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Abstract

Measuring the similarity between 3D shapes is a fun-
damental problem, with applications in computer vision,
molecular biology, computer graphics, and a variety of
other fields. A challenging aspect of this problem is to
find a suitable shape signature that can be constructed and
compared quickly, while still discriminating between simi-
lar and dissimilar shapes.

In this paper, we propose and analyze a method for com-
puting shape signatures for arbitrary (possibly degenerate)
3D polygonal models. The key idea is to represent the sig-
nature of an object as ashape distributionsampled from
a shape functionmeasuring global geometric properties of
an object. The primary motivation for this approach is to
reduce the shape matching problem to the comparison of
probability distributions, which is simpler than traditional
shape matching methods that require pose registration, fea-
ture correspondence, or model fitting.

We find that the dissimilarities between sampled distribu-
tions of simple shape functions (e.g., the distance between
two random points on a surface) provide a robust method
for discriminating between classes of objects (e.g., cars ver-
sus airplanes) in a moderately sized database, despite the
presence of arbitrary translations, rotations, scales, mir-
rors, tessellations, simplifications, and model degenera-
cies. They can be evaluated quickly, and thus the proposed
method could be applied as a pre-classifier in an object
recognition system or in an interactive content-based re-
trieval application.

1 Introduction

Determining the similarity between 3D shapes is a fun-
damental task in shape-based recognition, retrieval, clus-
tering, and classification. Its main applications have tradi-
tionally been in computer vision, mechanical engineering,
and molecular biology. However, due to three recent de-
velopments, we believe that 3D model databases will be-
come ubiquitous, and the applications of 3D shape analy-

sis and matching will expand into a wide variety of other
fields. First, improved modeling tools and scanning de-
vices are making acquisition of 3D models easier and less
expensive, creating a large supply of publically available
3D data sets (e.g., the Protein Data Bank [31]). Second,
the World Wide Web is enabling access to 3D models con-
structed by people all over the world, providing a mecha-
nism for wide-spread distribution of high quality 3D mod-
els (e.g., avalon.viewpoint.com). Finally, 3D graphics hard-
ware and CPUs have become fast enough and cheap enough
that 3D data can be processed and displayed quickly on
desktop computers, leading to a high demand for 3D models
from a wide range of sources.

Unfortunately, since most 3D file formats (VRML, 3D
Studio, etc.) have been designed for visualization, they con-
tain only geometric and appearance attributes, and usually
lack semantic information that would facilitate automatic
matching. Although it is possible to include meaningful
structure and semantic tags in some 3D file formats (the
“layer” field associated with entities in AutoCad models is
a simple example), the vast majority of 3D objects avail-
able via the World Wide Web will not have them, and there
are few standards regarding their use. In general, 3D mod-
els will be acquired with scanning devices, or output from
geometric manipulation tools (file format conversion pro-
grams), and thus they will have only geometric and appear-
ance information, usually completely void of structure or
semantic information. Automatic shape-based matching al-
gorithms will be useful for recognition, retrieval, clustering,
and classification of 3D models in such databases.

Databases of 3D models have several new and interesting
characteristics that significantly affect shape-based match-
ing algorithms. Unlike images and range scans, 3D mod-
els do not depend on the configuration of cameras, light
sources, or surrounding objects (e.g., mirrors). As a result,
they do not contain reflections, shadows, occlusions, pro-
jections, or partial objects, which greatly simplifies finding
matches between objects of the same type. For example,
it is plausible to expect that the 3D model of a horse con-
tains exactly four legs of roughly equal size. In contrast,
any 2D image of the same horse may contain fewer than



four legs (if some of the legs are occluded by tall grass), or
it may contain “extra legs” appearing as the result of shad-
ows on the barn and/or reflections in a nearby pond, or some
of the legs may appear smaller than others due to perspec-
tive distortions. These problems are vexing for traditional
computer vision applications, but generally absent from 3D
model matching.

In other respects, representing and processing 3D mod-
els is more complicated than for sampled multimedia data.
The main difficulty is that 3D surfaces rarely have simple
parameterizations. Since 3D surfaces can have arbitrary
topologies, many useful methods for analyzing other me-
dia (e.g., Fourier analysis) have no obvious analogs for 3D
surface models. Moreover, the dimensionality is higher,
which makes searches for pose registration, feature cor-
respondences, and model parameters more difficult, while
the likelihood of model degeneracies is higher. In particu-
lar, most 3D models in large databases, such as the World
Wide Web, are represented by “polygon soups” – unorga-
nized and degenerate sets of polygons. They seldom have
any topology or solid modeling information; they rarely
are manifold; and most are not even self-consistent. We
conjecture thatalmost every 3D computer graphics model
available today contains missing, wrongly-oriented, inter-
secting, disjoint, and/or overlapping polygons. As a few
classic examples, the Utah teapot is missing its bottom, and
the Stanford Bunny [38] has several holes along its base.
The problem with these degenerate representations is that
most interesting geometric features and shape signatures are
difficult to compute, and many others are ill-defined (e.g.,
what is the volume of a teapot with no bottom?). Mean-
while, fixing the degeneracies in such 3D models to form
a consistent solid region and manifold surface is a difficult
problem [11, 29, 42], often requiring human intervention to
resolve ambiguities.

In this paper, we describe and analyze a method for
computing 3D shape signatures and dissimilarity measures
for arbitrary objects described by possibly degenerate 3D
polygonal models. The key idea is to represent the sig-
nature of an object as ashape distributionsampled from
a shape functionmeasuring global geometric properties of
the object. The primary motivation for this approach is that
the shape matching problem is reduced to the comparison
of two probability distributions, which is a relatively sim-
ple problem when compared to the more difficult problems
encountered by traditional shape matching methods, such as
pose registration, parameterization, feature correspondence,
and model fitting. The challenges of this approach are to
select discriminating shape functions, to develop efficient
methods for sampling them, and to compute the dissimilar-
ity of probability distributions robustly. This paper presents
our initial steps to address these issues. For each issue, we
describe several options and present experimental evalua-

tion of their relative performance. Overall, we find that the
proposed method is not only fast and simple to implement,
but it also provides useful discrimination of 3D shapes and
thus is suitable as a pre-classifier for a recognition or simi-
larity retrieval system.

The remainder of the paper is organized as follows.
The next section contains a summary of related work. An
overview of the proposed approach appears in Section 3,
while detailed descriptions of issues and proposed solutions
for implementing our approach appear in Section 4. Sec-
tion 5 presents results of experiments aimed at evaluating
the robustness and discrimination of shape distributions. Fi-
nally, Section 6 contains a summary of our experiences and
proposes topics for future work.

2 Related Work

The problem of determining the similarity of two shapes
has been well-studied in several fields. For a broad intro-
duction to shape matching methods, please refer to any of
several survey papers [2, 7, 14, 41, 44, 57]. To briefly re-
view, prior matching methods can be classified according
to their representations of shape: 2D contours, 3D surfaces,
3D volumes, structural models, or statistics.

The vast majority of work in shape matching has focused
on characterizing similarity between objects in 2D images
(e.g., [18, 27, 35, 43]). Unfortunately, most 2D methods do
not extend directly to 3D model matching. The main prob-
lem is boundary parameterization. Although the 1D bound-
ary contours of 2D shapes have a natural arc length parame-
terization, 3D surfaces of arbitrary genus do not. As a result,
common representations of 2D contours for shape match-
ing, such as Fourier descriptors [5], turning functions [6],
bending energy functions [60], arch height functions [40],
and size functions [55, 56], have no analogs for 3D models.

Shape matching has also been well-studied for 3D ob-
jects. For instance, representations for registering and
matching 3D surfaces include Extended Gaussian Im-
ages [32], Spherical Attribute Images [20, 21], Harmonic
Shape Images [61], and Spin Images [36]. Unfortunately,
these previous methods usually assume that a topologically
valid surface mesh or an explicit volume is available for ev-
ery object. In addition, volumetric dissimilarity measures
based on wavelets [28] or Earth Mover’s Distance [48] usu-
ally rely upon a priori registration of objects’ coordinate
systems, which is difficult to achieve automatically and ro-
bustly. Geometric hashing [39] is a potential solution, but it
requires a large amount of storage for complex models.

Another popular approach to shape analysis and match-
ing is based on comparing high-level representations of
shape. For instance, model-based approaches first de-
compose a 3D object into a set of features (or parts),
and then compute a dissimilarity measure between ob-



jects based on the differences between their features and/or
their spatial relationships. Example representations of this
type include generalized cylinders [16], superquadrics [52],
geons [59], deformable regions [12], shock graphs [50], me-
dial axes [10], and skeletons [17, 24]. These methods work
best when 3D models can be segmented into a canonical
set of features naturally and correspondences can be found
between features robustly. Unfortunately, these tasks are
difficult and not always well-defined for arbitrary 3D polyg-
onal models (e.g., what is the canonical skeleton for an un-
connected set of polygons?). Moreover, feature detection
and segmentation algorithms tend to be sensitive to small
perturbations to the model, placing undue burden on subse-
quent feature correspondence and dissimilarity computation
steps. Finally, the combinatorial complexity of finding cor-
respondences in large discrete models usually leads to long
computation times and/or large storage requirements.

Finally, shapes have been compared on the basis of their
statistical properties. The simplest approach of this type
is to evaluate distances between feature vectors [22] in a
multidimensional space where the axes encode global ge-
ometric properties, such as circularity, eccentricity, or al-
gebraic moments [45, 53]. Other methods have compared
discrete histograms of geometric statistics. For example,
Thacker et al [1, 4, 8, 9, 25, 26, 47, 54], Huet et al. [33], and
Ikeuchi et al. [34] have all represented shapes in 2D images
by histograms of angles and distances between pairs of 2D
line segments. For 3D shapes, Ankerst et al. [3] has used
shape histograms decomposing shells and sectors around a
model’s centroid. Besl [13] has considered histograms of
the crease angle for all edges in a 3D triangular mesh. Besl’s
method is the most similar to our approach. However, it
works only for manifold meshes, it is sensitive to cracks in
the models and small perturbations to the vertices, and it
is not invariant under changes to mesh tessellation. More-
over, the histogram of crease angles does not always match
our intuitive notion of rigid shape. For example, adding any
extra arm to a human body results in the same change to
a crease angle histogram, no matter whether the new arm
extends from the body’s shoulder or the top of its head.

To summarize, many previous approaches have difficulty
with 3D polygon soups because they invariably require a
solution to at least one of the following difficult problems:
reconstruction, parameterization, registration, or correspon-
dence. The motivation behind our work is to develop a fast,
simple, and robust method for matching 3D polygonal mod-
els without solving these problems.

3 Overview of Approach

Our approach is to represent the shape signature for
a 3D model as a probability distribution sampled from a
shape functionmeasuring geometric properties of the 3D

model. We call this generalization of geometric histograms
a shape distribution. For example, one such shape distri-
bution, which we callD2, represents the distribution of Eu-
clidean distances between pairs of randomly selected points
on the surface of a 3D model. Samples from this distribu-
tion can be computed quickly and easily, while our hypoth-
esis is that the distribution describes the overall shape of
the represented object. Once we have computed the shape
distributions for two objects, the dissimilarity between the
objects can be evaluated using any metric that measures dis-
tance between distributions (e.g.,LN norm), possibly with
a normalization step for matching scales.

The key idea is to transform an arbitrary 3D model into
a parameterized function that can be compared with others
easily. In our case, the domain of the shape function pro-
vides the parameterization (e.g., theD2 shape distribution
is a 1D function parameterized by distance), and random
sampling provides the transformation.

The primary advantage of this approach is its simplic-
ity. The shape matching problem is reduced to sampling,
normalization, and comparison of probability distributions,
which are relatively simple tasks when compared to prior
methods that require reconstructing a solid object or man-
ifold surface from degenerate 3D data, registering pose
transformations, finding feature correspondences, or fitting
high-level models. Our approach works directly on the
original polygons of a 3D model, making few assumptions
about their organization, and thus it can be used for simi-
larity queries in a wide variety of databases, including ones
containing degenerate 3D models, such as those currently
available on the World Wide Web.

In spite of its simplicity, we expect that our approach
is able to discriminate whole objects with different gross
shapes rather effectively (results of experiments testing this
hypothesis are presented in Section 5). In addition, it has
several properties desirable for similarity matching:

• Invariance: shape distributions have all the trans-
formation invariance properties of the sampled shape
function. For instance, theD2 shape function yields
invariance under rigid motions and mirror imaging. In
this case, invariance under scaling can be added by
normalization of shape distributions before comparing
them and/or by factoring out scale during the com-
parison. Other shape functions that measure angles
or ratios between lengths are invariant to all similar-
ity transformations.

• Robustness: as a bonus, random sampling ensures
that shape distributions are insensitive to small pertur-
bations. Intuitively, since every point in a 3D model
contributes equally to the shape distribution, the mag-
nitude of changes to the shape distribution are related
to the magnitude of the changes to the 3D model. For



example, if a small percentage of a 3D model is per-
turbed (e.g., by adding random noise, by adding a
small bump onto a surface, or by adding small ob-
jects arbitrarily throughout space), then a distribution
of random samples from the model must also change
by a small percentage. This property provides insen-
sitivity to noise, blur, cracks, and dust in the input 3D
models. We conjecture that the distributions for most
global shape functions based on distances and/or an-
gles also vary continuously and monotonically for lo-
cal shape changes.

• Metric: the dissimilarity measure produced by our
approach adopts the properties of the norm we use
to compare shape distributions. In particular, if the
norm is a metric, so is our dissimilarity measure. This
property holds for most common norms, includingLN
norms, Earth Mover’s Distance, etc.

• Efficiency: construction of the shape distributions for
a database of 3D models is generally fast and efficient.
For instance, the complexity of takingS samples of
theD2 shape function from a 3D model withN trian-
gles isSlog(N). The resulting shape distributions can
be approximated concisely by functions with constant
complexity storage and comparison costs.

• Generality: shape distributions are independent of the
representation, topology, or application domain of the
sampled 3D models. As a result, our shape similarity
method can be applied equally well to databases with
3D models stored as polygon soup, meshes, construc-
tive solid geometry, voxels, or any other geometric rep-
resentation as long as a suitable shape function can be
computed from each representation. Moreover, a sin-
gle database (such as the World Wide Web) can contain
3D models in a variety of different representations and
file formats. Finally, shape distributions can be used in
many different application domains for comparison of
natural, deformable shapes (e.g., animals) and/or man-
made objects (e.g., machined parts).

The interesting issues to be addressed in implementing
the proposed shape matching approach are: 1) to select dis-
criminating shape functions, 2) to construct shape functions
for each 3D model efficiently, and 3) to compute a dis-
similarity measure for pairs of distributions. We address
these issues in the following sections. The challenge is to
find methods whose combination produces a dissimilarity
measure with the desirable properties listed above, while
providing enough discrimination between similar and dis-
similar shapes to be useful for a particular application. We
propose such methods and evaluate them experimentally in
Section 5 for a database of 3D polygonal models down-
loaded from the World Wide Web.

4 Method

In this section, we provide a detailed description of the
methods we use to build shape distributions from 3D polyg-
onal models and compute a measure of their dissimilarities.

4.1 Selecting a Shape Function

The first and most interesting issue is to select a function
whose distribution provides a good signature for the shape
of a 3D polygonal model. Ideally, the distribution should be
invariant under similarity transformations and tessellations,
and it should be insensitive to noise, cracks, tessellation,
and insertion/removal of small polygons.

In general, any function could be sampled to form a
shape distribution, including ones that incorporate domain-
specific knowledge, visibility information (e.g., the distance
between random but mutually visible points), and/or surface
attributes (e.g., color, texture coordinates, normals and cur-
vature). However, for the sake of clarity, we focus on purely
geometric shape functions based on simple measurements
(e.g., angles, distances, areas, and volumes). Specifically,
we have experimented with the following shape functions:

• A3: Measures the angle between three random points
on the surface of a 3D model.
• D1: Measures the distance between a fixed point and

one random point on the surface. We use the centroid
of the boundary of the model as the fixed point.

• D2: Measures the distance between two random points
on the surface.
• D3: Measures the square root of the area of the triangle

between three random points on the surface.
• D4: Measures the cube root of the volume of the tetra-

hedron between four random points on the surface.

These shape functions were chosen mostly for their sim-
plicity and invariances. In particular, they are easy to com-
pute and produce distributions that are invariant to rigid mo-
tions. They are invariant to tessellation of the 3D polygonal
model, since points are selected randomly from the surface.
They are insensitive to small perturbations due to noise,
cracks, and insertion/removal of polygons, since sampling
is area weighted. Finally, theA3 shape function is invariant
to scale, while the others have to be normalized to enable
comparisons.

We expect these general-purpose shape functions to be
fairly distinguishing as signatures for 3D shape, as signif-
icant changes to the rigid structures in the 3D model af-
fect the geometric relationships between points on their sur-
faces. For instance, consider theD2 shape function, whose
distributions are shown for a few cannonical shapes in Fig-
ure 1(a-f).Note how each distribution is distinctive.Also,



note how continuous changes to the 3D model affect theD2
distributions. For instance, Figure 1(g-h) shows the dis-
tance distributions of two unit spheres as they move 0, 1,
2, 3, and 4 units apart, respectfully. In each distribution,
the first hump resembles the linear distribution of a sphere,
while the second hump is the cross-term of distances be-
tween the two spheres. As the spheres move farther apart,
the shape distribution changes continuously.

a) Line segment.

c) Triangle.

e) Cylinder (without caps).

g) Two adjacent unit
spheres.

b) Circle.

d) Cube.

f) Sphere.

h) Two unit spheres separated
by 1, 2, 3, and 4 units.

Figure 1. Example D2 shape distributions.
In each plot, the horizontal axis represents
distance, and the vertical axis represents
the probability of that distance between two
points on the surface.

4.2 Constructing Shape Distributions

Having chosen a shape function, the next issue is to com-
pute and store a representation of its distribution. Analytic
calculation of the distribution is feasible only for certain
combinations of shape functions and models (e.g., theD2
function for a sphere). So, in general, we employ stochas-
tic methods. Specifically, we evaluateN samples from the
shape distribution and construct a histogram by counting
how many samples fall into each ofB fixed sized bins.
From the histogram, we reconstruct a piecewise linear func-
tion with V (≤ B) equally spaced vertices, which forms
our representation for the shape distribution. We compute
the shape distribution once for each model and store it as a
sequence of V integers.

One issue we must be concerned with is sampling den-
sity. The more samples we take, the more accurately and
precisely we can reconstruct the shape distribution. On the
other hand, the time to sample a shape distribution is lin-
early proportional to the number of samples, so there is
an accuracy/time tradeoff in the choice ofN . Similarly,
more vertices yields higher resolution distributions, while
increasing the storage and comparison costs of the shape
signature. In our experiments, we have chosen to err on
the side of robustness, taking a large numbers of samples
for each histogram bin. Empirically, we have found that
N = 10242 samples,B = 1024 bins, andV = 64 ver-
tices yields shape distributions with low enough variance
and high enough resolution to be useful for the databases
we’ve tested.

A second issue is sample generation. As our shape func-
tions are described in terms of random points on the surface
of a 3D model, we implemented the following method to
generate unbiased random points with respect to the sur-
face area of a polygonal model. First, we iterate through all
polygons, splitting them into triangles as necessary. Then,
for each triangle, we compute its area and store it in an ar-
ray along with the cumulative area of triangles visited so
far. Next, we select a triangle with probability proportional
to its area by generating a random number between 0 and
the total cumulative area and performing a binary search on
the array of cumulative areas. For each selected triangle
with vertices(A,B,C), we construct a point on its surface
by generating two random numbers,r1 andr2, between 0
and 1, and evaluating the following equation:

P = (1−√r1)A+
√
r1(1− r2)B +

√
r1r2C (1)

Intuitively,
√
r1 sets the percentage from vertex A to the op-

posing edge, whiler2 represents the percentage along this
edge (see Figure 2). Taking the square-root ofr1 gives a
uniform random point with respect to surface area.

A

B C

r 1

r 2

Figure 2. Sampling random point in triangle.

4.3 Comparing Shape Distributions

Having constructed the shape distributions for two 3D
models, we are left with the task of comparing them to
produce a dissimilarity measure. There are many stan-
dard ways of comparing two functions. Examples in-
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Figure 3. Images of the ten 3D models used in our initial robustness experiments.

clude the MinkowskiLN norms, Kolmogorov-Smirnov dis-
tance, Kullback-Leibler divergence distances [37], Match
distances [49, 58], Earth Mover’s distance [48], and Bhat-
tacharyya distance [15]. Other methods, perhaps based on
2D curve matching, could also be used.

In our implementation, we have experimented with six
simple dissimilarity measures based onLN norms of the
probability density functions (pdfs) and cumulative distri-
bution functions (cdfs) forN = 1, 2,∞.1 In the descrip-
tions below, assumef andg represent pdfs for two mod-
els, whilef̂ and ĝ represent the corresponding cdfs – i.e.,
f̂(x) =

∫ x
−∞ f .

• PDFLN : MinkowskiLN norm of the pdf:
D(f, g) = (

∫
|f − g|N )1/N .

• CDF LN : MinkowskiLN norm of the cdf:
D(f, g) = (

∫
|f̂ − ĝ|N )1/N .

Since each shape distribution is represented as a piece-
wise linear function, analytic computation of these norms
can be done efficiently in time proportional to the number
of vertices used to store the distributions.

For certain shape functions, we must add a normaliza-
tion step to the comparison process to account for differ-
ences in scale. So far, we have investigated three methods
for normalization: 1) align the maximum sample values, 2)
align the mean sample values, and 3) search for the scale
that produce the minimal dissimilarity measure during each

1The cdfL1 and the cdfL∞ norms are theL1 Earth Mover’s [48] and
the Kolmogorov-Smirnov distances, respectively.

comparison. The first two of these can be evaluated analyt-
ically, and thus are very fast. However, they may not pro-
duce the minimal dissimilarity measures due to mismatch-
ing scales. The third method requires an optimization pro-
cedure. Specifically, iff andg represent shape distributions
for two models, the minimal dissimilarity measure with nor-
malization is then defined as:

min
s
D(f(x), sg(sx)) (2)

We have implemented a simple method to perform the
search overs . First, we scale our distributions so that the
average sample in each distribution has value 1. Then we
evaluateD(f(x), sg(sx)) for values oflog s from -10 to
10, in 100 equally spaced intervals. We return the mini-
mum among the results as the dissimilarity measure for the
normalized shape distributions.

5 Experimental Results

The methods described in the preceding sections have
been implemented in C++ and incorporated into a shape
matching system that runs on Silicon Graphics and
PC/Windows computers.

In order to test the effectiveness of this system, we
executed a series of shape matching experiments with a
database of 3D models downloaded from a variety of sites
on the World Wide Web. The models comprised sets of
independent polygons, without structure, adjacency infor-
mation, or registered coordinate systems. The models con-
tained anywhere from 20 to 186,000 polygons, with the av-



erage model containing around 7,000 polygons. Very few
of the models formed a single manifold surface or even a
well-defined solid region. Instead, they almost all contained
cracks, self-intersections, missing polygons, one-sided sur-
faces, and/or double surfaces – none of which caused sig-
nificant artifacts during rendering with a z-buffer, but all of
which are problematic for most 3D shape matching algo-
rithms. The experiments were run on a PC with a 400MHz
Pentium II processor and 256MB of memory.

5.1 Robustness Results

In our first experiment, we tested the robustness of our
dissimilarity measure to transformations and perturbations
of the 3D models. Specifically, we chose ten representative
3D models (shown in Figure 3), and applied six transforma-
tions to each of them. The resulting database had seven ver-
sions of each model (the original and six transformed vari-
ants), making 70 models in all. The transformations were
as follows:

• Scale:Grow by a factor of 10 in every dimension.
• Rotate: Rotate by 45 degrees three times, first around

the X axis, then the Y axis, then the Z axis.

• Mirror: Mirror over the YZ plane, then over the XZ
plane, then over the XY plane.

• Noise: Perturb each vertex randomly by 1% of the
longest length of the model’s bounding box. As ver-
tices were not shared by adjacent polygons, this trans-
formation introduced thin cracks (see Figure 4(a)).

• Delete: Randomly remove 5% of the polygons. (note
the holes in the bumper and windshield in Figure 4(b)).

• Insert: Randomly insert copies of 5% of the polygons.

(a) 1% Noise. (b) 5% Deletion.

Figure 4. Car model after (a) perturbing ver-
tices by 1%, or (b) deleting 5% of polygons.

We tested the robustness of our sampling method by gen-
erating theD2 shape distribution for each model. The re-
sulting shape distributions for all 70 models are plotted in
Figure 5 (scaled to align their mean values). Note that only
ten distinct curves are apparent in the plot. This is because

each “thick” curve appears as the result of seven nearly
overlapping shape distributions computed for different vari-
ants of the same model. For instance, the curve containing
the tall spike in the middle is drawn seven times, once for
each variant of the mug model. The results of this experi-
ment demonstrate our sampling method’s repeatability and
its robustness to similarity transformations, noise, and small
cracks and holes.

distance

pr
ob

ab
il

it
y

Figure 5. D2 shape distributions for seven
variants of ten models.

We further investigated the robustness of our method
by testing it with different polygon tessellations of two 3D
shapes. We used the Simplification Envelopes software pro-
vided by Cohen et al. [19] to produce 8 versions of the Stan-
ford Bunny [38] ranging from 70,000 down to 600 triangles,
and 6 versions of a sphere ranging from 200 down to 28 tri-
angles. Then, we constructedD2 shape distributions for
each of these versions. The resulting 14 curves are shown
in Figure 6. Note that the shape distributions vary slightly
from original models to the simplified versions, but not sig-
nificantly when compared to differences between the orig-
inal models. This experiment corroborates our expectation
that shape distributions are insensitive to changing tessella-
tion and, more specifically, stable under model simplifica-
tion.

distance

p
r
o
b
a
b
i
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t
y

Sphere
Bunny

Figure 6. D2 shape distributions for tessella-
tions of two models.



5.2 Discrimination Results

In our second experiment, we investigated the ability of
our shape matching method to discriminate among similar
and dissimilar shapes. As a first step towards this goal, we
computed our dissimilarity measure for all pairs of the 70
shape distributions described in the previous section. Dur-
ing this shape matching test, the distributions were com-
pared with the pdfL1 norm and they were scaled by align-
ing their mean values. The resulting dissimilarity measures
are shown as a matrix in Figure 7. In this visualization of the
matrix, the lightness of each element(i, j) is proportional to
the magnitude of the computed dissimilarity between mod-
elsi andj. That is, each row and column represent the dis-
similarity measures for a single model when compared to
all other models in the database (the matrix is symmetric).
Darker elements represent better matches, while lighter el-
ements indicate worse matches. The ordering of the classes
is alphabetical so one should not expect any particular dark-
ness pattern except the clearly visible 7x7 blocks of ma-
trix elements with indistinguishable colors. This pattern
demonstrates the robustness of our distribution comparison
method, as all variants of the same model produce almost
the same dissimilarity measure when compared to all vari-
ants of every other model. Moreover, note the darker blocks
of 7x7 matrix elements along the main diagonal. This pat-
tern results from the fact that all 7 variants of every shape
match each other better than they match any other shape.
Accordingly, for this simple database, our method could
be used to perfectly assign all 70 models to one of the 10
classes using a nearest neighbor classifier.

Car Sub Chair Plane Missile Mug Phone Skateboard Human Table
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Mug

Phone

Skateboard
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Table
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Missile
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Figure 7. Similarity matrix for seven variants
of ten 3D models. Lightness indicates the
dissimilarity between models.

Mug 1

Antique car

Galleon (with sails)

Mug 2

Convertible

Tug boat

Mug 3

Camaro

War ship

Figure 8. Example classes of shapes in our
database: mugs (top row), cars (middle row),
and boats (bottom row).

These initial results are encouraging, but a more inter-
esting and challenging test is to determine how well our
method can discriminate classes of shapes in a larger and
more diverse database. To investigate this question, we exe-
cuted a series of tests on a database of 133 models retrieved
from the World Wide Web and grouped qualitatively (by
function more than by shape) into 25 classes by a third
party. Figure 9 summarizes the types and sizes of these
classes. First, note that each class contains an arbitrary
number of objects, usually determined by how many mod-
els were found in a quick search of the Web (e.g., the plane
class has significantly more models than the others). Sec-
ond, note that thesimilarity between classesvaried greatly.
For instance, some classes were very similar to one another
(e.g., pens and missiles look alike), while some were quite
distinct (belts). Third, note that thesimilarity of objects
within each classalso varied. Some classes (such as ball,
mug, openbook, pen, and sub) contained 3D models with
shapes greatly resembling each other, while others (such as
animal, boat, car, and plane) contained models with a wide
variety of shapes. This diversity within classes is shown in
Figure 8, which contains pictures of three models from the
mug, car, and boat classes. Note that the mugs are visually
quite similar, while the cars and boats are significantly dif-
ferent. Another class, planes, is even more diverse, contain-
ing biplanes, fighter jets, propeller planes, and commercial
jets, all similar in function, but quite different in shape.
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Figure 9. D2 shape distributions for 133 models grouped into 25 classes. Each plot represents a
probability distribution of distance.

To investigate the ability of our shape matching methods
to discriminate between classes of objects, we ran an exper-
iment by computing theD2 shape distributions for all 133
models. They are shown in Figure 9 – each plot shows the
D2 distribution for all 3D models of one class, normalized
by their means. Examining these distributions qualitatively,
we find that the shape distributions for most objects within
a single class are highly correlated, as multiple curves ap-
pear almost on top of one another. Moreover, many of the
classes have a distinctive shape distribution that could be
used for classification. For instance, balls have a nearly lin-
ear distribution with a sharp falloff on the right, mugs have
one sharp peak in the middle, belts have a peak on the right,
and lamps have two large peaks with a valley in between.

To a limited degree, it is possible to infer the gross shape
of some objects from theirD2 shape distributions. For in-
stance, referring back to Figure 1, balls have a distribution
resembling a sphere, belts resemble a circle, mugs resem-
ble a cylinder, and lamps resemble two spheres separated

by some distance. Although several of the other classes
have visually less distinctive unimodal shape distributions,
we can see that the “humps” in the distributions of differ-
ent classes are usually distinguishable by their locations,
heights, and shapes, leading us to believe that shape dis-
tributions could be used effectively for object classification.

To test this hypothesis and to investigate which combina-
tions of shape functions, normalization methods, and com-
parison norms provided the best classification methods, we
ran a series of “leave one out” classification tests. In ev-
ery test, we compared the shape distribution of each model
in the database (the query model) against all others. The
test was repeated 90 times for all combinations of the 5
shape functions, 3 normalization methods, and 6 compar-
ison norms described in Section 4.

Tables 1-3 contain three cross-sections of the results
measured in these tests. In each table, the first column in-
dicates the shape function, normalization method, or com-
parison norm used (unless otherwise specified, theD2 shape



function, theMEANnormalization method, and the PDFL1
norm was used). The second column (“First Tier”) lists the
percentage of topk−1 matches (excluding the query) from
the query’s class, where k is the size of the class. This cri-
teria is stringent, since each model in the class has only one
chance to be in the first tier. An ideal matching would give
no false positives and return a score of 100%. The third col-
umn (“Second Tier”) lists the same type of result, but for
the top2(k − 1) matches. The fourth column lists the per-
centage of test in which the top match (“Nearest Neighbor”)
was from the query’s class. Finally, the right-most column
contains the computation times for sampling and compari-
son of shape distributions. Note that sampling times are in
seconds, while comparison times are in milliseconds.

From the results in these tables, we make the following
observations. First, theD2 shape function classified objects
better than the other shape functions in our tests. There are
several plausible interpretations for why other shape func-
tions proved less discriminatory thanD2. For one, shape
functions such asD1 are difficult to represent accurately, as
empirically they contain sharp peaks (e.g., theD1 distribu-
tion for a sphere is a single delta function). For another,
we noticed a trend that shape distributions forD3 andD4
appear similar for many types of models.

Second, in our tests, theMAX scaling method is not as
good asMEAN or SEARCHas it suffers from the follow-
ing problem. If the idealized shape density falls off near
the tail, then there is a relatively high variation in the max-
imum sample found. Scaling the entire shape distribution
based on the maximum sample affects the signature for the
entire object. This result is intuitive, as the mean is a more
stable statistic than the maximum. For the other normal-
ization methods (MEANandSEARCH) the classification re-
sults were approximately the same. We found that searching
helps minimize the difference between shape distributions,
but this did not improve the discriminability of the method
on this database.

Third, the PDFL1 norm performed the best for compar-
ing shape distributions in our test. In general, the pdfs did
better than the cdfs, possibly because peaks and valleys of
pdf curves are easier to discriminate usingLN norms than
the steep areas and plateaus of cdf curves. Meanwhile, the
L2 andL∞ norms performed worse than theL1 norms, in
general. For higherN , theLN norms become less forgiv-
ing of large differences, and thus perhaps our comparisons
became more sensitive to outliers or normalization errors.

Finally, we examine the utility of our dissimilarity mea-
sure for classifying objects from the database with 133 mod-
els. In this test, we used theD2 shape function,MEANnor-
malization method, andL1 norm. Color Plate I shows the
similarity matrix for this test. As in Figure 7, the lightness
of each element(i, j) is proportional to the magnitude of the
computed dissimilarity between modelsi andj (i.e., darker

Shape First Second Nearest Sample
Function Tier Tier Neighbor Time (s)

A3 38% 54% 55% 12.6
D1 35% 48% 56% 8.6
D2 49% 66% 66% 8.6
D3 42% 58% 58% 13.5
D4 32% 42% 47% 15.8

Table 1. Comparison of shape functions (us-
ing MEANand PDF L1).

Scale First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)
MAX 41% 56% 63% 0.1

MEAN 49% 66% 66% 0.1
SEARCH 49% 66% 68% 9.0

Table 2. Comparison of normalization meth-
ods (using D2 and PDF L1).

Norm First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)
PDFL1 49% 66% 66% 0.1
PDFL2 47% 64% 62% 0.1
PDFL∞ 42% 59% 61% 0.1
CDFL1 46% 63% 59% 0.2
CDFL2 44% 63% 59% 0.1
CDFL∞ 43% 59% 57% 0.1

Table 3. Comparison of norm methods (using
D2 and MEAN).

elements represent better matches). Thus, if the similarity
metric were ideal (i.e., if it were able to read the mind of the
human that formed the classes), the dissimilarity measures
for models in the same class would be less (appear darker)
than for ones in different classes. That is, we hope to see
a sequence of darker blocks along the main diagonal, with
sizes corresponding to the numbers of models in each class,
with mostly lighter colors in the off-diagonal matrix ele-
ments. Given the ambiguity and diversity of the database,
we believe that it would be optimistic to expect this result.

Examining the matrix shown in Color Plate I, we see that
the dissimilarity values computed with our method are fairly
discriminating in this test. There are many dark blocks
readily apparent along the main diagonal corresponding
to groups of objects within the same class that produce
good matches (e.g., mugs, phones, chairs, planes, space-
ships, etc.). Meanwhile, most elements off-diagonal are
lighter shades, indicating relatively few false positives. Off-



diagonal blocks of dark elements often represent matches
between classes (e.g., spaceship versus plane). Surprisingly,
several of the classes with very diverse models (e.g., cars
and planes) can be distinguished very clearly as dark blocks
in this plot, indicating that our method is useful for discrim-
inating them from other models in the database in spite of
their diversity. On the other hand, there are other classes
whose models did not match well in this test (e.g., boats,
helicopters, etc.). Some of these failures are due to the
inherent difficulties of shape matching without real world
knowledge (e.g., the boats were more similar in function
than shape), while others are probably due to the limitations
of our implementation (e.g.,LN norms produce large dis-
similarities for lamps, even though theirD2 distributions are
very distinctive). Overall, for 66% of the models, our pro-
totype system produced a top-match within the same class.

5.3 Comparison to Moments

As a final test, we compare our shape distribution method
against a classifier that represents 3D models with a se-
quence of discrete surface moments:

mpqr =
∫
boundary

xpyqzr dx dy dz (3)

In our implementation of the moments-based classifier,
the first two moments are used to register the models in a
common coordinate system (as in [23]):

1. Translation: translate so first moments vanish.
2. Rotation: calculate second moments and assemble the

covariance matrix. Factor the covariance matrix using
Singular Value Decomposition (SVD), and orient by
applying the unitary matrix of this decomposition.

3. Scale:scale so that the maximum eigenvalue value of
the SVD is 1.

After registration, moments up to a user-specified order
are calculated and stored as a shape signature. In our nota-
tion, M3 specifies that 3rd order moments and lower were
used as shape descriptors (i.e.,p+ q+r ≤ 3), and similarly
for M4 through M7. The shape signatures are compared
using a component-by-component L2 norm.

Table 4 compares the results achieved with this moment-
based classifier versus the method proposed in this paper.
We find thatD2 shape distributions outperform moments
for classification of models in our tests. The differences
are more significant for more stringent classification crite-
ria (i.e., First-Tier) and for higher-order moments, which are
known to be sensitive to noise [45]. Further studies are re-
quired to test whetherD2 shape distributions perform better
than moments for larger databases or for other shape match-
ing applications.

First Second Nearest
Method Tier Tier Neighbor

D2 49% 66% 66%
M3 35% 46% 63%
M4 41% 52% 64%
M5 28% 38% 55%
M6 34% 44% 54%
M7 27% 33% 51%

Table 4. Comparison of shape distributions
versus moments.

6 Discussion and Conclusion

The main contribution of this paper is the idea of using
random sampling to produce a continuous probability distri-
bution to be used as a signature for 3D shape. The key fea-
ture of this approach is that it provides a framework within
which arbitrary and possibly degenerate 3D models can be
transformed into functions with natural parameterizations,
allowing simple function comparison methods to produce
robust dissimilarity metrics.

Our initial experiences verify many of the expected fea-
tures of this approach. First, it is simple to implement – e.g.,
our whole system requires around 2000 lines of C++ code.
Second, it is fast – e.g., the system takes around ten sec-
onds to construct a shape distribution for typical 3D models
containing thousands of polygons, and it computes the dis-
similarity measure for any pair of shape distributions in less
than a millisecond. Third, invariance and robustness proper-
ties can be ensured by choosing shape functions and norms
with the desired properties – e.g., theD2 shape function is
invariant to rigid body and mirror transformations, and it
is insensitive to noise, blur, cracks, tessellation, and dust
in the input 3D models. Normalization of shape distribu-
tions provides invariance to scale, and using theLN norm
for comparison of distributions ensures that our dissimilar-
ity measure is a metric.

Our experimental results demonstrate that shape distri-
butions can be fairly effective at discriminating between
groups of 3D models. Overall, we achieved 66% accuracy
in our classification experiments with a diverse database of
degenerate 3D models assigned to functional groups. The
D2shape distribution was more effective than moments dur-
ing our classification tests. Unfortunately, it is difficult to
evaluate the quality of this result as compared to other meth-
ods, as it depends largely on the details of our test database.
However, we believe that it demonstrates that our method
is useful for the discrimination of 3D shapes, at least for
preclassification prior to more exact similarity comparisons
with more expensive methods.



An important issue for further research in 3D shape
matching is development of benchmark databases contain-
ing degenerate 3D polygonal models so that different shape
analysis methods can be compared. Of course, there are
also many improvements that could be made to our initial
prototype system in future work. For instance, one could
investigate more efficient shape distribution sampling and
reconstruction methods, possibly based on adaptive strate-
gies. Or, one could also look at combining the distributions
of multiple shape functions into a single classifier, or com-
bining shape distributions with other attributes (e.g., surface
colors, moments, etc.) for improved discriminability. We
are currently investigating user interfaces for specifying 3D
shape-based queries in an interactive retrieval system.

Another important topic for future work is to study the
theoretical properties of shape distributions. For instance, it
would be nice to develop a theory concerning which shape
functions and norms will be good classifiers of shape. We
are investigating provable properties for theD2 shape func-
tion. Uniqueness properties for homometricdiscretepoint
sets (ones with the same distance distribution) have been
proven by Skiena et al. [51]. They developed upper and
lower bounds on the number of non-congruent homomet-
ric discrete point sets in arbitrary dimensions. Properties
have also been proven for the Radon transform for a convex
regionC in the plane [46, 30]. This transform maps any
oriented line to the length of its intersection withC. It com-
pletely specifies the regionC, and it can be inverted fairly
efficiently. The Radon transform has found many uses in
X-ray tomography. Proving uniqueness properties for other
continuous shape functions, such asD2, may have simi-
lar implications for reconstruction and manipulation of 3D
models represented by shape distributions.

Finally, it would be interesting to investigate whether the
proposed shape matching method is useful in other applica-
tion domains, such as character recognition, sign-language
recognition, or molecular biology.
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Color Plate I: Similarity matrix for our database of 133 3D models.


