a formula \(\varphi \) over (at most) \(n \) free variables, denoted \(\text{fr}(\varphi) \subseteq \text{Vars} \). In a specific application of \(\text{inv} \) to arguments \(\bar{x} \), the free variables of \(\varphi \) are substituted by \(\bar{x} \).

Example 2. The system of CHCs in Fig. 4 is satisfiable (which means the program is safe), and a possible solution maps uninterpreted symbols to their interpretations as follows:

\[
\begin{align*}
\text{inv}_1 & \mapsto (x + y + n = m, \text{inv}_2 \mapsto (x + y + n = m \land n = 0), \text{and inv}_3 \mapsto (x + y + n = m \land n = 0 \land x = 0).
\end{align*}
\]

B. Unrolling of CHCs

The following is built on ideas from Bounded Model Checking (BMC) [11] which aims at exploring finite length traces of programs.

Definition 3. Given a system \(S \) of CHCs over \(\mathcal{R} \), an unrolling of \(S \) of length \(k \) is a conjunction \(\pi(C_0, \ldots, C_k) \models \top \)

\[
\bigwedge_{0 \leq i \leq k} \text{body}(C_i)(\bar{x}_i, x_{i+1}), \text{such that 1) each } C_i \in S, \text{ 2) for each pair } C_i \text{ and } C_{i+1}, \text{ rel}(\text{dst}(C_i)) = \text{rel}((\text{src}(C_{i+1})), \text{ and variables of each } \bar{x}_i \text{ are shared only between body}(C_{i-1})(\bar{x}_{i-1}, \bar{x}_i) \text{ and body}(C_i)(\bar{x}_i, x_{i+1})).
\]

Note that Def. 3 gives a more general notion of unrolling than it is customary for BMC. In particular, it allows the first step \(C_0 \) to be taken from an arbitrary place of the CHC system, i.e., \(C_0 \) is not necessarily a fact. We can consider unrollings, search for their models, and generate so called behavioral

1Because the presentation of our approach in terms of CHCs could be difficult to comprehend (e.g., notation is heavyweight in parts), here and throughout the paper we bring the analogy with program verification.

2We elaborate on the case with nonlinear CHCs in Sect. III-F.
candidates for interpretations of unknown symbols that appear in the unrollings. We elaborate on this in Sect. III-C.

The following lemma provides yet another use of unrollings (for which C_0 is required to be a fact, and C_k – the query). We can enumerate various such unrollings and check satisfiability of the resulting formulas. Once a satisfiable formula is found, it does not make any sense to search for interpretations of any symbols in R.

Lemma 1. Given a system of CHCs S, let $\pi(C_0, \ldots, C_k)$ be one of its unrollings, such that C_0 is a fact, and C_k is the query. Then if $\pi(C_0, \ldots, C_k)$ is satisfiable then S is unsatisfiable.

C. Polynomial behavioral candidates

We recall a few basic definitions from linear algebra that are needed for the generation of behavioral candidates. Given a vector space V over a field F, its basis $B = \{v_1, \ldots, v_n\}$ is a minimal subset of V satisfying:

1. $\forall a_1, \ldots, a_n \in F$, if $\sum_{1 \leq i \leq n} a_i \cdot v_i = 0$, then $\bigwedge_{1 \leq i \leq n} a_i = 0$.
2. $\forall v \in V, \exists a_1, \ldots, a_n \in F$ such that $v = \sum_{1 \leq i \leq n} a_i \cdot v_i$.

Consider the following fixed-degree polynomial equation:

$$c_1 \cdot a_1 + c_2 \cdot a_2 + \cdots + c_n \cdot a_n = 0 \quad (1)$$

where $a_i = x_1^{k_1} \cdots x_n^{k_n}$ are monomials, $c_i \in \mathbb{Q}$ are coefficients, and x_1, \ldots, x_n are the variables from Vars. The degree of a monomial is the sum $\sum_{1 \leq i \leq n} k_i$, and the degree of a polynomial equation is the highest degree among its monomials.

Given the values of variables from Vars, let a data matrix contain values of monomials for Vars up to degree d. We rely on [12] to obtain equations of form (1) over Vars using a data matrix. When these values are substituted for monomials, we get a system of linear equations over c_1, \ldots, c_n. Solutions to these equations form a vector space, and the basis of this vector space, computed by the well-known Gauss-Jordan elimination algorithm, gives coefficients of polynomial equations.

III. CHC Solving as Enumerative Search

In this section, we first give a general idea of our setup, then proceed to describe details that make the search procedure effective in practice and finally summarize everything in one algorithm.

A. Basic idea

A solution for a system of CHCs S with uninterpreted symbols R is a mapping ℓ from each symbol to a formula (written as $\ell : R \rightarrow \text{Expr}$) that makes each CHC in S true. For a synthesis of ℓ, suppose that every $\text{inv} \in R$ has its grammar $G(\text{inv})$ that describes a set of possible candidate formulas for inv. In a naive scenario, in each iteration of a synthesis loop, a candidate formula for each inv gets sampled from $G(\text{inv})$. All candidates are substituted in S, and if at least one of the implications is invalid then the entire system of candidates is failing and the synthesis loop iterates.

Clearly, this naive approach has a large search space. For example, if for the system of CHCs in Fig. 1 the candidate for all three uninterpreted symbols inv_1, inv_2, and inv_3 is $x + y + n = m$, then all of them will be rejected because the candidate for inv_3 is too coarse to prove the query (i.e., it needs to be conjoined with $x = 0 \land n = 0$). However, following [7] and [8], we can optimize the search by synthesizing conjunction-free lemmas for each inv_i separately and then by conjoining them together.

Definition 4. For a system of CHCs S over R and a mapping $\ell : R \rightarrow \text{Expr}$, we say that ℓ is a set of lemmas for S if it makes every CHC in S (except the query) valid.

Example 3. For the system of CHCs in Fig. 4 a mapping from all inv_1, inv_2, and inv_3 to $x + y + n = m$ is one set of lemmas. A mapping $\text{inv}_1 \rightarrow \top, \text{inv}_2 \rightarrow n = 0, \text{and} \text{inv}_3 \rightarrow n = 0$ is another set of lemmas.

Lemma 2. Given a system of CHCs S over R and two sets of lemmas ℓ_1 and ℓ_2, let a mapping $\ell_3 : R \rightarrow \text{Expr}$ be such that for each $\text{inv} \in R$, $\ell_3(\text{inv}) \equiv \ell_1(\text{inv}) \land \ell_2(\text{inv})$. Then ℓ_3 is a set of lemmas for S.

Our algorithm generates grammars based on a set of formulas, called seeds [8]. By construction, grammars should be able to describe all seeds and, as a side effect, also formulas which are syntactically close to seeds (called mutants). In the next two subsections, we outline the process of determining seeds automatically.

B. Collecting seeds from syntax

Given a system S of CHCs over R, let $\text{inv} \in R$ be an uninterpreted symbol for which we wish to generate a
formal grammar. Perhaps, the most obvious sources of seeds are the bodies of CHCs in S that have applications of inv. First, the body of a CHC C that has applications of inv is parsed, and clauses that contain only variables in $\text{args} (\text{src} (C))$ or only variables in $\text{args} (\text{dst} (C))$ are extracted. Then, the obtained formulas are rewritten in terms of variables $\vec{x} \subseteq \text{Vars}$ (practically, it is convenient to specify $\vec{x} \equiv \text{args} (\text{src} (C'))$ of some CHC C' with $\text{inv} = \text{rel} (\text{src} (C'))$.

Formally, for a formula φ in Conjunctive Normal Form, let $\text{Cnjs} (\varphi)$ be a set of its clauses. For sets of variables \vec{x} and \vec{y}, let a set $F_{\vec{x}, \vec{y}} (\varphi)$ be defined as $F_{\vec{x}, \vec{y}} (\varphi) \equiv \{ \psi \mid \exists \phi \in \text{Cnjs} (\varphi) : \psi = \phi [\vec{x}/\vec{y}] \wedge \text{fu} (\phi) \subseteq \vec{x} \}$, where $\phi [\vec{x}/\vec{y}]$ denotes the result of substitutions of variables \vec{x} in ϕ by variables \vec{y}. Thus, a set of seeds obtained from bodies of CHCs can be defined as follows.

Definition 5. Given a system S of CHCs over \mathcal{R}, let $\text{inv} \in \mathcal{R}$. Then

$$\text{SyntSeeds} (\text{inv}) (\vec{x}) \equiv \bigcup_{C \in S \text{ s.t. } \text{rel} (\text{src} (C)) = \text{inv}} F_{\text{args} (\text{src} (C)), \vec{x}} (\text{body} (C)) \cup \bigcup_{C \in S \text{ s.t. } \text{rel} (\text{dst} (C)) = \text{inv}} F_{\text{args} (\text{dst} (C)), \vec{x}} (\text{body} (C))$$

Example 4. For the system of CHCs in Fig. [1] all four conjuncts of $\text{body} (A)$ give seeds $\{ \vec{x} = (0, 0, m, n) \geq 0 \}$ for inv_1 and $\vec{x} = (x, y, m, n)$. Furthermore, seeds $\neg (n = 0)$ and $n = 0$ are obtained from $\text{body} (B)$ and $\text{body} (C)$ respectively.

C. Collecting seeds from data

We bootstrap the grammar generation by seeds that are learned from the concrete values of variables produced while checking satisfiability of various unrollings of CHCs. If a CHC system S encodes some program, then an unrolling $\pi (C_0, \ldots, C_k)$ would correspond to a program trace whose sequentially executed statements are encoded by bodies of each C_i. If such an unrolling is unsatisfiable, then the corresponding program trace is infeasible. Otherwise, a model of the unrolling gives the concrete values of program variables at each execution step. We follow the ideas of the generation of behavioral seeds from models of program unrollings recently presented in [9].

The CHC task makes our setting different from [9], which considers CHCs with one uninterpreted relation symbol only. First, the presence of multiple symbols (and consequently, multiple loops) drastically complicates the creation of unrollings; the resulting formulas become too large and might become difficult for SMT solving. Second, it might be difficult to find a satisfiable unrolling since an unwinding number suitable for one loop might not be suitable for another loop. For example in Fig. [1] if the first and the second loops are unrolled n times, then to get a satisfiable unrolling, the third loop should be unrolled only zero times.

To overcome these two challenges, we propose to explore unrollings modularly: for each cycle in isolation. Recall that Def. [3] allows an unrolling $\pi (C_0, \ldots, C_k)$ to start from the body of some CHC C_0, where C_0 is not a fact. Thus, when determining behavioral seeds for some inv (e.g., when there is no fact in S with an application of inv), we are free to consider any unrolling that starts from an arbitrary C_0, as long as $\text{rel} (\text{dst} (C_0)) = \text{inv}$. In addition, we must ensure that inv is visited often enough, and the cycle has been terminated after C_k; otherwise, the collected data would not be sufficient for generating meaningful seeds. Def. [6] reflects these conditions formally.

Definition 6. Given a system S of CHCs over \mathcal{R}, let $\text{inv} \in \mathcal{R}$. If an unrolling $\pi (C_0, \ldots, C_k)$ is such that 1) $\text{rel} (\text{src} (C_0)) \neq \text{inv}$, 2) $\text{rel} (\text{dst} (C_0)) = \text{inv}$, 3) $\text{rel} (\text{src} (C_k)) = \text{inv}$, and 4) $\text{rel} (\text{dst} (C_k)) \neq \text{inv}$, and $\{ C_i \in \{C_0, \ldots, C_k \} \text{ s.t. } \text{rel} (\text{dst} (C_i)) = \text{inv} \} = \{ n \}$, we call it modular for inv and denote it $\pi^\text{invm} (\text{inv})$.

For practical reasons, we are interested in minimal unrollings $\pi^\text{inv} (\text{inv})$ satisfying Def. [6] for some n and $\text{inv} \in \mathcal{R}$. Then we obtain a model m^inv_n of $\pi^\text{inv} (\text{inv})$, and compute the data matrix using the values in m^inv_n for every $\text{args} (\text{dst} (C_i)) \in \{ C_0, \ldots, C_k \}$, such that $\text{rel} (\text{dst} (C_i)) = \text{inv}$. This data matrix is then used to discover behavioral seeds for inv, denoted $\text{BehavSeeds} (\text{inv})$, that have the fixed-degree polynomial form [1] (recall Sect. [II-C].)

Example 5. For CHCs in Fig. [1] $\pi^\text{inv}_n (\text{inv}) \equiv \text{body} (A) (\vec{x}_0) \land \text{body} (B) (\vec{x}_0, \vec{x}_1) \land \text{body} (B) (\vec{x}_1, \vec{x}_2) \land \text{body} (C) (\vec{x}_2, \vec{x}_3)$ (which correspond to program variables (x, y, m, n) at the beginning of each loop iteration) that make $\pi^\text{inv}_n (\text{inv})$ true. For instance:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Using this data matrix, we can generate a set $\text{BehavSeeds} (\text{inv}) (x, y, m, n) = \{ x + y - m + n = 0 \}$. It is easy to see that this equality holds for every row of the data matrix.

D. Candidate propagation

In practice, seeds obtained using methods from Sect. [III-B] and Sect. [III-C] are often insufficient for generating rich enough formal grammars. Consequently, candidate formulas that are sampled from these grammars, are often insufficient for the discovery of useful lemmas. Recall a solution of the system of CHCs in Fig. [1] as shown in Ex. [2] It requires a set of lemmas that have conjunct $n = 0$ in interpretations of inv_2 and inv_3. However, the set of formulas shown in Ex. [4] can offer $n = 0$ only for inv_1. Our main idea, described formally in the rest of this subsection, is to exploit that every CHC C with $\text{rel} (\text{dst} (C)) = \text{inv}_2$ or $\text{rel} (\text{dst} (C)) = \text{inv}_3$ has a clause $n' = n$ in its body (i.e., it merely reuses an old value of n), and thus the candidate $n = 0$ of inv_1 can be pushed forward to become a candidate of inv_2 and inv_3.

Before propagating candidates, we need to ensure that they are self-consistent in the following sense.
Given a formula that has the form
\[\bot_{\text{src}} \] case encodes a set of all possible states that are reachable from
\[S \] gram state. Forward propagation
\[i_n v \] that has the form (2), where
\[S \] trivially valid. Continuing such operation for other CHCs from
\[C \] and repeats the self-consistency check. Intuitively, if \(C \) has the form (2), then (3) is invalid.
\[i_n v_i (x_i) \land \varphi (x_i, x_j) \implies i_n v_j (x_j) \quad (2) \]
\[C a n d (i_n v_i) (x_i) \land \varphi (x_i, x_j) \implies C a n d (i_n v_j) (x_j) \quad (3) \]
Alg. 1 weakens \(C a n d (i_n v_i) \) to \(\top \), and thus (3) becomes trivially valid. Continuing such operation for other CHCs from
\[S' \] guarantees discovering a self-consistent set of candidates. Note that Alg. 1 takes as additional input a set of formulas which are already proved to be lemmas (recall Def. 4).

Further reasoning of the candidate propagation, given self-consistent formulas \(C a n d \) for some \(R' \subseteq R \), boils down to recursive post- and precondition inference: for any CHC in \(S \) that has the form (2), where \(i_n v \in R' \) and \(i_n v \notin R' \), we wish to identify a formula \(C a n d (i_n v) \), such that (3) holds. Symmetrically, if \(i_n v \notin R' \) and \(i_n v \in R' \), we wish to identify a formula \(C a n d (i_n v) \), such that again (3) holds.

The method of candidate propagation is based on quantifier elimination.

Given a formula that has the form (4).
\[C a n d (i_n v_i) (x_i) \land \varphi (x_i, x_j) \implies i_n v_j (x_j) \quad (4) \]
Forward propagation of \(C a n d (i_n v_i) \) gives a formula \(C a n d (i_n v_j) \), such that:
\[C a n d (i_n v_j) (x_j) \equiv \exists x_i . C a n d (i_n v_i) (x_i) \land \varphi (x_i, x_j) \quad (5) \]
Intuitively, if \(\varphi (x_i, x_j) \) encodes a transition from a program state \(x_i \) to a program state \(x_j \), then \(C a n d (i_n v_i) (x_i) \) encodes a set of all possible states that are reachable from \(C a n d (i_n v_i) (x_i) \) by making the \(\varphi (x_i, x_j) \) step. Note that in case \(C a n d (i_n v_i) (x_i) = \top \), propagating \(\top \) can still give meaningful candidates, if e.g., the \(d_s t \)-arguments do not depend on the \(s_r c \)-arguments. On the other hand, if \(C a n d (i_n v_i) (x_i) = \bot \), propagating \(\bot \) ends up with \(\bot \) again.

Note that the result of forward propagation (5) can be substituted back to implication (4) and make it true. Interestingly, the operation of backward propagation (defined below) does not have such property; and to enforce it, we should apply an additional weakening of the propagated formula.

Given a formula that has the form (6).
\[i_n v_i (x_i) \land \varphi (x_i, x_j) \implies C a n d (i_n v_j) (x_j) \quad (6) \]
Backward propagation of \(C a n d (i_n v_j) \) gives a formula \(C a n d (i_n v_i) \), such that:
\[C a n d (i_n v_j) (x_j) \equiv \exists x_i . C a n d (i_n v_j) (x_j) \land \varphi (x_i, x_j) \quad (7) \]

Algorithm 1: \textsc{weaken}: establishing self-consistency.
Input: CHCs \(S' \) over \(R' \), set of candidates
\[C a n d : R' \rightarrow Expr; \] learned \(L e m m a s : R \rightarrow 2^{\text{Expr}} \)
Output: weakened \(C a n d \)
\[\text{allGood} \leftarrow \top ; \]
\[\text{for all } C \in S' \text{ do} \]
\[\text{if } L \equiv \langle (\exists \text{ args}(\text{src}(C))) \land \rightleftharpoons (\exists \text{ src}(\text{rel}(\text{src}(C)))) \rangle \text{ then} \]
\[\text{Cand}(\text{rel}(\text{src}(C))) \leftarrow \text{PROPAGATEFORWARD}(C, \text{Cand}) ; \]
\[\text{allGood} \leftarrow \bot ; \]
\[\text{break} ; \]
\[\text{if allGood then return } C a n d ; \]
\[\text{return } \text{WEAKEN}(C a n d, R', S', \text{Lemmas}) ; \]

Algorithm 2: \textsc{extend}: recursive propagation.
Input: CHCs \(S \) over \(R; R' \subseteq R \), set of candidates
\[C a n d : R' \rightarrow Expr; \] learned \(L e m m a s : R \rightarrow 2^{\text{Expr}} \)
Output: \(\text{res} \in \{ \top, \bot \} \), extended \(C a n d \)
\[C a n d \leftarrow \text{WEAKEN}(C a n d, R', S', \text{Lemmas}) ; \]
\[\text{if } \text{invo} \in R' \text{ then } C a n d(\text{invo}) = \top \text{ then return } \langle \bot, \bot \rangle ; \]
\[\text{for all } C \in S \text{ s.t. rel}(\text{src}(C)) \in R' \text{ and rel}(\text{dst}(C)) \notin R' \text{ do} \]
\[\text{Cand}(\text{rel}(\text{dst}(C))) \leftarrow \text{PROPAGATEFORWARD}(C, \text{Cand}) ; \]
\[\langle \text{positive}, \text{Cand} \rangle \leftarrow \text{EXTEND}(S, R' \cup \{ \text{rel}(\text{dst}(C)) \}) ; \]
\[\text{allGood} \leftarrow \bot ; \]
\[\text{if allGood then return } \langle \bot, \bot \rangle ; \]
\[\text{for all } C \in S \text{ s.t. rel}(\text{src}(C)) \in R' \text{ and rel}(\text{dst}(C)) \notin R' \text{ do} \]
\[\text{Cand}(\text{rel}(\text{src}(C))) \leftarrow \text{PROPAGATEBACKWARD}(C, \text{Cand}) ; \]
\[\langle \text{positive}, \text{Cand} \rangle \leftarrow \text{EXTEND}(S, R' \cup \{ \text{rel}(\text{src}(C)) \}) ; \]
\[\text{return } \langle \top, \text{Cand} \rangle ; \]

Both forward and backward propagation can be applied recursively for any set of candidates \(C a n d \) and a subset \(R' \subseteq R \).
This is shown formally in Alg. 2. After establishing the self-consistency of candidates (line 1), Alg. 2 extends \(C a n d \) by adding \textit{inferred} candidates using forward propagation (line 3) for all CHCs \(C \) that have \(\text{rel}(\text{src}(C)) \in R' \) and \(\text{rel}(\text{dst}(C)) \notin R' \), and inferred candidates using backward propagation (line 8) for all CHCs \(C \) that have \(\text{rel}(\text{dst}(C)) \in R' \) and \(\text{rel}(\text{src}(C)) \in R' \backslash R' \). Each round of propagation enlarges the set of symbols annotated by candidates \(R' \) as well as \(C a n d \), and Alg. 2 is called recursively (lines 5 and 9). If \(R' = R \) then it is enough to check self-consistency of \(C a n d \) (and weaken it if needed) before returning \(C a n d \) as a set of lemmas.

Theorem 1. Assuming termination of the quantifier elimination procedure and termination of each implication check, Alg. 2 always terminates.

For theories which do not admit a terminating quantifier-elimination procedure, Alg. 2 can be safely modified by replacing the results of calling the propagation methods on lines 3 and 8 by constant \(\top \).
Algorithm 3: SOLVECHCs: overall algorithm.

Input: CHCs S over \mathcal{R}.
Output: res $\in \{\text{SAT}, \text{UNKNOWN}\}$, Lemmas : $\mathcal{R} \rightarrow 2^{\mathcal{Expr}}$.

1 for all inv $\in \mathcal{R}$ do
2 Seeds \leftarrow SyntSeeds(inv) \cup BehavSeeds(inv);
3 G(inv) \leftarrow GETGRAMMAR(S Seeds);
4 Lemmas(inv) \leftarrow \varnothing;
5 while $\forall C \in S. (\text{dest}(C) = \bot)$ do
6 do if \forall inv $\in \mathcal{R}$, ALLBLOCKED(G(inv)) then
7 return \langleUNKNOWN, $\varnothing$$\rangle$;
8 inv \leftarrow PICKRELSYMBOL(\mathcal{R});
9 Cand(inv) \leftarrow SAMPLE(G(inv));
10 \langlepositive, Cand\rangle \leftarrow EXTEND(S, $\{\text{inv}\}$, Cand, Lemmas);
11 end if
12 if positive then
13 Lemmas(inv) \leftarrow Lemmas(inv) $\cup\{\text{Cand}(\text{inv})\}$;
14 G(inv) \leftarrow BLOCK(G(inv), Cand(inv), positive);
15 return \langleSAT, Lemmas\rangle;

E. Core algorithm

Our main contribution is an effective search strategy for a solution of a given system of CHCs S over a set of uninterpreted symbols \mathcal{R}. The search is over a set of candidate formulas for each inv $\in \mathcal{R}$ which is described by a formal grammar G(inv). In this section, we instantiate the setup outlined in Sect. III-A by the components that make the entire procedure practical. The pseudocode of the algorithm is shown in Alg. 3.

Alg. 3 starts by creating the sampling grammars G(inv) for each inv $\in \mathcal{R}$. Grammars are constructed automatically: first (line 2), by collecting Seeds as described in Sect. III-B and Sect. III-C, and then (line 3) by creating production rules that would be able to produce all Seeds before processing them. We do not impose any restrictions on the implementation of this routine, and in practice, one could additionally add a normalization pass over all Seeds before processing them. Note that various unrollings, considered for constructing the behavior candidates, can be enhanced with the bodies of the query (and of other clauses if necessary) to be checked for the existence of counterexamples (recall Lemma 7). If no counterexamples are found, the algorithm starts guessing and checking candidate formulas Cand(inv) for each inv $\in \mathcal{R}$.

Simultaneous sampling from multiple grammars might lead to many iterations of Alg. 3. To be turned to a set of lemmas, each set of candidate formulas should be self-consistent. But if the candidates are sampled without taking into account any relationship among loops, the weakening by Alg. 7 might be too aggressive and might withdraw many good candidates. Instead, we propose to fix precisely one grammar (say, G(inv) for some inv $\in \mathcal{R}$) per iteration, to sample a candidate formula Cand(inv) from G(inv), and to propagate Cand(inv) recursively to candidate formulas Cand(inv') for all inv' $\in \mathcal{R}$ through all implications in S (lines 8-10).

In particular, at each iteration, Alg. 3 picks inv $\in \mathcal{R}$ (in our implementation, we use Weak Topological Ordering [13], but any other heuristic can be used instead). Then the algorithm samples a formula Cand(inv) — it could either be one of Seeds or a syntactically mutated formula. The goal now is to find candidate formulas for all other inv' $\in \mathcal{R}$ \{inv\} and to check all implications in CHCs. The algorithm performs inference of preconditions and postconditions using the routine described in Sect. III-D (Alg. 2).

Recall that Alg. 2 not only populates Cand with candidate formulas for some symbols but also drops some unsuccessful candidate formulas due to weakening. Note that Alg. 1 implements a simple strategy, in which a candidate formula Cand(inv) can only be dropped to \bot — this helps when Cand(inv) is conjunction-free. However, in case Cand(inv) is conjunctive (which could be due to quantifier elimination), a more careful weakening (e.g., [14], [15] or [16]) can be used. In the worst-case scenario, weakening ends up with an empty candidate, which means that nothing was learned at this iteration, and a new candidate formula should be sampled.

In the case when a sequence of weakening-propagation calls has converged, the entire Cand is learned as a lemma (line 7). The process is repeated until the conjunction of lemmas is strong enough to be a solution for the entire system (apply Lemma 2). Finally, for the progress of the algorithm, both failed and positive attempts are noted, and the algorithm ensures that the candidates are not sampled again in the future (line 12). If all candidates of all grammars are blocked, the algorithm terminates with an unknown result (line 6). The facts that each formal grammar admits only a finite number of candidates and that each candidate is considered only once enable us to prove the following theorem.

Theorem 2. Alg. 3 always makes a finite number of iterations, and if it converges with SAT, the set of all learned lemmas constitutes a solution of the CHC system.

Similarly to [8], the algorithm can be optimized by introducing bootstrapping and sampling stages, candidate batching and exploiting counterexamples-to-induction, and thus it can be effectively integrated with the elements of Generalized Property Directed Reachability (GPD) [1], [4].

F. Extension to nonlinear CHCs

Definition 10. A nonlinear CHC is a formula in first-order logic that has the form of one of three implications:

$$\varphi(\vec{x}_1) \implies \text{inv}_1(\vec{x}_1)$$
$$\bigwedge_{0 \leq i \leq n} \text{inv}_i(\vec{x}_i) \land \varphi(\vec{x}_0, \ldots, x_{n+1}) \implies \text{inv}_{n+1}(x_{n+1})$$
$$\bigwedge_{0 \leq i \leq n} \text{inv}_i(\vec{x}_i) \land \varphi(\vec{x}_0, \ldots, \vec{x}_n) \implies \bot$$

Our synthesis algorithm can be adapted to solve systems of nonlinear CHCs with limited backward propagation. The rest
of the components operate in the same way: each \(\text{inv} \in \mathcal{R} \) gets its grammar, and candidates are iteratively sampled from them. In the future, we would like to discover ways of effective backward propagation for nonlinear CHCs. In particular, a variant of (6) for nonlinear CHCs might be as follows:

\[\text{inv}_1(x'_i) \wedge \text{inv}_2(x'_j) \wedge \varphi(x_i, x'_j, x_k) \Rightarrow \text{Cand}((\text{inv}_k)(x_k)) \]

Applying quantifier elimination, we get candidates for conjunctions \(\text{Cand}((\text{inv}_1) \wedge \text{Cand}((\text{inv}_2))) \), but not necessarily for individual conjuncts \(\text{Cand}((\text{inv}_1)) \) and \(\text{Cand}((\text{inv}_2)) \).

IV. Implementation and Evaluation

We have implemented the algorithm from Sect. III-E on top of our previous implementation FREQHORN\[\text{\textcopyright} \] The tool takes a system of CHCs, automatically performs its unrolling, searches for counterexamples (if any), generates behavioral candidates, propagates and weakens candidates. To eliminate quantifiers, FREQHORN uses the technique based on Model-Based Projections [17]. For solving SMT queries, it uses Arma\[\text{\textcopyright} \] for matrix operations, FREQHORN uses Armadillo [19], a C++ library for linear algebra.

We evaluated FREQHORN on 101 satisfiable CHC-systems3 taken from the literature on program verification (e.g. [20]) and crafted by ourselves. There are 81 systems of CHCs over the theories of linear (LIA) and 20 over nonlinear integer arithmetic (NIA). All systems have two or more uninterpreted relation symbols. Because our quantifier-elimination engine has limited support for NIA, we disabled candidate propagation for the cases when the body of corresponding CHCs contains nonlinear arithmetic. In such cases, we assigned \(\top \) to the propagated candidates and performed the self-consistency checks. Thus, disabling candidate propagation did not lead to incorrect results.

Among the 101 benchmarks, FREQHORN was able to solve 81 within a timeout of 5 minutes: 65 over LIA, and 16 over NIA. The remaining 20 benchmarks require disjunctive invariants which are difficult to find for FREQHORN. In order to evaluate the significance of candidate propagation, behavioral candidates, and candidates guessed from syntax, we performed controlled experiments with the corresponding features disabled. Fig. 2 gives the scatter plots that compare configurations on all benchmarks. Each point in a plot represents a pair of the runtime (sec) of the full configuration of FREQHORN (x-axis) and the runtime (sec) of the restricted configuration of FREQHORN (y-axis). In each plot, the color saturation roughly reflects the benefits of the full configuration, i.e., the delta between the runtimes.

The configuration of FREQHORN with candidate propagation disabled (thus, candidates for all unknowns had to be sampled independently) was able to solve 56 benchmarks, and it was on average three times slower than the full configuration. After disabling behavioral candidates (but with candidate propagation), FREQHORN was able to solve 60 benchmarks.

Time-wise, this experiment gave less consistent results: for 15 benchmarks the restricted configuration outperformed the full one. Finally, after disabling syntactic candidates (but with candidate propagation and behavioral candidates), FREQHORN was able to solve only 37 benchmarks. The experiment confirmed that all features of our algorithm are essential for its efficacy, and it leaves room for devising heuristics to apply in specific contexts.

We also compared our tool to SPACER v.3 [4], \(\mu Z \) v.4.4.2 [1], and ELDARICA v.1.3 [2] CHC solvers (shown in Fig. 3). Among the 101 benchmarks, SPACER was successful on 45, \(\mu Z \) on 42, and ELDARICA on 71. FREQHORN solved 41 benchmarks on which SPACER diverged, 44 on which \(\mu Z \) diverged, 22 on which ELDARICA diverged. In total, it solved 16 benchmarks on which all the competitors diverged, and 10 of them are over NIA.

In our benchmark selection, there are 8 tricky tasks which were solved by none of the tools. Investigating bottlenecks in solving them motivates our future work.

V. Related work

Conceptually, our algorithm for solving CHCs can be viewed as an extension of the syntax-guided invariant synthesizer [7] for transition systems (i.e., CHCs with one uninterpreted relation symbol). Thus, [7] is built around one sampling grammar, and does not require any candidate propagation. For arbitrary CHCs, as shown in our experiments, a naively extended approach of [7] does not scale well. Furthermore, in many cases, for convergence, it would require some symbolic constraints to be propagated across CHCs before the grammar is constructed (otherwise, the grammars might not be sufficient, and sometimes might be even empty). Our new solution is insensitive to these challenges.

Other instantiations of [7] include [8] and [9], but they still do not span beyond the transition systems. Our approach incorporates essential details of [8] and [9], namely enriching the grammars by externally created seeds. In particular, as in [9], we use polynomial equations as candidates for a relation between variables, generated after analyzing models for unrollings of CHCs. But again, [9] does not deal with multiple uninterpreted relation symbols. Our approach required solutions to several new challenges. First, a satisfiable unrolling for every loop must be found to obtain behavioral data. Second, even if we get a good candidate for interpretation of one symbol, often a weakening or a strengthening of this candidate is needed to accommodate suitable candidates for other symbols. We have addressed these issues by introducing a concept of modular unrolling of a system of CHCs, and by considering the seeds obtained from data to bootstrap the grammar generation.

\[\text{Source code is available at } \text{https://github.com/grigoryfedyukovich/aeval/tree/rnd/} \]

\[\text{Full statistics are available at } \text{https://goo.gl/ADZdez.} \]
Apart from solving unrollings as in [9], there are prominently two ways to get behavioral data – from infeasible paths using interpolation [21], and from reachable states along feasible paths using test-based executions [22], [12], [23], [24]. These techniques are not only limited by the expressiveness of their grammar, which is fixed, they also take the naive approach to dealing with multiple loops, i.e., the candidates are learned independently for all loops. In contrast, we use behavioral seeds to bootstrap the grammar. Furthermore, we propagate candidates learned for one loop to obtain constraints on those for adjacent loops.

Propagation of candidates and search for inductive subsets is at the heart of the approaches based on Generalized Property Directed Reachability (GPDR) [1], [4]. In a nutshell, they are based on implicit unrollings of loops and a monotonic fixed-point computation, driven by spurious counterexamples. However, such methods often diverge due to failures to generalize an inductive invariant from counterexamples. In contrast, our approach does not perform a fixed-point computation, and propagates candidates only through a finite number of implications, specified directly in CHCs. Failures to propagate lead to withdrawing the candidate and generating a new guess from the grammar. In practice, this makes our solution effective on many benchmarks which are difficult for GPDR.

VI. CONCLUSIONS

We have presented an algorithm for solving systems of CHCs based on Syntax-Guided Synthesis. For each unknown predicate in CHCs, our algorithm generates a formal grammar from the syntax of the CHC system and models of various unrollings of the system. A solution for the system (i.e., an interpretation of each unknown predicate that makes all CHCs true) is then guessed from the corresponding grammars and checked by an SMT solver. It is crucial for the effectiveness of the approach to use modular unrollings of CHCs and to propagate candidates through all available implications in the CHC system. We have presented the evaluation of our prototype built on top of the FREQHORN tool and have confirmed that the algorithm is effective on a range of benchmarks originating from program verification tasks and competitive with state-of-the-art CHC solvers. As we go ahead, we plan to optimize the algorithm using heuristics, to develop effective strategies for backward candidate propagation in case of nonlinear CHCs, and to extend our tool with the support of CHCs over arrays, algebraic data types and bit-vectors.

Acknowledgements: This work was supported in part by NSF Grant 1525936. Any opinions, findings, and conclusions expressed herein are those of the authors and do not necessarily reflect those of the NSF.
REFERENCES

