
���������	�
��������� ���� ��������������
��������� �������������	� � !"��# $�%&�
�'�
������

Seth Teller ( Celeste Fowler ( Thomas Funkhouser) Pat Hanrahan (

Abstract

We describea systemthatcomputesradiositysolutionsfor polyg-
onal environmentsmuchlarger thancanbe storedin main mem-
ory. Thesolutionis storedin andretrievedfrom a databaseasthe
computationproceeds.Our systemis basedon two ideas:theuse
of visibility oraclesto find sourceandblockersurfacespotentially
visible to a receiving surface;and the use of hierarchicaltech-
niquesto representinteractionsbetweenlargesurfacesefficiently,
and to representthe computedradiositysolutioncompactly.Vis-
ibility informationallows the environmentto be partitioned into
subsets,eachcontainingall the informationnecessaryto transfer
light to a clusterof receivingpolygons. Sincethe largestsubset
neededfor anyparticularclusteris muchsmallerthanthetotalsize
of the environment,thesesubsetcomputationscanbe performed
in muchlessmemorythancanclassicalor hierarchicalradiosity.
Thecomputationis thenorderedfor furtherefficiency. Carefulor-
deringof energy transfersminimizesthenumberof databasereads
andwrites. We reportresultsfrom large solutionsof unfurnished
and furnishedbuildings,andshowthat our implementation’sob-
servedrunning time scalesnearly linearly with both local and
global modelcomplexity.
CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]:Three-DimensionalGraphicsandRealism–Radiosity;
J.2 [PhysicalSciencesandEngineering]:Engineering.
Additional Key Words and Phrases: Multigridding; equilibrium
methods;spatialsubdivision.
*
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1 Introduction

An importantapplicationof computergraphicsis themodelingof
lighting in buildings. In fact, such interior lighting simulations
arethe major applicationof the radiositymethod.Unfortunately,
radiosityalgorithmsstill arenot fast androbustenoughto handle
standardbuilding databases.Evidenceof this is that previous
radiosity imagestypically showa solutionfor only a singleroom
of modestgeometriccomplexity. Furthermore,“tricks” areoften
usedto hideartifactsandto copewith eventhis low levelof model
complexity. In this paperwe describeradiositycomputationson
very large databases.

Therearethreebasicmeasuresof thecomplexityof a radiosity
solution: the input complexity, the output complexity, and the
intermediatecomplexity.

, The input complexityis relatedto the numberof geometric
primitives, textures,and light sourcespresent.

, The outputcomplexityis relatedto the numberand type of
elementsrequiredto representthe computedradiositysolu-
tion. Note that theoutputcomplexityis much,muchgreater
than the input complexity, as it includes the input model
plus a representationof the radiosity on all surfaces. The
radiosity function may be very complexdue to shadowing
and lighting variations,and much recentresearchhascon-
cernedits compact,accuraterepresentation.The optimal
outputcomplexity is that which representsthe radiosityso-
lution to within a specifiederror with a minimal amountof
information.

, The intermediatecomplexityis relatedto thesizeof thedata
structureneededto performthe radiositycomputation.The
major componentsof the intermediatecomplexity are the
form factor matrix and any data structuresused to accel-
eratevisibility computations.Sincethe form factor matrix
may grow quadraticallyin the outputcomplexity,andsince
acceleratedvisibility queriesmay involve sophisticateddata
structures,the intermediatecomplexitymay be evengreater
thanthe output complexity,and is, in fact, usually the lim-
iting factor in performinglarge radiositysimulations.When
storageis unlimited, the optimal intermediatecomplexityis
that associatedwith the most rapidly converging iterative
scheme.

Model Surfaces Patches Elements Time
Theater[1] - 5K - 80K - 1M 192 H
Mill [5] - 30K - 50K 195 H
Cathedral[28] - 10K - 75K 1 H

Table 1: Previouscomplexradiositysolutions.

Severalcomplexradiositycomputationshavebeenreportedin
the literature(Table1). Perhapsthe mostcomplexis the Candle-
stick Theaterreportedin Baumet al [1]. This simulationgener-
atedover a million elements,performed1600iterationsof a pro-
gressiverefinementalgorithm(shootingfrom a singlesource),and
took approximately8 daysto compute. Other reportedcomplex
radiositysimulationseachgeneratedlessthan 100,000elements.
Our goal is to rendercompletebuildingsat onesquareinch effec-
tive resolution,obviously a very resource-intensivecomputation.
For example,considerthe model of the University of Califor-
nia,BerkeleyComputerScienceBuilding. Thefurnishedbuilding
modelcontainsmorethan8,000light sourcesand1.4million sur-
facesand requiresapproximately350 megabytesof storage[9].
We estimatethat 10 to 100 million elementsmay be requiredto
representa high-fidelity radiositysolutionthroughoutthe model.

Intermediatememorydemandsoften determinethe limits on
the size of the model usedin a radiosity system. The interme-
diate memory usagedependson the representationof the form
factor matrix. Two generalapproacheshave emerged for cop-
ing with thesizeof the form factor matrix: hierarchicalradiosity



Figure 1: A locally dense,
globally sparseinteraction
block matrix.

and visibility subspaces.Hierarchicalradiosity (and its relative,
waveletradiosity)efficiently approximateform factor matricesin
situationswherea setof largesurfacesaremutuallyvisible. Tech-
niquesareonly recentlyemerging for handlinglarge numbersof
small, mutually visible surfaces,for exampleby clustering. The
problemof efficiently computingcluster-clusterinteractionsis not
addressedin this paper. However,our visibility subspacemeth-
ods do exploit the fact that in many environments,particularly
building interiors,only a small percentageof the environmentis
visible from anyparticularsurface.A globalvisibility precompu-
tation constructsthis potentiallyvisible set for eachsurface,and
thesubspacemethodsmaintainthesetthroughouthierarchicalre-
finement.

Figure1 depictsa sparseblock-structuredform factor matrix.
Eachdiagonalblock representsa denseinteractionwithin a cluster
of surfaces,e.g., the polygons comprising a room. Each off-
diagonalblock representsthecouplingbetweentheseclusters,e.g.
the roomsvisible from a given room. Thuseachblock is locally
dense,but the matrix is globally sparse.

In this paperwe describeour systemto computeradiosityso-
lutions in suchenvironments.The environmentis assumedto be
very large and henceis storedin a databaseas the computation
proceeds.The ensuingradiosity computationis partitioned into
subsets.Eachsubsetcontainsthe informationneededto perform
a transferof light to a cluster of polygons. Thesesubsetcom-
putationsareordered to performthe light transfersefficiently by
reducingthe numberof databasereadsandwrites. We report the
resultsof simulationsrun for modelsof varying density (local
complexity)andoverall size(global complexity).

This systemis built upon previously describedhierarchical
radiosity methods, global and local visibility algorithms, and
databaseandwalkthroughimplementations.

2 Prior Work

The problem of increasingthe speedand accuracyof radiosity
solutionshasbeenaddressedon many fronts.. Visibility. One of the most expensiveoperationsin global

illumination is visibility computation.For a given surface,
the setof surfacesthat illuminate (or are illuminated by) it
must be efficiently identified. Clearly this requiresglobal
knowledgeof the model.
Classicalradiosityalgorithmsuseda “hemicube”algorithm
to approximateeachsurface’soccludedview of the model
as an environmentmap onto facesof a cube centeredon
a surfacepoint [6]. The projectionoperationinvolved the
wholemodelandrespecteddepth,producingdiscretizedsur-
face fragmentsvisible to the samplepoint. This and other
point-samplingtechniques(e.g.,[4]) maynot detectrelevant
light sourcesand/orblockers,however.
Shaftculling recastglobal visibility into a collectionof vis-
ibility subspacesby generatinga commonshaft volumefor
eachinteractingpair, andtreatingasblockersonly thoseob-

jects (potentially) intersectingthe shaft [14, 18]. Finally,
preprocessingandincrementalmaintenancetechniquesused
a coherentglobal passthroughthe modelto generateinitial
blocker lists, then maintainedthe lists incrementallyunder
link subdivision[25]. Thesetechniques,in contrastto those
basedon point-sampling,areconservativein the sensethat
they neverwrongly excludea blocker or light sourcefrom
an interaction.

. Solution Methods. Classicalradiosity algorithmsgenerate
a row-diagonallydominantinteractionmatrix [6]. The ra-
diosity matrix equationis then solvedby repeatedlyupdat-
ing the matrix entriesusinga numericalsolutiontechnique,
typically Gauss-Seideliteration. Severalproposedimprove-
mentsaddressthe order in which the matrix entriesareup-
dated. Progressiveradiosity techniqueschoosesourcesin
brightnessorderandshoottheir energy into theenvironment
[5]. This may involve considerablebookkeeping,sinceeach
shootupdatesmanybrightnesses,and the relativepriorities
of queuedshootersmaychangeconsiderably.Parallelimple-
mentationsof progressiverefinementhavebeenreported[2,
19]. “Super-shootgather”techniquesrepeatedly(over)shoot
from andgatherto a smallnumberof surfaces,ignoringany
interactionsnot involving the shooters[7, 12].

. Hierarchical Approaches and Clustering. Matrix-based
solutionsconsiderthematrix at a singlegranularity, namely
the correspondencebetweeneachmatrix entry and pair of
surfacesin theenvironment.Thehierarchicalradiosityalgo-
rithm appliedtechniquesdevelopedfor the / -bodyproblem,
incorporatinga global error boundandallowing surfacesto
exchangeenergy whenevertheycoulddo sowithin thespec-
ified error [15]. Thus,whereversufficiently far-apartor dim
surfacesinteract, hierarchicalmethodsessentiallycompact
a block of the form-factor matrix into a scalar. Recursive
applicationof this idea yielded a radiosity algorithm with
running time that grows linearly with the numberof out-
put elements.The hierarchicalradiosity algorithm did not
addressthe “clustering” problemof efficiently handlingin-
teractionsamongsurfacescomposedof manysmallsurfaces;
sometechniqueshavebeenrecentlyproposedto do so [20,
22, 29].

. Meshing and Finite Element Methods. Finally, meshing
and finite-elementtechniqueshave beenemployedto im-
prove the accuracyof radiositysolutions. Classicaland hi-
erarchicalsolution algorithmsrepresentedradiosity as con-
stantover eachsurface. Galerkin-basedmethodsusefinite
elementtechniquesto representradiositiesmore generally,
as weightedsumsof smoothly varying basisfunctionsde-
fined over eachsurface[16, 17, 27, 30]. The resultingso-
lutions have better smoothnessand convergencebehavior
than thoseof classicalradiosity. Recently,the wavelet ra-
diosity method[13, 21] combinedhierarchicalradiositywith
Galerkintechniques.

3 Basic Ideas

Our systemis basedon two ideas:partitioningandordering.
Partitioning decomposesthe databaseinto subsets.Eachsub-

set containsthe informationneededto gatherall the energy des-
tinedfor a clusterof receivers.We assumethat the largestsubset,
including the sources,receivers,andvisibility and interactionin-
formation,requiresfewerresourcesthanwould berequiredfor the
wholemodel. Performingenergy transfersfor a partitionamounts
to a single block iteration of an iterative solution of the radios-
ity systemof equations.Partitioning is implementedby finding
thoseclustersof sourcepolygonsvisible to a clusterof receiving



polygons. Only light originating from the sourcesmay directly
illuminatethe receivers.Furthermore,only polygonsvisibleto the
receiversmay block light transfersfrom the sources. Therefore,
the visibility and light transfercomputationsmay use the same
database.

The goal of partitioning is to reducethe solver’s working set
to a manageablesize. Receiverclustersmay havedenseinterac-
tions in a local region, but shouldhavesparseinteractionswith
the remainderof the environment. Our implementationinherits
clusteringinformation(andthuslocal density)from themodeling
hierarchy,andachievesglobal sparsenessby partitioningaccord-
ing to visibility.

Ordering is schedulingradiositysubcomputations–theenergy
transfers–to achieverapidconvergence.An exampleof anorder-
ing algorithmis the progressiveradiosityalgorithm,in which the
sourcewith the largestunshotradiosity is selectedto “shoot” its
energy into the environment.In our system,the ordermustalso
be chosensothat thememory“footprint” changesslowly; that is,
the working set neededfor the next transfershoulddiffer little
from that of the current transfer. Successfulorderingstrategies
reducethe readand write traffic of the working set from and to
externalstorage,while maintainingrapid convergenceproperties.

In this paperwe analyzeseveralmethodsfor orderingthe en-
ergy transfers:randomorder;modeldefinitionorder;sourceorder;
andspatialcell order. We alsobriefly discussoptimal orderings.

4 System Architecture

Our systemis designedto solve the following problem: in prac-
tice, hierarchical radiosity is limited either by its intermediate
complexity(i.e., the numberof links) or by its outputcomplexity
(the descriptionof the radiosity solution), or both. We address
both limitations by constructingsmall but completeworking sets
(Figure2) for thehierarchicalalgorithm,theninvoking a radiosity
solverandstoringawaythe result– an improved,typically larger,
answer– in a spatialdatabasethatcangrow incrementallyandar-
bitrarily large. This partitioning of hierarchicalradiosityis shown
in 0 5 to preserveits correctnessandconvergenceproperties.

Figure 2: A working setof sourcecluster(whiteoutline),receiver
cluster(yellow outline), andblockerpolygons(greenoutline) for
a solver invocation.The braid and links arenot shown.

The typessurface, patch, element, and link are familiar to ra-
diosity practitioners.The typesblocker, shaft, and tube arise in
recentrelatedwork on shaft-cullingandvisibility subspaces[14,
18, 25]. The novel typesdescribedhereareclustersandbraids,
definedanalogouslyto surfacesand links in existinghierarchical
radiositysystems.. A tube is a list of blockersfor a pair of geometricentities1 and 2 , and a shaft volume, the convexhull of 3 154 276 .

For any tube 8 , 9;:�<>=@?BADCE3F8G6 lazily computesone of =@H�I9�=@JK=@LNMO? , 9�=@JK=@LNMO? , or PQ:�<RAD=@:�M , when 1 and 2 are totally

mutually invisible, visible, or only partially visible, respec-
tively. Tubescan also subdividethemselvesand reclassify
their child tubes’ 9;:�<>=@?BAD=@?BJ whenoneof 1 or 2 subdivides.
Only entitiesthat impingeuponthe shaftmay be blockers.. A braid is a list of links betweentwo clusters.A link is a
directededgeto a patch1 from a patch2 , associatingwith 1
and 2 a form factorestimateandothercouplinginformation.
Every link containsa tube. Given the tube 8 describing
the shaft and blockersof clustersS and T , the braid over
this cluster-clusterinteractionis simply the set of all links
betweenpatchesin clustersS and T , anda referenceto 8 .. A cluster is a list of surfacesanda boundingvolume. Note
thata clustermaybraid with itself if containsanypatches1
and 2 suchthat 9;:�<>=@?BADCE3 1>U 2B6GVW =@H�9�=XJK=@LNMO? .

Thesystemhassix principalcomputationalmodules.Five exist
in previouswork, and havebeenadoptedhere with only slight
changes. The remainingcomponent,the radiosity scheduler, is
the main novelty of our system. We describeeachmodule in
top-downfashion(Figure3).
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Figure 3: Systemblock diagram.

Y Theradiosity scheduler is theconceptualcenterof thesys-
tem. It mediatesbetweenthe databaseand the radiosity
solver, selectinga clusterfor refinementand transferoper-
ations (ordering), extractinga small portion of the model
from the database(partitioning), manipulatingthe solver’s
working set, invoking the solver, extractingthe modified,
refinedclusters,andreturningthemto the database.Y The database containsa persistent(disk) representationof
all clustersanda hierarchicalspatialsubdivisioncomprised
of convex cells and portals that connectcells [26]. The
databasesupportsthe operationsof reading, dirtying, and
releasingclusters[9, 11]. Releasesof dirty data result in
deferredwrites to persistentstorage.Y The global visibility oracle, given a receivercluster,iden-
tifies thoseclusterspotentially visible to the receiver,i.e.,
thoseclustersthat may illuminate the receiver,or block en-
ergy transfersto it [23, 25]. A cluster may be visible to
itself.Y The hierarchical wavelet radiosity solver generateshigh-
quality radiosity solutions using wavelet basesof general
orderandGaussianquadrature[13, 15, 21].Y The local visibility oracle supportsoperationsfor allocating
and subdividingtubes,and acceleratingpoint-to-pointvisi-
bility queriesfor quadrature[25]. Theglobaloraclesupplies
the initial blockerlist for eachtube.Y Thevisualization moduleemploystheSiliconGraphicsIRIS
GL ZD[ to facilitate interaction,inspection,andanimationof



geometricdatastructuresandalgorithms[24]. It hasproven
indispensableto developinga working system.

5 Partitioning

We wish to partitiona hugeradiositycomputationinto a sequence
of smallgathersto individual receivers,eachof which canfit into
a smallamountof memory.Whatinformationmustbemaintained
in order to scheduleand perform eachgathercorrectly? Clearly
thereceiverandsourceclusterinvolvedmustbememoryresident,
as must their braid (links) and blocker polygons(cf. Figure 2).
We compilethis workingsetfor eachtransfer,andsupplyit to the
radiositysolver.

Our system constructs partitioning information from three
sources. First, the modeling instantiationhierarchyyields clus-
tersof polygonsthat separatelycomprisethe structuralelements,
furnishings, light fixtures, etc., of the model. Second,a spa-
tial subdivisiongroupsclustersinto cellsby proximity, separating
them along major sourcesof occlusion. Third, a visibility com-
putationidentifiesall clusterpairs that may exchangeenergy [11,
23, 26].

Thefinal tool is a flexible databasefrom which individual por-
tions of the modelmay be extracted,modified andreplaced[11].
We adaptedthe databaseto supportthe new datatypesrequired
for radiosity.

5.1 The Algorithm

Our algorithm: extractseachreceiverand its visible set from the
spatialdatabase;links them; refinesandgathersacrossthe links;
and returns the modified clustersto the database.A hierarchi-
cal wavelet radiosity solver performsthe refinementand gather
operations.Our algorithm loops over receiverclusters\ in the
databaseuntil convergence,executingthe following actions:

1. ReadR
2. Install R into working set
3. For eachsourcecluster ] visible to ^

(a) ReadS, blockers_�`a^ bF]dc
(b) Install S, blockers_e`a^ bf]dc into working set
(c) g = Tubèa^Gbh]ibF_e`a^ bf]dcjc
(d) Install( links in Braid `a^ bf]ibFgkc ) into working set
(e) Invoke lnmRo prqQs Gather( eachpatchof ^ )
(f) Discard newly refined links from working set
(g) DeleteTube g
(h) Remove] , blockers_t`a^ bX]dc from working set
(i) SetDirtỳa]uc
(j) Releasèa]dc andblockers_t`a^ bX]dc

4. Invoke lnmRo prqQs PushPull( eachpatchof ^ )
5. Extract̀a^Gc from working set
6. SetDirtỳa^Gc
7. Releasèa^Gc

ThefunctionBraidvF\�wKxyw{z | in line 3}d~ simply generatestop-
level links betweenvisible patch pairs from \ and x , using
blockerinformationfrom the tube z . Refinedlinks arediscarded
(line 3} � ), since A) they cannotbe reuseduntil the next full
databaseiteration, and B) they are so numerousthat, at � 250
bytes/link,they do not fit in a 32-bit (4Gb) addressspace.

5.2 Iteration Methods, Correctness, and Convergence

HierarchicalradiosityperformsJacobiiteration. That is, only af-
ter a completeupdateof all patch’sgatherslotsare any patch’s
shootslots updated(by Pushand Pull [15]). Jacobiiteration is
clearly an untenablestrategyfor extremelylarge models,sinceit
would necessitatereadingand writing every patchtwice per up-
date. Moreover,hierarchicalradiosity is often memory-boundin

practice,i.e., limited by thenumberandcomputationalcomplexity
of its activesetof links, or by thesizeof thesolutionin progress.
OurpartitioningschemeeliminatesJacobiiterationaltogether,and
entirely removesthememorylimitations on hierarchicalradiosity
for environmentsof sufficiently limited visibility.

The correctnessof the partitionedsolveris easilyshown. Dur-
ing anygatherto a cluster\ , theonly patchesexcludedassources
are �@�����@�K�@�N�O� from \ , and thereforecannotaffect the computed
solutionon \ .

The convergenceof the partitionedsolver follows from a nu-
mericalargument.Theschedulersolvestheradiositymatrix equa-
tion as doestraditional hierarchicalradiosity,but for one differ-
ence:eachreceiverseesa combinationof old andupdatedshoot
slotson otherclusters,ratherthanseeinguniformly old slots. The
scheduleris thereforeperformingGauss-Seideliterationof thelin-
earsystem,ratherthanJacobiiterationasin hierarchicalradiosity.
Since both methodsconverge for row-diagonallydominantsys-
temsof radiosity equations[6], convergenceof the partitioning
algorithmis assured.

5.3 Partitioning Results

We studiedthe performanceof our systemfor modelsof varying
complexity. In onetest,weincreasedlocal complexityusingmod-
els Office, OfficeLow, andOfficeHigh which representthe same
office without furniture,with coarselymodeledfurniture,andwith
very detailedfurniture. Thesethreemodelscontainroughly one
hundred,fifteen hundred,and thirty-five hundredinput patches,
respectively. In a secondtest, we increasedglobal complexity
using the unfurnishedmodelsOffice, Floor, and Building which
representan office, one entire floor of a building, andfinally an
entire five floor building (including an atrium and many offices,
open areas,stairwells, and classrooms). Thesemodelscontain
roughly one hundred,seventhousand,and forty thousandinput
patches,respectively.
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Figure 4: Working setsizewhile solving the Building model.

We measuredtheinput, intermediate,andoutputcomplexity,as
well as working setmemoryrequirements,for solutionsof these
test models. Statisticsfor three completeiterations(gathersto
all clusters)of the radiosity solverare shownin Tables2 and3.
Theminimum allowableelementareawasonesquareinch for all
runs. All times are wall-clock measurementsusing a 16 � -sec
timer, on a lightly loadedSGI CrimsonReality Enginewith a 50
MHz R4000CPU,256Mbmemory,and8Gblocal disk. Figure4
chartsthe sizeof the solverworking setduring one full iteration
of the mostcomplexmodel,Building.

Severaltrendscan be gleanedfrom the measurements.First,
thevisibility andhierarchicalradiositytechniquescompactedlarge
numbersof potential elementsand interactionsto manageable
sizes. Second,partitioning techniquessuccessfullyboundedthe
working setsizeat a few tensof megabytes,evenfor modelsde-
mandingseveralgigabytesof intermediatesolution data. Third,
intermediateand output complexity and running time appearto
vary nearly linearly with input complexity. Thus, partitioning
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Working Set (Mb) # Links # Elements ElapsedTime (s)

Model Clusters/ Patches/ Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4

Office Low 70 1,418 21 11.1 239.9 38,593 960,432 677 7,081 36,377 25.7 7,111 5.0
Office High 70 3,466 21 14.1 414.4 48,784 1,678,105 484 8,975 42,400 12.2 13,051 3.8

Table 2: Input, intermediate,and output complexities,and observedsolution times, for modelsof increasinglocal complexity. The
tabulatedquantitiesaredivided into: WS (the largestworking setprocessedby thesolver);Total (the total dataprocessedthroughoutthe
run); and Per Patch (the total amountdivided by the numberof input patches).The intermediateworking set WS was definedas the
sizeof the links (including tubes,shafts,andkernelcoefficients),elements(including waveletcoefficients),andblockerpolygons.

�����>�O� ����� qQs���q����@� � q � �O�O�>�O� ���>lnqQsjprqQ�
Working Set (Mb) # Links # Elements ElapsedTime (s)

Model Clusters/ Patches/ Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4
Floor 1,761 7,054 788 3.7 1,116.1 12,532 4,307,705 611 2,686 250,933 35.6 56,712 8.0

Building 9,625 39,979 7,826 14.5 6,063.0 52,454 23,528,943 589 7,104 1,265,843 31.7 491,040 12.2

Table 3: Input, intermediate,andoutputcomplexities,andobservedsolutiontimes,for modelsof increasingglobal complexity.

successfullyexploited the global sparsityof the interactionma-
trix to achieveradiosity solutionsfor very large models,while
maintainingquite small working sets.

6 Ordering

Partitioningaloneis not sufficient to producea practicalsystem
for large radiosity solutions. The partitionedtransfersmust be
ordered so as to minimize expensivereadsand writes of partial
solutiondatafrom andto the database.

To beeffective,anorderingalgorithmmustschedulesuccessive
gathersso as to minimize disk accesses,while maintainingrapid
convergenceproperties. Much work has focusedon the effects
of ordering on convergencerates for the radiosity computation
[5, 7, 12]; herewe concentrateon the effect of orderingon disk
accesses.

A goodorderingalgorithm maintainsa high degreeof coher-
enceamongthe working setsof successivecluster interactions.
Unfortunately, finding an optimal ordering is intractable. The
problemis computationallyequivalentto finding a solutionto the
travelingsalesmanproblem.As apracticalsimplification,we have
consideredonly orderingsin which all gathersto a singlecluster
areperformedsuccessively(i.e., completegathers).Theseorder-
ings are particularly efficient and easyto implementbecauseall
sourcesandblockersfor a completegatherto a singleclusterare
containedin the gatherer’svisible set. Our implementationreads
theentiresetof clustersvisible from thegathererinto thememory
residentcachebeforeperformingany transfersto the gatherer.

We experimentedwith severalorderingalgorithms:
, Random order gathersto clustersin randomorder.
, Model order gathersto clustersin the order in which they

were instantiatedby the modeler. In most cases,this is
not a randomorder sincemodelsare often constructedby
successiveaddition of related parts. For instance,in the
BerkeleyComputerSciencebuilding model,walls, ceilings
andfloorswereinstantiatedfirst (groupedroughlyby room),
followed by patchesrepresentinglight fixturesandfurniture.

, Source order gathersto that clusterwhich hasmost often
actedasa source(ties arebrokenby proximity to the most
recentgatherer).This strategyis basedon the intuition that
the working set of a cluster that hasbeenvisible to many

previousreceiversis likely to havea large overlapwith the
currentworking set., Cell order schedulesclustersby traversingcellsof thewall-
alignedBSP-tree[8] spatial subdivision[23, 26]. Consec-
utive cells are chosenby selectingthe neighborcell whose
interveningboundaryhasthe largest transparentarea. This
approachexploits the visibility coherenceof clustersdueto
proximity andlocal intervisibility.

Figure5 illustratestheeffect that orderingcanhaveon theco-
herenceof theworking setduringanactualradiositycomputation
involving almost2,000clusters.The figure depictsmatriceswith
a dot at position vF��wj�R| if clusters�u� and � � werepotentiallyvis-
ible to eachother. Otherwise,no interactionbetween� � and � �
waspossible,andthespacevF�¡w¢�B| is left blank. Fourpermutations
of the underlyinginteractionmatrix weregenerated,by number-
ing clusteringaccordingto theorderin which theyweregathered
to. Thus, the position of a clusteralong the axesof the matrix
dependson the gatherorder. Figure5 depictsthe permutedma-
trix resultingfrom gathersin A) randomorder, B) model order,
C) sourceorderandD) cell order,respectively.

In the caseof randomand model orders,the interactionsare
spreaduniformly over the matrix. No block structureis evident,
indicating that objects with similar visibility characteristicsare
gatheredto at very different times. When gatheringin source
orderthematrixappearsmuchmoreblockstructured,especiallyin
theearlyiterations.However,asgatheringproceedsthecoherence
appearsto degradeasevidencedby thefact thattheblockstructure
disappearsin the upperright. The bestorderingstrategyappears
to be cell order,yielding a matrix in naturalblock diagonalform,
as would be expectedin a building model. Note the horizontal
andverticalstripes;thesecorrespondto clustersin long corridors
with manyinteractions.

6.1 Ordering Results

We studiedthe effects of ordering algorithmson cacheperfor-
manceby restricting the memory residentcachesize to 32Mb
while solvinga one-floorbuilding model. In eachtest,everyclus-
ter gatheredexactly once. We loggedstatisticsregardingcluster
reads,writes, cachehit ratio, and I/O time during the third com-
plete iteration of the radiosity computation(Table 4). All runs
wereexecutedon a 100 MHz R4000SGI Indigo£ with 160Mbof
fast memoryand1Gb of local disk.



A) Random B) Model C) Source D) Cell

Figure 5: Matricesdepictingpermutationsof thecluster-clusterinteractionmatrix. A dot at position ¤F¥�¦j§B¨ denotespotentialintervisibility
of ©uª and ©¬« . Clusterpositionalongaxescorrespondsto gatherorderduringa completeradiosityiterationin A) randomorder,B) model
order,C) sourceorder,andD) cell order.

Clusters Mb Cache I/O Total
Order Read Read Hit Ratio Time(s) Time(s)
Random 77,916 4,374 35.4% 23,330 49,111
Model 44,163 2,376 63.4% 12,806 43,685
Source 30,798 1,708 74.4% 8,912 33,815
Cell 11,312 617 90.6% 3,180 26,454

Table 4: I/O statisticsfor variousorderingalgorithms.

Thereare significant differencesin the I/O overheadincurred
by eachorderingalgorithm. Figure6 showsthepercentageof total
executiontime spenton I/O (transfersbetweenthedisk andmem-
ory residentcache)for differentgatherorders.Randomorderhad
a 35.4%cachehit ratio, spending23,330seconds(47.5%of the
total executiontime) on morethan4.3GBof I/O betweenthedisk
andmemoryresidentcache.In contrast,cell orderingachieveda
90.6%hit ratio, spendingonly 3,180secondson I/O (12.0%of the
executiontime). We concludethat theorderin which clustersare
processedcangreatlyaffect performanceduringradiositycompu-
tationson very largemodels.We arecurrentlyinvestigatingother
possibleordering algorithms, including onesderived from pro-
gressiveradiosity [5], nearestneighbors,and minimum spanning
trees[3]. We expectthat the bestorderingalgorithmswill take
into accountboth cachecoherenceandconvergencebehavior.
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Figure 6: Time distributionsfor variousgatherorders.

7 Results

Using a Silicon GraphicsCrimsonworkstationwith a single 50
MHz processorand256megabytesof mainmemory,wecomputed
threecompleteiterationsof a radiositysolution on the entireun-
furnishedBerkeleyComputerScienceBuilding modelto oneinch
resolution.The input modelhad9,625clusterscomprisinga total
of 39,979polygons.Of thesepolygons,7,826wereemissiveand
servedas light sources.

To give anideaof scale,thetotal areaof all polygonsin theun-
furnishedbuilding modelis 64,517,972squareinches.Therefore,

without the use of visibility-basedpartitioning and hierarchical
techniques,thenumbersof elementsandlinks potentiallycreated
duringtheradiositycomputationatoneinchresolutionareapprox-
imately ³	´ µ
¶
·n¸y¹ and µ�´»º¼¶½·n¸r¾�¿ , respectively– unmanageably
high.

Statisticsregardingthetime andspacecomplexityof theradios-
ity solution for the entire unfurnishedbuilding model are shown
in Table5. To our knowledge,this is themostcomplexmodelfor
which a radiositysolutionhasbeencomputed.The entireradios-
ity computationtook 136.4hoursandcreated1,265,843elements
and 23,528,943links – 2.0% and 0.00000056%of the potential
numbersat one inch resolution, respectively. The partitioning
techniquesyielding a maximumworking set size of 14.5MB, or
0.24%of the 6.1GB of total intermediateand output data. Cell
orderingyielded a total I/O time of 14.2 hours,or 10.4%of the
total executiontime.

# # # Max Solver I/O Total
Iter Elements Links WS Time Time Time

0 39,979 - - - - -
1 295,039 2,649,521 2.0 3.3 0.2 5.1
2 884,905 15,860,111 11.2 40.6 3.2 47.0
3 1,265,843 23,528,943 14.5 69.9 10.8 84.3

Total 1,265,843 23,528,943 14.5 113.8 14.2 136.4

Table 5: Complexity of radiosity solution for the unfurnished
building model (timesarein hours).

The five color plateson the next pageshow imagesof a ra-
diosity solutionfor onefurnishedfloor of theBerkeleyComputer
ScienceBuilding model,after two completeiterations.The solu-
tion contains734,665elementsand took 48.5 hoursto compute.
PlateI showsan overheadview of the furnishedfloor. PlatesII
and III show interior views of a typical furnishedoffice, shaded
andwith anoverlaidquadtreemesh,respectively.The globaland
local complexitiesof the radiosity solution are readily apparent
from theseviews. PlatesIV andV showa typical work areaand
hallway view, respectively.

The radiosity solutionsgeneratedby this systemare usedas
input for thereal-timewalkthroughprogram(thecolorplateswere
generatedusing screen-capturesfrom this program). The same
visibility informationandcomputationsusedto determinesource
andreceiverinteractionsareusedto maintainan interactiveframe
ratein thewalkthrough.Thehierarchical(quadtree)representation
of radiosity on eachpolygon is particularly useful, as it allows
easilyselectablelevelsof detail [10] for eachpolygon.



PlateI. The entirefurnishedfloor, solvedto oneinch effective resolution(734,665elements).

PlateII: Office, gouraudshaded.

PlateIV: Workroom,gouraudshaded.

PlateIII: Office, meshed.

PlateV: Hallway, gouraudshaded.



8 Summary and Discussion

This paperpresenteda systemthat exploits visibility and coher-
ence information to computeradiosity solutions for very large
geometricdatabases,using existing high-quality global illumi-
nation algorithms. Physically-basedlighting simulation is more
challengingthanstandardrenderingalgorithmsin that the output
complexityis very high,andtheintermediatecomplexityandcal-
culation costsare evenhigher. However,in the future thereare
likely to bemanyapplicationsrequiringdisplayof complex,real-
istic virtual environments,suchasthebuilding usedin this study.
To achievesuchcomplexityrequiresadvancesat both thetheoret-
ical andthepracticallevel. The theoreticaladvancesdiscussedin
this paperare the visibility andhierarchicalradiosityalgorithms.
The practicaladvancesincludetheuseof systemtechniquessuch
asdatabases,scheduling,andcaching.

Specifically,we haveimplementeda systemcapableof com-
putingradiositysolutionsfrom largemodelsresidingin a database
storedon a disk. We show how partitioning the model leadsto
small working sets,allowing us to processdatabasesmuchlarger
thenthosewe couldhandlewithout partitioning. Poorpartitioning
of the databasecan causeit to be readand written many times.
We showhow cleverorderingcansignificantlyreducedisk traffic.
The combinationof thesetwo techniquesallow us to handlevery
large geometricmodels.

Given our experiencewith the system to date, the follow-
ing researchdirectionsseempromising. First, the tradeoffs be-
tweengatheringandshootingalgorithmsin hierarchicalradiosity
shouldbe investigated,aspreliminaryresultsindicatethat shoot-
ing convergesmore rapidly in somesituations. Second,interac-
tions amongobjectscomprisedof manysmall polygonsmustbe
handledmore efficiently, perhapsby incorporatingthe notion of
levelsof detail into the radiositysolutionmethod.Third, thevis-
ibility calculationsusedto determinesoft shadowsarestill very
expensive,and shouldbe improved. Finally, the refinementor-
acle employedby the hierarchicalradiosity algorithm is far too
conservative.Ratherthanrelying solelyon estimatesof form fac-
tor and transporterror, it should incorporatea term basedupon
representationerror over eachreceiversurface.
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