
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)
C. Alvarado and M.- P. Cani (Editors)

Sketch-Based Search and Composition of 3D Models

Jeehyung Lee and Thomas Funkhouser

Princeton University

Abstract

There is growing interest in developing tools with which novice users can create detailed 3D models of their
own designs. The most popular approaches to this problem include sketch-based interfaces and part-composition
systems. The sketch-based modeling systems provide natural interfaces for creating 3D models from 2D sketches,
but are generally limited to creating simple geometric models. The part-composition systems provide tools for
combining parts extracted from a database of 3D models, and thus can generate very detailed 3D models, but
usually with much higher overhead and expertise required by the user for manipulating 3D geometry interactively.
In this paper, we introduce a new modeling method that overcomes these limitations by combining both approaches
– we introduce a modeling system for parts composition with a sketching interface. The system allows the user
to find a part in a database and composite it into a model with a single sketch. This approach combines the
benefits of both approaches – i.e., it allows creation of highly detailed models/scenes (as details come from parts
in the database), while 2D sketched strokes provide all the information for part selection and composition (no 3D
manipulation is required, in general). To enable this modeling method, we investigate an algorithm for 3D shape
search with 2D sketch as a shape query and a part placement algorithm which automatically orients, translates,
scales, and attaches a new part into a modeling scene by taking the user sketch as a hint. User experiences with
our prototype system show that novice users can create interesting and detailed models with our system.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Interaction techniques]: sketch-based modeling.

1. Introduction

The development of easy-to-use systems for creation of 3D
models is one of the most important research areas in mod-
ern computer graphics. While demand for 3D models has
been greatly increasing over the last few years, 3D surface
modeling remains difficult for most people, as commercial
modeling systems generally require technical expertise and
artistic skill.

Many efforts have been made to simplify the process of
3D modeling. One major approach is to provide sketch based
interfaces [ZPF96, IMT99] which allow users to draw 2D
sketches and infer simple 3D shapes from those sketches.
Another popular approach is to provide tools for composi-
tion of parts from existing 3D models [FKS∗04, SCoL∗04].
While these approaches have greatly simplified the 3D mod-
eling process, there are also limitations. Sketch based sys-
tems are natural and easy to learn, but limited to designing
simple shapes. Part composition systems can construct de-
tailed, complex models, but often require cumbersome ge-

ometric operations to construct similarity queries, place re-
trieved parts in the desired coordinate frames, and fuse parts
together.

In this paper, we describe a sketch-based modeling sys-
tem for composition of 3D parts. Unlike most previous
systems, sketched strokes are interpreted both as similarity
queries into a database of 3D parts and as alignment cues for
placement and composition of parts into a scene (Figure 1).
Specifically, for each modeling operation: (1) The user first
sketches an outline of the part he/she wants to include in the
scene at the place where it should be loaded. (2) The system
takes the sketch as a shape query, performs a shape search
on a given parts database, and shows the user the search re-
sult. (3) The user then selects a part he likes best from the
search result. Finally, (4) The system determines the selected
part’s geometrical relationship with the rest of the modeling
scene by taking the user sketch as a hint and automatically
orients, translates, scales, and attaches the part into the mod-
eling scene.

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

Figure 1: Modeling example using our prototype system

Our system combines the advantages of sketching with
those of composition. On the one hand, the system is easy to
learn and intuitive to use (simply sketch an outline of what
you want, where you want it). On the other hand, it sup-
ports creation of detailed, complex models (all the details of
models used are included in the final model). This synergy
significantly lowers the technical threshold to create inter-
esting 3D models. It is suitable for designing new instances
of most man-made objects (vehicles, furniture, etc.), many
types of natural objects (animals, people, etc), and scenes
composed of multiple objects (e.g., office scenes). As such,
we believe that it is useful for a wide variety of applications
ranging from rapid prototyping for industrial designers to
educational purposes for children.

2. Related Work

Our modeling system combines concepts of sketch-based
modeling, content-based retrieval, and 3D part composition.
Here we review previous work that our system builds upon
within these categories.

Sketch-Based Modeling: Our system is largely inspired
by the recent development of sketch-based modeling sys-
tems and the trend towards building modeling tools for
novices. The motivating idea we share with previous work is
to provide a simple and intuitive sketching method for cre-
ating 3D models. However, the interpretation and use of 2D
sketches is quite different in our system than it is in pre-
vious ones. Some systems interpret sketched strokes as pa-
rameters for construction of geometric primitives [KQW06,
YSv05, ZPF96]. Others interpret sketched input as con-
tours [KH05,KH06] or displacements [BCCD04] that imply
shape. Some use sketched outlines to infer the shape of a
complete, closed 3D surface [IMT99, IH03, NISA07], while
other systems use them as guidelines for local mesh defor-
mation [ZNA07, NSACO05]. In contrast, our system inter-
prets sketched lines as queries and placement guidelines for
parts of 3D models retrieved from a database. The work most
relevant to ours is Magic Canvas [SI07] system which uses
sketched lines in the same way to place 3D models in a scene
with limited orientations. However, this paper extends that
work for design of general objects as well as scenes with
larger degrees of freedom.

Sketch-Based Retrieval: Our work utilizes many ideas
previously proposed for retrieval of 3D models from a
database based on similarity to 2D sketches drawn by a
user. Several such systems exist, varying in the number and
type of sketches expected for each query, and how sketches
are matched to 3D models [FMK∗03, HR06, Lof00, JPR05].
For example, the Princeton Search Engine expects outline
sketches for up to three views and matches them to pre-
computed sketches for thirteen views of a 3D model us-
ing Fourier descriptors of rendered images [FMK∗03]. The
Purdue search engine matches 2D views using 2.5D spher-
ical harmonic descriptors, Fourier descriptors of boundary
contours, and Zernike moments of rendered images [HR07].
SR-3DEditor matches sketches to outline contours with turn-
ing functions and places retrieved models into the same
working space [AS05]. However, these systems only allow
retrieval of existing 3D models and provide no special fea-
tures for composition of parts into new models.

3D Parts Composition: Our work is also inspired by re-
cent work towards building 3D models by composition of
parts [FKS∗04, KJS07, LJW06, ONI06, SBSC06]. The gen-
eral philosophy is to gather a large database of 3D models
and then to provide methods to cut and composite them to
create new, interesting models. For example, Shuffler finds
a consistent segmentation of parts across several examples
within a class of objects and provides an easy interface for
exchange of corresponding parts [KJS07]. Modeling by Ex-
ample [FKS∗04] provides interactive methods for cutting
3D models into parts, searching a database for similar parts,
aligning parts, and attaching them across open boundaries.
However, these systems do not provide good easy ways to
construct queries for new parts. In Modeling by Example,
for example, the user must construct a coarse 3D model out
of boxes to represent the shape for a query into the database.
Our main contribution is to augment such systems with ideas
from sketch-based querying and modeling.

3. Overview

Our system is based on Modeling by Example
(MBE) [FKS∗04]. It supports all the features of the
original system, including intelligent scissoring of 3D
meshes, 3D shape similarity search for retrieving 3D
meshes, and stitching/blending for composition of 3D
meshes. It augments those features with a new sketch-based
interface and new algorithms to make search, placement,
and composition easier and more automatic.

Since the main design goal of our system is to provide
a sketch-based modeling interface that can be learned by a
novice user within minutes, we ask the user to understand
only one type of modeling command entered with a single
2D stroke: “find a part in the database whose outline has
a shape similar to my stroke and place it onto a surface of
the current scene so that it matches the position, size, and
orientation of the stroke as best as possible.” (Figure 1).

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

Of course, supporting such a command is challenging, as
the type, placement, and attachment of a new part must all
be inferred from a single 2D sketch. This is a grossly under-
constrained problem, and thus we must provide optimization
algorithms to find a solution that best matches the user’s in-
put. Since these algorithms are not always perfect, we also
must provide simple selection and undo commands to revise
and reverse the proposed solutions quickly and easily.

In our system, processing of each sketch-based modeling
command proceeds as shown in Figure 2. When the user
draws an editing stroke, the system feeds the 2D contour as
a shape-based query to 3D search engine which compares
the shape of the contour to the outlines of all parts in the
database using 2D image to 3D shape matching algorithm
(Section 4). The system generates a ranked list of the best
matching parts and displays them as a list from which the
user selects a part. Then, the user’s 2D sketch, the selected
part, and the current scene are fed into an optimization algo-
rithm that produces a best transformation for the part so that
its outline fits the user’s stroke while connecting as best as
possible to the existing surfaces of the current scene (Sec-
tion 5). If the part has a open boundary contour that could
be attached topologically to the current scene, a hole is cut
into the meshes for the scene, and the meshes are stitched
and blended together across the resulting boundary contours
(Section 6).

Figure 2: Steps performed for each modeling operation.

In the following sections, we describe our implementa-
tions for the main steps of this process: (1) retrieving parts
from a database to match a single 2D sketch, (2) placing re-
trieved parts into a scene to match constraints provided by
the 2D sketches and 3D surfaces, and (3) topologically at-
taching disjoint parts while blending across the seams.

4. Part Search

The first step is to retrieve parts from a database of 3D polyg-
onal models matching a single sketch by a novice user. Our
assumption is that the user draws an approximation to the

Figure 3: Example boundary contour images of a car body.

boundary contour of a desired 3D part as seen from the cur-
rent view. Thus, our goal is to search the database to find a
part such that the projected boundary contour of the part for
some view best matches the user’s stroke in screen-space.

Like many prior systems [FMK∗03,HR06,Lof00,JPR05],
we leverage preprocessing of the 3D model database to sim-
plify and accelerate the matching process. First, we extract
individual parts from 3D models using automatic mesh seg-
mentation algorithms, scene graph decompositions, and/or
interactive segmentation tools [FKS∗04]. Second, we align
the parts in a canonical 3D coordinate system, normaliz-
ing for translation, scale, and rotation using continuous PCA
methods (as in [FKS∗04]). Third, we generate multiple im-
ages for each part containing outline contours for differ-
ent orthogonal view directions [FMK∗03]. Finally, we com-
pute a shape descriptor for each image that can be matched
rapidly to compute a similarity measure to any 2D sketch
drawn by a user. The shape descriptors are indexed and
tagged by part ID and view direction.

Out system works with arbitrary sets of views. However,
in early experiments with our system, we have found that
novice users tend to sketch outlines for axis-aligned views
of parts, even when viewing a scene from an oblique view.
Thus, we have chosen to index 24 orthographic views of
each 3D part, corresponding to combinations of 6 possible
axis-aligned “towards” vectors and 4 possible axis-aligned
“up” vectors. For every view, V , for every part, P, the polyg-
onal mesh is first centered and scaled isotropically such that
its bounding box fills the image horizontally or vertically.
Then, the polygons are rendered in black on a white back-
ground, and edges are detected with a Canny edge detector
to produce a boundary contour image, B(P,V ) (Figure 3).
Then, we compute the squared distance transform of that
image to facilitate later computation of image similarities.
The stored result is a pair of images for every view of ev-
ery part containing a boundary contour and its squared dis-
tance transform. These two images form the shape descriptor
for every view of every part and are stored in an indexable
database.

For each user stroke, we aim to find the part(s) and view(s)
whose boundary contour image(s) is most similar to the
user’s stroke. To satisfy such a similarity query, several dis-
tance measures are possible, including ones based on Turn-

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

ing Functions, Fourier Descriptors, etc. For this project, we
have chosen to define the similarity between images based
on the sum of squared distances between closest non-zero
pixels [FKS∗04]. That is, for every pixel in the user’s stroke,
the distance measure adds the square of the distance to the
closest non-zero pixel in the boundary contour image, plus
vice versa. This distance measure is nice for our problem be-
cause: 1) it approximates the amount of work required to de-
form non-zero pixels of one image into the other, 2) it works
for images of any topology (the boundary contour of a part
may have many disconnected components), and 3) it can be
computed and indexed efficiently using the shape descriptors
described in the previous paragraph. Specifically, if squared
distance transform images, SD(A) and SD(B) are available
for two images A and B, then the dissimilarity measure can
be computed with a dot product:

d = Dot(A,SD(B))+Dot(SD(A),B)

We use this dissimilarity measure to produce a list of all
precomputed boundary contour images sorted by similarity
to the user sketch. The system then presents the list as a list
of thumbnail images where each thumbnail corresponding to
each boundary contour image B(P,V ) is a rendering of the
part P from the view V . The user can select the thumbnail
he likes best, indicating the part in the thumbnail should be
added to the scene with the orientation in the thumbnail.

5. Part Placement

The second step is to determine the similarity transforma-
tion with which the selected part should be added to the
scene. The goals for this step are three-fold: (1) the screen-
space outline of the transformed part should match the user’s
stroke, (2) the part should not be occluded or penetrated by
any part of the scene, and (3) the surface of the part should
be in stable contact (3 contact points) with the rest of the
scene.

Of these three goals, we consider the stroke a hint (since
most user drawings are approximate), while depth-order and
contact with the scene are constraints to be satisfied, if pos-
sible. Thus, we take a two-step approach to computing can-
didate part transformations, where an initial guess for the
transformation is generated based on the user’s stroke, which
is then optimized in a second step to enforce stable contact
with the current modeling scene, if possible.

In the first step, we compute a similarity transform for
which the projected outline of the part on the screen best
matches the user’s stroke. For this step, we utilize the ori-
entation derived from the thumbnail image that user chose
to determine the rotation. To determine the translation and
scale, we constrain the center of mass of the part to the cen-
ter of mass of the user’s stroke (a ray through the 3D scene),
and we constrain the bounding area of the part’s projection
onto the screen to match that of the user’s stroke [AS05].
These guidelines provide six constraints (three for rotation,

two for translation, and one for scale) on the seven parame-
ters of a similarity transformation. The final degree of free-
dom (translational depth) is initially chosen so that the part
centroid matches the average depth of polygons in the scene
(Figure 4a).

Figure 4: (a-b) The part (red) is initially placed so that its
size, orientation, center of mass in screen-space match the
user’s stroke and the depth of its center of mass matches
average depth of the scene (gray). (c) If the part overlaps
the scene in screen-space, it is moved back to a new position
with a single contact point (P1). (d) Then, the part is rotated
around P1 to produce a stable contact at P2 between the
part and the scene.

If the screen-space projections of the part and current
modeling scene overlap (as in Figure 4b), we optimize the
part’s depth and scale so that it sits in front of and touch-
ing the scene without penetration, while ensuring that it
maintains its screen-space projection (Figures 4c and 5b).
To perform this optimization, we must find the first point
of contact, P1, between the back side of the part and the
front side of the scene as the part is translated away from
the eye while being simultaneously scaled to maintain its
screen-space projection (such that all points of the scene
travel along rays from the eye). We perform this search in
discrete screen space using the depth buffer of the GPU. We
first render the current scene without the part and store the
closest depth value ds(x,y) of every pixel (x,y). Then, we
reset the depth buffer, invert the depth test function such that
higher depth values overwrite lower ones, render the part,
and store the furthest depth values dp(x,y). Then, we search
through pixels of these depth buffers to find the pixel (x,y)
with the minimal ratio of ds(x,y) to dp(x,y), and use it to
determine the scale (ds(x,y)/dp(x,y)) around the eye point
to ensure that: (1) the part’s screen-space projection is pre-
served, (2) the part is in front of the scene, (3) the part and
scene are in precise contact at least at one point, P1, and (4)

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

Figure 5: (a) The chair is initially placed so that it’s size, orientation, center of mass match the user’s stroke and its depth
matches average depth of the scene. The chair overlaps with other object in the scene (blue area). (b) The chair is moved to
a new position with a single contact point(P1). (c) The part placement is optimized to find at least two more points of contact
between the part and scene(P2 and P3). (d) As a result, all legs are touching the floor.

no point on the surface of the part penetrates the surface of
the scene.

The resulting transformation provides an optimal match
between the part’s outline and the user’s sketch in screen
space. However, it usually places the part in only one point
contact with the scene (at P1). During early tests, we have
found that users generally prefer part placements with more
stable contact with the scene, even if the placement causes
the part to rotate slightly such that the outline no longer
matches the drawn sketch optimally (i.e., the users care more
about the scene composition than the exact details of their
sketches, especially since they tend to draw orthographic
views of parts, even when they are adding the part to a scene
viewed in oblique perspective). Thus, during a second step,
we optimize the part transformation further, applying the
minimal rotation around P1 for which more points of contact
are found between the part and the scene (Figure 5). To do
this, we sequentially check for such a rotation around three
orthogonal axes through point P1: (1) N×V , (2) N×V ×V ,
and (3) V , where N is the normal to the surface of the scene
at point P1 (Figure 5b-c). For each of these three axes in
sequence, we check rotations up to M degrees (M = 45) in
increments of m degrees (m = 5) in least-to-most order inter-
leaving positive and negative directions, checking for part-
surface penetrations using the z-buffer at each rotation (as
described in the previous paragraph). We select the minimal
rotation before a part-scene penetration is found with this
procedure, and use the location of the penetration to deter-
mine a second point of contact P2 (Figures 4d and 5c). If no
second point of contact is found (within M degrees for all
three axes of rotation), the part is left at the transformation
with one point of contact. Otherwise, we perform a similar
rotational search around the axis supporting P1 and P2 to
find a third point of contact. We apply the found rotations to
providing stable placement of the part into the scene (Fig-
ure 5d).

While this rotational optimization may cause the part’s
projection onto the screen to deviate from the user’s stroke,
it is almost always what the user intended. This is a key fea-

ture, not a bug. The optimization allows the user to draw
strokes approximately (without worrying about drawing pre-
cisely in perspective from an oblique view), and the system
automatically transforms the part to integrate stably with the
scene. Thus, it is simple to put a chair on a floor with all 4
legs touching (Figure 5d), put a wheel on the back of a truck
(top row of Figure 6), or put a vase on a table (bottom row
of Figure 6) from a wide range of views.

Figure 6: Example optimized part placements.

6. Part Attachment

The last step is to attach the part topologically to the scene.
This operation is performed only when the following two
conditions are satisfied: (1) at least three points of contact are
found between the part and the scene, (2) the part has a hole
in its mesh within a small distance of the plane containing
those three points of contact. If any of these two conditions
is not satisfied (e.g., a mug on a table), the part is simply
added to the scene without topological attachment, which is
usually what the user intended.

The operations for topological attachment proceed for
each hole HP in the mesh of the part MP as follows. If three
points of contact are found during part placement, we use
them to establish a contact plane, CP. We then trace the
boundary of the hole on the mesh of the part and check

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

whether every vertex on the boundary is within a distance
threshold dA of CP and whether the plane of best fit through
the boundary has a normal within aA degrees of CP’s (the
default values for aA and dA are 45 degrees and 0.1 times
the distance from the furthest point on the part to CP in our
system). If so, the part’s hole(HP) is considered suitable for
topological attachment to the scene. Similar operations are
used to determine whether the scene has a corresponding
hole, HS.

In the case where this process finds a hole for the part but
not the scene, the system cuts a hole HS in the scene mesh
MS automatically. To do this, it first finds the face FS in the
scene mesh that is closest to the centroid of the boundary of
the part’s hole, HP (Figure 7b). It then removes FS from MS
and grows a hole HS using a depth-first search of MS. The
search stops when a face is found whose projection onto CP
lies entirely outside the projection of HP onto CP, or when
the face normal is back-facing with respect to CP. Note that
this process makes a hole HS that is usually one ring of faces
larger than that of the part, which is well-suited for topologi-
cal stitching followed by geometric blending (Figure 7c). HS
could be much larger than HP when the tessellation of MS is
coarse, but we believe this can be overcome by subdividing
MS in the future work.

Once two corresponding holes are available, one in the
part, and another in the scene, the system uses the method
described in [FKS∗04] to attach them. Briefly, a new set of
triangles is created to connect the boundary vertices of the
corresponding holes. Then, the neighborhood of the new tri-
angles is blurred by successive averaging of vertex positions
to smooth the joint between part and scene. This process pro-
duces a mesh that is locally water-tight and smooth along the
attachment (Figure 7).

7. Results

We have implemented the methods described in the previous
sections and deployed them in an interactive sketch-based
modeling system for 3D mesh retrieval and composition.
This section describes early experiences with this system,
particularly for novice users. All processing and experiments
were performed on a laptop computer with a 1.66GHz CPU
and 1GB of memory using a single set of parameter settings.

The system’s database is built upon the 907 3D models
provided with the Princeton Shape Benchmark [SMKF04].
The models were all segmented manually into parts and then
processed to construct boundary contour images and shape
descriptors for all 24 views of all parts. This processing took
3 hours of off-line computer time. Using this database, we
conducted two informal studies to investigate how easy our
sketch-based modeling system is to learn and to use. Dur-
ing these experiments, each search of the database took the
system less than 2 seconds, while part placement and attach-
ment took about 3 seconds, on average.

Figure 7: Attaching a wing to a rabbit. (a) User draws a
wing. (b) The wing is placed and the closest face on the sur-
face to the centroid of the wing’s hole is found. (c) New hole
is created. (d) Two holes are topologically attached with a
water-tight and smooth junction

During the first study, we selected three novice users with
no prior 3D modeling experience. Each user was trained for
10-20 minutes and then asked to design a 3D model match-
ing a scene provided in a photograph. This study is intended
to investigate how closely a user can create a model of an ob-
ject provided as a target. The photographs of target objects
(inset in upper left) and resulting 3D models are shown in
Figure 8.

The indoor scene was designed by a non-CS undergradu-
ate without experiences in 3D modeling, but with some ex-
posure to 3D Poser. It took him about 10 minutes to design
the room. He spent most of time trying to figure out good
”view” to draw things so that they will have desired orienta-
tion as they are added to the scene, ultimately deciding upon
the top-view for most operations.

The winged unicorn model was designed by a different
non-CS undergraduate without any experiences in 3D mod-
eling. It took him 5 minutes to create it. Wings and horn
were successfully added/attached in a single try. After creat-
ing a plausible rendition in a minute or so, he spent further
time trying to re-draw wings at different positions to achieve
more attractive results.

The chair model was designed by a third non-CS under-
graduate student without any experience in 3D modeling. It
took him about 10 minutes to design the chair. He started
by retrieving a frame and added the seat and the back to the
frame in one or two tries. However, he had trouble adding
two legs in a consistent manner. After trying several times
for the second leg, he decided to draw it approximately and
translate it further using direct manipulation controls pro-
vided with the system.

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

Figure 8: 3D models created by novice users in 5-10 minutes
after 10-20 minutes of instructions. The target provided to
the user is shown above-and-left of each model.

During informal surveys, we found that all three users
found the design process “intuitive” and generally were sat-
isfied with the search results and part placements provided
automatically by the system. However, they also found that
it is hard to perform certain operations in our system. For
example, when adding legs to both side of the chair as in
Figure 8, it is hard to add them in exactly same sizes and in
exactly symmetric manner, as sketches tend to be casual. Of
course, further capabilities to enforce symmetric edits could
be added to the system, but features of this type are beyond
the scope of this paper.

During a second study, we selected two different novice
users to create a model of their own design using the system.
This study was intended to investigate the suitability of the
system for conceptual design. Figure 9 shows the results,
each of which was made in 15-20 minutes.

Figure 9: 3D models designed and created by novice users
in 15-20 minutes. Inset images are colored by part.

In general, these users found the system easy to learn and
useful for creating new models. Even when a user had only
an abstract idea of what he wanted to add to a scene, he could
always draw a shape, and pick a part that he found interest-
ing from query results. Moreover, as each step of composi-
tion requires only a single sketch, and the system supports
infinite undo’s, the user could try out his ideas with little
burden. This suggests that our approach not only lowers the
technical threshold to 3D modeling, but also that of artistic
creation as well.

8. Conclusion & Future Work

In this paper, we investigate a new type of modeling sys-
tem for creating a new 3D object or scene with a sketching
interface. The system overcomes limitations of both popular
approaches in easy 3D modeling, sketch based modeling and
modeling by composition. User experiences with our proto-
type system suggest that the system is indeed easy to learn
and can create interesting and detailed 3D models.

This paper provides only a small, first step towards the
goal of providing advanced modeling to novice users. While
we do believe that our system is easier to learn and faster
to use than any other system capable of producing mod-
els with the same detail, there still are many limitations
and areas for future improvement. One possible area of fu-
ture work is to investigate ways to allow composition of
parts while maintaining global constraints (e.g., symme-
tries), as discussed in previous section. Another possible
research topic is to investigate sketch-based methods that
support not only search and composition, but also deforma-
tion. For example, currently in our system, the user cannot
find and use an arm that’s bent if there exist only straight
arms in the database. In the future, it seems interesting
to combine ideas on sketch-based composition of this pa-
per with complementary ideas on sketch-based deformation

c© The Eurographics Association 2008.



Jeehyung Lee & Thomas Funkhouser / Sketch-Based Search and Composition of 3D Models

(e.g., [NSACO05,OSSJ05,YZX∗04,ZNA07]). Investigating
other synergies between sketch-based modeling and sketch-
based retrieval seems like a fruitful area for future research.

Acknowledgements

We thank Don Kim for assistance with preparing figures
and the National Science Foundation (CNS-0406415, IIS-
0612231, and CCF-0702672) and Google for funding.

References

[AS05] ANDREOU I., SGOUROS N.: Shape-based re-
trieval of 3d models in scene synthesis. 3124–3129.

[BCCD04] BOURGUIGNON D., CHAINE R., CANI M.-
P., DRETTAKIS G.: Relief: A modeling by drawing tool.
In EUROGRAPHICS Workshop on Sketch-Based Inter-
faces and Modeling (2004).

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE

P., MIN P., KIEFER W., TAL A., RUSINKIEWICZ S.,
DOBKIN D.: Modeling by example. In Proceedings of
SIGGRAPH 2004 (2004).

[FMK∗03] FUNKHOUSER T., MIN P., KAZHDAN M.,
CHEN J., HALDERMAN A., DOBKIN D., JACOBS D.: A
search engine for 3d models. In ACM Transactions on
Graphics (2003), vol. 22, pp. 83–105.

[HR06] HOU S., RAMANI K.: Sketch-based 3d engineer-
ing part class browsing and retrieval. In EUROGRAPH-
ICS Workshop on Sketch-Based Interfaces and Modeling
(2006).

[HR07] HOU S., RAMANI K.: Classifier combination for
sketch-based 3d part retrieval. Journal of Computers &
Graphics 31 (2007).

[IH03] IGARASHI T., HUGHES J. F.: Smooth meshes for
sketch-based freeform modeling. In ACM Symposium on
Interactive 3D Graphics (2003), pp. 139–142.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: A sketching interface for 3d freeform design. In
Proceedings of SIGGRAPH 1999 (1999), pp. 409–416.

[JPR05] JIANTAO PU K. L., RAMANI K.: A 2d sketch-
based user interface for 3d cad model retrieval. Computer-
Aided Design & Applications 2, 6 (2005), 717–725.

[KH05] KARPENKO O., HUGHES J. F.: Inferring 3d free-
form shapes from contour drawings. In SIGGRAPH Tech-
nical Sketches (2005).

[KH06] KARPENKO O., HUGHES J. F.: Smoothsketch:
3d free-form shapes from complex sketches. ACM Trans-
actions on Graphics (SIGGRAPH 2006) (2006).

[KJS07] KRAEVOY V., JULIUS D., SHEFFER A.: Shuf-
fler: Modeling with interchangeable parts. In Visual Com-
puter Journal 2007 (2007).

[KQW06] KU D. C., QIN S. F., , WRIGHT D. K.: A
sketching interface for 3d modeling of polyhedrons. In

EUROGRAPHICS Workshop on Sketch-Based Interfaces
and Modeling (2006).

[LJW06] LIN J., JIN X., , WANG C.: Sketch based mesh
fusion. Advances in Computer Graphics 4035 (2006), 90–
101.

[Lof00] LOFFLER J.: Content-based retrieval of 3d models
in distributed web databases by visual shape information.
iv 00 (2000), 82.

[NISA07] NEALEN A., IGARASHI T., SORKINE O.,
ALEXA M.: Fibermesh: Designing freeform surfaces with
3d curves. In Proceedings of SIGGRAPH 2007 (2007).

[NSACO05] NEALEN A., SORKINE O., ALEXA M.,
COHEN-OR D.: A sketch-based interface for detail-
preserving mesh editing. In Proceedings of SIGGRAPH
2005 (2005), pp. 1142–1147.

[ONI06] OWADA S., NIELSEN F., IGARASHI T.: Copy-
paste synthesis of 3d geometry with repetitive patterns.
Lecture Notes in Computer Science 4073 (2006), 184–
193.

[OSSJ05] OLSEN L., SAMAVATI F., SOUSA M., JORGE

J.: Sketch-based mesh augmentation. In Eurograph-
ics Workshop on Sketch-Based Interfaces and Modeling
(2005).

[SBSC06] SHARF A., BLUMENKRANTS M., SHAMIR

A., COHEN-OR D.: SnapPaste: an interactive technique
for easy mesh composition. 835–844.

[SCoL∗04] SORKINE O., COHEN-OR D., LIPMAN Y.,
ALEXA M., ROESSL C., SEIDEL H. P.: Laplacian sur-
face editing. In In Proc. Eurographics/ACM SIGGRAPH
symposium on Geometry processing (2004), pp. 179–188.

[SI07] SHIN H., IAGARASHI T.: Magic canvas: Inter-
active design of a 3-d scene prototype from freehand
sketches. In Proceedings of Graphics Interface 2007
(2007).

[SMKF04] SHILANE P., MIN P., KAZHDAN M.,
FUNKHOUSER T.: The Princeton Shape Benchmark. In
Shape Modeling International (June 2004), pp. 167–178.

[YSv05] YANG C., SHARON D., VAN DE PANNE M.:
Sketch-based modeling of parameterized objects. EU-
ROGRAPHICS Workshop on Sketch-Based Interfaces and
Modeling (2005).

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H.,
GUO B., SHUM H.-Y.: Mesh editing with poisson-based
gradient field manipulation. In ACM Transactions on
Graphics (2004), vol. 23.

[ZNA07] ZIMMERMANN J., NEALEN A., ALEXA M.:
Silsketch: Automated sketch-based editing of surface
meshes. In EUROGRAPHICS Workshop on Sketch-Based
Interfaces and Modeling (2007).

[ZPF96] ZELENIK R. C., P.HERNDON K., F.HUGHES J.:
Sketch: An interface for sketching 3d scenes. In Proceed-
ings of SIGGRAPH 1996 (1996).

c© The Eurographics Association 2008.


