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Abstract

Basedon therecentimprovementsn the price/performance
of PC-basedjraphicsacceleratorsit is compellingto con-
sider approacheghat combinemultiple PCstogetherinto
a high performancehigh resolution,low costparallelren-
deringsystem.We areinvestigatingsort-firstapproacheso
build sucha systemin which one or more client PCsdis-
tribute 3D graphicsprimitivesto multiple sener PCsthat
renderimagesfor separateD tiles for projectionon a dis-
playsurface.A fundamentathallengen implementingsuch
a systemis developing a methodto classify 3D graphics
primitives accordingto their overlapswith the 2D screen-
spacetiles sothatevery sener PCis notrequiredto process
every 3D primitive. In thispaperwedescribesereraloverlap
classificatioralgorithmsbhasedndifferentboundingvolume
approximationsdifferenttransformatiorsequencegiffer-
ent primitive aggrejation methods,and different primitive
sizes.We built a prototypesort-firstsystemwith oneclient
PCandeightsenerPCsconnectedby anetwork to testthese
algorithmswith the goal of characterizingheir trade-ofs
andfinding the onethat maximizesthe polygonthroughput
of theentiresystem.nterestinglywe find thatthe effective-
nessof eachoverlap classificationalgorithm varieswidely
with differenttypesof 3D scenesandthusit isimpossibleto
choosea single overlapclassificationalgorithmthatis best
in all circumstancesMotivatedby this obsenation, we in-
corporatedynamicadjustmenbf parametersf the overlap
classificatioralgorithmto balancethe clientandsener pro-
cessingtimesin real-timeas 3D primitives are processed.
With this new feature we areableto achieve higherpolygon
renderingrateswith our system.

1 Intr oduction

In the questto develop a high-performanceand low-cost
polygonrenderingsystemit is attractve to considertheuse
of multiple PCswith fast, commoditygraphicsaccelerator
cards.PCgraphicssystemdave improvedat anastounding
rate over the last few years,andtheir price-to-performance
ratiosfar exceedthoseof traditionalhigh-endrenderingsys-
tems. This trendmalesit attractve to considerapproaches

that combinethe aggrejateperformanceof mary PCscon-
nectedtogetherby a network into a high performancehigh
resolutionJow costparallelrenderingsystem.

We believe it is possibleto build sucha systemusinga
sort-firstapproach28] in which oneor moreclient PCsdis-
tribute 3D graphicsprimitivesto multiple server PCsthat
renderimagesfor separate?D tiles of a display We are
motivatedto usesort-firstto leveragethe tight couplingbe-
tweengeometryand rasterizationprocessorsnside typical
PC graphicsacceleratorcards, and to avoid interprocess
communicationthat would be requiredto compositeren-
deredimagesin a sort-lastapproach.

A fundamentakhallengein a sort-first systemis to de-
velopalgorithmsthatclassify3D graphicgrimitivesaccord-
ing to theiroverlapswith 2D screen-spadées. In thispaper
we describeseveral overlap classificationalgorithmsrepre-
sentingdifferenttrade-ofs betweerspeedandaccurag. Our
investigationincludesdifferent boundingvolume approxi-
mations differenttransformatiorsequencegifferentprim-
itive aggreyationmethodsanddifferentprimitive sizes.We
executedexperimentsusing a prototypesort-firstsystemto
characterize¢he trade-ofs of differentoverlapclassification
algorithmsandto find thealgorithmthatmaximizeghepoly-
gon renderingthroughput. Interestingly we find that the
effectivenesf eachoverlapclassificationalgorithmvaries
widely with differenttypesof 3D scenesandthusit is im-
possibleto choosea singlealgorithmthatis bestin all cir-
cumstancesMotivatedby this obsenation, we incorporate
dynamicadjustmenbf the overlap classificationalgorithm
into our systemto balancethe client and sener processing
timesin real-timeas3D primitivesareprocessedWith this
new feature we areableto achiere higherpolygonrendering
rates.

The paperis organizedasfollows. The next sectionre-
views relatedwork in parallel polygon rendering, paying
specialattentionto methodsbasedon screen-spacdecom-
positionsandsystemsitilizing anetwork of PCs.In Sections
3 and4, we discussthe challengeof overlapclassification
andproposesereralalgorithms.Sectiorb containsadescrip-
tion of our prototypesystemwhile Section6 presentsesults
of experimentsawith this systemaimedat characterizinghe
effectivenessof different overlap classificationalgorithms.



In Section7, we describea methodto adaptparametersf
overlapclassificatioralgorithmsdynamicallyin real-timein
orderto maximizethesystenpolygonthroughpubf thesys-
tem. Finally, Section8 containsa summaryandconclusion.

The main contrikutionsof this paperare: 1) the descrip-
tion andcharacterizationf severaldifferentoverlapclassifi-
cationalgorithms,2) the designof a prototypesort-firstpar
allel renderingsystemutilizing a network of PCs,and3) the
introductionof theideathatit canbeimportantto adjustpa-
rametersof an overlapclassificatioralgorithmdynamically
to trade-of speedversusaccurag in orderto achievze maxi-
mal systemthroughputn a parallelrenderingsystem.

2 Previous Work

Classificationof overlapsbetween3D graphicsprimitives
and 2D regions of the screenis a fundamentaproblemin
computergraphics,arisingin hiddensurfaceremoval [37],
collision detection15], occlusionculling [19, 22], andpar
allel rendering4, 39).

In particular partitioningprimitivesbasecntile overlaps
is animportantstepin mary high-performanc@olygonren-
dering systemautilizing image-spacgarallelismor bucket
rendering Differenttile shape$iave beenusedin thesesys-
tems,includingscanlines[14], horizontalstrips[3, 20, 38],
vertical strips[38], andrectangulaaread1, 6, 20, 33, 40].
Tileshavebeerkeptstatic[1, 6, 7, 20, 27, 31] or dynamically
adjustedbasedon the distribution of graphicsprimitiveson
thescreer[28, 33, 38]. For eachgraphicsprimitive, theren-
dering systemmustdeterminewhich 2D screen-spactles
it overlapssothatit caninvoke renderingoperationson the
appropriatgrocessors.

Mostcurrentparallelpolygonrenderingsystemsarebased
on a sort-middlearchitecture.Somehardwareimplementa-
tions rely upon a fast, global interconnectiorto distribute
primitivesfrom geometryprocessorso rasterizers.For in-
stance,SGI’s Infinite Reality Engine[27] usesa fast Ver
tex Bus to broadcasscreenspacevertex informationfrom
semi-custonASIC geometryprocessorso all ASIC rasteri-
zationprocessorsin this case overlapsbetweenprimitives
andtiles arenot determinedy thegeometryprocessorsand
everyvertex is broadcasto everyrasterizatiorprocessaqrre-
quiring eachrasterizatiorprocessoto checkall primitivesto
seeif they overlapits screerregion. Most othersort-middle
systemshave usedthe 2D boundingbox of a primitive to
testfor overlapswith screen-spadée regions.For example,
this methodis usedin UNC's PixelPlaness to sort primi-
tivesamongtiles loadedonto a work queueto be processed
by multiplerasterizatioprocessorfl1]. Otherexamplesn-
cludeRendermari36], PixelFlow [9, 25], andseveralcom-
mercialPC-basedjraphicsacceleratorfg].

Several studieshave investigatedhe impactof primitive
overlapsin bucket renderingsystems.Molnar proposedan

equationfor modelingthe overlapfactorfor 2D bounding
boxes on 2D rectangulartiles [24]. His analyticalmodel
hasbeencorroboratedyy experimentakvidence[6, 26|, and
it hasbeenusedasthe basisfor subsequenstudies[1, 6].

CoxandBhandarinvestigatedherelationshipdetweertile

(bucket) sizeandoverlapfactorsincurredin abucketrender

ing systeni6]. In theirexperimentsthey sortevery primitive

amongthe tiles accordingto the overlapsof its 2D bound-
ing box constructedfterprojectingthe primitiveinto screen
space Althoughthey describealternatve overlapclassifica-
tion methodde.g.,exactbucket sorting),they do not exam-
ine their costsor the extentto which they may reduceover-

lap. Chenet al. studiedthe effect of overlapfactorson ren-
deringtimesin bucketrenderingsystemg1]. Basedon ana-
lytical modelsandexperimentakvaluationsthey concluded
thattheprocessingverheaddueto overlapsis generallyfar

lessthantheraw overlapfactor To our knowledge therehas
notbeenpreviouswork studyingdifferentoverlapclassifica-
tion algorithmsfor bucket renderingsystems.

Ourinvestigatioris basednanimmediate-modsort-first
approach26]. Sort-firsthasbeenstudiedfor retained-mode
systemdby Mueller[28] andCox[5], amongothers.Mueller
simulateda real-time sort-first system, primarily studying
loadbalancing 28] anddynamicdistribution of hierarchical
scenedescriptiond29], while Cox [5] implemented sort-
first versionof Rendermati36].

Relatively little work hasbeendoneon interactive poly-
gon renderingusing a cluster of networked PCs[17, 34].
Prior distributedrenderingsystemshave mostly focusedon
inter-frameparallelism[17], renderingseparatdramesof a
sequencen separatecomputersn parallel, ratherthanon
intra-frameparallelismwhichis requiredto achieve scalable
speedupsn a real-time systemutilizing mary processors.
Networks of workstationshave beenusedsuccessfullyfor
parallelgraphicsalgorithmswith coarsegranularity suchas
volumerendering23, 16], radiosity[32, 13], andbatchren-
deringof imagesequencefl7, 30]. We arenotawareof ary
prior systemthat hasachieved scalablepolygon rendering
speedupyia intra-framedataparallelismacrossa network
of workstations.

3 Problem Statement

In our investigation,we aim to constructa sort-first sys-
tem matchingthe abstractiorshavn in Figurel. Applica-
tionsrunningon oneor moreclientsgeneratestreamsf 3D
graphicsrenderingcommandge.g., OpenGL)representing
sequencesf statechangestransformatioroperationsand
3D primitives.Eachcommands encodedndinsertednto a
bit streamto be sentvia network messagefrom eachclient
to the sener(s)correspondingdo the 2D tile regionspoten-
tially overlappedby the 3D primitives. Meanwhile, each
sener recevesa setof messagesjecodeshem, and exe-



cutesthe corresponding8D graphicsrenderingcommands
to createémagedor display Parallelismis achievedby over-
lappingcomputationn theclientsandseners(in atwo-stage
pipeline)andby allowing multiple senersto rendergraphics
primitivescoveringdifferenttiles of thescreerconcurrently
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Figurel: Systemabstraction.

An importantchallengein this type of systemis to de-
velop client software that distributes 3D primitives among
thesenersefficiently. Of coursesinceeachseneris respon-
siblefor renderinghe pixelsin only onetile of thescreenit
is generallynotnecessarfor everysenerto receveandpro-
cessevery 3D graphicsprimitive. Rather eachsener must
renderonly the subsebf 3D graphicsprimitivesatleastpar
tially overlappingits tile. We cantake advantageof this fact
by checkingwhich 3D primitivesoverlapwhich 2D tiles in
theclientprior to sendinghe primitivesto theseners.If the
client candeterminethata particular3D graphicsprimitive,
P;, doesnot overlap a particulartile, T}, thenit can omit
P; in thestreamof commandgo be processetby the sener
renderingheimagefor T;. Althoughattribute statechanges
must still be processedy every sener, wastefulgeome-
try computationgo process3D primitives entirely outside
asener’stile canbe avoided. Sincethe geometryprocess-
ing time requiredsimply to clip every 3D primitive in every
seneris significant,incorporatingsuchanoverlapclassifica-
tion algorithminto theclientis critical to building a scalable
systemsupportinga large numberof seners.

In our systemabstractionthe overlapclassificatioralgo-
rithm processean “immediate-mode’streamof 3D graph-
ics primitivesanddecidedn real-timewhichtiles arepoten-
tially overlappedy eachprimitive. Sincethe overlapresults
areusedby the client to determinewhich primitivesto send
to eachsener, the algorithm must be conserative (i.e., it
shouldnot missary overlaps).Yet, it shouldbeasquickand
accurateaspossible.Moreover, sincewe aim to supportin-
teractve applicationstheclassificatioralgorithmshouldadd
aslittle lateng to therenderingpipelineaspossible andthe
total lateng of the renderingsystemshouldnot exceedthe
toleranceof typical interactive graphicsapplications. This

constraintmay imposea limit on the numberof primitives
that can be consideredy the algorithm beforeary of the
primitivesis classified. Accordingly; it is usuallynot feasi-
ble to performprecomputatiorto build complicatedspatial
datastructureshasedon the locationsof all the 3D graphics
primitivesin animage.

Clearly, therearetrade-ofs betweenspendingmore pro-
cessingtime and achieving more exact overlap classifica-
tions. Ononeextreme theclientcoulddo no processingnd
simply sendevery primitive to every sener (this approachs
very quick, but very conserative!). In thiscase gverysener
would haveto proces®very primitive, atleastenougho de-
cide it lies outsideits region of the screen,andthe system
would notscalewell to supportargenumbersf seners.On
the otherextreme,the client could renderall primitivesinto
a full-resolutionitem buffer, andreadbackthe polygonIDs
to determineexact tile overlaps. Then, eachsener would
have to renderonly polygonsthatactually contributeto the
imagecoveringitstile. Generallyif analgorithmtakesmore
time to computemoreexactoverlapstheclientbecomeshe
bottleneckandlimits overall renderingthroughput(seeFig-
ure 2a). Yet, if the classificationalgorithmtakeslesstime,
but is moreconseratively approximatethenmoregraphics
primitivesaresentto berenderedn senerswhosetiles are
not actuallyoverlappedandthe seners’ renderingtime be-
comesghebottleneck(seeFigure2b).

The challengds to balancethe competinggoalsof speed
and accurayg in the overlap determinationalgorithm to
achieve a balancebetweenclient and sener processingso
thatthe systems renderinghroughputs maximized.
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Figure2: More approximateverlapclassificationshift pro-
cessingourdenfrom theclientto theseners.

4 Overlap Classification Algorithms

We have developedsereralalgorithmsthatclassify3D prim-
itivesbasedon their overlapswith 2D tiles. Thevariousal-
gorithmsarebasedn differentconserative approximations
thattrade-of speedversusaccurag. For instancewe con-
sider different boundingvolume approximationsdifferent



transformationsequencesand different primitive aggreja-
tion methods. The algorithmsandtheir parametersire de-
scribedin thefollowing subsectionsandthenresultsof ex-
perimentswith thesealgorithmsarediscussedh Section6.

4.1 Bounding Volume Approximations

It iscommonin computeigraphicgo useaboundingvolume
asasurrogatdor a primitive in conserative overlapandin-
tersectioncomputationg?]. Candidateboundingvolumes
includeaxis-alignedoundingboxes,boundingspheresori-
entedboundingboxes, K-dops, corvex hulls, and even the
original 3D primitive, whereeachof thesecandidatesepre-
sentsa differentpointin the spectrunof trade-ofs between
accurag andcomputationaéxpense.Previoustiled render
ing systemshave used2D axis-alignedboundingboxesto
computetile overlaps.

Determiningoverlapsbasedon primitive boundingvol-
umesis intuitively appropriatdecause¢he computationgre
both consenrative and relatively quick. In our systemab-
straction, the client must feed T' seners with primitives.
Therefore,in orderto keepup with the seners, it mustbe
ableto determinethe setof tiles overlappedby a primitive
at leastT timesfasterthanthe senerscandrav them. Of
coursejt maynotbepracticalto determineoverlapsbetween
every 3D primitive and the 2D tiles exactly. In essence,
exactoverlapclassificatiorrequiregtile-resolutionrasteriza-
tion of every 3D primitive in the client. In this paper we
considercomputingtile overlapsboth exactly and approx-
imately using axis-alignedboundingboxes. We did not in-
vestigateotherboundingvolumeshapedecausave foundin
early studiesthatusingsimpleaxis-alignecboundingboxes
resultedn overlapsquitesimilarto any moreexactbounding
volume.

4.2 Transformation Sequences

As noted earlier 3D graphicsprimitives generallyappear
in the commandstreamof a sort-firstsystemasa sequence
of 3D verticeslocatedin a 3D modelingcoordinatesystem
(e.g.,asin OpenGL),while the tiles for which we wish to
classifyoverlapsaredescribedn the 2D screen-spaceoor
dinatesystem. As a result,we musttransformone or both
to a commoncoordinatesystemin orderto checkfor over-
laps. For example,in OpenGL,the transformatiorbetween
thesewo coordinatesystemss definedby theconcatenation
of the matricesstoredat the tops of the “model view” and
“projection” transformatiorstacks.

There are several possiblecoordinatesystemsin which
primitive-tile overlapcomputationsould be performed,in-
cluding: 1) the 3D modelingcoordinatesystemof the 3D
primitive, 2) the3D world coordinatesystemof thescene3)
the 3D cameracoordinatesystempor 4) the2D screen-space
coordinatesystem[10]. For instance,it would be possible

to checkfor overlapsin 3D modelingcoordinatedy com-
puting the 3D view frustumcorrespondingdo the region of
spacein cameracoordinatesnappingto each2D tile of the
screenandthentransformingthat 3D view frustumby the
inversesof the modelingand cameramatricesto form a 3D
volumein 3D modelingcoordinatessuitablefor determin-
ing overlapswith each3D primitive. Clearly, the efficiency
of the overlap classificationalgorithm will dependgreatly
on the sequence®f transformationsappliedto the primi-
tivesand/ortiles andthe coordinatesystemusedfor overlap
computationsLik ewise,combiningdifferenttransformation
sequencesvith differentboundingvolume approximations
yields interestingpossibilities(someof which areshavn in
Figure3).
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Figure3: Possiblgransformatiorsequences.

In this paper we considerthe following four overlapclas-
sificationalgorithms:’

e Exact:
1) Transformthe 3D verticesof each3D polygonto 2D
screen-spac@) Scancorverttheprojected2D polygon
to find tile overlapsexactly. (theleft-mostpathin Fig-
ure3).

e 2D-BV:
1) Transformthe 3D verticesof each3D polygonto 2D
screen-space?) Computea 2D boundingvolume en-
closingtheprojectedvertices 3) Checkfor overlapsbe-
tweenthe 2D boundingvolumeandthe 2D tile regions.
(themiddle pathin Figure3).

e 3D-BV:
1) Computea 3D boundingvolumeenclosinghe origi-
nal 3D vertices,2) Transformthe 3D boundingvolume
to 2D screen-spac@&) Computea 2D boundingvolume
enclosingheprojected3D boundingvolume,4) Check
for overlapsbetweerthe 2D boundingvolumeandthe
2D tile regions. (theright-mostpathin Figure3).

LIn this discussionwe focuson classificatiorof overlapsfor 3D poly-

gons.Yet, the sameprinciplesapplyto other3D primitivesaswell.



o All:
1) Trivially assumeavery 3D polygon overlapsevery
2D tile region.

4.3 Primiti ve AggregationMethods

Therearelikely to be casesvherethe client is not ableto
keepup with the senersif it computeghetile overlapsfor
each3D graphicsprimitive independently However, since
applicationsisuallygeneratestream®f primitiveswith high
spatialcoherencée.g.,all thepolygonsfor eachobjectof the
scenearedrawn in sequence)it seemdike a goodideato
collecta numberof primitivesinto one aggreyateprimitive
andthenperformoverlapclassificatiorfor this collectionas
awholein asinglestep. Then,eachoverlapcomputations
amortizedover multiple primitives, effectively reducingthe
classificatioroverheadn theclient.

We integratethis amortizationstratgy with the 2D-BV
and 3D-BV algorithmsdescribedin the previous section.
Specifically we computeoneboundingvolumefor a group
of primitives, determinethe tile overlapsfor thatbounding
volume, andthenassignevery primitive in the groupto all
thetiles overlappedy theboundingvolume. This methodis
ratherconserativein thatit assumeshatevery primitive in
overlapsat leastall thetiles overlappeddy ary primitive in
thegroup.

The benefitsof amortizationare directly relatedto the
amountof work avoidedfor eachprimitive. In the 3D-BV
algorithm, all per primitive computationsanbe amortized
excepttheinclusionof aprimitiveinto thecurrent3D bound-
ing volume(i.e., steps2-4 canbeamortized).In the 2D-BV
algorithm,eachprimitive mustbetransformedeforeit is in-
cludedin thecurrent2D boundingvolume,andthusonly the
2D computationto checkthe overlapsbetweenthe current
boundingvolumeandtiles canbe amortized(step3). In ei-
thercasethealgorithmbecomesnoreconserative,yetruns
fasterasweincreaséheamortizatiorfactor A, representing
thenumberof primitivesloadedinto eachboundingvolume,
therebyallowing aninterestingtrade-of betweerspeedand
accurag.

5 Experimental System

In orderto investigatethetrade-ofs of the differentoverlap
classificationalgorithmsdescribedn the previous section,
andto study the feasibility of constructinga parallel ren-
deringsystemutilizing a clusterof PCs,we built an exper
imental parallel renderingsystemusing eight AccelGraph-
ics Eclipse graphicsacceleratorcards[8] inside 200MHz
PC-SMPsattachedo a Myrinet network to drive an array
of eight 1024x768Proxima9200LCD projectors. The im-
agesrenderedby the eight senersare projectedon a rear
projectionscreenin a 4x2 grid to form a singleimagecov-

eringthe entirescreen(seeFigure4). The effective display
resolutionof this systemis around4000x150(ixels, while

the potentialrenderingperformancas eighttimesthatof a

singlePC.[Note to the reviewers: we expectto experiment
with a systemcomprisingl5 sener PCsdriving a 5x3 array
of projectorsbeforethe conference].

/] Projectors
Myrinet
Network

Client

Figure4: Experimentakystemorganization.

A singleclient PC with a 300MHz Pentiumll processor
drivesthesystemby runninganOpenGLexecutabledynam-
ically linkedwith a specialOpenGLlibrary (linkedin Win-
dows NT by simply placingthe opengl.dllfile in the local
directory). Ratherthaninvoke the OpenGLcommanddo-
cally, this versionof the OpenGLlibrary constructsmes-
sagesencodingthe OpenGL function calls and arguments,
runsoneof thealgorithmsdescribedn the previoussection
to insertinto the messagea bit vectorrepresentinghe setof
senertiles overlappedy eachprimitive,andsendg¢he mes-
sagesover the Myrinet network to the seners. Eachsener
recevesasetof messageslecodeshem,checkshebit vec-
tors,andconditionallyexecuteghe decodedOpenGLfunc-
tionsto createimagesfor its projector If the systemis exe-
cutingin doublebuffer mode theclientandsenerexchange
synchronizatiomessageattheendof eachframesothatall
thesenersswap buffersatapproximatelythe sametime.

The sort-first approachis well-suited for our prototype
systenmbecausé takesadvantageof thenaturalscreen-space
parallelisminherentin our clusterof sener PCs.Also, since
the 4x2 grid of tiles assignedo senersexactly matcheshe
4x2 grid of projectionregionson the screenno extra pro-
cessingor network communicatioris requiredto composite
subimagesor theseparatdilesinto afinal full-screenimage
for display Instead,subimagesre composited‘optically”
during projectionsincethe projectedimagesblend as light
from differentprojectorscombineson the screen. A prob-
lem with our currentsystemis load imbalance. In related,
but separatework, we areinvestigatingalgorithmsthatdy-



namicallyadjusttile shapesandsizesto balancethe render
ing load amongthe seners,andwe areinvestigatingmeth-
odsfor efficientinter-sener communicatiormethodgo dis-
tributerenderedpixelsfor displayattheendof eachframe.

6 Results

We executeda seriesof experimentswith this prototypesys-
temusingtwo OpenGLapplications.Thefirst applicationis

an unmodifiedVRML browser It readsa 3D modelfrom

a file anddisplaysit on the screenwhile the viewpoint is

moved either interactizely or along a predeterminecpath.
We executedtestswith this applicationusingthe following

threetestmodelswith predeterminedamergpathscaptured
aprioriduringaninteractve session:

e Eagle: Exteriorview of finely tesselatedbject(15,154
triangles).

e Building: Interior view of hierarchicalscenegraph
with large surfaceq(29,974quadrilaterals).

e Suite: Interior view of hierarchicalscenegraphwith
bothlargesurfacesandfinely tesselatedbjects(80,372

polygons).

The secondapplication,which we call “Triangles; gen-
eratesrandomized’front-facingright-triangleswith agiven
2D projectedareauniformly distributed acrossthe screen.
The trianglesare createdby the following algorithmwhich
is iteratively givena 2D point, P, onthescreerandadesired
screen-spacarea,A. First, constructa 2D vectorV with a
randomorientationand a randomlength. Next, assignone
edgeof the triangleasthe line segmentleaving from point
P alongV'. Then,chooseheremainingtwo edgessuchthat
oneof themleaves P in adirectionperpendiculato V' such
thatthe resultingtrianglehasareaA. During our tests,we
generated 0,000triangleswith this method,iteratively per
turbingthe point P from triangleto triangle. Parameterso
thetriangleapplicationcontrol: 1) thenumberof trianglesto
begeneratedand?) the 2D projectedareaof eachgenerated
triangle.

6.1 Bounding Volume Approximation &
Transformation SequenceResults

In our first experiment,we investigatedhe effectivenesof
thefour differentoverlapclassificatioralgorithmsdescribed
in Section4.2. In this experiment,tile overlapswere com-
putedin the client for every primitive individually (i.e., the
amortizatiorfactorwasl).

We rantwo setsof tests. Thefirst testusedthe Triangles
applicationto generatel0,000“random” trianglescovering
2D projectedareasof 250,500,1000,2000,4000,and8000
pixels,respectiely. ThesecondestusedheVRML browser

to view thethree3D testmodels.Theresultscomparingthe
speedandaccurayg of the differentalgorithmsmeasuredn
thesetestsareplottedin Figure5. In eachplot, the horizon-
tal axis(labeled‘OverlapComputationTime PerPrimitive”)
representshe speed- it is thewall-clock time (in microsec-
onds)requiredby theclientto classifypotentialoverlapsfor
eachpolygonsin a test. Meanwhile,the vertical axis (la-
beled“AverageComputedOverlap Factor”) representghe
accuray — it is the numberof 2D tiles determinedo be po-
tentially overlappedoy each3D primitive on average.

Therearesereralinterestingesultsevidentin theseplots.
First,theclientis notableto classifyoverlapsor everyprim-
itive individually andstill achieve polygonthroughputrates
matchinghigh-performanceenderingsystems.The fastest
of the non-trivial overlap algorithmsrequiresl1.9usto pro-
cesseachprimitive individually on a 300 MHz Pentiumll|
processaryielding a sortingrateof 526K polygons/second.
Exact overlap classificationfor the triangle testsrequires
5.9usper polygon (or 169K polygons/second)yhile exact
overlapsin the VRML browsertesttook asmuchas14.8us
per polygon(or 68K polygons/second)Theincreasedime
for overlapclassificatiorin thetestswith the VRML ‘Build-
ing’ modelaredueprimarily to the costsof numerougrans-
formationoperationdancludedin the hierarchicalscenede-
scription.

Secondthe 3D-BV algorithmis significantlyslower than
the 2D-BF algorithm. This resultis primarily due to the
fact that 3D-BV musttransformeight verticesfrom 3D to
2D for eachtriangle (i.e., the cornersof the 3D bounding
box), while the 2D-BV algorithm only musttransformthe
threeverticesof thetriangle. Thematrix multiplicationsper
formedfor eachvertex transformatioris the limiting factor
in thesealgorithms,andthuswe expectthatthe 3D-BV al-
gorithmwould take lesstime thanthe 2D-BV algorithmfor
polygonscontainingmorethaneight verticesandfor other
higherlevel primitives.

Third, we notethatthe boundingvolumeapproximations
have little impacton the overlapfactorin caseswvherethe
polygonsaresignificantlysmallerthanthe tile size. As the
polygonsapproacha size approximatelyl/200thof thetile
size thedifferencedetweerexactoverlapclassificatiorand
approximationdasednthe2D-BV and3D-BV algorithms
startto becomesignificant.

6.2 Amortization Results

In our secondexperiment,we investigatedhe trade-ofs of
increasingthe amortizationfactor for the 2D-BV and 3D-
BV algorithms.We rantwo setsof testsfor eachof thealgo-
rithmswith varyingamortizatiorfactorg(A). First,asbefore,
we usedthe Trianglesapplicationto construct10,000“ran-
dom” trianglescovering2D projectedareasf 250and8000
pixels,respectiely. Secondwe usedheVRML browserap-
plicationto view thethree3D testmodels.Plotscomparing
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Figure5: Comparisorof speedandaccurag for four differentoverlapclassificatioralgorithmstestedwith datasetscomprising

(a) trianglesof differentareas(b) threeVRML models.

the measuredpeedandaccurayg of the2D-BV and3D-BV

algorithmswith differentamortizationfactorsare shovn in

Figure6. Thelabelsandmeaningof the axesarethe same
asin Figureb.

Fromthe resultsof this experiment,we seethatit is pos-
sibleto trade-of speedor accurag by adjustingthe amor
tization factorfor eitherthe 2D-BV or 3D-BV algorithms.
Although the benefitsof increasingthe amortizationfactor
diminish asit getslarger (dueto per primitive processing
overheads)we are ableto improve the overlap processing
timesin the client significantly with amortization(usually
by more than four times). In the fastestcase,the client
spendsonly 0.7us classifying each polygon (1.4M poly-
gons/second)But, in spendingesstime, it performsmore
approximatechecks,and the overlap factor increasesye-
sulting in higherrenderingtimesin the seners. The bene-
fits/costsof largeramortizationfactorswill dependon mary
factors,including the systemcommunicationrates, sener
renderingrates etc.

We find thatthereis no singlevaluefor the amortization
factorthatis bestin all circumstanceslin particular asras-
terizationtime in the sener increaseslueto morecomple
lighting, largertriangles mip-maptextures,etc.,thetimere-
quiredto classifyoverlapsfor eachprimitive remainsvirtu-
ally thesame As aresult,for eachsetof renderingattributes,
the amortizationfactor at which the client processingand
sener renderingtimes are balanceds different. As an ex-
ample,Tablel1 shavsresultscollectedduringanexperiment
with the 3D-BV algorithmtestedwith the Trianglesapplica-
tion for triangleswith a different2D projectedarea.Thefirst
columnof the tablecontainsthe 2D projectedtrianglearea,
while thesecondcolumnliststheamortizatiorfactorusedin
thetest. Thethird columnshavsthe averagecomputecbver-
lap factor andthethird andfourth columnscontainthewall-
clock timesrequiredby the client to classify overlapsand
pack primitivesinto message$which usuallytakesaround

8us per primitive), and by the sener to renderthe primi-

tives,respectrely. Examiningthe rightmosttwo columns,it

is easyto seethatthe amortizationvalueat which the client
and sener times are balancedvarieswidely with different
triangle sizes(the cross-eer amortizationvaluesare high-
lightedin bold). Specifically anamortizationvalueof 1 pro-
videsthe bestsystemthroughputin thetestswith very large
triangles(e.g.,8,000pixels),while anamortizationvaluebe-
tweenl16 and32 balanceghe clientandsener timesbestin

thetestwith smalltriangles(e.g.,250 pixels). Quite simply,

thereis no single amortizationvalue that providesthe best
performancéor all 3D models.

Finally, we obsene thatsener renderingiimes(shavn in
theright-mostcolumnof Table 1) increasesignificantly (by
morethanafactorof 2) with moreconserative overlapclas-
sifications. Fromthis obsenation, we concludethat the ge-
ometryprocessingequiredby eachsenerto clip 3D primi-
tivesprojectingto areasentirelyoutsideits tile is significant,
andthuscalculatingreasonablyexacttile overlapsis impor-
tantto constructinga scalablesort-firstrenderingsystem.

7 Dynamic Amortization

Basedntheresultsn theprevioussectionwe aremotivated
to experimentwith predictve feedbackalgorithmsto adjust
the amortizationvalue, A, in real-timewhile processinga
streamof graphicsprimitives. Our goal is to develop dy-
namicoverlapclassificatioralgorithmsthatadjusttheamor
tization value usedin the 2D-BV and 3D-BV algorithms
adaptvely in orderto balanceclient and sener processing
timessothatthe overall systenmthroughpuis maximized.

If we ignore other processingor communicationover-
headsn theclient (thisis anidealizedassumption!)ye can
modeltheclient processindgime perprimitive, C, as:

C=Cp+Cpv/A (1)
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whereCp andCpy arethe predictedprocessingimesre-
quiredby theclientfor eachprimitive andboundingvolume,
respectiely, and A is theamortizatiorfactor

We can also predict the renderingtime requiredby the
sener, T, as:

S = maz(OSp, hwSg/A) (2)
whereO is thepredictedoverlapfactor w andh arethepre-
dicted width and height of primitivesto be rendered,and
Sp andSg arethepredictedenderingimesrequiredby the
sener for eachprimitive andpixel, respectiely.

We canmodel a systemin which client and sener pro-
cessingimesarebalancedandthusthe polygonthroughput
is maximized by equatingC' and.S, for example:

Cp + Cpv /A = mazx(OSp, hwSg/A) 3)

Of coursethisequatiorcontainamary variablesunknovn
for theupcomingsetof 3D primitivesin animmediate-mode
graphicssystem.Althoughwe candetermingeasonables-
timatesfor the client processingime parametersC'pr and
Cpv, andthe senerrenderingtime parameters$p andSgr
empirically [12] (at leastfor a given renderingmode),we
do notknow the overlapfactor O, nor the projectedscreen-
spacewidth and heightof future 3D primitivesapriori. To
circumwentthis problem,we assumehatthe 3D primitives
sentby an applicationhave a large amountof coherenceén
their primitive sizes,andwe predictvaluesfor futureframes
basedon valuesfor recentlyrenderedorimitives. Then,we
solve the following equationfor A; to updatethe amortiza-
tion factor eachtime a new boundingvolumeis processed
by the2D-BV or 3D-BV algorithms:

Cp + Cgv/A; = max(0;—1Sp, hi—1wi—1Sr/Ai—1) (4)

With this enhancementye areableto achieve morebal-
ancedprocessindpetweerclientandsener. Figure7ashowvs

the client overlap classificationtimes (using 3D-BV) and
sener renderingtimesper polygonmeasurediuring execu-
tion of amodifiedversionof ourtrianglegeneratiomprogram
in whichthelength, L, usedto constructriangleswasmodu-
latedupanddown with acosinefunctionto producdriangles
with areasbetween500 pixels and 1500 pixels. Figure 7b
shavs similartimesmeasuredavithoutdynamicallyupdating
the amortizationfactor (using A=4). The client andsener
timestrackeachothermorecloselyusingthedynamicalgo-
rithm, resultingin highersystemthroughput.

4 4

Server Render Time — Seaver Render Time —
Client Overlap Time ey Overiap Time ——
3s 35
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(b) Staticamortization(A=4).

Time (us)
Time (us)

1
0 5 10 15 20 25 30 35 40 45 50
Frames

(a) Dynamicamortization.

Figure 7: Measuredclient and sener processingimes for
eachframe using overlap classificationalgorithmswith (a)
dynamicand(b) staticamortization.

8 Conclusion

We have describedalgorithms for sorting 3D primitives
among2D screen-spacies andinvestigatedheir usein an
immediate-modesort-firstparallel renderingsystemutiliz-

ing anetwork of commodityPCs.Basedon experiencesywe
draw thefollowing conclusions:

e Calculatingtile overlapsis importantto constructinga
scalablesort-firstrenderingsystem.



Triangle | Amort | Overlap | Client | Sener
Area Factor | Factor | Time | Time
250 1 1.09 3.8 0.9

2 1.22 2.8 11
4 1.39 2.1 1.3
8 1.63 1.8 1.3
16 2.05 1.7 15
32 271 15 1.6
64 3.78 15 1.9
500 1 1.09 3.8 1.1
2 1.25 2.8 1.3
4 1.46 2.1 15
8 1.76 1.8 1.6
16 2.27 1.7 1.7
32 2.98 15 1.9
64 412 15 2.2
1,000 1 1.09 3.8 1.2
2 1.30 2.8 1.6
4 1.55 2.1 1.6
8 1.95 1.8 1.9
16 2.60 1.7 2.0
32 3.51 15 2.3
64 4.82 15 2.6
2,000 1 1.12 3.8 1.7
2 1.38 2.8 2.1
4 1.72 2.1 25
8 2.25 1.8 2.7
16 3.12 1.7 3.0
32 4.29 15 3.2
64 5.59 15 3.5
4,000 1 1.49 3.8 3.2
2 151 2.8 4.2
4 2.01 2.1 4.7
8 2.77 1.8 5.0
16 3.91 1.7 5.3
32 5.18 15 5.5
64 6.36 15 5.6
8,000 1 1.20 3.8 9.3
2 1.70 2.8 9.5
4 2.40 2.1 9.9
8 3.47 1.8 10.1
16 4.79 1.7 10.3
32 6.04 15 10.3
64 7.11 15 10.4

Tablel: Statisticsgatheredwith trianglesizesanddifferent
amortizationfactorsusingthe 3D-BV algorithm (timesare
perprimitive in microseconds).

e It is possibleto trade-of speedandaccurag with dif-
ferentoverlapclassificatioralgorithms.

e Our fastestconserative algorithm (3D-BV) can pro-
cessapproximatelyone million trianglesper second
while generatingoverlapfactorsaroundtwice the ones
computedvith theexactalgorithm.

e Dynamicadjustmenbf the speed/accurgmf theover
lap classificationcanimprove overall systemthrough-
put.

We have addressegust a few of the mary issuesrelated
to building a sort-firstparallelrenderingsystemusinga net-
work of PCs. Otherissuedfor future work include: 1) effi-
cientnetwork communication?) loadbalancingand3) im-
agecomposition.In particular networking bandwidthlimi-
tationspresentvery significantchallengesin our prototype
system polygonthroughputs limited by the capacityof the
network connectinghe client to the seners(40MB/s), and
thus we are able to achieze only 80K polygons/seconéh
typical OpenGLprograms. Of course,this problemof de-
livering datato fastrenderinghardwareis classicalin the
designof computergraphicssystems. Futurework should
be directedat improving the bandwidthsavailable on clus-
tersof PCsandinvestigatinghigh-level graphicsprimitives
and parallel APIs (e.g.,[18]) to overcomecommunication
bandwidthlimitations.

Overall,we areencouragedy theresultsof ourinitial in-
vestigationsnto sort-firstrenderingsystemautilizing a net-
work of PCs, and we are hopeful that it will be possible
to scalethis approachto producehigh-performancehigh-
resolutioncomputemgraphicssystemsn thefuture.

References

[1] Milton Chen, Gordon Stoll, Homan Igehy, Kekoa
Proudfoot,and Pat Hanrahan,Simple Models of the
Impact of Overlap in Bucket Rendering,1998 Eu-
rographicsSSGGRAPH Wbrkshop on Graphics Hard-
ware, Lisbon,Portugal, 1998,105-112.

[2] Jim Clark, HierarchicalGeometricModelsfor Visible
SurfaceAlgorithms, Communications of the ACM, 19,
10,0ctober1976,547-554.

[3] T.W.CrockettandT. Orloff, AMIMD RenderingAlgo-
rithm for DistributedMemoryArchitecturesProc. Par-
allel Rendering Symposium, ACM Press,New York,
Oct.1993,35-42.

[4] T.W. Croclett, Parallel RenderingJn Encyclopedia of
Computer Science and Technology, Vol. 34, Supp.19,
A. KentandJ.G. Williams, eds. MarcelDekker, 1996,
pp. 335-371.Also availableasICASE ReportNo. 95-
31 (NASA CR-195080)April 1995.



[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

MichaelCox, Algorithmsfor Parallel Rendering, Ph.D.
thesis, Departmentof Computer Science, Princeton
University, May, 1995.

Michael Cox, Architecturallmplicationsof Hardware-
AcceleratedBucket Renderingon the PC, 1997 S G-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, Los Angeles,CA, 1997,25-34.

D. Ellsworth, A New Algorithm for Interactive Graph-
ics on Multicomputers | EEE Computer Graphics and
Applications, Vol 14,No. 4, July 1994,33-40.

Evans and Sutherland,REALimage(TM) 1000 Hard-
ware Manual, Evans&Sutherlandl997.

J.Eyles,S. Molnar, J. Poulton,T. Greer A. Lastra,N.

EnglandandL. Westwer, PixelFlow: TheRealization,
Proceedings of the 1997 Sggraph/EurographicsWork-

shop on Graphics Hardware, Los Angeles,CA, Aug.

3-4,1997.Pagess7-68.

Foley, J.D., A. van Dam, S. Feiner and J. Hughes.
Computer Graphics. Principles and Practice. 2nded.,
Addison-Weslg/, ReadingMA, 1990.

H. Fuchs,JohnPoulton,JohnEyles, Trey Greer Jack
Goldfeather David Ellsworth, Steve Molnar, Greg
Turk, Brice Tebss,and Laura Israel, Pixel-Planes5:
A HeterogeneoullultiprocessoiGraphicsSystemUs-
ing ProcesseEnhancedviemories,Computer Graph-
ics (SIGGRAPH89), 23, 3, July 1989,79-88.

FunkhousefThomasA., andCarloH. S£quin Adaptive
Display Algorithm for Interactive FrameRatesDuring
Visualizationof Comple Virtual Environments Com-
puter Graphics (S GGRAPH '93), 27,247-254..

T. FunkhouserCoarse-Graine@arallelismfor Hierar
chicalRadiosityUsing Grouplterative Methods,Com-
puter Graphics (SIGGRAPH96), August1996.

Peter N. Glaslowsky, Advanced 3D chips shawv
promise ,Microprocessor Report, 11, 8, June,1997,5-
9.

Stefan Gottschalk Ming Lin, DineshManocha OOB-
Tree: A HierarchicalStructurefor Rapid Interference
Detection,Computer Graphics (SIGGRAPH96), Au-
gust1996.

C. GrietserandJ. PetersenParallelVolumeRendering
onaNetwork of Workstations| EEE Computer Graph-
icsand Applications, 13,6, Novemberl993,16-23.

JeremyHubbell, Network Rendering,Autodesk Uni-
versity Sourcebook, Vol. 2, Miller Freeman1996,443-
453.

[18] Igehy, Homan,GordonStoll, and Pat Hanrahan,The
Design of a Parallel Graphics Interface, Computer
Graphics (SIGGRAPH96), July 1998,141-150.

[19] Jones,C.B. A New Approachto the ‘Hidden Line’
Problem.The Computer Journal, 14, 3 (August1971),
232-237.

[20] M. Kaplan and D.P. Greenlorg, Parallel Processing
Techniquesfor Hidden Surface Remaoval, Computer
Graphics (SIGGRAPH79),13,2, July, 1979,300-307.

[21] RenateKempf,ChrisFrazier OpenGL Reference Man-
ual, 2ndedition, Addison-Weslg/, 1992

[22] Lueblke, David P, andChris Geoges.PortalsandMir-
rors: Simple, Fast Evaluation of Potentially Visible
Sets.Computer Graphics, Speciallssueon 1995Sym-
posium on Interactve 3D Graphics, Montergy, CA,
1995.

[23] K.L. Ma, J.S.Painter C.D. Hansen,and M.F. Krogh,
Parallel Volume RenderingUsing Binary-Swap Com-
positing, IEEE Computer Graphics and Applications,

14,4, July 1994,59-68.

[24] S.Molnar, Image-Composition Architectures for Real-
Time Image Generation, Ph.D. thesis, University of

North Carolinaat ChapelHill, October1991.

[25] S.Molnar, J. Eyles,andJ. Poulton.PixelFlow: High-
SpeedrenderingJsinglmageCompositionComputer

Graphics (SIGGRAPH92), July 1992,231-240.

[26] S.Molnar, M. Cox, D. Ellsworth, H. Fuchs,A Sorting
Classificationof Parallel Rendering,|EEE Computer
Graphics and Applications, Vol 14, No. 4, July 1994,

23-32.

[27] J.S. Montrym, D.R. Baum, D.L. Dignam, and C.J.
Migdal, InfiniteReality: A Real-Time GraphicsSys-
tem, Computer Graphics (SIGGRAPH 97), August
1997,293-303.

[28] Carl Mueller, The Sort-First RenderingArchitecture
for High-Performanceésraphics,Computer Graphics,
ACM SIGGRAPHSpeciallssueon 1995 Symposium

on Interactve 3-D Graphics April 1995.

[29] CarlMueller, HierarchicalGraphicsDatabasem Sort-
First, Proceedings of the IEEE Symposium on Parallel

Rendering, 1997,49-57
[30] Pixar, PhotoRealistic RenderMan Toolkit, 1998.

[31] F I. Parke, Simulation and Expected Performance
Analysis of Multiple ProcessorZ-Buffer Systems,
Computer Graphics (SIGGRAPH80),14,3, July1980,
48-56.



[32] R.J.Recler, D.W. Geoge, and D.P. Greenbeg, Ac-
celerationTechniquesf Progressie RefinementRa-
diosity, Computer Graphics (Proceedingsf the 1990
Symposiunon Interactve 3D Graphics)24, 2, March
1990,59-66.

[33] D.R. Roble, A Load BalancedParallel Scanline Z-
Buffer Algorithm for theiPSCHypercubeProc. Pixim
88, HermesParis,France October1988,177-192.

[34] Bengt-OlafSchneiderParallelRenderingon PCWork-
stations, International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDTA98), LasVegas,NV, 1998.

[35] J. Torborg and J. Kajiya, Talisman: Commodity Re-
altime 3D Graphicsfor the PC, Computer Graphics
(SIGGRAPH96), August1996.

[36] S. Upstill, The Renderman Companion, Addison-
Weslegy, ReadingMA, 1989.

[37] J. Warnock, A Hidden-Suréce Algorithm for Com-
puter GeneratedHalf-Tone Pictures,TechnicalReport
TR 4-15, NTIS AD-753 671, ComputerScienceDe-
partment, University of Utah, Salt Lake City, June,
1969.

[38] D.S. Whelan, Animac: A MultiprocessorArchitec-
turefor Real-time Computer Animation, Ph.D.disserta-
tion, Californialnstituteof TechnologyPasadenaCA,
1985.

[39] S. Whitman, MultiprocessorMethods for Computer
Graphics Rendering, A.K. Peters, Welleslg/, MA,
1992.

[40] S. Whitman, Dynamic Load Balancing for Parallel
PolygonRendering| EEE Computer Graphics and Ap-
plications, Vol 14, No. 4, July, 1994,41-48.

11



