Network Topologies for
Scalable Multi-User Virtual Environments

Thomas A. Funkhouser
Bell Laboratories
600 Mountain Avenue, 2A-202
Murray Hill, NJ 07974
funk@research.att.com

Abstract

This paper investigates trade-offs of different net-
work topologies and messaging protocols for multi-user-
virtual environment systems. We present message dis-
tribution techniques appropriate for constructing scal-
able multi-user systems for a variety of network charac-
teristics. Hierarchical system designs utilizing servers
that manage message distribution for entities in sepa-
rate regions of a virtual environment are described that
scale to arbitrary numbers of simultaneous users. FEzx-
perimental results show that the rate of messages pro-
cessed by server workstations in this system design are
less than using previously described approaches.

1. Introduction

With the recent increases in network bandwidth
and graphics performance in desktop computers, there
is a growing interest in distributed visual simulation
systems that allow multiple users to interact in a
shared 3D virtual environment. Users on workstations
connnected by a wide-area network run an interactive
3D graphics interface program that simulates the ex-
perience of immersion in a virtual environment by ren-
dering images of the environment as perceived from the
user’s simulated viewpoint. As each user is represented
in the shared virtual environment by an entity (avatar)
whose state is controlled by user input and kept up-to-
date on participating workstations via messages, these
systems support visual interactions between multiple
users in a shared 3D virtual environment. Applica-
tions for this technology include distributed training
simulations, collaborative design, virtual meetings, and
multiplayer games.

A difficult challenge in multi-user visual simulation

is maintaining consistent state among a large number
of workstations distributed over a wide-area network.
Whenever any entity changes state (e.g., moves) or
modifies the shared environment, an appropriate up-
date must be applied on every workstation participat-
ing in the shared virtual environment. If N entities
move through a shared virtual environment simulta-
neously, each modifying its position and/or orientation
M times per second, then M x N updates are generated
to a shared database per second.

For a given set of network characteristics, the de-
sign of a multi-user virtual environment system may
have dramatic impact on the system’s scalability and
message distribution performance. Some system de-
signs may scale to many simultaneous users, while oth-
ers may lead to saturation of a particular workstation
or network connection with relatively few users. More-
over, a system design appropriate for one set of network
characteristics may be inappropriate for another. The
goal of this paper is to investigate the trade-offs of dif-
ferent network topologies and messaging protocols for
multi-user-virtual environments. Our aim is to charac-
terize the design of systems that can scale to very large
numbers of simultaneous users.

The rest of the paper is organized as follows. The
next section contains a summary of related work. Sec-
tion 3 describes some network characteristics that im-
pact the message distribution properties of multi-user
virtual environment systems. Several possible system
designs based on different network topologies are de-
scribed in Section 4. Section 5 presents quantitative
results from experiments with two hierarchical system
designs, and discusses implications of these results for
scalable multi-user virtual environments. Finally, a
brief summary and conclusion appear in Section 6.

2. Related Work

Numerous systems have been developed for multi-
user interaction in shared virtual environments. In gen-
eral, these systems represent a virtual environment as a
set of independent entities each of which has a geomet-
ric description and a behavior. Some entities are static
(e.g., terrain, buildings, etc.), whereas others have dy-
namic behavior that can be either autonomous (e.g.,
robots) or controlled by a user via input devices (e.g.,
vehicles). Distributed simulation occurs when multi-
ple entities interact in a shared virtual environment by
sending messages to one another to announce updates
to their own geometry or behavior, modifications to the
shared environment, or impact on other entities.

Every entity is managed by one workstation partici-
pating in the distributed system. The workstation may
map user input to control of particular entities and may
include viewing capabilities in which the virtual envi-
ronment is displayed on the client workstation screen
from the point of view of one or more of its entities. In
addition to managing its own entities (local entities),
each workstation maintains surrogates for some entities
managed by other workstations (remote entities). Sur-
rogates contain (often simplified) representations for
the entity’s geometry and behavior. When a worksta-
tion receives an update message for a remote entity, it
updates the geometric and behavioral models for the
entity’s local surrogate. Between updates, surrogate
behavior is simulated by every workstation.

Multi-user virtual environment systems can be char-
acterized by their approach to message distribution.
For instance, Reality Built For Two [2], VEOS [4], and
MR Toolkit [12] are based on unicast peer-to-peer de-
signs. A unicast message is sent to each of N-1 work-
stations whenever any entity in the distributed simula-
tion changes state. This approach yields O(N?2) update
messages during every simulation step, and thus does
not scale to many simultaneous users before the net-
work gets saturated.

SIMNET [5] and VERN [3] are also peer-to-peer sys-
tems, but use broadcast messages to send updates to
all other workstations participating in a virtual envi-
ronment at once. Although, this approach cuts down
on the total number of messages transmitted to O(N),
every workstation still must process a message when-
ever any entity in the distributed simulation changes
state. Since every workstation must store data and
process update messages and/or simulate behavior for
all N entities during every simulation step, these sys-
tems do not scale beyond the capabilities of the least
powerful participating workstation.

NPSNET [16] and DIVE [6] are peer-to-peer systems

that use multicast to send update messages to a subset
of participating workstations. The general idea is to
map entity properties into multicast groups, and send
update messages only to relevant groups. For instance,
NPSNET [11] partitions a virtual world into a 2D grid
of hexagonal shaped cells each of which is represented
by a separate multicast group. Entities localize their
visual interactions by sending updates only to the mul-
ticast group representing the cell in which they reside,
and they listen only to multicast groups representing
cells within some radius. This approach scales well for
many users, but is only practical for networks which
allow peer-to-peer multicast messaging, and for map-
pings from entity attributes to multicast addresses that
are relatively static so that the impact of messages and
delays associated with joining and leaving multicast
groups is minimal.

WAVES [9], BrickNet [13], and RING [8] are client-
server systems. Communication between client work-
stations is managed by message servers. Clients do
not send messages directly to other clients, but in-
stead send them to servers which forward them to other
clients and servers participating in the same distributed
simulation. A key feature of the client-server design is
that servers can process messages before propagating
them to other clients, culling, augmenting, or altering
the messages. For instance, a server may determine
that a particular update message is relevant only to a
small subset of clients and then propagate the message
only to those clients or their servers. These systems
scale well to many simultaneous users with intelligent
server message processing.

The study presented in this paper is based on RING
[8]. The initial version of RING used a “static” client-
server design in which each client sent all its update
messages to the same server. The system supported
multiple inter-networked servers, but a single client was
connected to the same server throughout its entire ex-
ecution. The primary motivations for this design were
to: 1) support modem connections to clients, and 2)
simplify implementation. Although modems are an im-
portant class of network connections for client-server
messaging, wide-area networks supporting connection-
less unicast protocols (e.g., internet) and multicast pro-
tocols (e.g., MBONE) are available for many comput-
ers. If we construct a system using these networks, a
client can send a message to any one or set of clients
and/or servers at any time. As a result, a variety
of alternate system topologies are possible, potentially
with advantageous processing and messaging proper-
ties. Our aim is to investigate trade-offs for message
distribution of multi-user virtual environment systems
with alternate networking topologies.

3. Network Characteristics

Communication between workstations participating
in a multi-user virtual environment can be imple-
mented using a variety of possible networks with differ-
ent characteristics. These logical networks can be clas-
sified by: 1) whether transport is connection-oriented
or connectionless, 2) whether message delivery is uni-
cast or multicast, 3) message latency, and 4) data band-
width. In this paper, we consider wide-area networks
of the following types:

e Connection: Two workstations can send data
back and forth over a connection-oriented link.
A primary example of such a network is a mo-
dem using a standard telephone line. A modem
link supports two-way, connection-oriented, uni-
cast data transport with relatively low latency and
low bandwidth (14.4Kb/s or 28.8 Kb/s).

¢ Unicast: An arbitrary number of workstations
are logically connected to a network supporting
connectionless, unicast messages. The Internet
can be used as a wide-area unicast network.

e Multicast: An arbitrary number of workstations
communicate with each other with connectionless,
multicast messages as well as connection-less, uni-
cast messages. The MBONE is an example of a
wide-area multicast network.

Heterogeneous networks can be constructed using
combinations of different types of networks. For in-
stance, modems might be used for connections between
clients and servers, while servers communicate amongst
themselves over the Internet. Each combination of net-
works has a unique set of transport modes and perfor-
mance characteristics which can significantly impact
design of systems for multi-user virtual environments.

4. Network Topologies

In this section, we present several possible network
topologies for multi-user virtual environments and de-
scribe practical system designs for a variety of network
characteristics.

Since a primary goal of this study is to investigate
multi-user virtual environments for large numbers of
users, we only consider system designs that scale —i.e.,
no single workstation can process all messages from
all entities. All designs employ message filters based
on precomputed line-of-sight visibility information in
order to localize visual interactions (as used in RING
[8]). Specifically, prior to the multi-user simulation, the

shared virtual environment is partitioned into a spatial
subdivision of cells whose boundaries are comprised of
the static, axis-aligned polygons of the virtual environ-
ment [1, 14]. A visibility precomputation is performed
in which the set of cells potentially visible to each cell
is determined by tracing beams of possible sight-lines
through transparent cell boundaries [14, 15]. During
the multi-user visual simulation, real-time update mes-
sages are propagated only to the subset of workstations
managing entities inside some cell visible to the one
containing the updated entity.

Peer-to-Peer Topologies

In a peer-to-peer system design, the system is ar-
ranged with a set of workstations communicating over
a network in which every peer can send messages di-
rectly to any other peer. If only a network support-
ing unicast messages is available, peers send a unicast
message to other peers when an entity is updated (see
Figure 1).

A 4 '

B Unicast Network

A SCE?"}D}‘\

®
©
©

- >
A e —— 1]] f]
.

Figure 1. Peer-to-peer topology with a unicast
network.

In order to scale the system to many simultaneous
users, message filters must be applied so that update
messages are not sent to every peer for every update.
Peers can maintain lists of the entities resident in each
cell and use precomputed cell-to-cell visibility informa-
tion to send update messages only to other peers man-
aging an entity residing in a cell visible to the cell in
which an update occurred. This design scales beyond
the simple O(N?) “send an update to everybody” ap-
proach as each peer receives only a subset of all update
messages. However, it does not scale infinitely since all
peers must maintain an up-to-date mapping of which
entities are in each cell. In order to keep this mapping
synchronized among peers, update messages are sent
to all peers whenever an entity moves into a new cell

(hopefully, this is infrequently). The number of these
“periodic” update messages may be relatively small,
but it grows with O(NP) for N entities and P peers.

If a network supporting multicast messages is avail-
able, peers can send a single multicast message to a
subset of peers all at once (see Figure 2). A multi-
cast group can be assigned to each cell. For each up-
date, a peer sends a message to the multicast group
representing the cell in which the update occurred,
while all peers listen to the multicast groups repre-
senting the cells visible to the cells containing their
entities [11]. With this approach, peers do not main-
tain explicit lists of entities resident in each cell; but,
instead, they join and leave multicast groups as their
entities move between cells. Filtering of messages is
performed by the network rather than by the peers. Al-
though peers do not exchange explicit “periodic” mes-
sages when entities move between cells, they join and
leave multicast groups, which cause implicit messages
to be generated by the multicast network to update
routing tables. Since the number of multicast mem-
bership changes grows with O(V), this design does not
scale infinitely.

A
B C:D
Multicast
Network

2y
)

Figure 2. Peer-to-peer topology with a multi-
cast network.

Hierarchical Topologies

Multi-user virtual environment systems can also be
designed with a hierarchical topology in which mes-
sage servers manage communication for their clients
(see Figure 3). For each entity update, a client sends
one update message to a server, and the server prop-
agates the message to other servers and clients con-
taining entities inside some cell visible to the one con-
taining the updated entity [8]. The primary advantage
of this approach is that the message distribution bur-
den is shifted out of the clients and into servers. Since

clients simply send one message to a server for each
local update and receive messages from a server for up-
dates to all relevant remote entities, they must perform
very little processing, storage, or messaging to main-
tain consistent state among many entities in a large
virtual environment. Client processing, storage, and
network bandwidth requirements scale infinitely — i.e.,
they grow with density of entities, rather than the to-
tal number of entities in the virtual environment. The
disadvantage of the hierarchical approach is that extra
latency may be introduced for each update message.

Client

Client

A

Serv—efr T Server
Client L
__________ Server
B T ~Client
C

Figure 3. Hierarchical topology with client-
server connections.

The message server processing requirements in a sys-
tem with a hierarchical topology depend on the types
of networks used for client-server and for server-server
links.

If clients can communicate with only one server over
a connection-oriented, unicast network (e.g., modem),
then each server manages message distribution for a
subset of the clients (this design was used in the orig-
inal RING system — it is labeled ‘A’ in the next sec-
tion). For every update to an entity, a client sends an
update message to its server, and its server propagates
the message to other servers and clients with entities in-
side some cell visible to the one containing the updated
entity. In order to implement this approach, servers
must maintain mappings of which entities are in each
cell and exchange “periodic” update messages when-
ever an entity moves between cells. Therefore, this
system design does not scale infinitely. However, the
impact of message filtering in this hierarchical topol-
ogy is far less than in the unicast peer-to-peer topol-
ogy since: 1) there are fewer servers than peers (fewer
unicast messages are required to update all), 2) the
servers may have more available processing power (they
do not render images or simulate entity behavior), 3)
the servers may have more available memory (they do

not store display data for polygons or textures), and 4)
the servers may be connected by faster networks.

If clients can communicate with any server using
a connectionless, unicast network (e.g., Internet), then
servers can be assigned to manage message distribution
for separate regions of the virtual environment (this de-
sign is used in the current RING system — it is labeled
‘B’ in the next section). For each entity update, the
client sends a unicast message to the server managing
the region in which the update occurred. As always,
servers propagate messages to other servers and clients
with entities inside some cell visible to the one contain-
ing the updated entity. The advantage of this approach
is that fewer server-to-server messages are generated,
as most entity-entity visual interactions will occur be-
tween entities managed by the same server. As a re-
sult, far fewer update messages must be passed between
servers in real-time. Likewise, each server must main-
tain mappings of which entities are in each cell only
for the cells visible to its region, so periodic update
messages must be sent only between servers whose re-
gions are potentially visible to each other. This design
scales infinitely as the regions of interest of both clients
and servers are limited to finite subsets of the virtual
environment,.

If servers can communicate with each other over a
multicast network (.e.g, MBONE), then they can dis-
tribute messages using an approach similar to the one
used for the multicast peer-to-peer system design de-
scribed in the previous section. For each entity update,
the client sends a message to a server, which relays the
message to the multicast group representing the cell in
which the update occurred. Each server listens only to
the multicast groups for the cells visible to one region of
the virtual environment, and maintains lists of which
entities are in each cell only for cells in that region.
When a server receives a multicast message, it propa-
gates it to clients with entities residing in the cell repre-
sented by the multicast group. As the region managed
by each server is static (or at least changing very infre-
quently), servers do not join and leave multicast groups
dynamically as is required in a peer-to-peer multicast
system. As a result, no “periodic” update messages
are required when entities move between cells, and this
system design scales infinitely.

Of course, we may also organize a system in a
multi-level hierarchy with second level message servers
managing communication between first level servers.
Which organizations are most efficient depends on the
characteristics of underlying networks.

5. Experimental Results

An experimental system has been implemented for
study of message distribution for multi-user virtual
environments. The system runs on Silicon Graphics
workstations and uses UDP datagrams for message
passing.

We ran experiments with this system in a virtual en-
vironment with 800 “rooms” connected by “hallways”
consisting of 23,168 polygons and 2,219 cells (one tile
is shown in Figure 4). All experiments were run with
256 computer-controlled entities simultaneously nav-
igating through the virtual environment “randomly,”
following piecewise linear paths in randomized direc-
tions for randomized distances. During these experi-
ments, clients sent update messages only for changes
in derivatives of entity position and/or orientation
(i.e., dead-reckoning) while other clients simulated in-
termediate positions with linear “smooth-back.” Up-
date messages containing 40 bytes (message-type[4],
entity-ID[4], target-position[12], target-orientation[12],
positional-velocity[4], and rotational-velocity[4]) were
generated for each entity once every 2.3 seconds on av-
erage with this “random” navigational behavior.

\\.‘Lm‘v ‘\
N
\\%‘\\ \\\\ f\‘\f‘“
‘ \\\\\ \ \
A i\-\\\\\\\

‘

Figure 4. Test virtual environment is 8x4 re-
peating tile pattern of rooms connected by
hallways.

To demonstrate the effect of system design on the
message processing requirements of workstations in a
multi-user virtual environment, we performed exper-
iments using two of the hierarchical system designs
described in the previous section: A) clients made
static connections to one server, while servers passed
messages to each other using a connection-less, uni-
cast network, and B) clients and servers both passed
messages on a connection-less, unicast network — each
server managed message distribution for a separate re-
gion of the virtual environment. For each of these two

Client Server

Number || Input | Output Input Output

System of From To From From To To
Design Servers Server | Server Client | Server | Total || Client | Server | Total
Static 2 4.25 0.50 46.8 44.0 90.8 290.5 44.0 | 334.5
(A) 4 5.09 0.46 24.1 64.4 88.5 148.6 64.7 | 213.3
8 3.29 0.45 12.0 70.4 82.3 71.3 71.5 | 142.8
16 4.16 0.37 6.1 74.7 80.8 37.2 75.8 | 113.0
Regional 2 4.67 0.42 48.2 1.9 50.2 270.7 2.0 | 272.7
(B) 4 3.89 0.53 24.2 4.3 28.5 153.0 4.3 | 157.3
8 4.15 0.46 12.3 3.6 15.8 83.5 3.6 87.1
16 4.41 0.43 5.9 3.4 9.3 37.5 3.5 41.0

Table 1. Average message processing rates (messages per second) measured in a single server
during tests with 2, 4, 8, and 16 servers using A) static connections between clients and servers, and
B) connection-less networks between clients and regional servers.

system designs, we logged counts of input and output
messages in each client and server during tests with
2, 4, 8, and 16 servers. Table 1 lists average client
input/output and server input/output message rates
during these tests.

In system design (A), clients were connected to
servers statically since connection-oriented networks
were used for client-server links. Servers processed
messages for the subset of the entities visible to the
entities on those clients. Since the entities managed
by any client were generally spread evenly through the
virtual environment, a large percentage of update mes-
sages were visible to some entity managed by each
server, and consequently a large number of messages
were passed between servers (see column 6 of Table
1). As the number of servers increased, the total num-
ber of server-server messages output by each server in-
creased as separate unicast messages were sent to mul-
tiple servers. This increase was sub-linear, however,
due to the visibility-based filtering of messages between
servers.

In system design (B), connection-less networks were
used for client-server links, and clients sent update mes-
sages to different servers based on the region of the vir-
tual environment in which the update occurred. As a
result, each server processed messages for the subset of
the entities visible to a separate region of the virtual en-
vironment. Since most visual interactions occurred be-
tween entities managed by the same server, very little
server-server messaging was required. As the number
of servers increased, and the inter-visibility between
server regions decreased, server-server messaging was
reduced (see column 6 of Table 1). Using this system
design, the message processing burden of each client

and server can be quite small, and these systems scale
to many simultaneous users.

6. Conclusion

Characteristics of the networks used to construct
multi-user virtual environment systems can greatly im-
pact the message distribution performance of a particu-
lar system design. For instance, availability of connec-
tionless messaging protocols allows construction of in-
finitely scalable systems. Support for multicast proto-
cols allow portions of the message distribution process-
ing to be performed by the network routers rather than
by peer or server workstations. Economical considera-
tions may also impact system design. For example, it
may be more affordable to build large systems using a
hierarchical topology in which message distribution is
off-loaded from many low-cost client workstations into
a relatively few server workstations.

The results of experiments presented in this pa-
per demonstrate that different network characteristics
and different system designs can significantly affect the
message processing rates required by workstations in a
multi-user virtual environment. We found that a hier-
archical system design in which clients send messages
to regional servers via connection-less unicast networks
scales better than a hierarchical design in which clients
make static connections to one server. Perhaps, by
identifying network characteristics and system designs
that improve the message distribution properites (or
decrease the cost) of multi-user virtual environment
systems, we can aid software and network architects
in the design of future systems.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Airey, John M., John H. Rohlf, and Frederick P.
Brooks, Jr., Towards Image Realism with Inter-
active Update Rates in Complex Virtual Building
Environments. ACM SIGGRAPH Special Issue on
1990 Symposium on Interactive 3D Graphics, 24,
2 (1990), 41-50.

Blanchard, C., S. Gurgess, Y. Harvill, J. Lanier,
A. Lasko, M. Oberman, and M. Teitel, Reality
Built for Two: A Virtual Reality Tool. ACM SIG-
GRAPH Special Issue on 1990 Symposium on In-
teractive 3D Graphics, (Snowbird, Utah), 1990,
35-36.

Blau, Brian, Charles E. Hughes, Michael J.
Moshell, and Curtis Lisle, Networked Virtual
Environments. ACM SIGGRAPH Special Issue
on 1992 Symposium on Interactive 3D Graphics,
(Cambridge, MA), 1992, 157-164.

Bricken, William, and Geoffrey Coco The VEOS
Project. Technical Report, Human Interface Tech-
nology Laboratory, University of Washington,
1993.

Calvin, James, Alan Dickens, Bob Gaines, Paul
Metzger, Dale Miller, and Dan Owen, The SIM-
NET Virtual World Architecture. Proceedings of
the IEEE Virtual Reality Annual International
Symposium, September, 1993, 450-455.

Carlsson, Christer, and Olof Hafsand, Dive: A
Multi-User Virtual Reality System. Proceedings
of the IEEE Virtual Reality Annual International
Symposium, September, 1993, 394-401.

Funkhouser, Thomas A., Carlo H. Séquin, and
Seth J. Teller, Management of Large Amounts of
Data in Interactive Building Walkthroughs. ACM
SIGGRAPH Special Issue on 1992 Symposium on
Interactive 3D Graphics, (Cambridge, MA), 1992,
11-20.

Funkhouser, Thomas A. RING: A Client-Server
System for Multi-User Virtual Environments.
ACM SIGGRAPH Special Issue on 1995 Sympo-
sium on Interactive 3D Graphics, (Monterey, CA),
1995, 85-92.

Kazman, Rick, Making WAVES: On the Design
of Architectures for Low-end Distributed Virtual
Environments. Proceedings of IEEE Virtual Real-

ity Annual International Symposium, September
1993, 443-449.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Kazman, Rick, Load Balancing, Latency Manage-
ment and Separation of Concerns in a Distributed
Virtual World. Parallel Computations - Paradigms
and Applications, A. Zomaya (ed.), Chapman &
Hall, 1995, to appear.

Macedonia, Michael, R. Michael J. Zyda, David
R. Pratt, and Paul T Barham, Exploiting Reality
with Multicast Groups: A Network Architecture
for Large Scale Virtual Environments. To appear
in Proceedings of IEEE Virtual Reality Annual In-
ternational Symposium, 1995.

Shaw, Chris, and Mark Green, The MR Toolkit
Peers Package and Experiment. Proceedings of
IEEE Virtual Reality Annual International Sym-
posium, September 1993, 463-469.

Singh, Gurminder, Luis Serra, Willie Png, Audrey
Wong, and Hern Ng, BrickNet: Sharing Object
Behaviors on the Net. Proceedings of IEEE Virtual
Reality Annual International Symposium, March,
1995, 19-25.

Teller, Seth J., and Carlo H. Séquin, Visibility
Preprocessing for Interactive Walkthroughs. Com-
puter Graphics (SIGGRAPH ‘91). 25, 4, 61-69.

Teller, Seth J., Visibility Computations in Densely
Occluded Polyhedral Environments. Ph.D. thesis,
Computer Science Division (EECS), University of
California, Berkeley, 1992. Also available as UC
Berkeley technical report UCB/CSD-92-708.

Zyda, Michael J., David R. Pratt, John S. Falby,
Chuck Lombardo, and Kristen M. Kelleher, The
Software Required for the Computer Generation

of Virtual Environments. Presence, 2, 2 (March
1993), 130-140.

