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Abstract

Basedon therecentimprovementsin theprice/performance
of PC-basedgraphicsaccelerators,it is compellingto con-
sider approachesthat combinemultiple PCs togetherinto
a high performance,high resolution,low costparallel ren-
deringsystem.We areinvestigatingsort-firstapproachesto
build sucha systemin which one or more client PCsdis-
tribute 3D graphicsprimitives to multiple server PCsthat
renderimagesfor separate2D tiles for projectionon a dis-
playsurface.A fundamentalchallengein implementingsuch
a systemis developing a methodto classify 3D graphics
primitivesaccordingto their overlapswith the 2D screen-
spacetiles sothateveryserver PCis not requiredto process
every3Dprimitive. In thispaper, wedescribeseveraloverlap
classificationalgorithmsbasedondifferentboundingvolume
approximations,different transformationsequences,differ-
ent primitive aggregationmethods,and different primitive
sizes.We built a prototypesort-firstsystemwith oneclient
PCandeightserverPCsconnectedby anetwork to testthese
algorithmswith the goal of characterizingtheir trade-offs
andfinding theonethatmaximizesthepolygonthroughput
of theentiresystem.Interestingly, wefind thattheeffective-
nessof eachoverlapclassificationalgorithmvarieswidely
with differenttypesof 3D scenes,andthusit is impossibleto
choosea singleoverlapclassificationalgorithmthat is best
in all circumstances.Motivatedby this observation,we in-
corporatedynamicadjustmentof parametersof the overlap
classificationalgorithmto balancetheclient andserver pro-
cessingtimes in real-timeas 3D primitives are processed.
With thisnew feature,weareableto achievehigherpolygon
renderingrateswith oursystem.

1 Intr oduction

In the questto develop a high-performanceand low-cost
polygonrenderingsystem,it is attractive to considertheuse
of multiple PCswith fast, commoditygraphicsaccelerator
cards.PCgraphicssystemshave improvedat anastounding
rateover the last few years,andtheir price-to-performance
ratiosfarexceedthoseof traditionalhigh-endrenderingsys-
tems. This trendmakesit attractive to considerapproaches

that combinethe aggregateperformanceof many PCscon-
nectedtogetherby a network into a high performance,high
resolution,low costparallelrenderingsystem.

We believe it is possibleto build sucha systemusinga
sort-firstapproach[28] in whichoneor moreclient PCsdis-
tribute 3D graphicsprimitives to multiple server PCsthat
renderimagesfor separate2D tiles of a display. We are
motivatedto usesort-firstto leveragethe tight couplingbe-
tweengeometryand rasterizationprocessorsinside typical
PC graphicsacceleratorcards, and to avoid interprocess
communicationthat would be requiredto compositeren-
deredimagesin a sort-lastapproach.

A fundamentalchallengein a sort-first systemis to de-
velopalgorithmsthatclassify3Dgraphicsprimitivesaccord-
ing to theiroverlapswith 2Dscreen-spacetiles. In thispaper,
we describeseveraloverlapclassificationalgorithmsrepre-
sentingdifferenttrade-offsbetweenspeedandaccuracy. Our
investigationincludesdifferent boundingvolume approxi-
mations,differenttransformationsequences,differentprim-
itive aggregationmethods,anddifferentprimitive sizes.We
executedexperimentsusinga prototypesort-firstsystemto
characterizethe trade-offs of differentoverlapclassification
algorithmsandtofind thealgorithmthatmaximizesthepoly-
gon renderingthroughput. Interestingly, we find that the
effectivenessof eachoverlapclassificationalgorithmvaries
widely with differenttypesof 3D scenes,andthusit is im-
possibleto choosea singlealgorithmthat is bestin all cir-
cumstances.Motivatedby this observation,we incorporate
dynamicadjustmentof the overlapclassificationalgorithm
into our systemto balancethe client andserver processing
timesin real-timeas3D primitivesareprocessed.With this
new feature,weareableto achievehigherpolygonrendering
rates.

The paperis organizedas follows. The next sectionre-
views relatedwork in parallel polygon rendering,paying
specialattentionto methodsbasedon screen-spacedecom-
positionsandsystemsutilizing anetworkof PCs.In Sections
3 and4, we discussthe challengesof overlapclassification
andproposeseveralalgorithms.Section5 containsadescrip-
tion of ourprototypesystem,while Section6 presentsresults
of experimentswith this systemaimedat characterizingthe
effectivenessof different overlap classificationalgorithms.
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In Section7, we describea methodto adaptparametersof
overlapclassificationalgorithmsdynamicallyin real-timein
orderto maximizethesystempolygonthroughputof thesys-
tem.Finally, Section8 containsa summaryandconclusion.

The maincontributionsof this paperare: 1) the descrip-
tion andcharacterizationof severaldifferentoverlapclassifi-
cationalgorithms,2) thedesignof a prototypesort-firstpar-
allel renderingsystemutilizing anetwork of PCs,and3) the
introductionof theideathatit canbeimportantto adjustpa-
rametersof an overlapclassificationalgorithmdynamically
to trade-off speedversusaccuracy in orderto achieve maxi-
malsystemthroughputin a parallelrenderingsystem.

2 PreviousWork

Classificationof overlapsbetween3D graphicsprimitives
and2D regionsof the screenis a fundamentalproblemin
computergraphics,arisingin hiddensurfaceremoval [37],
collision detection[15], occlusionculling [19, 22], andpar-
allel rendering[4, 39].

In particular, partitioningprimitivesbasedontile overlaps
is animportantstepin many high-performancepolygonren-
deringsystemsutilizing image-spaceparallelismor bucket
rendering.Differenttile shapeshave beenusedin thesesys-
tems,includingscanlines[14], horizontalstrips[3, 20, 38],
vertical strips[38], andrectangularareas[1, 6, 20, 33, 40].
Tileshavebeenkeptstatic[1, 6, 7, 20, 27, 31] or dynamically
adjustedbasedon thedistribution of graphicsprimitiveson
thescreen[28, 33, 38]. For eachgraphicsprimitive,theren-
deringsystemmustdeterminewhich 2D screen-spacetiles
it overlapsso that it caninvoke renderingoperationson the
appropriateprocessors.

Mostcurrentparallelpolygonrenderingsystemsarebased
on a sort-middlearchitecture.Somehardwareimplementa-
tions rely upon a fast, global interconnectionto distribute
primitivesfrom geometryprocessorsto rasterizers.For in-
stance,SGI’s Infinite Reality Engine[27] usesa fast Ver-
tex Bus to broadcastscreenspacevertex information from
semi-customASIC geometryprocessorsto all ASIC rasteri-
zationprocessors.In this case,overlapsbetweenprimitives
andtilesarenotdeterminedby thegeometryprocessors,and
everyvertex is broadcastto everyrasterizationprocessor, re-
quiringeachrasterizationprocessorto checkall primitivesto
seeif they overlapits screenregion. Most othersort-middle
systemshave usedthe 2D boundingbox of a primitive to
testfor overlapswith screen-spacetile regions.For example,
this methodis usedin UNC’s PixelPlanes5 to sort primi-
tivesamongtiles loadedontoa work queueto beprocessed
by multiplerasterizationprocessors[11]. Otherexamplesin-
cludeRenderman[36], PixelFlow [9, 25], andseveralcom-
mercialPC-basedgraphicsaccelerators[6].

Several studieshave investigatedthe impactof primitive
overlapsin bucket renderingsystems.Molnar proposedan

equationfor modelingthe overlap factor for 2D bounding
boxes on 2D rectangulartiles [24]. His analyticalmodel
hasbeencorroboratedby experimentalevidence[6, 26], and
it hasbeenusedasthe basisfor subsequentstudies[1, 6].
CoxandBhandariinvestigatedtherelationshipsbetweentile
(bucket)sizeandoverlapfactorsincurredin abucketrender-
ingsystem[6]. In theirexperiments,they sorteveryprimitive
amongthe tiles accordingto the overlapsof its 2D bound-
ing boxconstructedafterprojectingtheprimitiveinto screen
space.Althoughthey describealternativeoverlapclassifica-
tion methods(e.g.,exactbucket sorting),they do not exam-
ine their costsor theextentto which they mayreduceover-
lap. Chenet al. studiedtheeffect of overlapfactorson ren-
deringtimesin bucket renderingsystems[1]. Basedonana-
lytical modelsandexperimentalevaluations,they concluded
thattheprocessingoverheaddueto overlapsis generallyfar
lessthantheraw overlapfactor. To ourknowledge,therehas
notbeenpreviouswork studyingdifferentoverlapclassifica-
tion algorithmsfor bucket renderingsystems.

Ourinvestigationis basedonanimmediate-modesort-first
approach[26]. Sort-firsthasbeenstudiedfor retained-mode
systemsby Mueller[28] andCox[5], amongothers.Mueller
simulateda real-timesort-first system,primarily studying
loadbalancing[28] anddynamicdistributionof hierarchical
scenedescriptions[29], while Cox [5] implementeda sort-
first versionof Renderman[36].

Relatively little work hasbeendoneon interactive poly-
gon renderingusing a clusterof networked PCs[17, 34].
Prior distributedrenderingsystemshave mostly focusedon
inter-frameparallelism[17], renderingseparateframesof a
sequenceon separatecomputersin parallel, ratherthanon
intra-frameparallelism,whichis requiredto achievescalable
speedupsin a real-timesystemutilizing many processors.
Networks of workstationshave beenusedsuccessfullyfor
parallelgraphicsalgorithmswith coarsegranularity, suchas
volumerendering[23, 16], radiosity[32, 13], andbatchren-
deringof imagesequences[17, 30]. Wearenotawareof any
prior systemthat hasachieved scalablepolygon rendering
speedupsvia intra-framedataparallelismacrossa network
of workstations.

3 ProblemStatement

In our investigation,we aim to constructa sort-first sys-
tem matchingthe abstractionshown in Figure1. Applica-
tionsrunningon oneor moreclientsgeneratestreamsof 3D
graphicsrenderingcommands(e.g.,OpenGL)representing
sequencesof statechanges,transformationoperations,and
3D primitives.Eachcommandis encodedandinsertedinto a
bit streamto besentvia network messagesfrom eachclient
to the server(s)correspondingto the 2D tile regionspoten-
tially overlappedby the 3D primitives. Meanwhile,each
server receivesa set of messages,decodesthem, and exe-
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cutesthe corresponding3D graphicsrenderingcommands
to createimagesfor display. Parallelismis achievedby over-
lappingcomputationin theclientsandservers(in atwo-stage
pipeline)andby allowing multipleserversto rendergraphics
primitivescoveringdifferenttilesof thescreenconcurrently.

Application

    Overlap
Classification

Message
Encoding

Network
  Send

 Rendering

Message
Decoding

Network
Receive

Network

Client Server

Figure1: Systemabstraction.

An importantchallengein this type of systemis to de-
velop client software that distributes3D primitivesamong
theserversefficiently. Of course,sinceeachserveris respon-
siblefor renderingthepixelsin only onetile of thescreen,it
is generallynotnecessaryfor everyserverto receiveandpro-
cessevery 3D graphicsprimitive. Rather, eachserver must
renderonly thesubsetof 3D graphicsprimitivesat leastpar-
tially overlappingits tile. We cantake advantageof this fact
by checkingwhich 3D primitivesoverlapwhich 2D tiles in
theclientprior to sendingtheprimitivesto theservers.If the
client candeterminethata particular3D graphicsprimitive,���

, doesnot overlapa particulartile, ��� , then it can omit���
in thestreamof commandsto beprocessedby theserver

renderingtheimagefor ��� . Althoughattributestatechanges
must still be processedby every server, wasteful geome-
try computationsto process3D primitivesentirely outside
a server’s tile canbeavoided. Sincethe geometryprocess-
ing time requiredsimply to clip every 3D primitive in every
serveris significant,incorporatingsuchanoverlapclassifica-
tion algorithminto theclient is critical to building a scalable
systemsupportinga largenumberof servers.

In our systemabstraction,theoverlapclassificationalgo-
rithm processesan “immediate-mode”streamof 3D graph-
icsprimitivesanddecidesin real-timewhich tiles arepoten-
tially overlappedby eachprimitive.Sincetheoverlapresults
areusedby theclient to determinewhich primitivesto send
to eachserver, the algorithmmust be conservative (i.e., it
shouldnotmissany overlaps).Yet, it shouldbeasquickand
accurateaspossible.Moreover, sincewe aim to supportin-
teractiveapplications,theclassificationalgorithmshouldadd
aslittle latency to therenderingpipelineaspossible,andthe
total latency of the renderingsystemshouldnot exceedthe
toleranceof typical interactive graphicsapplications. This

constraintmay imposea limit on the numberof primitives
that can be consideredby the algorithmbeforeany of the
primitivesis classified.Accordingly, it is usuallynot feasi-
ble to performprecomputationto build complicatedspatial
datastructuresbasedon thelocationsof all the3D graphics
primitivesin animage.

Clearly, therearetrade-offs betweenspendingmorepro-
cessingtime and achieving more exact overlap classifica-
tions.Ononeextreme,theclientcoulddonoprocessingand
simplysendeveryprimitive to everyserver (thisapproachis
veryquick,but veryconservative!). In thiscase,everyserver
wouldhaveto processeveryprimitive,at leastenoughto de-
cide it lies outsideits region of the screen,andthe system
wouldnotscalewell to supportlargenumbersof servers.On
theotherextreme,theclient couldrenderall primitivesinto
a full-resolutionitem buffer, andreadbackthepolygonIDs
to determineexact tile overlaps. Then,eachserver would
have to renderonly polygonsthatactuallycontributeto the
imagecoveringits tile. Generally, if analgorithmtakesmore
time to computemoreexactoverlaps,theclientbecomesthe
bottleneckandlimits overall renderingthroughput(seeFig-
ure 2a). Yet, if the classificationalgorithmtakeslesstime,
but is moreconservatively approximate,thenmoregraphics
primitivesaresentto berenderedon serverswhosetiles are
not actuallyoverlapped,andtheservers’ renderingtime be-
comesthebottleneck(seeFigure2b).

Thechallengeis to balancethecompetinggoalsof speed
and accuracy in the overlap determinationalgorithm to
achieve a balancebetweenclient and server processingso
thatthesystem’s renderingthroughputis maximized.
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(a)Moreexactoverlaps.
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(b) Moreapproximateoverlaps.

Figure2: Moreapproximateoverlapclassificationsshift pro-
cessingburdenfrom theclient to theservers.

4 Overlap ClassificationAlgorithms

Wehavedevelopedseveralalgorithmsthatclassify3D prim-
itivesbasedon their overlapswith 2D tiles. Thevariousal-
gorithmsarebasedondifferentconservativeapproximations
that trade-off speedversusaccuracy. For instance,we con-
sider different boundingvolume approximations,different
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transformationsequences,and differentprimitive aggrega-
tion methods.The algorithmsandtheir parametersarede-
scribedin the following subsections,andthenresultsof ex-
perimentswith thesealgorithmsarediscussedin Section6.

4.1 Bounding VolumeApproximations

It is commonin computergraphicsto useaboundingvolume
asa surrogatefor a primitive in conservativeoverlapandin-
tersectioncomputations[2]. Candidateboundingvolumes
includeaxis-alignedboundingboxes,boundingspheres,ori-
entedboundingboxes,K-dops,convex hulls, andeven the
original3D primitive,whereeachof thesecandidatesrepre-
sentsa differentpoint in thespectrumof trade-offs between
accuracy andcomputationalexpense.Previoustiled render-
ing systemshave used2D axis-alignedboundingboxes to
computetile overlaps.

Determiningoverlapsbasedon primitive boundingvol-
umesis intuitively appropriatebecausethecomputationsare
both conservative and relatively quick. In our systemab-
straction, the client must feed � servers with primitives.
Therefore,in order to keepup with the servers, it mustbe
ableto determinethe setof tiles overlappedby a primitive
at least � timesfasterthanthe serverscandraw them. Of
course,it maynotbepracticaltodetermineoverlapsbetween
every 3D primitive and the 2D tiles exactly. In essence,
exactoverlapclassificationrequirestile-resolutionrasteriza-
tion of every 3D primitive in the client. In this paper, we
considercomputingtile overlapsboth exactly and approx-
imatelyusingaxis-alignedboundingboxes. We did not in-
vestigateotherboundingvolumeshapesbecausewefoundin
earlystudiesthatusingsimpleaxis-alignedboundingboxes
resultedin overlapsquitesimilarto any moreexactbounding
volume.

4.2 Transformation Sequences

As notedearlier, 3D graphicsprimitives generallyappear
in the commandstreamof a sort-firstsystemasa sequence
of 3D verticeslocatedin a 3D modelingcoordinatesystem
(e.g.,as in OpenGL),while the tiles for which we wish to
classifyoverlapsaredescribedin the2D screen-spacecoor-
dinatesystem.As a result,we musttransformoneor both
to a commoncoordinatesystemin orderto checkfor over-
laps. For example,in OpenGL,the transformationbetween
thesetwo coordinatesystemsis definedby theconcatenation
of the matricesstoredat the topsof the “model view” and
“projection” transformationstacks.

Thereare several possiblecoordinatesystemsin which
primitive-tile overlapcomputationscouldbeperformed,in-
cluding: 1) the 3D modelingcoordinatesystemof the 3D
primitive,2) the3D world coordinatesystemof thescene,3)
the3D cameracoordinatesystem,or 4) the2D screen-space
coordinatesystem[10]. For instance,it would be possible

to checkfor overlapsin 3D modelingcoordinatesby com-
puting the 3D view frustumcorrespondingto the region of
spacein cameracoordinatesmappingto each2D tile of the
screen,andthentransformingthat 3D view frustumby the
inversesof themodelingandcameramatricesto form a 3D
volume in 3D modelingcoordinatessuitablefor determin-
ing overlapswith each3D primitive. Clearly, theefficiency
of the overlap classificationalgorithm will dependgreatly
on the sequencesof transformationsappliedto the primi-
tivesand/ortiles andthecoordinatesystemusedfor overlap
computations.Likewise,combiningdifferenttransformation
sequenceswith differentboundingvolumeapproximations
yields interestingpossibilities(someof which areshown in
Figure3).

3D Modeling

2D Screen

2D Tile Overlaps

Primitive
Vertices

Bounding
Volume

3D World

3D Camera

Coordinate
   System

3D−BV

2D−BV

Exact

Figure3: Possibletransformationsequences.

In thispaper, weconsiderthefollowing four overlapclas-
sificationalgorithms:�
� Exact:

1) Transformthe3D verticesof each3D polygonto 2D
screen-space,2) Scanconverttheprojected2D polygon
to find tile overlapsexactly. (the left-mostpathin Fig-
ure3).

� 2D-BV:
1) Transformthe3D verticesof each3D polygonto 2D
screen-space,2) Computea 2D boundingvolumeen-
closingtheprojectedvertices,3) Checkfor overlapsbe-
tweenthe2D boundingvolumeandthe2D tile regions.
(themiddlepathin Figure3).

� 3D-BV:
1) Computea3D boundingvolumeenclosingtheorigi-
nal 3D vertices,2) Transformthe3D boundingvolume
to 2D screen-space,3) Computea2D boundingvolume
enclosingtheprojected3D boundingvolume,4) Check
for overlapsbetweenthe2D boundingvolumeandthe
2D tile regions.(theright-mostpathin Figure3).�

In this discussion,we focuson classificationof overlapsfor 3D poly-
gons.Yet, thesameprinciplesapplyto other3D primitivesaswell.
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� All:
1) Trivially assumeevery 3D polygon overlapsevery
2D tile region.

4.3 Primiti veAggregationMethods

Thereare likely to be caseswherethe client is not able to
keepup with theserversif it computesthe tile overlapsfor
each3D graphicsprimitive independently. However, since
applicationsusuallygeneratestreamsof primitiveswith high
spatialcoherence(e.g.,all thepolygonsfor eachobjectof the
scenearedrawn in sequence),it seemslike a goodideato
collect a numberof primitivesinto oneaggregateprimitive
andthenperformoverlapclassificationfor this collectionas
a whole in a singlestep.Then,eachoverlapcomputationis
amortizedover multiple primitives,effectively reducingthe
classificationoverheadin theclient.

We integratethis amortizationstrategy with the 2D-BV
and 3D-BV algorithmsdescribedin the previous section.
Specifically, we computeoneboundingvolumefor a group
of primitives,determinethe tile overlapsfor that bounding
volume,andthenassignevery primitive in the groupto all
thetilesoverlappedby theboundingvolume.Thismethodis
ratherconservative in that it assumesthatevery primitive in
overlapsat leastall the tiles overlappedby any primitive in
thegroup.

The benefitsof amortizationare directly relatedto the
amountof work avoidedfor eachprimitive. In the 3D-BV
algorithm,all per primitive computationscanbe amortized
excepttheinclusionof aprimitiveinto thecurrent3D bound-
ing volume(i.e., steps2-4 canbeamortized).In the2D-BV
algorithm,eachprimitivemustbetransformedbeforeit is in-
cludedin thecurrent2D boundingvolume,andthusonly the
2D computationto checkthe overlapsbetweenthe current
boundingvolumeandtiles canbeamortized(step3). In ei-
thercase,thealgorithmbecomesmoreconservative,yetruns
faster, asweincreasetheamortizationfactor, 	 , representing
thenumberof primitivesloadedinto eachboundingvolume,
therebyallowing aninterestingtrade-off betweenspeedand
accuracy.

5 Experimental System

In orderto investigatethetrade-offs of thedifferentoverlap
classificationalgorithmsdescribedin the previous section,
and to study the feasibility of constructinga parallel ren-
deringsystemutilizing a clusterof PCs,we built an exper-
imentalparallel renderingsystemusingeight AccelGraph-
ics Eclipse graphicsacceleratorcards[8] inside 200MHz
PC-SMPsattachedto a Myrinet network to drive an array
of eight1024x768Proxima9200LCD projectors.The im-
agesrenderedby the eight serversareprojectedon a rear-
projectionscreenin a 4x2 grid to form a singleimagecov-

ering theentirescreen(seeFigure4). Theeffective display
resolutionof this systemis around4000x1500pixels,while
the potentialrenderingperformanceis eight timesthat of a
singlePC.[Note to the reviewers: we expectto experiment
with a systemcomprising15 server PCsdriving a 5x3 array
of projectorsbeforetheconference].

Myrinet
Network

Client
Servers

Projectors

Figure4: Experimentalsystemorganization.

A singleclient PC with a 300MHz PentiumII processor
drivesthesystemby runninganOpenGLexecutabledynam-
ically linkedwith a specialOpenGLlibrary (linkedin Win-
dows NT by simply placingthe opengl.dllfile in the local
directory). Ratherthan invoke the OpenGLcommandslo-
cally, this versionof the OpenGLlibrary constructsmes-
sagesencodingthe OpenGLfunction calls andarguments,
runsoneof thealgorithmsdescribedin theprevioussection
to insertinto themessagea bit vectorrepresentingthesetof
servertilesoverlappedby eachprimitive,andsendsthemes-
sagesover theMyrinet network to theservers. Eachserver
receivesasetof messages,decodesthem,checksthebit vec-
tors,andconditionallyexecutesthedecodedOpenGLfunc-
tionsto createimagesfor its projector. If thesystemis exe-
cutingin doublebuffer mode,theclientandserverexchange
synchronizationmessagesattheendof eachframesothatall
theserversswapbuffersatapproximatelythesametime.

The sort-first approachis well-suited for our prototype
systembecauseit takesadvantageof thenaturalscreen-space
parallelisminherentin ourclusterof serverPCs.Also, since
the4x2 grid of tiles assignedto serversexactly matchesthe
4x2 grid of projectionregionson the screen,no extra pro-
cessingor network communicationis requiredto composite
subimagesfor theseparatetiles into afinal full-screenimage
for display. Instead,subimagesarecomposited“optically”
during projectionsincethe projectedimagesblendas light
from differentprojectorscombineson the screen.A prob-
lem with our currentsystemis load imbalance.In related,
but separate,work, we areinvestigatingalgorithmsthatdy-
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namicallyadjusttile shapesandsizesto balancetherender-
ing loadamongtheservers,andwe areinvestigatingmeth-
odsfor efficient inter-servercommunicationmethodsto dis-
tributerenderedpixelsfor displayat theendof eachframe.

6 Results

We executedaseriesof experimentswith thisprototypesys-
temusingtwo OpenGLapplications.Thefirst applicationis
an unmodifiedVRML browser. It readsa 3D model from
a file and displaysit on the screenwhile the viewpoint is
moved either interactively or along a predeterminedpath.
We executedtestswith this applicationusingthe following
threetestmodelswith predeterminedcamerapathscaptured
aprioriduringaninteractivesession:

� Eagle: Exteriorview of finely tesselatedobject(15,154
triangles).

� Building: Interior view of hierarchicalscenegraph
with largesurfaces(29,974quadrilaterals).

� Suite: Interior view of hierarchicalscenegraphwith
bothlargesurfacesandfinely tesselatedobjects(80,372
polygons).

The secondapplication,which we call “Triangles,” gen-
erates“randomized”front-facingright-triangleswith agiven
2D projectedareauniformly distributed acrossthe screen.
The trianglesarecreatedby the following algorithmwhich
is iteratively givena2D point,

�
, onthescreenandadesired

screen-spacearea,	 . First, constructa 2D vector 
 with a
randomorientationanda randomlength. Next, assignone
edgeof the triangleasthe line segmentleaving from point�

along 
 . Then,choosetheremainingtwo edgessuchthat
oneof themleaves

�
in a directionperpendicularto 
 such

that the resultingtrianglehasarea 	 . During our tests,we
generated10,000triangleswith this method,iteratively per-
turbing thepoint

�
from triangleto triangle. Parametersto

thetriangleapplicationcontrol:1) thenumberof trianglesto
begenerated,and2) the2D projectedareaof eachgenerated
triangle.

6.1 Bounding VolumeApproximation &
Transformation SequenceResults

In our first experiment,we investigatedtheeffectivenessof
thefour differentoverlapclassificationalgorithmsdescribed
in Section4.2. In this experiment,tile overlapswerecom-
putedin the client for every primitive individually (i.e., the
amortizationfactorwas1).

We rantwo setsof tests.Thefirst testusedtheTriangles
applicationto generate10,000“random” trianglescovering
2D projectedareasof 250,500,1000,2000,4000,and8000
pixels,respectively. ThesecondtestusedtheVRML browser

to view thethree3D testmodels.Theresultscomparingthe
speedandaccuracy of thedifferentalgorithmsmeasuredin
thesetestsareplottedin Figure5. In eachplot, thehorizon-
tal axis(labeled“OverlapComputationTimePerPrimitive”)
representsthespeed– it is thewall-clock time (in microsec-
onds)requiredby theclient to classifypotentialoverlapsfor
eachpolygonsin a test. Meanwhile,the vertical axis (la-
beled“AverageComputedOverlap Factor”) representsthe
accuracy – it is thenumberof 2D tiles determinedto bepo-
tentiallyoverlappedby each3D primitiveonaverage.

Thereareseveralinterestingresultsevidentin theseplots.
First,theclientis notabletoclassifyoverlapsfor everyprim-
itive individually andstill achieve polygonthroughputrates
matchinghigh-performancerenderingsystems.The fastest
of the non-trivial overlapalgorithmsrequires1.9usto pro-
cesseachprimitive individually on a 300 MHz PentiumII
processor, yielding a sortingrateof 526K polygons/second.
Exact overlap classificationfor the triangle tests requires
5.9usper polygon(or 169K polygons/second),while exact
overlapsin theVRML browsertesttook asmuchas14.8us
perpolygon(or 68K polygons/second).The increasedtime
for overlapclassificationin thetestswith theVRML ‘Build-
ing’ modelaredueprimarily to thecostsof numeroustrans-
formationoperationsincludedin the hierarchicalscenede-
scription.

Second,the3D-BV algorithmis significantlyslower than
the 2D-BF algorithm. This result is primarily due to the
fact that 3D-BV must transformeight verticesfrom 3D to
2D for eachtriangle (i.e., the cornersof the 3D bounding
box), while the 2D-BV algorithmonly must transformthe
threeverticesof thetriangle.Thematrixmultiplicationsper-
formedfor eachvertex transformationis the limiting factor
in thesealgorithms,andthuswe expectthat the3D-BV al-
gorithmwould take lesstime thanthe2D-BV algorithmfor
polygonscontainingmorethaneight verticesandfor other
higher-level primitives.

Third, we notethat theboundingvolumeapproximations
have little impacton the overlapfactor in caseswherethe
polygonsaresignificantlysmallerthanthe tile size. As the
polygonsapproacha sizeapproximately1/200thof the tile
size,thedifferencesbetweenexactoverlapclassificationand
approximationsbasedon the2D-BV and3D-BV algorithms
startto becomesignificant.

6.2 Amortization Results

In our secondexperiment,we investigatedthe trade-offs of
increasingthe amortizationfactor for the 2D-BV and 3D-
BV algorithms.Werantwo setsof testsfor eachof thealgo-
rithmswith varyingamortizationfactors(A). First,asbefore,
we usedtheTrianglesapplicationto construct10,000“ran-
dom” trianglescovering2D projectedareasof 250and8000
pixels,respectively. Second,weusedtheVRML browserap-
plicationto view thethree3D testmodels.Plotscomparing
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Figure5: Comparisonof speedandaccuracy for four differentoverlapclassificationalgorithmstestedwith datasetscomprising
(a) trianglesof differentareas,(b) threeVRML models.

themeasuredspeedandaccuracy of the2D-BV and3D-BV
algorithmswith differentamortizationfactorsareshown in
Figure6. Thelabelsandmeaningsof theaxesarethesame
asin Figure5.

Fromtheresultsof this experiment,we seethat it is pos-
sible to trade-off speedfor accuracy by adjustingtheamor-
tization factor for either the 2D-BV or 3D-BV algorithms.
Although the benefitsof increasingthe amortizationfactor
diminish as it gets larger (due to per primitive processing
overheads),we areable to improve the overlapprocessing
times in the client significantly with amortization(usually
by more than four times). In the fastestcase,the client
spendsonly 0.7us classifying each polygon (1.4M poly-
gons/second).But, in spendinglesstime, it performsmore
approximatechecks,and the overlap factor increases,re-
sulting in higherrenderingtimesin the servers. The bene-
fits/costsof largeramortizationfactorswill dependonmany
factors,including the systemcommunicationrates,server
renderingrates,etc.

We find that thereis no singlevaluefor theamortization
factorthat is bestin all circumstances.In particular, asras-
terizationtime in theserver increasesdueto morecomplex
lighting, largertriangles,mip-maptextures,etc.,thetimere-
quiredto classifyoverlapsfor eachprimitive remainsvirtu-
ally thesame.As aresult,for eachsetof renderingattributes,
the amortizationfactor at which the client processingand
server renderingtimesarebalancedis different. As an ex-
ample,Table1 showsresultscollectedduringanexperiment
with the3D-BV algorithmtestedwith theTrianglesapplica-
tion for triangleswith adifferent2D projectedarea.Thefirst
columnof the tablecontainsthe2D projectedtrianglearea,
while thesecondcolumnliststheamortizationfactorusedin
thetest.Thethird columnshowstheaveragecomputedover-
lap factor, andthethird andfourthcolumnscontainthewall-
clock times requiredby the client to classifyoverlapsand
packprimitivesinto messages(which usually takesaround

8us per primitive), and by the server to renderthe primi-
tives,respectively. Examiningtherightmosttwo columns,it
is easyto seethat theamortizationvalueat which theclient
and server times are balancedvarieswidely with different
trianglesizes(the cross-over amortizationvaluesarehigh-
lightedin bold). Specifically, anamortizationvalueof 1 pro-
videsthebestsystemthroughputin thetestswith very large
triangles(e.g.,8,000pixels),while anamortizationvaluebe-
tween16 and32 balancestheclient andserver timesbestin
thetestwith small triangles(e.g.,250pixels).Quitesimply,
thereis no singleamortizationvaluethat providesthe best
performancefor all 3D models.

Finally, we observe thatserver renderingtimes(shown in
theright-mostcolumnof Table1) increasesignificantly(by
morethanafactorof 2) with moreconservativeoverlapclas-
sifications.Fromthis observation,we concludethat thege-
ometryprocessingrequiredby eachserver to clip 3D primi-
tivesprojectingto areasentirelyoutsideits tile is significant,
andthuscalculatingreasonablyexacttile overlapsis impor-
tantto constructingascalablesort-firstrenderingsystem.

7 Dynamic Amortization

Basedontheresultsin theprevioussection,wearemotivated
to experimentwith predictive feedbackalgorithmsto adjust
the amortizationvalue, 	 , in real-timewhile processinga
streamof graphicsprimitives. Our goal is to develop dy-
namicoverlapclassificationalgorithmsthatadjusttheamor-
tization value usedin the 2D-BV and 3D-BV algorithms
adaptively in order to balanceclient andserver processing
timessothattheoverallsystemthroughputis maximized.

If we ignore other processingor communicationover-
headsin theclient (this is anidealizedassumption!),wecan
modeltheclientprocessingtimeperprimitive, � , as:

�����������������	 (1)
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Figure6: Comparisonof speedandaccuracy for differentamortizationfactorsusingthe2D-BV and3D-BV algorithmstested
with datasetscomprising(a) trianglesof differentareas,(b) threeVRML models.

where � � and � ��� arethe predictedprocessingtimesre-
quiredby theclient for eachprimitiveandboundingvolume,
respectively, and 	 is theamortizationfactor.

We can also predict the renderingtime requiredby the
server, ��� , as:

� ������ �!#" � �%$�&(' �*) �+	-, (2)

where" is thepredictedoverlapfactor, ' and & arethepre-
dicted width and height of primitives to be rendered,and� � and

� )
arethepredictedrenderingtimesrequiredby the

server for eachprimitiveandpixel, respectively.
We can model a systemin which client andserver pro-

cessingtimesarebalanced,andthusthepolygonthroughput
is maximized,by equating� and

�
, for example:

� � �.� ��� �+	/������ �!#" � � $�&(' � ) �+	-, (3)

Of course,thisequationcontainsmany variablesunknown
for theupcomingsetof 3D primitivesin animmediate-mode
graphicssystem.Althoughwe candeterminereasonablees-
timatesfor the client processingtime parameters,��� and
����� , andtheserver renderingtime parameters,

� � and
�0)

empirically [12] (at leastfor a given renderingmode),we
do not know theoverlapfactor, " , nor theprojectedscreen-
spacewidth andheightof future 3D primitivesapriori. To
circumvent this problem,we assumethat the3D primitives
sentby an applicationhave a largeamountof coherencein
theirprimitivesizes,andwepredictvaluesfor futureframes
basedon valuesfor recentlyrenderedprimitives. Then,we
solve the following equationfor 	 � to updatetheamortiza-
tion factor, eachtime a new boundingvolumeis processed
by the2D-BV or 3D-BV algorithms:

� � �.� ��� �+	 � ���1�+ 2!3" �54 �
� � $+& �54 � ' �64 �

� ) �+	 �54 � , (4)

With this enhancement,we areableto achieve morebal-
ancedprocessingbetweenclientandserver. Figure7ashows

the client overlap classificationtimes (using 3D-BV) and
server renderingtimesperpolygonmeasuredduringexecu-
tion of amodifiedversionof ourtrianglegenerationprogram
in whichthelength,7 , usedto constructtriangleswasmodu-
latedupanddownwith acosinefunctiontoproducetriangles
with areasbetween500 pixels and1500pixels. Figure7b
showssimilartimesmeasuredwithoutdynamicallyupdating
the amortizationfactor(usingA=4). The client andserver
timestrackeachothermorecloselyusingthedynamicalgo-
rithm, resultingin highersystemthroughput.
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Figure7: Measuredclient andserver processingtimes for
eachframeusingoverlapclassificationalgorithmswith (a)
dynamicand(b) staticamortization.

8 Conclusion

We have describedalgorithms for sorting 3D primitives
among2D screen-spacetilesandinvestigatedtheirusein an
immediate-mode,sort-firstparallel renderingsystemutiliz-
ing anetwork of commodityPCs.Basedonexperiences,we
draw thefollowing conclusions:

� Calculatingtile overlapsis importantto constructinga
scalablesort-firstrenderingsystem.
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Triangle Amort Overlap Client Server
Area Factor Factor Time Time
250 1 1.09 3.8 0.9

2 1.22 2.8 1.1
4 1.39 2.1 1.3
8 1.63 1.8 1.3
16 2.05 1.7 1.5
32 2.71 1.5 1.6
64 3.78 1.5 1.9

500 1 1.09 3.8 1.1
2 1.25 2.8 1.3
4 1.46 2.1 1.5
8 1.76 1.8 1.6
16 2.27 1.7 1.7
32 2.98 1.5 1.9
64 4.12 1.5 2.2

1,000 1 1.09 3.8 1.2
2 1.30 2.8 1.6
4 1.55 2.1 1.6
8 1.95 1.8 1.9
16 2.60 1.7 2.0
32 3.51 1.5 2.3
64 4.82 1.5 2.6

2,000 1 1.12 3.8 1.7
2 1.38 2.8 2.1
4 1.72 2.1 2.5
8 2.25 1.8 2.7
16 3.12 1.7 3.0
32 4.29 1.5 3.2
64 5.59 1.5 3.5

4,000 1 1.49 3.8 3.2
2 1.51 2.8 4.2
4 2.01 2.1 4.7
8 2.77 1.8 5.0
16 3.91 1.7 5.3
32 5.18 1.5 5.5
64 6.36 1.5 5.6

8,000 1 1.20 3.8 9.3
2 1.70 2.8 9.5
4 2.40 2.1 9.9
8 3.47 1.8 10.1
16 4.79 1.7 10.3
32 6.04 1.5 10.3
64 7.11 1.5 10.4

Table1: Statisticsgatheredwith trianglesizesanddifferent
amortizationfactorsusingthe 3D-BV algorithm(timesare
perprimitive in microseconds).

� It is possibleto trade-off speedandaccuracy with dif-
ferentoverlapclassificationalgorithms.

� Our fastestconservative algorithm (3D-BV) can pro-
cessapproximatelyone million trianglesper second
while generatingoverlapfactorsaroundtwice theones
computedwith theexactalgorithm.

� Dynamicadjustmentof thespeed/accuracy of theover-
lap classificationcanimprove overall systemthrough-
put.

We have addressedjust a few of the many issuesrelated
to building a sort-firstparallelrenderingsystemusinga net-
work of PCs. Otherissuesfor futurework include: 1) effi-
cientnetwork communication,2) loadbalancing,and3) im-
agecomposition.In particular, networking bandwidthlimi-
tationspresentvery significantchallenges.In our prototype
system,polygonthroughputis limited by thecapacityof the
network connectingthe client to the servers(40MB/s),and
thus we are able to achieve only 80K polygons/secondin
typical OpenGLprograms.Of course,this problemof de-
livering datato fast renderinghardware is classicalin the
designof computergraphicssystems.Futurework should
be directedat improving the bandwidthsavailableon clus-
tersof PCsandinvestigatinghigh-level graphicsprimitives
and parallel APIs (e.g., [18]) to overcomecommunication
bandwidthlimitations.

Overall,weareencouragedby theresultsof our initial in-
vestigationsinto sort-firstrenderingsystemsutilizing a net-
work of PCs, and we are hopeful that it will be possible
to scalethis approachto producehigh-performance,high-
resolutioncomputergraphicssystemsin thefuture.

References

[1] Milton Chen, Gordon Stoll, Homan Igehy, Kekoa
Proudfoot,and Pat Hanrahan,Simple Models of the
Impact of Overlap in Bucket Rendering,1998 Eu-
rographics/SIGGRAPH Workshop on Graphics Hard-
ware, Lisbon,Portugal,1998,105-112.

[2] Jim Clark, HierarchicalGeometricModelsfor Visible
SurfaceAlgorithms,Communications of the ACM, 19,
10,October, 1976,547-554.

[3] T.W. CrockettandT. Orloff, A MIMD RenderingAlgo-
rithmfor DistributedMemoryArchitectures,Proc. Par-
allel Rendering Symposium, ACM Press,New York,
Oct.1993,35-42.

[4] T.W. Crockett, ParallelRendering,In Encyclopedia of
Computer Science and Technology, Vol. 34, Supp.19,
A. KentandJ.G. Williams,eds.,MarcelDekker, 1996,
pp. 335-371.Also availableasICASE ReportNo. 95-
31 (NASA CR-195080),April 1995.

9



[5] MichaelCox,Algorithms for Parallel Rendering, Ph.D.
thesis, Departmentof ComputerScience,Princeton
University, May, 1995.

[6] MichaelCox,ArchitecturalImplicationsof Hardware-
AcceleratedBucket Renderingon the PC, 1997 SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, Los Angeles,CA, 1997,25-34.

[7] D. Ellsworth,A New Algorithm for InteractiveGraph-
ics on Multicomputers,IEEE Computer Graphics and
Applications, Vol 14,No. 4, July1994,33-40.

[8] Evans and Sutherland,REALimage(TM) 1000 Hard-
ware Manual, Evans&Sutherland,1997.

[9] J. Eyles,S. Molnar, J. Poulton,T. Greer, A. Lastra,N.
England,andL. Westover, PixelFlow: TheRealization,
Proceedings of the 1997 Siggraph/Eurographics Work-
shop on Graphics Hardware, Los Angeles,CA, Aug.
3-4,1997.Pages57-68.

[10] Foley, J.D., A. van Dam, S. Feiner, and J. Hughes.
Computer Graphics: Principles and Practice. 2nded.,
Addison-Wesley, Reading,MA, 1990.

[11] H. Fuchs,JohnPoulton,JohnEyles,Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg
Turk, Brice Tebss,and Laura Israel, Pixel-Planes5:
A HeterogeneousMultiprocessorGraphicsSystemUs-
ing Processor-EnhancedMemories,Computer Graph-
ics (SIGGRAPH89),23,3, July1989,79-88.

[12] Funkhouser,ThomasA., andCarloH. Śequin. Adaptive
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