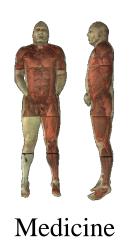
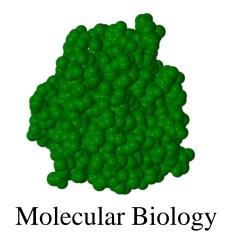


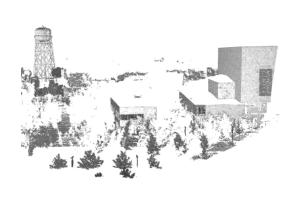
Discovering Similarities in 3D Data

Vladimir Kim, Tianqiang Liu, Sid Chaudhuri, Steve Diverdi, Wilmot Li, Niloy Mitra, Yaron Lipman, Thomas Funkhouser

3D data is widely available



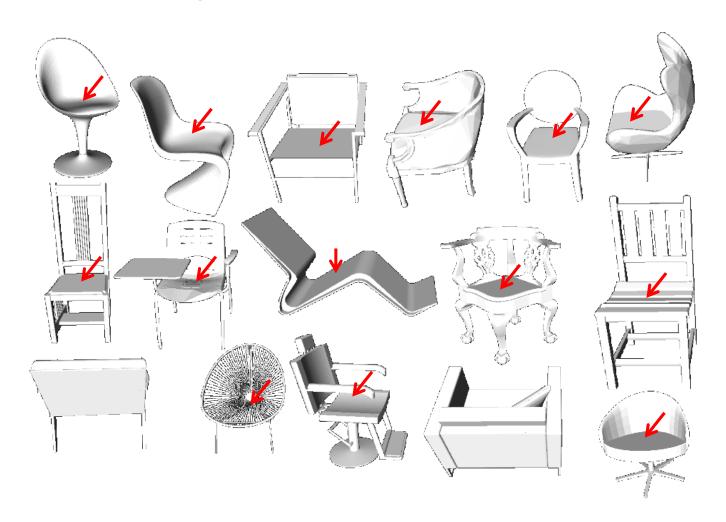




LIDAR Scans

Computer Graphics

Finding correspondences is important for understanding relationships in 3D data

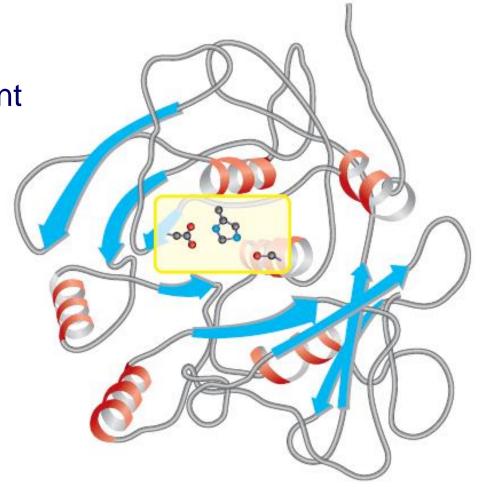


Applications:

- Annotation transfer
- Similarity measurement
- Surface alignment
- Collection analysis
- Saliency estimation
- Surface interpolation
- Symmetry detection
- Object recognition
- Visualization
- Clustering
- etc.

Applications:

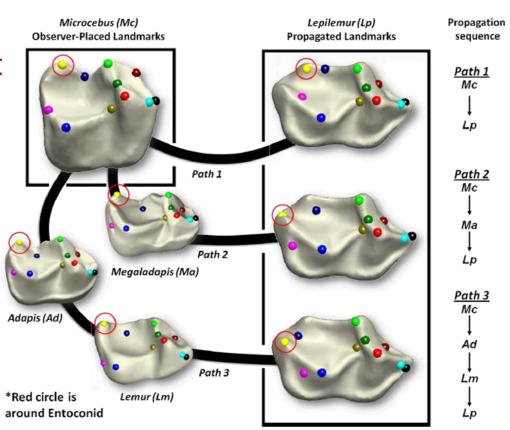
- ➤ Annotation transfer
- Similarity measurement
- Surface alignment
- Collection analysis
- Saliency estimation
- Surface interpolation
- Symmetry detection
- Object recognition
- Visualization
- Clustering
- etc.



Predicting functional relationships between proteins based on similarities in their 3D structures

Applications:

- Annotation transfer
- Similarity measurement
- Surface alignment
- Collection analysis
- Saliency estimation
- Surface interpolation
- Symmetry detection
- Object recognition
- Visualization
- Clustering
- etc.



Predicting evolutionary relationships between fossils based on their morphological similarities

Applications:

- Annotation transfer
- Similarity measurement
- ➤ Surface alignment
- Collection analysis
- Saliency estimation
- Surface interpolation
- Symmetry detection
- Object recognition
- Visualization
- Clustering
- etc.

Predicting how to re-assemble broken frescoes based on matching of fractured surfaces

Applications:

- Annotation transfer
- Similarity search
- Surface alignment
- ➤ Collection analysis
- Saliency estimation
- Surface interpolation
- Symmetry detection
- Object recognition
- Visualization
- Clustering
- etc.

Consistent Segmentation [Golovisnkiy et al., SMI 2009]

Visualization of Shape Variations [Kim et al., SIGGRAPH 2012]

Goal

Develop algorithms to find point correspondences

- Suitable for collections of computer graphics models
- Robust to intra-class variations
- Align semantic features
- Automatic
- Efficient

Computer Graphics Models of Chairs Downloaded from SketchUp Warehouse

Previous Work

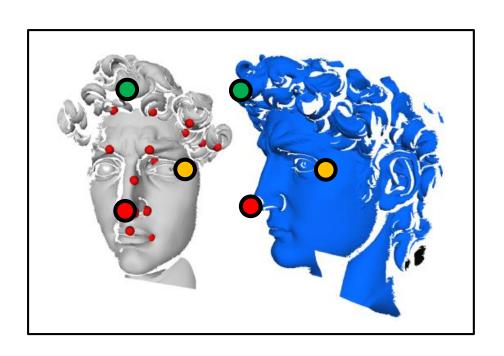
Classical methods:

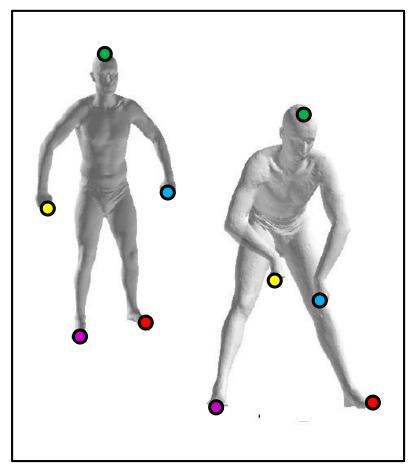
- Local features
- Global maps

Previous Work

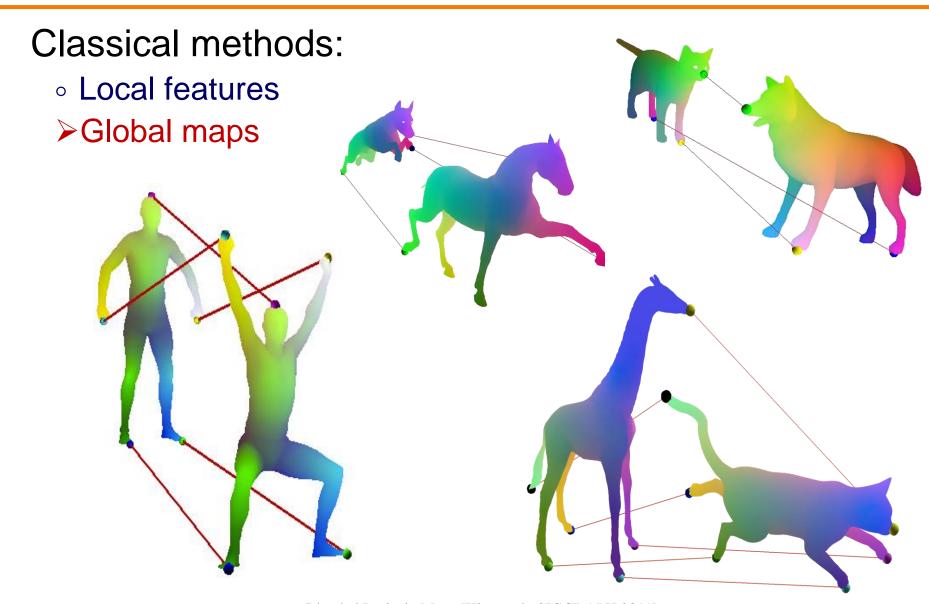
Classical methods:

- ➤ Local features
- Global maps



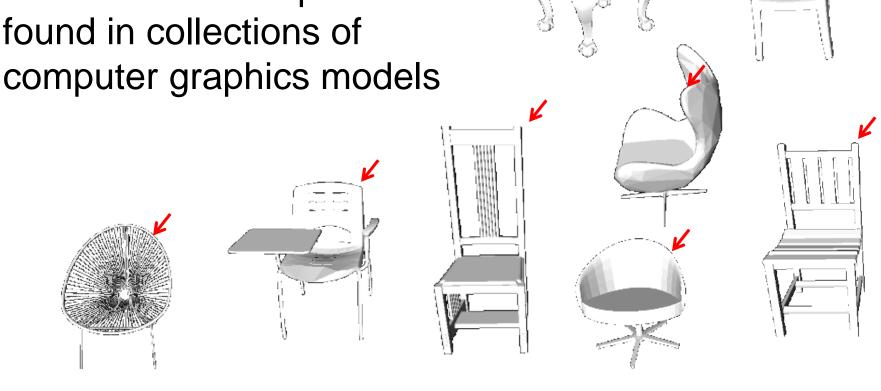


Previous Work



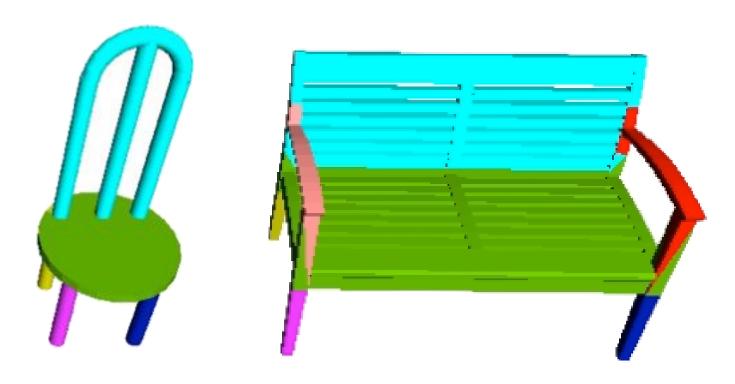
Challenge

Classical methods based on aligning local shape features or finding low distortion maps do not usually work well for intra-class shape variations found in collections of computer graphics models



Observation

Semantic correspondences are often coupled with symmetry, part segmentation, human contact, and other high-level features



This observation has also been made by many people, including Niloy Mitra, Michael Wand, Danny Cohen-Or, Hao (Richard) Zhang, Leo Guibas, etc.

Outline of Talk

Introduction

"Structure-aware" correspondences

- Reflective symmetry
- Part segmentation
- Human pose

Conclusions

Outline of Talk

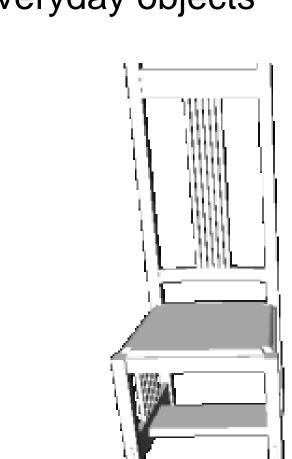
Introduction

- "Structure-aware" correspondences
 - Reflective symmetry
 - Part segmentation
 - Human pose

Conclusions

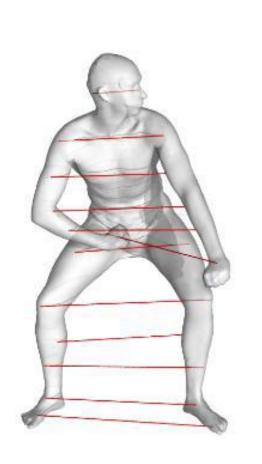
Symmetry-Aware Correspondences

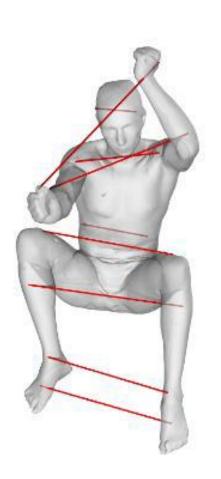
Observation 1: reflective symmetry is ubiquitous in everyday objects



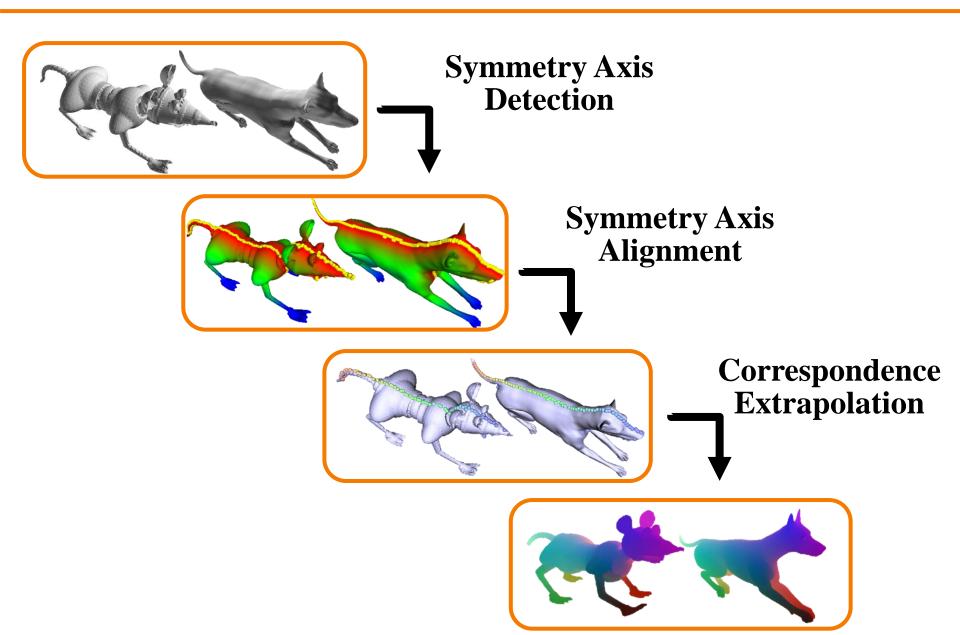
Symmetry-Aware Correspondences

Observation 2: detecting symmetries is easier than finding correspondences



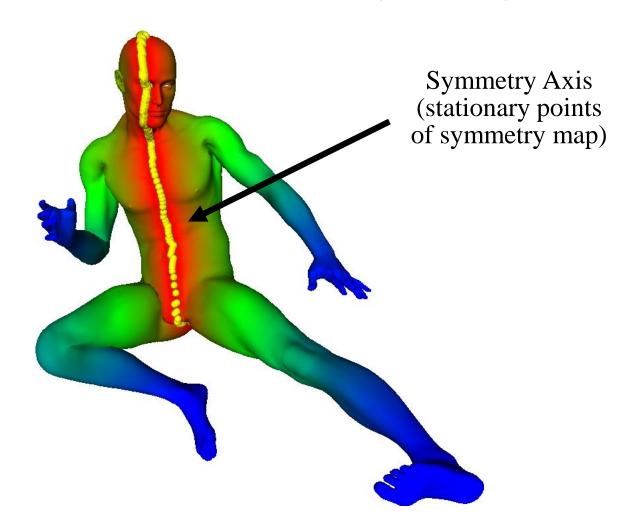


Symmetry-Aware Correspondence Algorithm



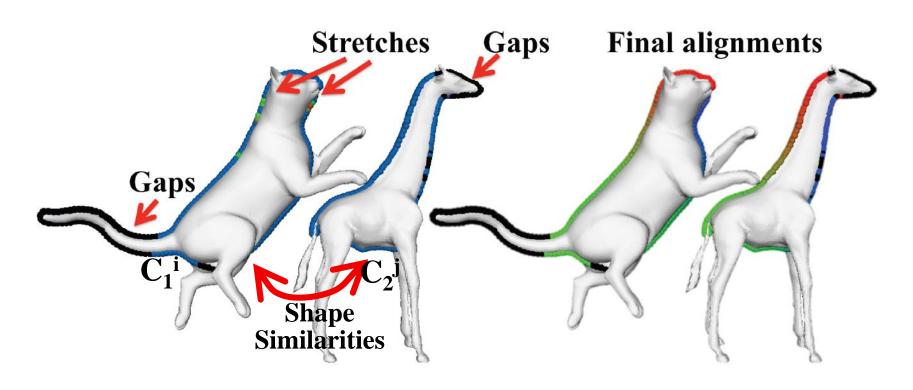
Symmetry Axis Detection

Given a mesh, extract potential symmetry axes



Symmetry Axis Alignment

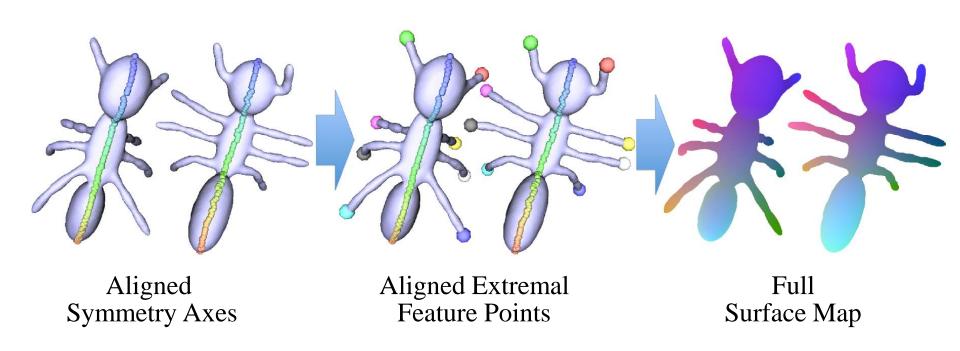
For every pair of symmetry axes, find optimal alignment for every pair of starting points



$$Q(C_1^i, C_2^j, c) = Q_{Axis}(C_1^i) \cdot Q_{Axis}(C_2^j) \cdot Q_{Align}(C_1^i, C_2^j, c)$$

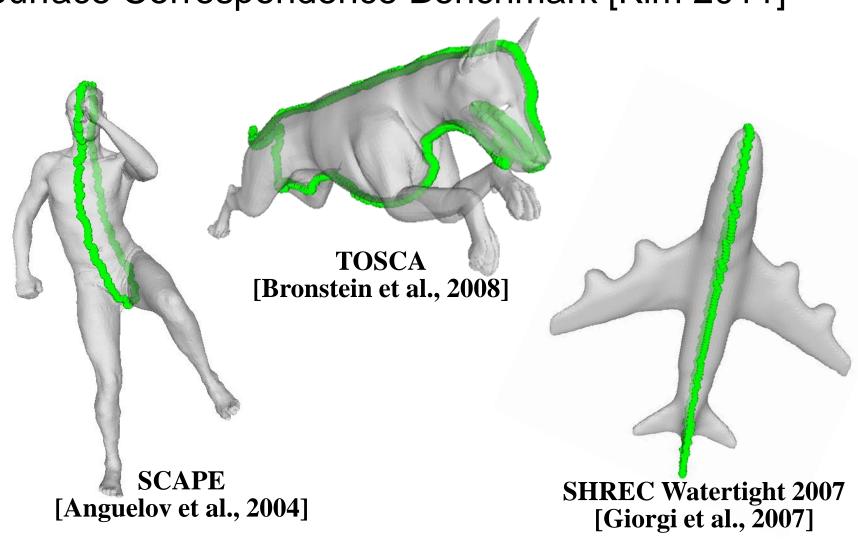
Correspondence Extrapolation

Given an alignment between symmetry axes, extrapolate correspondences to rest of surfaces



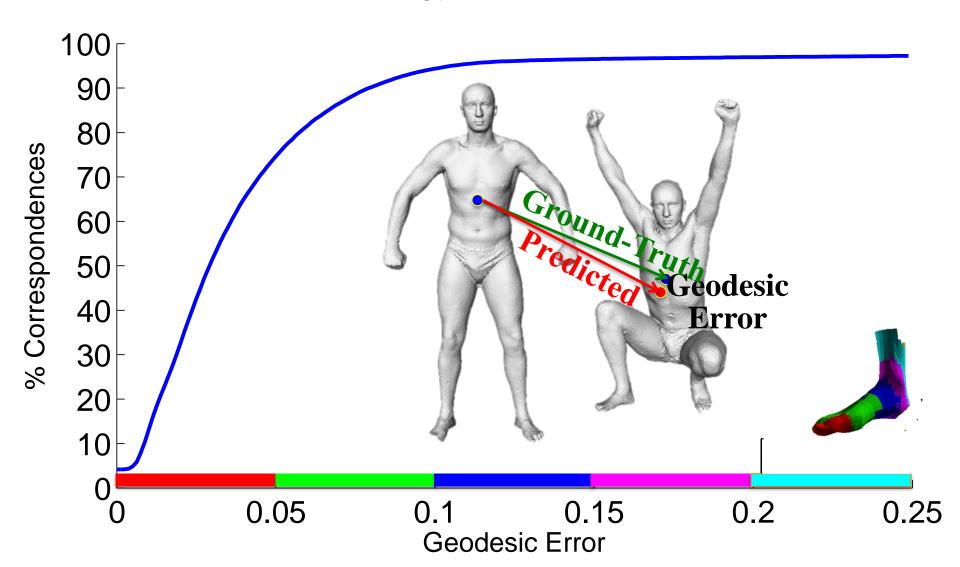
Symmetry-Aware Correspondence Evaluation

Surface Correspondence Benchmark [Kim 2011]



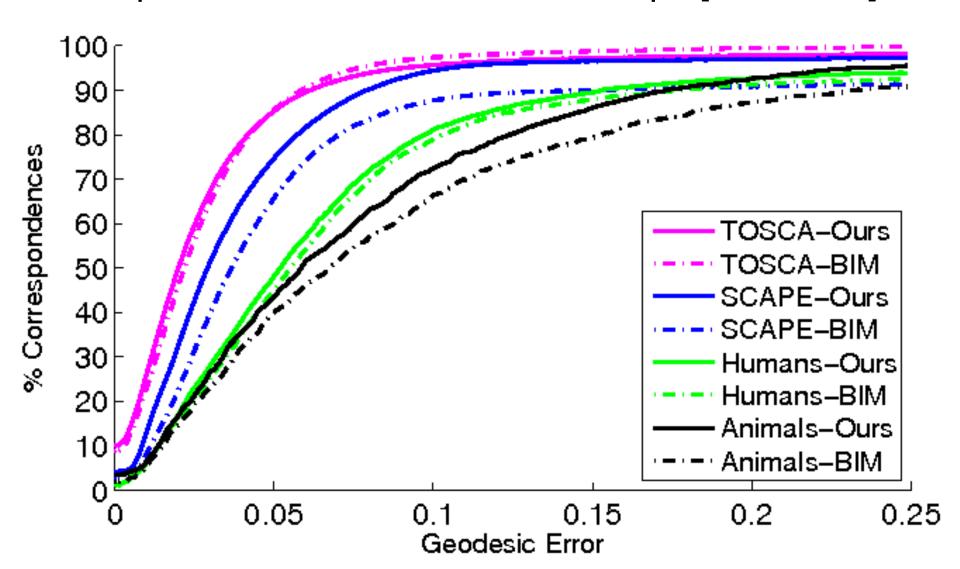
Symmetry-Aware Correspondence Results

Evaluation methodology

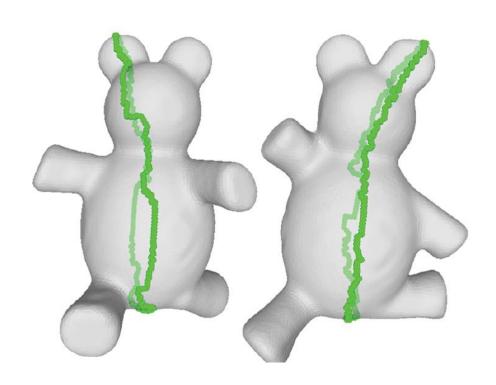


Symmetry-Aware Correspondence Results

Comparison to Blended Intrinsic Maps [Kim 2011]



Symmetry-Aware Correspondence Failures



Poor Symmetry Axis Extraction

Non-descriptive Symmetry Axes

Outline of Talk

Introduction

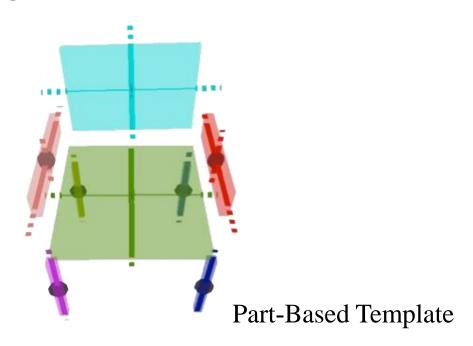
- "Structure-aware" correspondences
 - Reflective symmetry
 - Part segmentation
 - Human pose

Conclusions

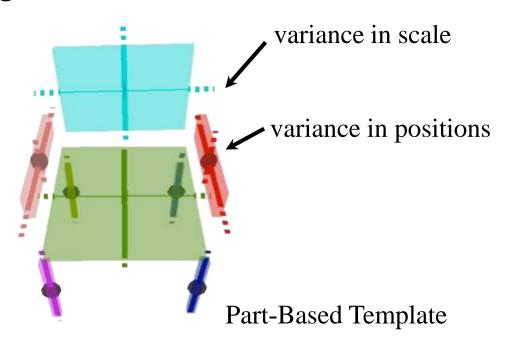
Goal

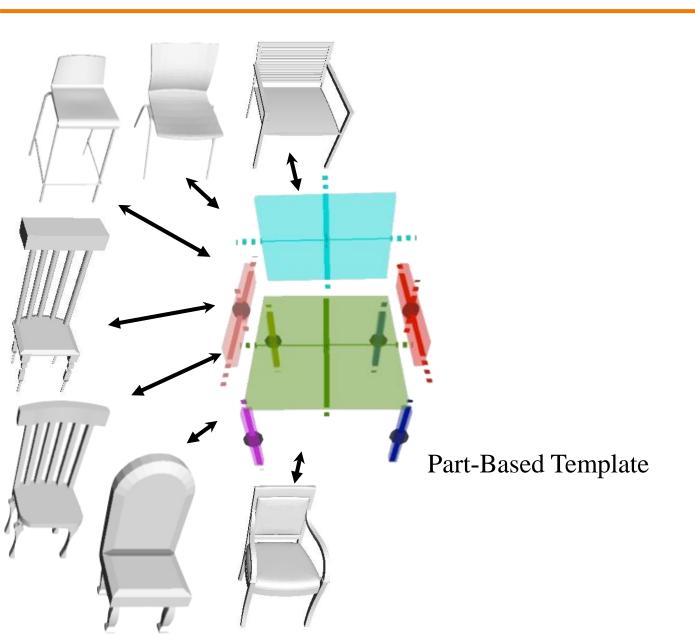
Observation: semantic relationships between objects are often based on parts

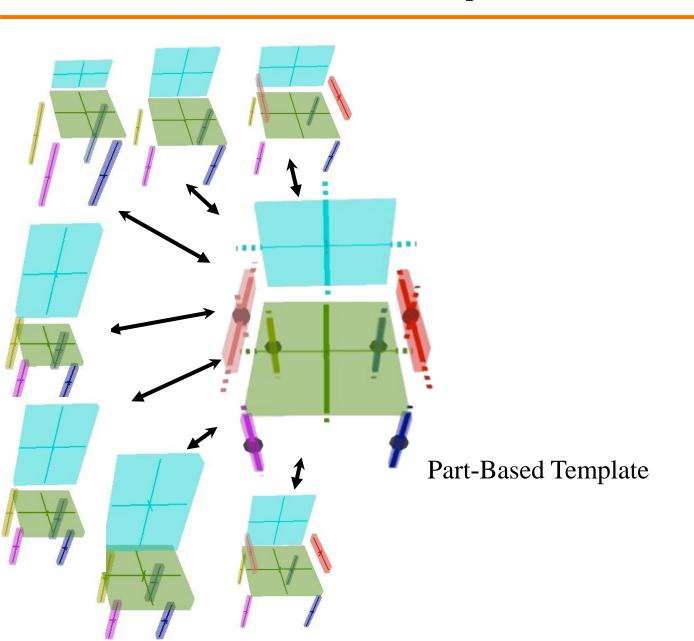
Approach: learn part-based template for object class, and then use it to segment, correspond, and align surfaces

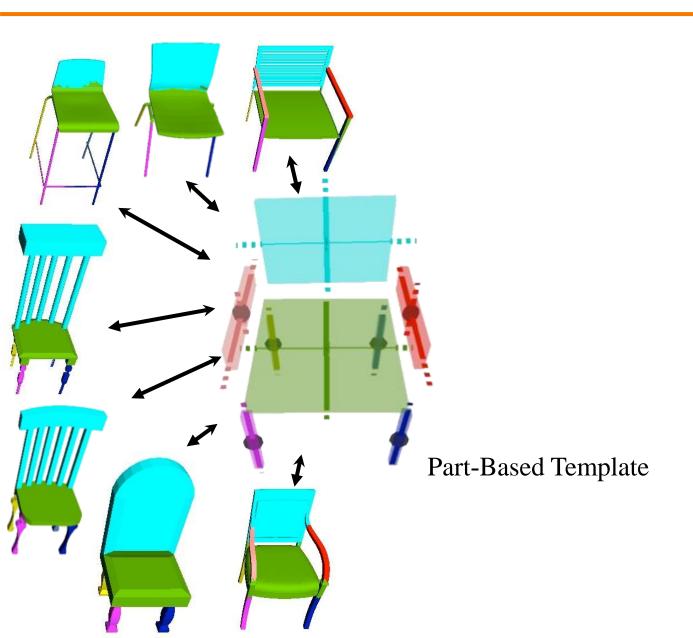


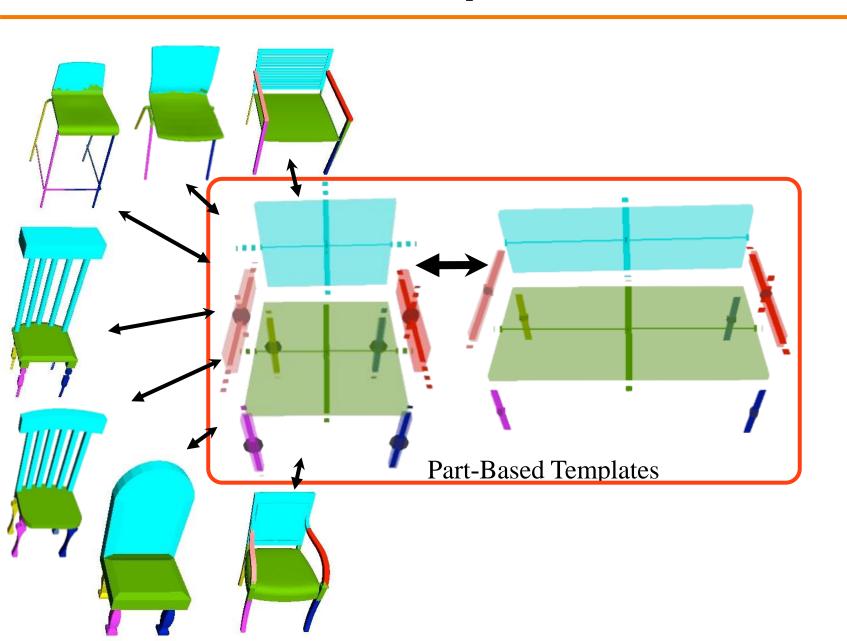
Approach: learn part-based template for object class, and then use it to segment, correspond, and align surfaces

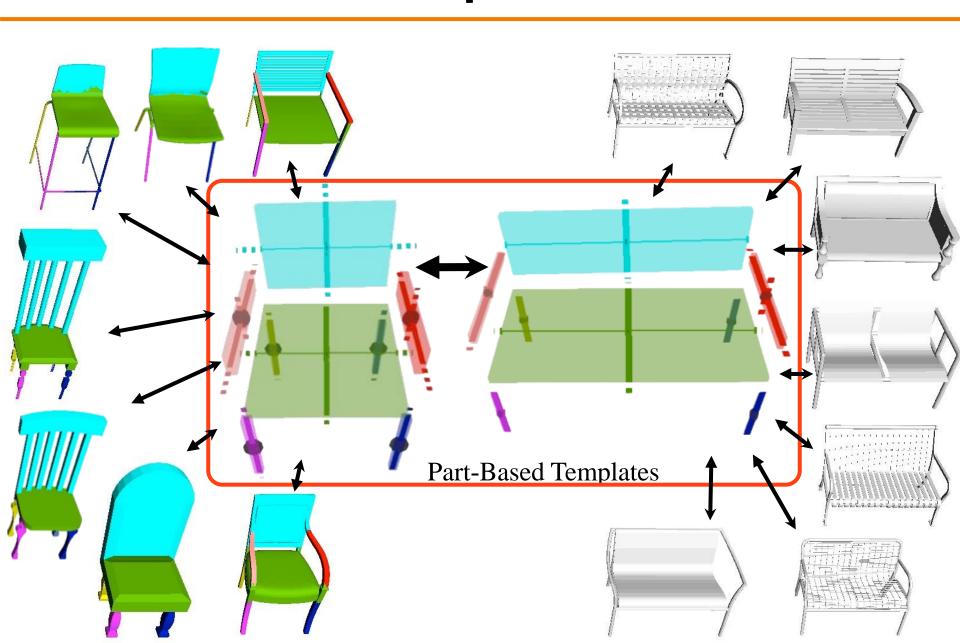


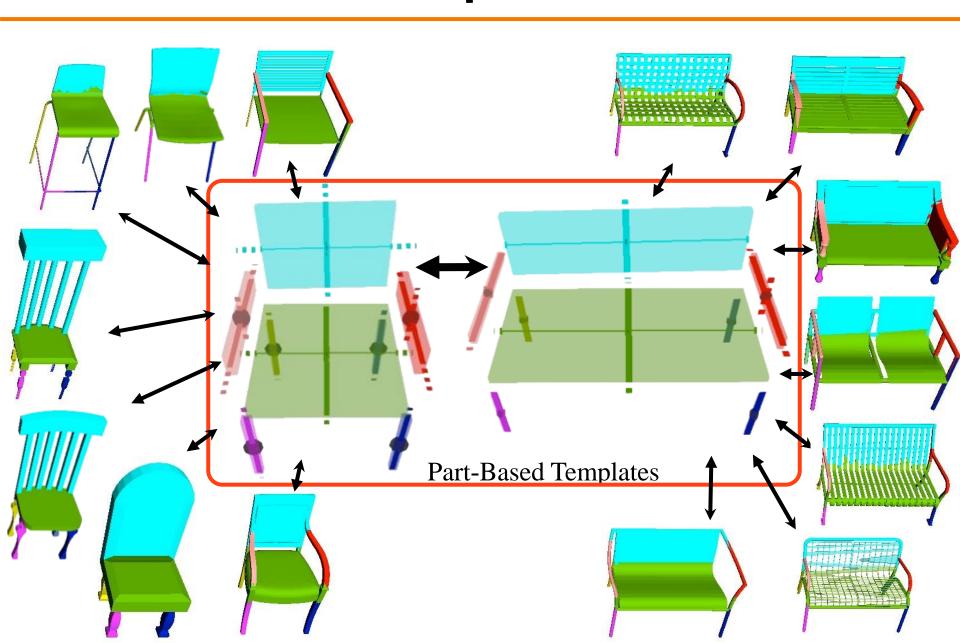






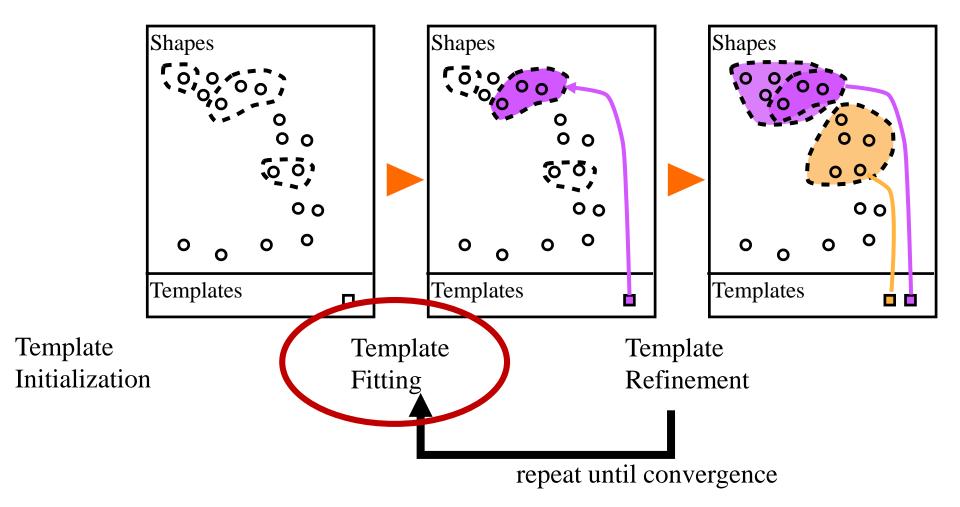






Part-Aware Correspondence Algorithm

Search for a set of templates that best explains a collection of models



Part-Aware Fitting Algorithm

Objective function for each template-model fit:

$$E = E_{\text{data}} + \gamma E_{\text{deform}} + \beta E_{\text{smooth}}$$

- (template ← shape distance + local shape features)
- E_{deform} (plausibility of template deformation)
- E_{smooth} (close & similar regions get same label)

Algorithm iterates solutions to subsets of objective function until convergence:

- Segmentation
- CorrespondencePart-aware deformation

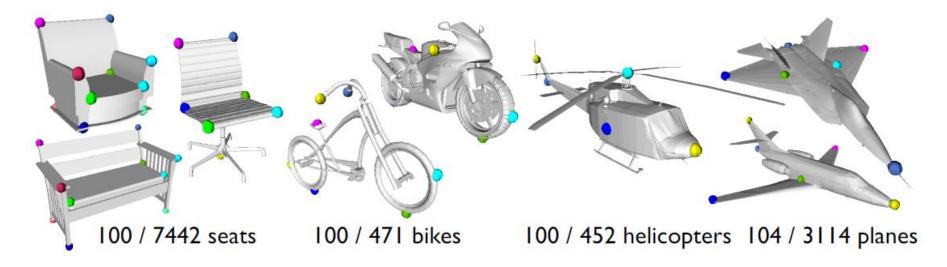
Part-Aware Correspondence Evaluation

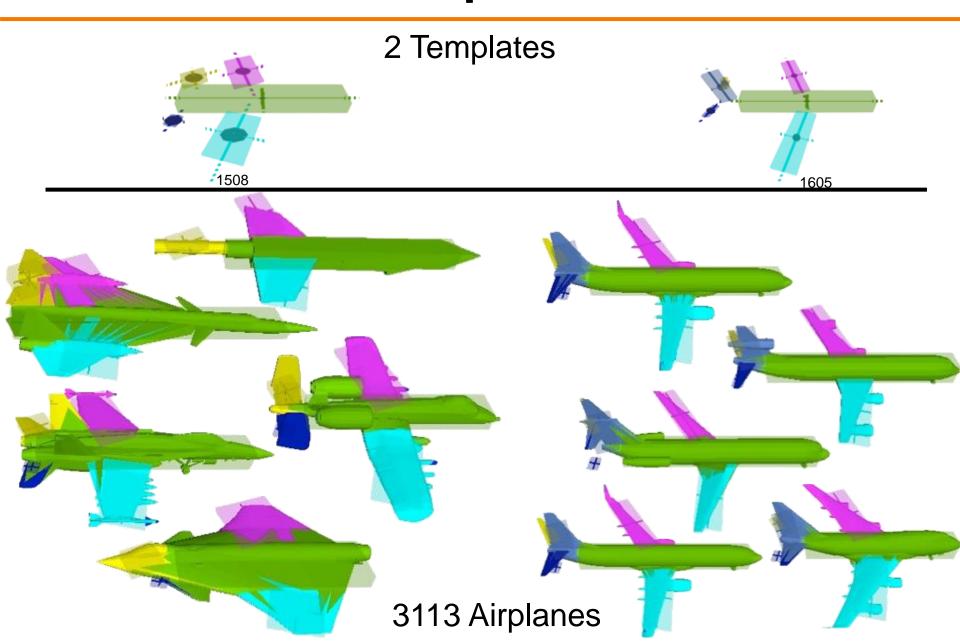
Data sets:

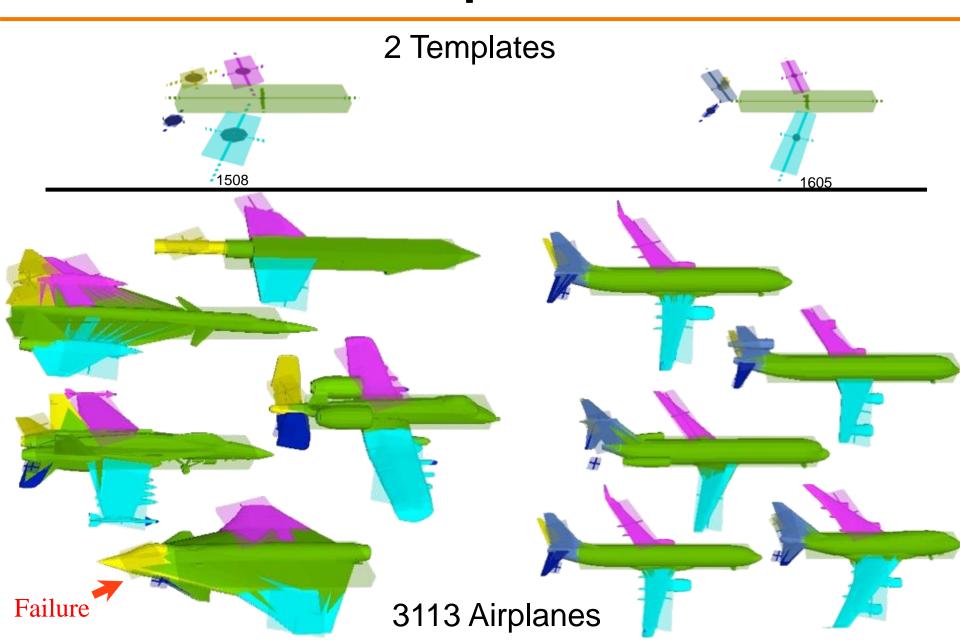
- Crawl SketchUp Warehouse for collections by keyword
- Eliminate outliers with Mechanical Turk
- Specify manual correspondences for subset of models

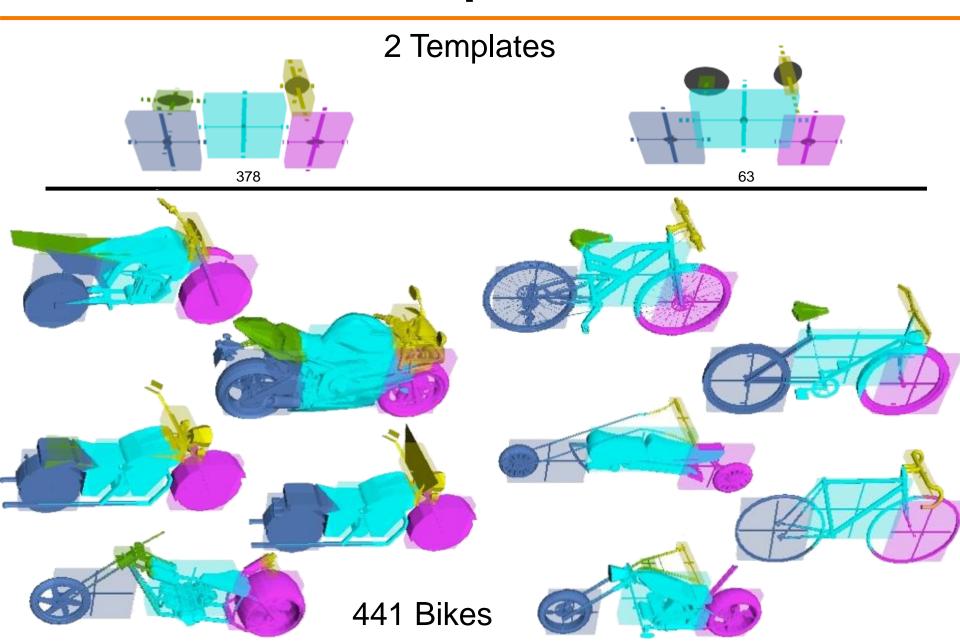
Experiments:

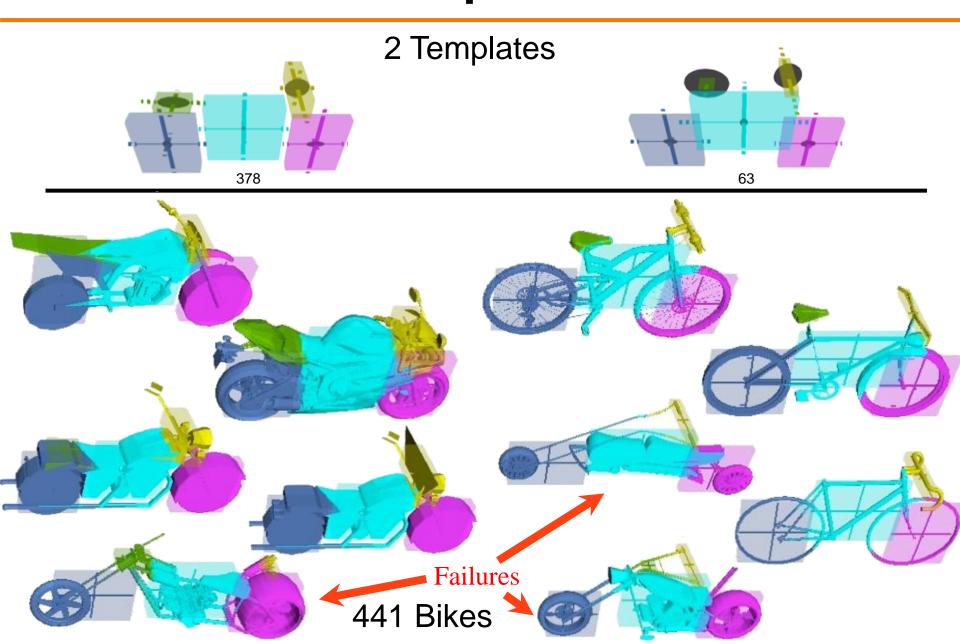
- Solve for part-based template for collection
- Evaluate correspondences & segmentations



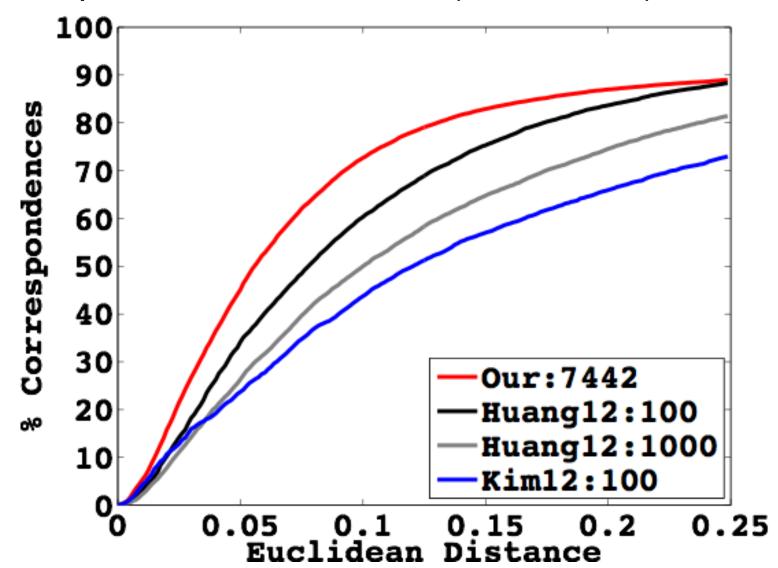








Correspondence benchmark (7442 seats)



Part-Aware Segmentation Results

Co-segmentation benchmark [Sidi et al, 2011]

Class	Hu	Our	
Chairs	89.6	97.6	_
Lamps	90.7	95.2	within 2%
FourLegged	88.7	86.9	or ours is better
Goblets	99.2	97.6	15 OCTO
Vase	80.2	81.3	
Guitars	98.0	88.5	
$\operatorname{Candelabra}$	93.9	82.4	

Outline of Talk

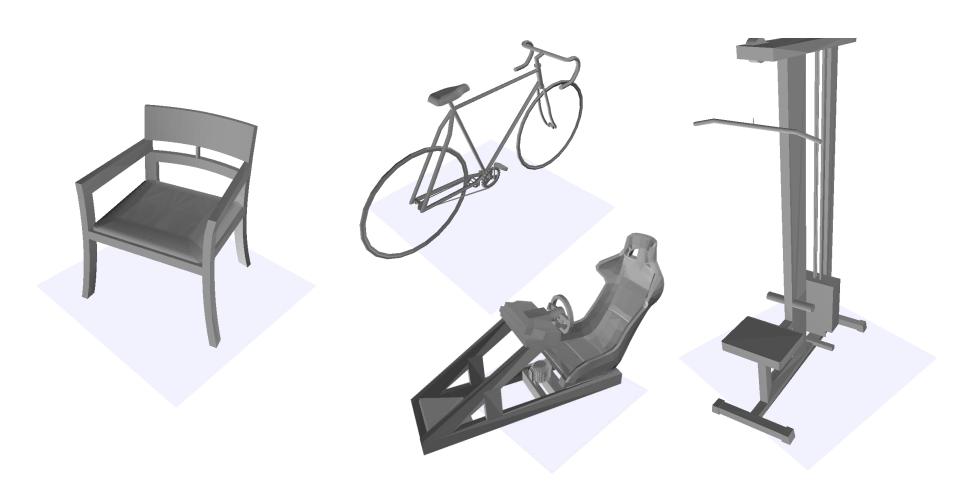
Introduction

- "Structure-aware" correspondences
 - Reflective symmetry
 - Part segmentation
 - > Human pose

Conclusions

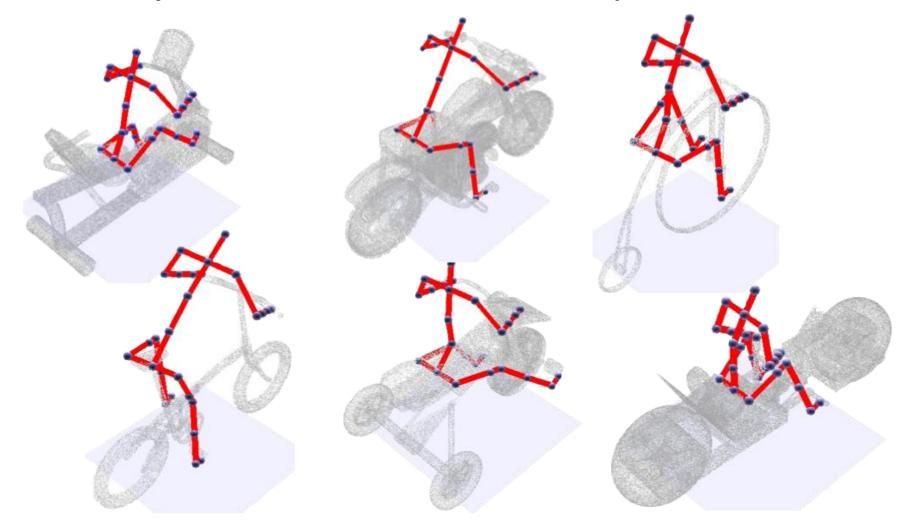
Pose-Aware Correspondences

Observation 1: almost all 3D models represent objects used by people



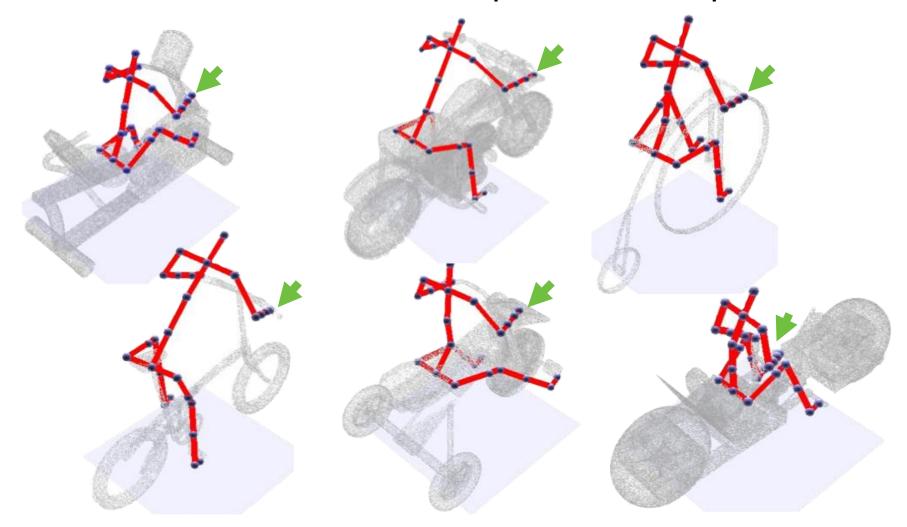
Pose-Aware Correspondences

Observation 2: the poses people take when interacting with objects reveal functional correspondences



Pose-Aware Correspondences

Approach: predict poses of people interacting with 3D models and use them to predict correspondences



Pose Prediction Algorithm

Pose Parameters

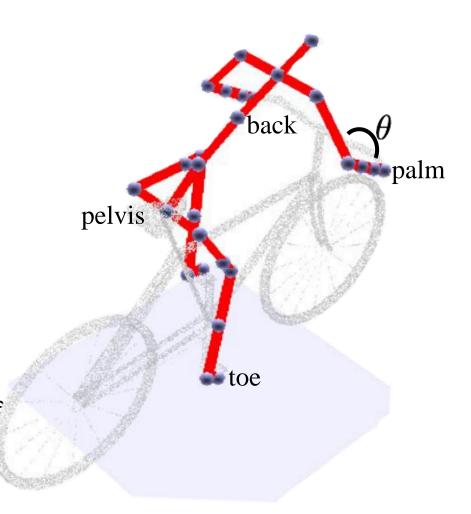
- Contact points
- Joint Angles

Energy Function

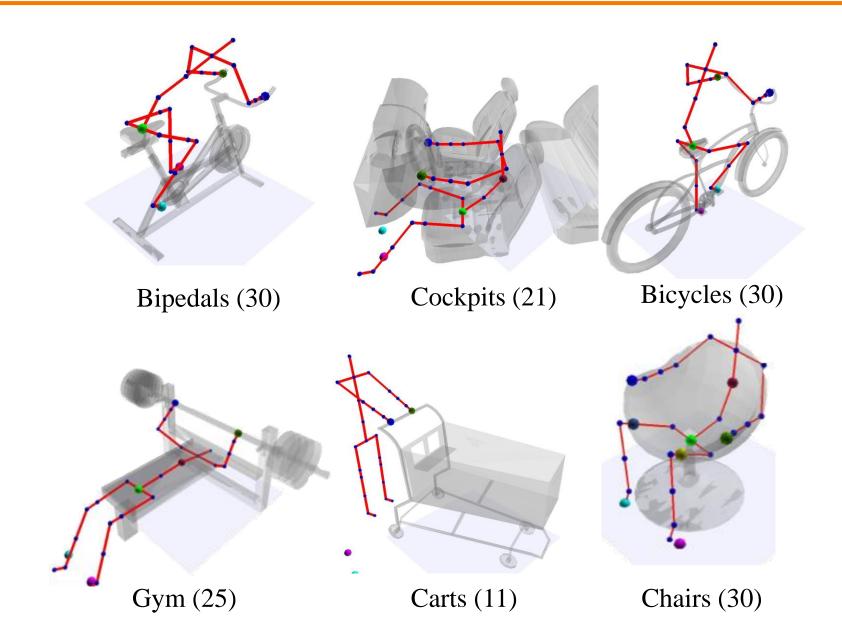
- Contact Distance
- Feature Compatibility
- Pose Prior
- Symmetry
- Surface intersections

Search Procedure

- Sample pose parameters
- Solve contact points or joint angle (inverse kinematics)
- Evaluate energy function

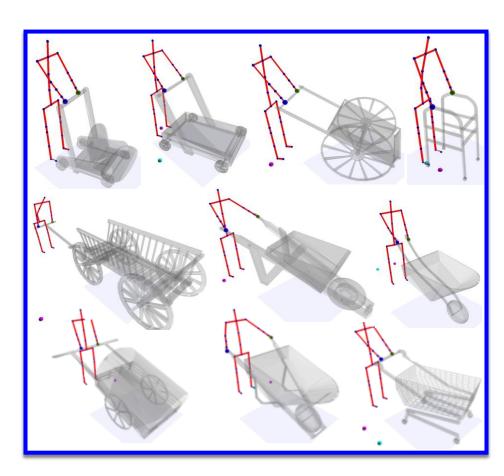


Pose Prediction Experiment

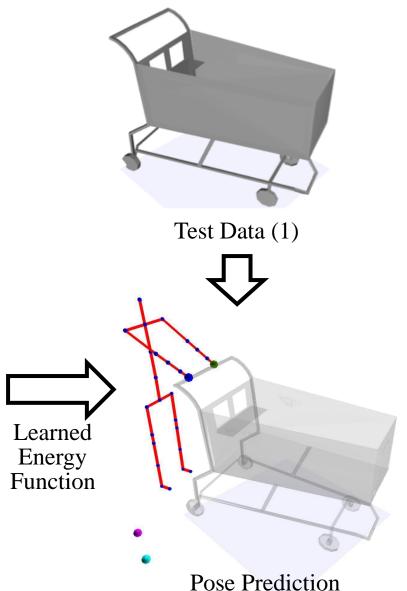


Pose Prediction Experiment

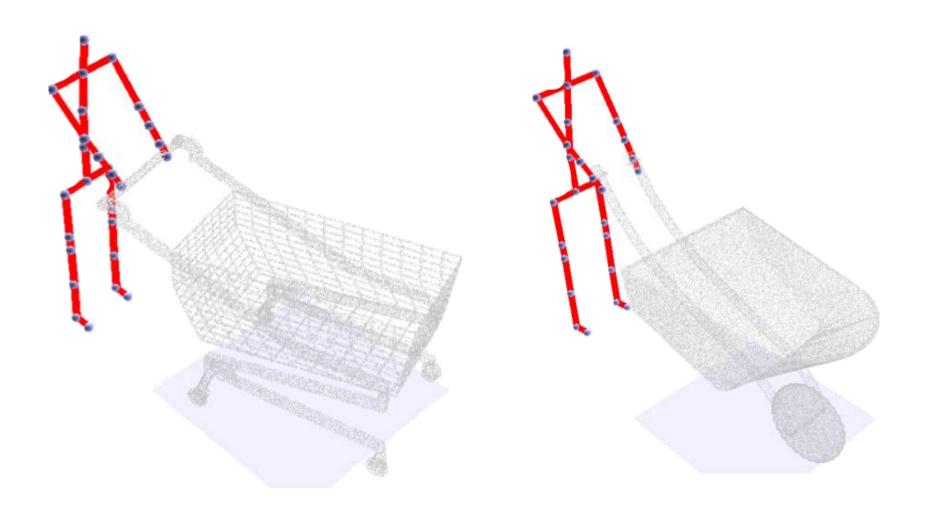
Leave-one-out test



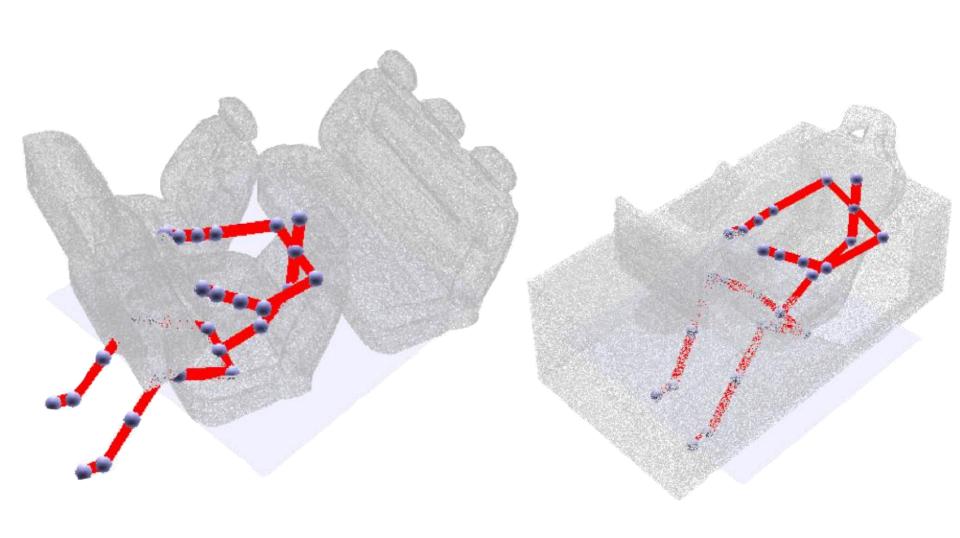
Training Data (10)



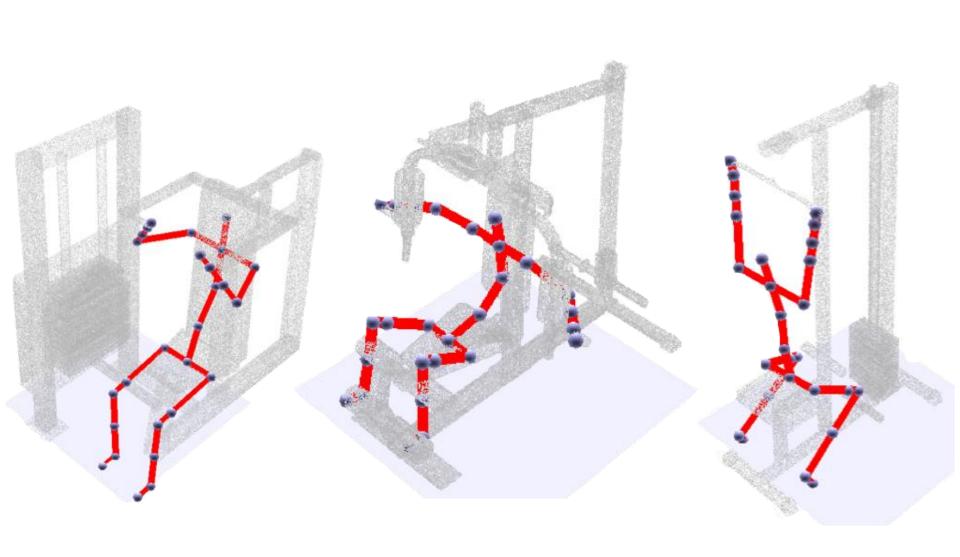
Pose Prediction Results

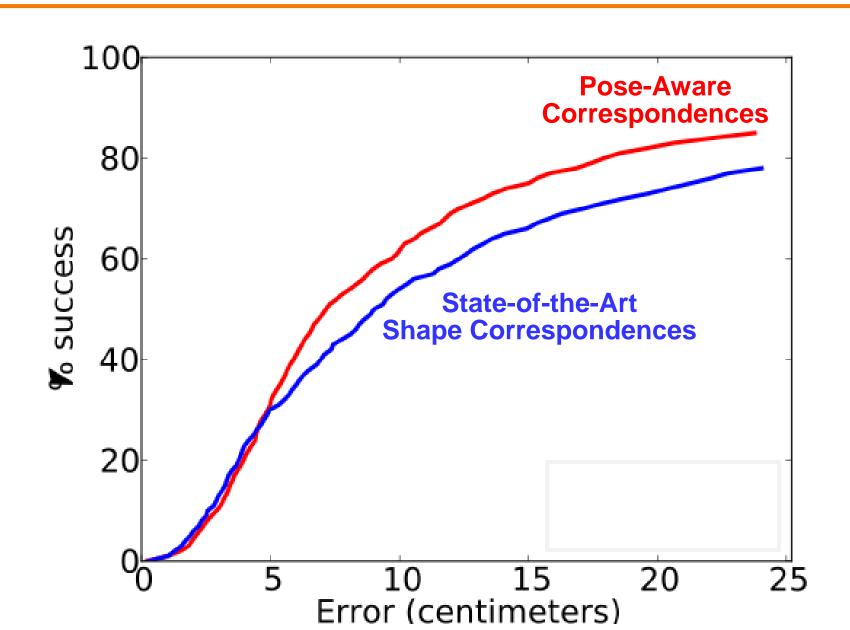


Pose Prediction Results

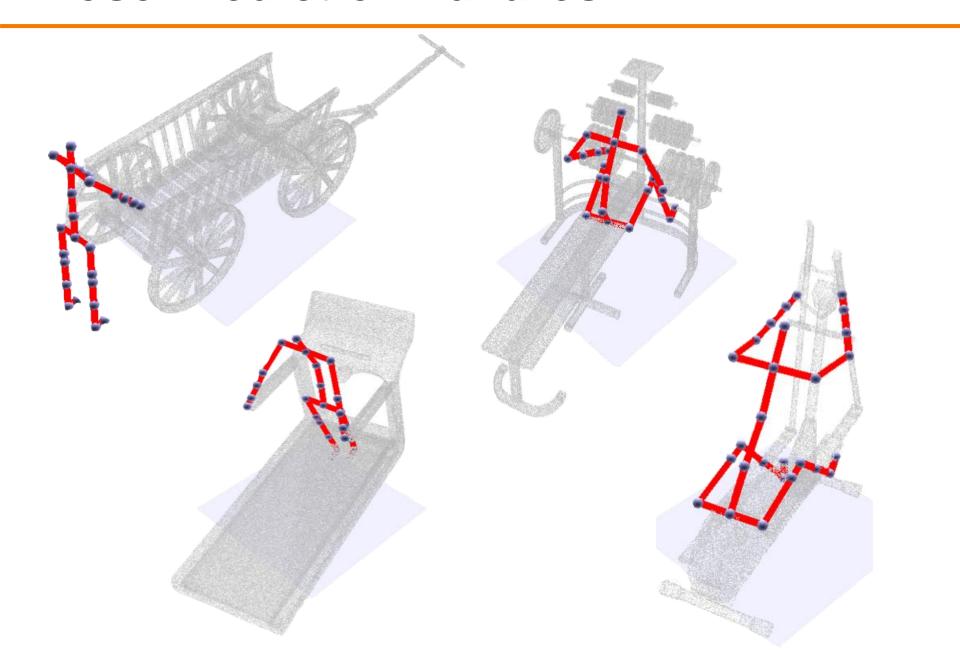


Pose Prediction Results





Pose Prediction Failures



Conclusions

Surface correspondence is an important problem

 Finding geometric correspondences between 3D surfaces can yield insights into functional relationships

Matching large-scale structural features is useful for finding correspondences in diverse collections

Symmetries, part decompositions, human poses

Future research should focus on high-level features

Hierarchies, context, generative probabilistic models, etc.

Acknowledgments

Data sets:

Bronstein et al. (TOSCA), Brown et al. (3D Warehouse),
Giorgi et al. (SHREC Watertight), Anguelov et al. (SCAPE)

Research Funding:

NSF, NSERC, Intel, Adobe, Google

Thank You!