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ABSTRACT

A long-standing research problem in computer graphics is to repro-
duce the visual experience of walking through a large photorealistic
environment interactively. On one hand, traditional geometry-based
rendering systems fall short of simulating the visual realism of a
complex environment. On the other hand, image-based rendering
systems have to date been unable to capture and store a sampled
representation of a large environment with complex lighting and
visibility effects.

In this paper, we present a “Sea of Images,” a practical approach
to dense sampling, storage, and reconstruction of the plenoptic
function in large, complex indoor environments. We use a motor-
ized cart to capture omnidirectional images every few inches on a
eye-height plane throughout an environment. The captured images
are compressed and stored in a multiresolution hierarchy suitable
for real-time prefetching during an interactive walkthrough. Later,
novel images are reconstructed for a simulated observer by resam-
pling nearby captured images.

Our system acquires 15,254 images over 1,050 square feet at an
average image spacing of 1.5 inches. The average capture and pro-
cessing time is 7 hours. We demonstrate realistic walkthroughs of
real-world environments reproducing specular reflections and oc-
clusion effects while rendering 15-25 frames per second.

CR Categories: I.3.3 [Picture and Image Generation]: Display
and viewing algorithms. I.3.7 [Three-dimensional Graphics and
Realism]: Virtual Reality.

Keywords: image-based rendering, capture, reconstruction, inter-
active, walkthrough.

1 INTRODUCTION

Creating an interactive walkthrough of a complex real-world envi-
ronment remains one of the most challenging problems in computer
graphics. While many researchers have tackled parts of the prob-
lem, there exist to date no system that can reproduce the photoreal-
istic richness of a large, real-world environment at interactive rates.
For example, a virtual visit to the Louvre or Versailles must repro-
duce the exquisite detail of the paintings and sculptures while at the
same time convey the grandeur of the former royal residences. And,
as in a real museum visit, the user must be able to walk anywhere,
even up close to an interesting work of art.

Image-based rendering (IBR) achieves photorealism by captur-
ing and resampling a set of images. An IBR system usually takes
as input photographs of a static scene, and constructs a sample-
based representation of the plenoptic function [1]. This function,���������	��
���
��������������

, describes the radiance leaving or arriving at
any point

����������
��
from any direction

��
������
with any wavelength

�
at any time

�
. The plenoptic representation can be quickly resam-

pled to render photorealistic images for novel viewpoints without
constructing a detailed 3D model or simulating global illumination,
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Figure 1: Sea of Images. We capture a dense Sea of Images through
a large environment, store them in a multiresolution hierarchy, and
generate real-time reconstructions of novel images in an interactive
walkthrough system.

and the rendering time for novel images can be independent of a
scene’s geometric complexity. However, current IBR methods are
only able to represent either small scenes (e.g., a statuette) or dif-
fuse environments with low geometric complexity (e.g., a room or
a hallway). Our goal is to create an IBR walkthrough system that
supports an interactive experience for large and complex real-world
scenes.

We create interactive walkthroughs using a “Sea of Images”
(SOI) – a collection of images every couple inches throughout a
large environment. In our case, we acquire omnidirectional im-
ages on an eye-height plane throughout the environment (Figure 1).
This representation provides a densely sampled 4D approximation
to the plenoptic function parameterized by camera position (

�����
)

and incoming ray direction (

����

). We capture a SOI by moving
a catadioptric video camera mounted on a motorized cart back and
forth in a zigzag pattern through a static environment. We compress
the acquired data in a multiresolution hierarchy so that it can be ac-
cessed efficiently for continuous sequences of viewpoints. We use
time-critical algorithms to prefetch relevant image data and feature-
based morphing methods to reconstruct novel images during inter-
active walkthroughs.

As compared to previous IBR methods for interior environments,
our SOI approach replaces the difficult computer vision problems
of 3D reconstruction and surface reflectance modeling with the eas-
ier problems of motorized cart navigation, data compression, and
working set management. Rather than using sophisticated planning
and reconstruction algorithms to acquire directly a minimal repre-
sentation of the plenoptic function, we capture a highly redundant
data set and then compress it into a representation that enables real-
time working set management for walkthroughs (Figure 2).

The advantages of this approach are four-fold. (1) It enables ac-
curate image reconstructions for novel views in environments with
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Figure 2: Acquiring Image Samples. Instead of sophisticated plan-
ning and vision algorithms to acquire the minimal sample set, we
oversample and use compression and working set management to
access samples during a real-time walkthrough.

specular surfaces, a great amount of geometrical detail, and com-
plex visibility changes. (2) It does not require an accurate geometric
model to produce novel images over a wide range of viewpoints. (3)
It provides a method for image-based modeling of a large, concave
environment without sophisticated gaze planning. And, (4) it sup-
ports rendering of inside-looking-out images in an IBR interactive
walkthrough system. We believe no other IBR approach includes
all these features.

2 RELATED WORK

Our “Sea of Images” is related to several previously described IBR
methods. In this section, we review the most closely related rep-
resentations and discuss the advantages of our representation for
walkthrough applications.

Movie maps [21] and panoramas [6, 23, 32, 7] sample the
plenoptic function in 2D for a small, sparse set of reference view-
points. While this representation is simple to capture, it grossly
undersamples the spatial dimensions of the plenoptic function, and
thus it is not able to capture specular highlights or complex oc-
clusion effects common in interior scenes. Also, it requires ei-
ther constraining the user to view the scene only from reference
viewpoints [6, 21, 32, 16] or acquiring accurate geometry to en-
able image reconstructions for viewpoints far from any captured
view [23, 7]. This is difficult for complex environments, even when
the environment is modeled using laser range scanners [26]. In con-
trast, a Sea of Images samples both spatial and angular dimensions
densely and interpolates nearby reference images when reconstruct-
ing novel views. Thus, it is better able to capture and reproduce
subtle lighting and occlusion changes. Furthermore, only approxi-
mate geometry or depth information is required for reconstructing
novel views since the viewpoints of captured images are usually
very close to novel viewpoints typical in a walkthrough.

Light Fields [13, 20] provide a 4D approximation to the plenop-
tic function parameterized by a point on a “camera plane”

��� � ���
and a point on an “object plane”

���������
. In contrast, our 4D repre-

sentation is parameterized by a point on a camera plane
���������

and
a view direction

��
������
. This difference is significant for interior

walkthrough applications for three reasons. First, it is much easier
to capture a Sea of Images than it is to acquire a Light Field. Spe-
cial gantries can acquire the

��� � � ���������
Light Fields for small ob-

jects, but seems difficult to scale to large, complex environments.
In contrast, capturing a

����� ����
������
representation simply requires

moving an omnidirectional video camera in a single plane. Second,
the

����� ����
���� �
parameterization simplifies coverage of a large, con-

cave space. Since each Light Field provides samples for a limited
range of novel viewpoints, it is difficult to cover a large complex
environment. In contrast, we capture reference images where we
expect the user to explore, and then the system can synthesize new
images anywhere within the triangulated mesh of reference view-
points. Finally, our

����� �	��
�� ���
approach provides a pre-filtered

multiresolution representation of light radiance arriving at a point,
which is important for walkthroughs where surfaces in the same
image can appear at significantly different distances. In contrast,
Light Fields with fixed uniform sampling of the

���������
plane will

either be undersampled for close-up viewpoints or oversampled for
distant viewpoints.

Surface Light Fields [36] are similar to our representation as they
also parameterize the plenoptic function by a point and a direction.
However, they describe the radiance leaving a surface point rather
than arriving at a camera location. This difference has two signif-
icant implications for walkthrough applications. First, the Surface
Light Field requires an accurate geometric description of the scene
in order to aggregate and store samples on surfaces, where as our
approach works well with little or no geometry. Second, and more
importantly, the data access patterns of a walkthrough application
have much more coherence for nearby viewpoints and incoming
ray directions than for nearby surface points and outgoing direc-
tions. Hence, the Surface Light Field parameterization may enable
greater overall compression of samples on disk (if the surfaces are
mainly diffuse), but the Sea of Images approach is better suited for
efficient working set management during a walkthrough.

Recent computer vision work has provided methods for recon-
structing 3D geometry and capturing textures of environments for
interactive walkthroughs. Representative examples include MIT’s
City Scanning Project [33], Pollefey et al.’s work on 3D reconstruc-
tion from hand-held cameras [18, 28], Zisserman et al.’s work on
obtaining graphical models from video sequences [37], and Kang
et al.’s omnidirectional multibaseline stereo algorithms [17]. This
research is largely orthogonal to ours, as we could use their methods
to acquire more accurate geometric models to improve the quality
of our reconstructed images. However, an important feature of our
approach is that it does not require a very accurate 3D model to
produce novel images because we capture images at very high den-
sity and nearby reference images are available for almost any novel
viewpoint. Our approach avoids the difficult problems of 3D scene
reconstruction (e.g., dense correspondence, depth estimation) and
replaces them with a simpler data management problem, which is
addressed in this paper.

Delta Trees [8] and LDI Trees [5] are related to our approach in
that they store multiresolution representations of the radiance field.
Pre-filtered image data is available for every surface at multiple res-
olutions (e.g., like mip-maps), and thus the amount of real-time
filtering required to reconstruct images from novel viewpoints is
significantly reduced. Our SOI approach also stores image data
for each surface at multiple resolutions (pre-filtered by the cam-
era according to the location of each captured image). However,
our multiresolution representation is viewpoint-centric, rather than
object-centric, which greatly improves cache coherence during an
interactive walkthrough.

Plenoptic Stitching [3] is most closely related to our work. But,
it samples the plenoptic function densely in only one spatial dimen-
sion, capturing images in a cross-hatch pattern of lines separated by
meters. This results in a 3.5D approximation to the plenoptic func-
tion, which does not capture most visibility or lighting changes in
the vertical dimension. In addition, the reconstruction algorithm
warps samples only along one degree of freedom (radial lines),
which generally produce lower quality reconstructions than our sys-
tem. For instance, pixels are reconstructed by combining samples
from a captured image significantly nearer to and another one far-
ther from the sampled environment, thereby combining samples at
different resolutions and causing blurring and ghosting in the ren-
dered images. Our system avoids this problem by warping three
nearby reference images. Additionally, we use multiresolution data
compression and real-time working set management algorithms.

In summary, previous IBR methods can be classified by how
many image samples are collected and how much a priori 3D scene
geometry and reflectance information is required to produce real-
istic novel views. Some methods capture images densely, thus re-
quiring little geometric or reflectance information (e.g., [20, 13]).
However, so far, they are limited to small scenes and small ranges
of novel viewpoints. Other methods sparsely sample the space of
possible viewpoints (e.g., [23]). However, they must acquire de-



tailed geometric information to warp images to novel views. Hy-
brid methods capture images from a semi-dense set of viewpoints
and utilize approximate geometric information (e.g., [3, 30]). These
methods usually produce good results only for scenes without com-
plex surface reflections or visibility effects.

Our system captures a dense sampling of images over a large
area. This allows it to reproduce specular highlights and complex
visibility effects during walkthroughs of large environments over a
wide range of novel viewpoints, without requiring detailed geomet-
ric information.

3 RESEARCH CHALLENGES

In this paper, we investigate a dense sampling of the plenoptic func-
tion for interactive walkthroughs of interior environments. We cap-
ture closely spaced omnidirectional images, compress them, and
resample them to form novel views. This approach allows recon-
struction of novel views with subtle lighting and visibility effects.
However, it requires that we address the following three questions:

� “How can we obtain a dense set of calibrated images over a
large area in a practical manner?” - We have built a capture
system from off-the-shelf components that uses a motorized
cart to move an omnidirectional video camera in a zigzag pat-
tern at eye height through a large environment. We have also
developed camera calibration and pose estimation algorithms
for large, multi-room environments.

� “How do we compress the massive amounts of captured
data?” - We have developed a multiresolution IBR represen-
tation that enables us to exploit coherence in nearby images
resulting in significant compression.

� “How can we access a large out-of-core data set for real-time
walkthroughs?” - We manage the working set through pre-
dictive prefetching and caching algorithms that load images
from disk based on estimated “benefits” and “costs” as a user
moves through an environment interactively.

In the following three sections we investigate answers to these
questions.

4 CAPTURE & CALIBRATION

The first problem is the capture and calibration of a dense Sea of Im-
ages in a manner both practical and automatic. The method should
work reliably in large, multi-room environments without invasive
hardware and without per-image manual processing. For example,
capturing an image every few inches inside a non-trivial environ-
ment (e.g., a small museum) should take no more than an afternoon.

Most previous IBR capture methods rely either upon special-
purpose hardware, specific environment content, or upon careful
path and gaze planning. Levoy and Hanrahan [20] use a gantry to
capture a dense set of images uniformly over a plane. Similarly,
Shum and He [30] use special-purpose hardware to capture images
on a circle. Large-scale (optical) trackers could be used for image
capture but require a significant hardware installation. Teller et al.
[33] capture and calibrate thousands of outdoor images spaced by
several to tens of meters and depend on initial measurements from
a global positioning system. These methods are practical only for
small objects, single rooms, or outdoor environments. They seem
difficult to extend to a wide range of dense viewpoints in complex
interior environments.

Vision-based approaches often depend on structure-from-motion
and on scene content [28, 18, 11]. Jung and Taylor [16] describe a
vision-based approach augmented with inertial sensors. To com-
pensate for drift inherent in these devices, global features or land-
marks must be identified. While this strategy could in principle

work for large interior environments, it is very dependent on the
content of the environment. Moreover, the results so far are not
sufficiently robust to reconstruct detailed geometry and reflectance
effects (e.g., visibility changes, specular highlights).

Gaze planning algorithms [29, 31] can be used in larger environ-
ments, but require a priori knowledge of the location of the interest-
ing detail and also what is of interest to the user. Unless an accurate
model already exists, a system based on these approaches may miss
significant image samples that are difficult to capture at a later date.

In our approach, we capture a dense Sea of Images by moving
an omnidirectional camera on a motorized cart throughout the en-
vironment, continuously capturing image data to disk. The capture
system is built entirely from off-the-shelf components. The system
is small enough to move anywhere in the environment where a per-
son may walk. We replace path planning with image redundancy.
We may capture an environment more in areas of potential occlu-
sion or where a user may want to study objects in detail – this does
not require planning prior to capture, but can be decided on the spot.
Redundant data is automatically discarded at a later stage.

Prior to capture, we calibrate the intrinsic camera parameters
[12]. The camera manufacturer provides a calibration method, but
it does not yield sufficiently accurate results. The manufacturer
assumes that the lens is perfectly telecentric and produces an or-
thographic projection onto the film plane. However, relaxing the
assumption of telecentricity, we obtain more accurate intrinsic pa-
rameters [2], which we fix for the entire capture session.
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Figure 3: Capture and Calibration. We place small portable fidu-
cials

���
that track robustly in the environment. Using triangulation

(distances ��� and angle � ), we obtain an estimated camera position
and orientation from every pair of visible fiducials. A coarse floor
plan predicts the location of fiducials in the captured image. Bundle
adjustment optimization refines the global location of the fiducials
and the camera pose for each captured image.

Our camera pose estimation algorithm tracks fiducials in the cap-
tured images and triangulates position and orientation. The process
begins by an operator creating an approximate floor plan of the en-
vironment (e.g., using a tape measure). Then, the algorithm uses the
floor plan to suggest fiducial locations so as to ensure a sufficient
number of fiducials are visible at all times. To obtain high reli-
ability and accuracy, the fiducials are small battery-powered light
bulbs placed in the environment by the operator. After providing
the initial camera position, the algorithm uses the current position
estimate and the floor plan to determine which fiducials may be
visible in the current image (Figure 3), tracks these from image to
image, and triangulates camera position and orientation.

The fiducials, used for capture, appear in the captured images.
Although they do not seem to interfere with the visualization, we
could later use image-processing techniques to remove the fiducials
and replace them with an estimate of the local background color.

To determine a globally consistent set of camera poses and fidu-
cial locations, we use bundle adjustment [34], a non-linear least
squares optimization method. We alternate between using the esti-
mated fiducial locations to compute the camera pose for each cap-
tured image and using a sparse subset of the camera pose estimates
to refine the global position of the fiducials (i.e., about 10% of the



pose estimates uniformly distributed through the data set).
The goal of the bundle adjustment procedure is to find the 3D

fiducial locations
���������������	���

and camera poses
��� � ��� � ��
 � � that

minimize the difference between the observed fiducial locations � � �
and the projection of the estimated fiducial locations. The func-
tion

� � � ��� � ��� � �
� � � � � ��� � ��
 � � encapsulates the projection from
3-space onto our omnidirectional images [25]. If the observed er-
ror is zero-mean Gaussian, then bundle adjustment corresponds to
the maximum likelihood estimator. The error term used for bundle
adjustment is given below (the Cronecker delta term � � � is 1 when
fiducial f was tracked on image i):

�����
�
� ���� � ����� � � � ���������������	����� � � � � ��
 � ��� �� � �����

When this process has converged, we obtain a dense set of om-
nidirectional images with calibrated camera parameters on a plane
at eye height.

5 COMPRESSION

The second problem is the compression of the massive amounts of
acquired data. Our captured data sets usually contain thousands
of images, requiring gigabytes of storage. However, only a small
portion of the data is needed to reconstruct an image for a novel
viewpoint, and there is a great deal of coherence among the images
from adjacent viewpoints. Thus, as long as our disk storage sys-
tem is large enough to hold the captured data, the main problem is
working set management.

Our focus is quite different from previous work on data manage-
ment for IBR representations. For instance, the original Light Field
paper [20] describes a method that uses vector quantization and
Lempel-Ziv coding. Follow-up work has investigated other com-
pression schemes [27, 15, 22]. However, these methods focus on
reducing the overall storage requirements of the IBR representa-
tion. They assume that the entire data set (or large subsets) will be
decompressed and stored in memory before any novel image is ren-
dered. Of course, this assumption is unrealistic in situations such as
ours where the size of the IBR representation exceeds the capacity
of host memory.

We make the assumption that disk storage is sufficient to hold the
entire data set and that the goal is to compress the data into a form
suitable for efficient access during an interactive walkthrough. The
challenge is to take advantage of the redundancy in the data while
optimizing the data layout for cache coherence.

The first and most obvious option is to compress and store ev-
ery captured image independently, e.g., in a separate JPEG file. (In
fact, we JPEG compress the data during capture.) This approach is
very straightforward, but does not take advantage of inter-viewpoint
redundancy, which can improve both storage and bandwidth utiliza-
tion.

A second option is to utilize prediction and replace some im-
ages with the residual, or difference, between the original image
and the predicted image. With a good prediction strategy, the resid-
ual has less energy than the original image, resulting in significant
compression gain. This technique is used in video codecs based on
motion compensation, such as MPEG 1. A similar strategy has been
used for encoding far-field representations in a walkthrough system
for synthetic environments [35].

One difficulty in predictive coding is finding the proper spacing
of the I-frames. Frequent I-frames yield little compression gain.
Infrequent I-frames make non-linear image access inefficient, and
also yield poor cache utilization for our walkthrough application.

1MPEG uses the terms “I-frames” for the original frames and “P-frames”
for the predicted frames; we use the same notation.

We optimize both compression and cache utilization by storing im-
ages in a multiresolution hierarchy. Instead of the MPEG strategy
of I-frames followed by a number of P-frames followed by an I-
frame, etc., we store images in nested trees, where the root of each
tree is an I-frame and all other nodes are P-frames. Since the system
caches image data associated with interior nodes of the hierarchy,
only P-frames must be read for nearby viewpoints lower in the hi-
erarchy, improving the disk-to-memory bandwidth utilization.

Our multiresolution data structure is a binary tree built bottom
up using half edge-collapse operations [14]. The tree is initialized
by creating a set of nodes representing each captured image at its
viewpoint. Using a (Delaunay) triangulation of the nodes, we com-
pute a priority for every edge and place the edges in a heap. We
collapse the highest priority edge and replace the nodes of the edge
endpoints with a new common parent node (Figure 4a). To avoid
introducing resampled images in the hierarchy, we place the parent
node at the same viewpoint location as one of its children and re-
place the original image with an image reference. We then locally
retriangulate the current node-set, update the heap, and repeat the
collapse process for the next highest priority edge (Figure 4b) until
no edges remain in the heap, storing a full image with the remaining
(root) node (Figure 4c).
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Figure 4: Multiresolution Tree. We show a three-step sequence (a-
c) of building a small tree for a set of five captured images.

We have considered several measures to compute edge collapse
priority. Ideally, we would like to collapse edges between the most
similar images first. One measure is to compute the image energy
of the residual. A faster approximation is to collapse the shortest
edge, which tends to work well since nearby images are often the
most similar.

In order to optimize the compression gain, working set size, and
decompression time, we keep I-frames at every L levels in the tree
( � � � for our environments), creating subtrees of P-frames, with
each P-frame predicted from the root of its subtree. While predic-
tion relative to the root instead of another P-frame does not give
optimal compression, it improves the working set size and decom-
pression time.

Our motion prediction utilizes a simple 3D geometric proxy of
the environment to warp the image at the root of the subtree to the
location of its child. The residual is the difference of the predicted
child and the root image. To improve compression performance, we
optionally use an optimization process for each difference image
computation. The optimization searches for the best set of transla-
tion and rotation offsets to register the proxy to the images so as to
minimize image energy and improve compression.

6 REAL-TIME DATA MANAGEMENT

The third problem is the management of the out-of-core data in a
real-time walkthrough system. Our goal is to pre-load and cache
images from disk for rendering novel views as a user navigates
interactively through the IBR environment. Given the amount of
available storage, bandwidth, and processing capacity of each hard-
ware component, our task is to develop a time-critical algorithm



that loads and caches data in a manner that produces the highest
quality images while maintaining an interactive frame rate [10].

Ideally, the algorithm guarantees that a set of images is always
surrounding the viewpoint allowing for good reconstruction and
smooth transitions from one set of images to another. Moreover,
upon failure, the algorithm should exhibit graceful degradation and
eventually return to maximum quality. To this end, we maintain a
cut through the multiresolution tree. This cut guarantees that at any
location within the walk-able space we always have a set of sur-
rounding images. These images will be used for reconstruction, as
is described in the following section.

We use an asynchronous prefetching process to maintain a cache
of images in main memory. The user’s velocity predicts which im-
ages are needed next. The prefetcher maintains two linked lists of
tree nodes (Figure 5). The evict list defines a cut through the tree
such that all nodes on and above this cut are in cache. The fetch list
consists of all the immediate children of the evict list nodes. The
fetch list and the evict lists are sorted by priority; the first image
in the fetch list has the highest probability of being needed next
and the last image in the evict list has the highest priority of being
needed next. Initially, the evict list consists of just the root node
and the fetch list are the immediate children of the root node. To
display each frame at run-time, the renderer uses the current cut to
determine which images to use for reconstructing the current view.

Root
 Evict

List


Fetch

List


}


Evict


Fetch


Figure 5: Evict and Fetch Lists. We maintain two linked lists of
tree-nodes that define a cut through the tree: the evict list and the
fetch list. The prefetching process updates the likelihood of needing
the nodes in both lists. As long as there is a fetch node that is more
likely to be needed than the least likely evict node, and cache space
can be made available, the nodes are swapped.

To update the cut, we swap nodes between the two lists. We use
the observer’s latest viewpoint and predicted velocity to compute
for all nodes in the evict list and fetch list the probability that its
image is needed next. The probability of a node increases as the
observer gets closer to the node and as the direction from the ob-
server to the node approaches the viewing direction. Since in our
hierarchy we force nodes higher in the tree to be loaded first, the
distance to a node is determined by the distance to the bounding
box surrounding the parent and all its children. If the cache is not
yet full, we swap the node in the evict list that has the lowest proba-
bility with the node with the highest probability in the fetch list and
then load the image data. If the cache is full, we must swap and
flush the image data of a sufficient number of evict nodes to fit the
image data for the next fetch node. The prefetching process recom-
putes the probabilities and sorts the fetch and evict lists at regular
intervals (e.g., 10 to 30 times a second).

If desired, we could optimize the prefetcher for narrow FOV re-
constructions (e.g., 60 degrees). For instance, by subdividing each
omnidirectional image into several tiles, the prefetcher could use
the current predicted viewing direction to only load the subsets of
the omnidirectional images necessary for the FOV to reconstruct.

7 RECONSTRUCTION

The final stage of our process is to reconstruct synthetic images for
novel viewpoints. The goal is to produce high quality images with
little blurring or popping during an interactive sequence.

Since we are interested in first-person walkthroughs, we opti-
mize our system for reconstruction from viewpoints near the eye-
height plane in which the images were captured. We project the
user’s viewpoint onto the triangular mesh of images and extract the
three closest images, which we warp to the viewpoint, and blend
using the barycentric coordinates of the viewpoint [9].

Since the images to blend have different centers of projection,
we warp them using a set of 3D “feature points” distributed on the
surface of a coarse polygonal proxy. We project the visible fea-
ture points onto the image planes of the novel and captured view-
points. Then, we use the features to morph each captured image
to the novel viewpoint [7, 19], obtaining a reconstructed omnidi-
rectional image. In addition, we can create arbitrary projections,
including planar and cylindrical (Figure 6).

An alternate approach is to map the captured omnidirectional
images onto the proxy directly and blend them using texture map-
ping. But, this approach may produce artifacts, such as the incorrect
mapping of portions of the images to the wrong surfaces, especially
along silhouette edges of the proxy.

The accuracy of the proxy becomes increasingly important as
the observer viewpoint approaches an object. Our reconstruction
method may start exhibiting ghosting artifacts when the viewer
gets too close to a small object, occupying the entire field-of-view
(FOV). To remedy this, we could either sample more densely, cre-
ate a more accurate 3D proxy [33, 18, 28, 37], or use more complex
reconstruction algorithms, including ones that combine image data
from multiple reference images [3, 4, 13, 20]. Even without these
extensions, a novel viewpoint is almost always near three captured
views, which are pre-filtered versions of images very similar to the
desired image, so we can usually produce resampled images with
quality almost equal to the captured images.

Figure 6: Reconstruction Examples. We show several reconstructed
images for the library environment. The left image is the recon-
structed omnidirectional image. The upper right is a cylindrical
projection and the bottom right is a planar projection.

8 IMPLEMENTATION DETAILS

Our software system is implemented in C/C++ and OpenGL on a
SGI Onyx2 with 4 195MHz R10000 processors using an Infinite-
Reality2 graphics subsystem.

Our omnidirectional video camera is based on a commercial Cy-
clovision/Remote Reality S1 unit [25], which acquires 1024x1024
images over a hemispherical FOV. The camera is placed on top of
a motorized cart carrying a battery and a small PC, and it is moved
using radio remote control. The cart moves at an average speed
of 7 inches/sec and our RAID disk holds approximately 50GB of



Env. Setup Capture Fiducial Pose Area Avg. Dist to No. Images
Tracking Optimization Images

Library 15 min 17 min 60 min 20 min 120 sq. ft 1.6 in. 1,947
Office 5 min 10 min 50 min 25 min 30 sq. ft 0.7 in. 3,475

Museum 30 min 82 min 160 min 30 min 900 sq. ft 2.2 in. 9,832

Table 1: Capture and Image Statistics. We captured three Sea of Images, covering a total of 1050 square feet with 15254 images at an average
image spacing of 1.5 inches, and average capture and calibration time of 2.8 hours per environment.

Env. Raw Flat Diff-Image Optimized Tree Diff Optimized
(MB) (MB) Hierarchy (MB) Hierarchy (MB) Building Images Diff Images

Library 6000 318 150 (40:1) 113 (54:1) 4 min 60 min 3 hrs
Office 11000 376 198 (55:1) 139 (79:1) 6 min 35 min 5 hrs

Museum 31000 1,560 740 (42:1) 564 (55:1) 50 min 160 min 14 hrs

Table 2: Compression Statistics: We show the raw, JPEG-compressed, and multiresolution hierarchy sizes of our Sea of Images. The
multiresolution hierarchy sizes and times are shown for both unoptimized and per-difference-image optimized compression. The average
compression time is 4.7 hours per environment.

data. We compress the images on the PC and write them to disk
in JPEG format at a rate of 2 frames per second, which yields an
image every couple of inches for nearly 60 hours. We move the cart
back and forth along closely spaced paths (separated by a couple of
inches) to acquire a dense Sea of Images over a plane at eye height
throughout the entire environment.

We use graphics hardware to compute the difference images for
the multiresolution tree. Current graphics hardware does not sup-
port an efficient way to compute image energy, so we use the CPU.
To accelerate the precomputation, we typically compute image en-
ergy values at 128x128 pixel resolution, noting that at full resolu-
tion we should expect similar relative values.

Our reconstruction algorithm also takes advantage of graphics
hardware. While features are interpolated on the CPU, all image
data is blended using either multiple-pass texture blending or the
accumulation buffer. We rely upon a NetLib package for Delaunay
triangulation of features and the graphics subsystem for paging of
texture memory on demand.

9 RESULTS & OBSERVATIONS

In this section, we evaluate how well the Sea of Images approach
achieves the goal of walking through a complex environment with
photorealistic images. Specifically, we ask the following questions:
(1) is our capture process practical?, (2) are our data management
strategies effective?, (3) can the system maintain interactive frame
rates?, and (4) does it in fact reconstruct images with complex illu-
mination and visibility effects during interactive walkthroughs?

So far, we have experimented with three environments. The first
one (“Office”) is a small room, around the size commonly used for
IBR demonstrations. The second one (“Library”) is the lobby area
of a large public library. Finally, the third environment (“Museum”)
is a small museum. It provides our most challenging test case be-
cause it has a concave floor-plan, it contains many specular surfaces
(glass cases and brass plaques on the wall), and it contains complex
geometry (plants on the floor and museum pieces in the cases). No
previous walkthrough system could produce photorealistic images
of such a difficult environment at interactive rates.

Table 1 presents statistics about our capture process. Overall,
the capture process for each of the three environments took only a
couple of hours. The setup time includes making lighting changes,
camera setup (e.g. aperture adjustments) and placing and measur-
ing the fiducial setup in the environment. The actual capture time
during which the motorized cart moved through the environment
was relatively short (e.g., 10 minutes per 1,000 images). The proxy
for each environment was created using a measuring tape and a sim-
ple text-based polygon editor. The entire capture process yielded a

Sea of Images cumulatively covering more than 1,000 square feet
of walkable area at a density such that the average distance from
a random point on the eye height plane to its nearest image is 1.5
inches. We conjecture that few other capture processes would be
able to both cover such a large space and sample fine details within
the viewpoint space typical of an interactive walkthrough.

Table 2 lists the size of the data before and after compression, as
well as compression times. Overall, the three environments contain
15,254 images and require 48GB of disk space in their raw form.
JPEG compression of the images reduced the size of the data sets
to 2.25GB (at quality factor 75). Our multiresolution compression
strategy achieved another 2-3X compression factor. This extra com-
pression is determined mainly by the efficiency of our coder for dif-
ference images and by the order in which we collapse nodes in our
multiresolution tree structure. By computing per-difference-image
optimized translation and rotation offsets for registering the proxy
to the images, we obtain a compression performance of 54-79X of
the original data, at the expense of 5 seconds of optimization time
per difference image (totalling about 3 hours, 5 hours, and 14 hours
for the Library, Office, and Museum environments, respectively).
Without this optimization, we obtain 40-55X compression of the
original data (totalling about 1 hour, 0.5 hours, and 2.5 hours). The
images and sequences we show use the optimized offsets.

Resol. 0.25 m/s 0.5 m/s 1.0 m/s
256 1.00 ( � ��������� ) 1.04 ( � ����� 	
� ) 1.98 ( � ����� 
�� )
512 1.03 ( � ����� 	 � ) 1.51 ( � ����� ��	 ) 3.24 ( � ��	�� ��
 )

1024 1.38 ( � ����� 
�� ) 2.72 ( � ��	������ ) 5.11 ( � ����� ��
 )

Table 3: Prefetching Performance. We report the effectiveness of
the prefetcher as a ratio of two distances: the average distance to a
fetched image and the average distance to any captured image.

The prefetcher uses the multiresolution hierarchy to ensure that
the reconstruction algorithm always has some set of images in
memory surrounding the novel viewpoint. To measure the perfor-
mance of the prefetcher, we collected statistics as the user walked
through the Museum environment at different speeds along a typical
path. We also used different image resolutions to test the sensitivity
of our prefetcher to increasing data sizes. During these tests, we
estimated how well the prefetcher was working by taking the aver-
age distance to the surrounding closest trio of cached images and
dividing it by the average distance to the closest among all images -
a value of 1.0 is a perfect score (Table 3). Note how the distance to
the closest loaded image increases as the user walks faster or asks
for higher resolution images. This result corresponds to graceful
degradation in image quality in our walkthrough system.
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Figure 7: Frame Rate. We show the frame rate for a pre-recorded
path through the museum environment at 512x512 pixels. The av-
erage frame rate is 25 frames per second.

a)
 b)


c)
 d)


Figure 8: Specular Highlights. This figure demonstrates specular
highlights moving over the surface of a shiny bronze plaque in the
museum environment. The top snapshot shows a cylindrical pro-
jection of a subset of the reconstructed image. The four-image se-
quence is a zoomed-in planar projection of the reconstructed image.
Observe the highlight moving across the plaques as the viewpoint
moves laterally (a-d).

Figure 9: Captured vs. Reconstructed Comparison. The top omni-
directional image is one of the nearby captured images. The bottom
omnidirectional image is reconstructed for a novel viewpoint that is
as far as possible from the surrounding images.

Our current run-time system reconstructs novel views at an av-
erage of 15-25 frames per second. Reconstructions at 512x512 or
256x256 pixels can be performed at an average of 25 frames per
second, while higher resolution views at 1024x1024 pixels are pro-
duced at about 15 frames per second. Figure 7 plots the frames per
second for an example path through the museum environment using
512x512 images. The frame rate is near constant because our sys-
tem always warps three images into the frame buffer. We believe
the variations in frame times are due to texture swapping.

Finally, Figures 8-10 show the quality of novel views recon-
structed by our Sea of Images approach. We can reproduce specular
highlights moving over a surface without modeling material prop-
erties. For instance, Figure 8 shows an example specular highlight
moving over the surface of a shiny bronze plaque. Because the
density of sampled viewpoints is so large, we can almost always
achieve reconstructions of similar quality to the captured omnidi-
rectional images. Figure 9 shows a captured image (top) and a syn-
thetic image (bottom) reconstructed from a novel viewpoint at the
middle of a Delaunay triangle of captured viewpoints. Differences
in the images are almost imperceptible. Also, we can reproduce
images of objects at multiple resolutions. Figure 10 demonstrates
renderings of a single object at multiple distances.

10 CONCLUSION & FUTURE WORK

We have introduced a novel approach for creating interactive walk-
throughs using image-based rendering techniques. What distin-
guishes our approach from other IBR approaches is that we are
not limited to small environments with restricted visibility changes
such as with the Lightfield/Lumigraph [13, 20]. We are also not
constrained to sparse sampling, which in turn limits rendering to
diffuse environments and often requires viewpoint planning and a
priori information about the geometry of the scene. We remove
these constraints by mapping the IBR problem onto a compression
and working-set management problem.

However, the system is not without limitations. First, our current
capture device (a catadioptric omnidirectional camera) has limited
resolution. While this affects the resolution of images currently
generated, the methods described in this paper are independent of a
particular capture device and would work for any omnidirectional
video camera arrangement. We have purchased a FullView cam-
era [24] and begun to investigate other multiple-camera configura-
tions that acquire higher resolution images.

Second, we currently acquire image data sampling the lower
hemisphere of directions from viewpoints at some density on an
eye-height plane. The resulting representation provides enough
information for reconstruction of any downward-looking view for
which the eye-height plane is unoccluded. Expanding our capture
procedure to acquire images containing a wider range of view direc-
tions and/or multiple viewpoint heights would expand the space of
allowable novel views. We are investigating use of spherical cam-
eras to partially address this issue. In addition, we would like to
be able to determine a conservative estimate of what average image
capture spacing is ”dense enough” for a particular environment.

Third, we are looking into other (multiresolution) reconstruction
methods for a Sea of Images. In particular, tracking visible features
from image-to-image in order to generate more accurate correspon-
dences between the images surrounding the novel viewpoint.

Finally, our capture process currently requires some manual ef-
fort. An operator estimates the locations of fiducial, builds an ap-
proximate proxy model, and drives a motorized cart back and forth
via remote control. While these activities are not too burdensome
(they take 15 to 112 minutes for our three environments), the system
could be made easier to use by further automating the capture pro-
cess. This is possible by estimating camera pose in real-time from
the fiducials or from automatically detected features, and letting the



Figure 10: Far-to-Near Image Sequence. We show the museum environment and focus on a particular item from three distances.

PC control the wheel motors to drive the cart autonomously. This
is a topic for future work.

In conclusion, we believe the Sea of Images approach to be a fer-
tile bed for future work. Never before have researchers had access
to such a large and dense sampling of an environment. We believe it
could lead to new 3D reconstruction algorithms, novel compression
strategies, and new walkthrough applications.
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