
Parallel Rendering with K-Way Replication

Rudrajit Samanta, Thomas Funkhouser, and Kai Li

Princeton University∗

Princeton, NJ 08540

Abstract

With the recent advances in commodity graphics hardware perfor-
mance, PC clusters have become an attractive alternative to tradi-
tional high-end graphics workstations. The main challenge is to
develop parallel rendering algorithms that work well within the
memory constraints and communication limitations of a networked
cluster. Previous systems have required the entire 3D scene to be
replicated in memory on every PC. While this approach can take
advantage of view-dependent load balancing algorithms and thus
largely avoid the problems of inter-process communication, it lim-
its the scalability of the system to the memory capacity of a single
PC. We present a k-way replication approach in which each 3D
primitive of a large scene is replicated on k out of n PCs (k << n).
The key idea is to support 3D models larger than the memory ca-
pacity of any single PC, while retaining the reduced communica-
tion overheads of dynamic view-dependent partitioning. In this pa-
per, we investigate algorithms for distributing copies of primitives
among PCs and for dynamic load balancing under the constraints
of partial replication. Our main result is that the parallel render-
ing efficiencies achieved with small replication factors are similar
to the ones measured with full replication. By storing one-fourth
of Michelangelo’s David model (800MB) on each of 24 PCs (each
with 256MB of memory), our system is able to render 40 million
polygons/second (65% efficiency).

Keywords: Parallel rendering, interactive visualization,
cluster computing, computer graphics systems.

1 Introduction

In spite of recent advances in computer graphics hardware, the de-
mands for polygon rendering rates continually exceed the capabil-
ities of any single computer. For example, isosurfaces extracted
from The Visible Woman contain approximately 10 million poly-
gons [14], and 3D models of Michalangelo’s sculptures captured
with laser-range scanners contain tens of millions, or even billions,
of triangles [13]. In these cases and many others, the models are
at least an order of magnitude too large to be rendered at interac-
tive rates, and yet subpixel-resolution details of rendered images
are important to the user, preventing use of detail elision techniques
to accelerate frame rates [6]. For decades to come, or at least until

∗[rudro,funk,li]@cs.princeton.edu

Jurassic Park can be rendered at interactive frame rates, the demand
for high-performance graphics will exceed the capabilities of any
single computer by a large factor.

Our objective is to build an inexpensive polygon rendering sys-
tem capable of displaying complex 3D polygonal models at interac-
tive frame rates. Most previous work in high performance rendering
has focused on building large, high-end computers with multiple
tightly-coupled processors, for example SGI’s InfiniteReality and
UNC’s PixelFlow machines. The main drawback of this approach
is that the hardware in these systems is custom-designed and there-
fore very expensive, sometimes costing millions of dollars.

The focus of our research is to investigate parallel rendering with
inexpensive commodity components. In this study, we aim to con-
struct an efficient and scalable system leveraging the aggregate ren-
dering performance of multiple PCs connected by a system area
network. The motivations for this approach are numerous. First, we
can leverage the favorable price-to-performance ratio of commod-
ity graphics hardware, which far exceeds that of custom-designed,
high-end rendering systems. Second, we can readily take advantage
of future technology improvements by replacing commodity com-
ponents as faster versions become available. Third, we can scale
the aggregate system bandwidth simply by adding more PCs to the
network. Finally, we can employ general-purpose computers that
can be used for other applications when not running visualization
programs.

The main challenge is to develop efficient partitioning and load
balancing algorithms that work efficiently within the processing,
storage, and communication characteristics of a PC cluster. As
compared to large-scale, tightly-integrated parallel computers, the
two most important limitations of a PC cluster are that each pro-
cessor has a limited amount of memory (e.g., 256MB), and cluster
communication performance is typically an order of magnitude less
than a tightly-coupled system (e.g., 100MB/sec vs. 1GB/sec). The
challenge is to overcome these limitations by developing coarse-
grained algorithms that distribute the storage of the model across
multiple PCs, partition the workload evenly among PCs, minimize
extra work due to parallelization, scale as more PCs are added to
the system, and work efficiently within the constraints of commod-
ity components.

Recent work in parallel rendering with PC clusters has focused
on strategies that assign rendering work for different parts of the
screen to different PCs [18, 24, 25]. It has been shown that com-
munication overheads can be reduced by partitioning the workload
in a view-dependent manner so that pixels rendered by one PC can
be sent to the display directly with little or no depth compositing.
However, current methods require either replicating the entire 3D
scene on every PC [24, 25] or dynamically re-distributing primitives
in real-time as the user’s viewpoint changes [19]. Unfortunately,
neither approach is practical for a PC cluster, since the memory of
each PC is usually too small to store all the data for a very large
model, and the network is too slow to transmit 3D primitives be-
tween PCs in real-time. Since current trends indicate that the size
of 3D models and the performance of 3D graphics accelerators are
growing faster than PC memory capacity and network bandwidth,
these problems will only become worse in the future.



Our approach is based on partial replication of data. During an
off-line phase, we organize the input 3D model into a multireso-
lution hierarchy of objects and replicate each object on k out of n
server PCs (k << n). Then, during an on-line phase, we perform a
view-dependent partition of the objects, selecting exactly 1 out of k
servers to render each object. We use a peer-to-peer, sort-last com-
munication strategy to composite the rendered images to form the
final image. The key idea is to avoid replicating the entire 3D model
on every PC and to avoid real-time transmission of 3D primitives,
while achieving reduced communication overheads due to dynamic
view-dependent partitioning. The goal of our study is to investigate
how well this approach works and to understand the tradeoffs of
various algorithms at each stage of the process.

In this paper, we present a working prototype system that per-
forms parallel rendering on a PC cluster without any special hard-
ware. Our main contributions are: (1) a novel k-way replication
strategy that trades off memory for communication overheads in a
parallel rendering system, (2) new methods for distributing repli-
cated primitives and assigning work to avoid starvation, maintain
balance, and reduce overheads, and (3) integration of hierarchical
scene traversal with load balancing to maintain interactive frame
rates during parallel rendering of large scenes. Using these ideas,
we have built a system that is able to render 30-48M triangles per
second at interactive frame rates while storing only one-fourth of
the scene in memory on each PC.

2 Background and Related Work

Parallel rendering systems are often classified by the stage in which
primitives are partitioned: sort-first, sort-middle, or sort-last [7, 17].

Most traditional systems have been based on the sort-middle ap-
proach, in which graphics primitives are partitioned among geome-
try processors, screen tiles are partitioned among rasterization pro-
cessors, and a fast communication network is used to send primi-
tives from geometry processors to rasterization processors based on
their tile overlaps. This approach is not well-suited for a PC cluster
due to its high communication bandwidth requirements.

In sort-first systems, screen-space is partitioned into non-
overlapping 2D tiles, each of which is rendered independently by a
tightly-coupled pair of geometry and rasterization processors, and
the subimages for all 2D tiles are composited (without depth com-
parisons) to form the final image. The main advantage of this
approach is its relatively low communication requirements. Un-
like sort-middle, sort-first can utilize retained-mode scene graphs
to avoid most data transfer for graphics primitives between proces-
sors [18, 19]. For instance, Samanta et al. [25, 26] described a
sort-first system in which a static scene database is replicated on
every PC of a cluster. Buck, Humphreys et al. [4, 12] described a
PC-based system in which one or more clients send OpenGL com-
mands over a system area network to servers rendering different
parts of the screen. In both cases, the efficiency is limited by the
extra work that must be done to render graphics primitives redun-
dantly if they overlap multiple tiles. In general, since overlap fac-
tors grow linearly with increasing numbers of processors, the scal-
ability of sort-first systems is limited [18]. Moreover, since the ren-
dering assignment of any graphics primitive to a processor is made
dynamically based on its screen-space projection, assignments can
vary rapidly. Thus, the scene database must be fully replicated for
fast access by every processor, or a dynamic scene distribution algo-
rithm must be used to move scene data from processor to processor
based on its predicted screen projection. Either method limits the
scalability of the system for a PC cluster.

In sort-last systems, each processor renders a separate image
containing a portion of the graphics primitives, and then the result-
ing images are composited (with depth comparisons) into a single
image for display. The main advantage of sort-last is its scalability.

Since each graphics primitive is rendered by exactly one proces-
sor, the overlap factor is always 1.0. A disadvantage of sort-last is
that it does not preserve primitive ordering semantics, which makes
antialiasing and transparency difficult to support. Also, sort-last
systems usually require a network with high bandwidth for image
composition. Although it is possible to build special-purpose net-
working hardware for compositing [16, 27, 30], this approach re-
quires custom-designed components, which are expensive. Also,
latency is induced if compositing is done in multiple stages [16].

There has been considerable work over the last decade on reduc-
ing the overheads of image composition in sort-last systems. For in-
stance, Ma et al. [15] reduced pixel redistribution costs by keeping
track of the screen-space bounding box of the graphics primitives
rendered by each processor. Cox and Hanrahan [9] went further by
keeping track of which pixels were updated by each processor (the
“active” pixels) and only composited them instead of compositing
the entire screen. Ahrens and Painter [1] compressed pixel color
and depth values using run-length encoding before transmitting
them for composition. Other researchers have investigated com-
position schemes for specific network topologies [15, 20, 29] or
viewing conditions [21]. However, some of these methods are ef-
fective only if the viewpoint does not “zoom-in” to view a portion
of the model, and none of them has achieved low enough commu-
nication bandwidths for interactive rendering on a PC cluster. Most
encouraging speedup results have been reported for systems oper-
ating either at low resolution (such as 256x256 or 512x512) or at
non-interactive frame rates (a few frames per second).

Recently, Samanta et al. [24] described a hybrid system in which
sort-last pixel compositing overheads were significantly reduced by
executing a dynamic sort-first primitive partition for each view-
point. Since both pixel and primitive partitions were created to-
gether dynamically in a view-dependent context, their algorithm
could create tiles and groups such that the region of the screen cov-
ered by any group of 3D polygons was closely correlated with the
2D tile of pixels assigned to the same PC. Accordingly, relatively
little network bandwidth was required to re-distribute pixels from
PCs that rendered polygons to others that composited the over-
lapped pixels. While this approach achieves attractive efficiency
(55-70%), it still required full replication of the scene database on
every PC, thereby limiting its scalability.

To summarize, none of these previous methods allows visual-
ization of very large models while leveraging the cumulative ren-
dering power of commodity PCs. Current sort-middle and sort-last
systems require too much communication bandwidth. Current sort-
first and hybrid systems require too much memory in every PC. Our
goal is to develop a system that overcomes these limitations of a PC
cluster and achieves low-cost, high-efficiency parallel rendering.

3 Basic Approach

Our architecture is based on the hybrid sort-first and sort-last ap-
proach of Samanta et al. [24]. The key new idea is to replicate
every primitive in a scene k times among n rendering PCs (where
k << n). We call this strategy “k-way replication.”

The motivations for k-way replication are evident in Figure 1.
In the image on the left (Figure 1(a)), a sort-last system with 1-
way replication (no copies) must composite nearly full-screen im-
ages if the primitives assigned to each processor are distributed uni-
formly throughout the model (processor assignments are indicated
by color).

Alternatively, a system with n-way replication (full replication)
can reduce the image composition overheads by assigning primi-
tives to processors dynamically for each view in order to minimize
the size of screen regions rendered by different processors [24]. For
instance, in Figure 1(c)), image composition is required only for
the thin swaths at the seams between primitives of different colors.



(a) k = 1 (b) k = 4 (c) k = 16

Figure 1: K-way replication enables sort-last pixel composition
bandwidths closer to n-way replication (n = 16) with memory ca-
pacity closer to 1-way replication. Color of each bounding box
indicates which server renders its enclosed triangles. (Also shown
in Color plate 1)

Unfortunately, this purely view-dependent partitioning approach re-
quires the entire scene to be replicated on every processor.

Our new k-way replication approach avoids full replication of
the scene data. But, it can employ view-dependent load balancing
algorithms, since every primitive is available on more than one pro-
cessor. With k-way replication, we expect to achieve performance
similar to n-way replication, but with storage costs closer to 1-way
replication (see Figure 1(b)).

4 System Overview

Our system executes in five stages, as shown in Figure 2. The
first two stages are performed once per 3D model as preprocess-
ing steps:

• Preprocess: Scene Graph Construction: During the first
preprocessing stage, the system takes as input an arbitrary 3D
polygonal model and automatically builds a scene graph with
multiple “levels of detail” [6]. The result is a set of objects ar-
ranged in a bounding volume hierarchy, in which each object
stores a graphical representation with near-constant complex-
ity (e.g., 500 polygons per object). The leaf objects store the
original polygons of the input model (decomposed into spa-
tially coherent groups), while the interior objects store sim-
plified versions of their children. Details are provided in Sec-
tion 5.1.

• Preprocess: Object Replication: During the second prepro-
cessing stage, the system assigns every object to be stored on
k out of n server PCs. The goal of this stage is to distribute
copies of the objects in a manner that allows a later load
balancing algorithm to perform an effective view-dependent
partition, while avoiding starvation of any server as the user
zooms in to view a subset of the scene (as long as there is suf-
ficient work to keep all servers busy). Details are provided in
Section 5.2.

Once the preprocessing steps are completed, a user may view
the model interactively with our system. The following three stages
are executed for every frame of an interactive session. They are ar-
ranged in a three-stage asynchronous pipeline comprising one client
PC, n server PCs, and a display PC connected by a system area net-
work (see Figure 2):

• Client: Traversal and Assignment: During the first on-line
stage, the client PC traverses the multiresolution scene graph
from top to bottom to determine which objects are visible
from the user’s viewpoint and which have appropriate levels
of detail to be rendered in an interactive frame time. It assigns
each such object to be rendered on exactly one server. Then,
it partitions the screen into a rectangular uniform grid of tiles
and assigns each of them to be composited by a server. Details
are provided in Sections 5.3-5.5.

• Server: Rendering and Pixel Composition: In the next
stage, every server PC renders all objects it has been assigned
by the client, reads back the color and depth values of the
resulting pixels, compresses them, and sends them over the
network to the other servers compositing the overlapped tiles.
Then, as the server receives pixels rendered by other servers, it
decompresses them and composites them with depth compar-
isons into its local copy of the corresponding tiles, and sends
the composited color values for each completed tile to a dis-
play PC. Details are provided in Sections 5.6-5.7.

• Display: In the final stage, the display PC receives tiles of
pixels from all the servers, and loads them into its frame buffer
(without depth comparisons) for display. Details are provided
in Section 5.8.
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5 Implementation

In this section, we investigate issues in building our prototype sys-
tem and discuss algorithms for making each stage work effectively.

5.1 Preprocess: Scene Graph Construction

The first preprocessing stage of our system takes as input a static
3D model consisting of an unorganized set of polygons and auto-
matically builds a multiresolution scene graph data structure from
them. The goals are: (1) to create a coarse-grained index for the
primitives to facilitate assignment to servers, (2) to construct a com-
pact bounding volume hierarchy to facilitate view frustum culling,
and (3) to augmente the hierarchy with “levels of detail” (LODs)
to enable the client to maintain a constant frame rate during later
interactive viewing sessions.

Multiresolution scene representations have been well-studied,
dating back to Clark’s seminal paper in 1976 [6]. In our system, we
are motivated to choose a hierarchical structure of discrete objects,
each comprising multiple polygons [6, 10]. This choice facilitates
coarse-grained assignment of work to servers, which is important in
a distributed system with high-latency communication; it enables
time-critical selection of LODs suitable for interactive display; it
allows use of retained display lists, which provide faster rendering
rates on most graphics hardware; and, it enables relatively accurate
estimates of rendering time due to aggregation of estimation errors
over multiple polygons. In exchange for these benefits, we accept
the sudden “pops” that come with discrete LOD switches, noting
that polygons are smaller in our system and pops are less notice-
able than in comparable single processor systems.

We have chosen to implement a version of Clark’s original scene
graph structure [6] in which each object in the hierarchy contains
a list of polygons representing a simplified version of its children.
Our method for constructing the multiresolution hierarchy proceeds
as follows (see Figure 3). Starting with the original model, we apply
a sequence of simplification steps using Rossignac’s vertex merg-
ing algorithm [23] with greater and greater decimation factors. This
produces polygonal representations for a discrete set of levels, Li,
usually with a little less than half as many polygons in each coarser
level. We then partition the polygons for each level into a set of spa-
tially compact objects using a k-d tree. Starting with the polygons
of the coarsest level, L0, binary splits are applied recursively along
the dimension of the longest axis of its bounding box. The position
of the split is chosen such that the two smaller objects have nearly
equal numbers of primitives. The recursive splits continue until the
number of polygons left in every object is below some threshold.
A spatially coherent hierarchy is constructed by pre-applying the
same splits made in level i to all finer levels j (j > i) and by as-
signing each object of level i + 1 as a child of the object at level
i corresponding to same k-d cell (see Figure 3). The result is a
bounding volume hierarchy of objects in which every object stores
a polygonal representation of its descendents with approximately
the same rendering complexity (e.g., 500 polygons per object).

Note that this structure expands the storage required for the
model by

∑d

i=0 1/bd, where d and b are the depth and branch-
ing factor of the scene graph hierarchy, respectively. We usually
choose b ∼ 2 in order to avoid too much storage overhead, while
minimizing the effects of switching levels of detail.

5.2 Preprocess: Object Replication

The second preprocessing stage determines how to replicate objects
on the servers. The goal is to develop a strategy that provides the
on-line load balancing algorithm with sufficient choices for render-
ing assignments so that it can balance the load among the servers
while avoiding starvation and large pixel composition overheads.
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Figure 3: Construction of the multiresolution scene graph. The
scene is first simplified successively (coarser levels are higher in
the tree). Then, each level is decomposed into objects containing
nearly the same number of polygons with recursive binary space
partitions (dark lines). This structure allows the client to perform
efficient view frustum culling and select an appropriate level of de-
tail to maintain an interactive frame rate.

Achieving this goal is non-trivial due to the unpredictable access
patterns of a multiresolution scene graph traversal. Since each ob-
ject is rendered only for certain viewpoints, and every server stores
only a partial subset of the objects, there is a significant risk that
servers might be starved of work when the user zooms in to view a
subset of the model. This concern implies that primitives replicated
on each server should be uniformly distributed throughout the scene
graph in order to avoid starvation (see Figure 4(a)).

On the other hand, less overheads due to pixel composition can
be achieved if objects replicated on each server are clustered in
screen-space. This observation implies that objects resident on each
server should be arranged in large, spatially coherent groups (e.g.,
“cubes” or “slabs” [15, 21]) so that the cumulative screen-space
overlaps of objects rendered by different servers is small. However,
in this case, if the user zooms in to view a smaller portion of the
data, some servers may be starved for work, which would cause
imbalances in the rendering loads (see Figure 4(d)).

(a) g = 0 (b) g = 1 (c) g = 2 (d) g = 3

Figure 4: Visualization of varying g. The overlaid rectangle indi-
cates a frame in which the user zooms in on the head. The color of
each bounding box indicates on which server the enclosed triangles
are stored. (Also shown in Color plate 2)

Our solution is to store on each server a set of objects arranged
in spatially compact “cubes” at k different granularities. Since
every object can be replicated k times, it can be grouped with
other objects in k cubes of different sizes suitable for different



viewpoints. The finest granularity corresponds to distributing ob-
jects among servers in a round-robin fashion – which is suitable
for avoiding starvation when the viewpoint is zoomed close to the
object. Coarser granularities correspond to sets of objects on the
same server residing in larger “cubes” – which are suitable for more
zoomed out viewpoints. The motivation for this approach is to al-
low a later on-line, view-dependent load balancing algorithm to be
able to choose a set of spatially co-located objects for each server
at the granularity that both avoids starvation and minimizes pixel
composition overheads.

In our implementation, we use the scene graph structure to find
spatially co-located groups of objects with different granularities.
Conceptually, “cubes” are constructed by replicating groups of ob-
jects that are close to each other in the bounding volume hierarchy
on the same server. We use a “granularity” parameter g to indicate
that objects should be replicated on a server by themselves (g = 0),
with their siblings (g = 1), with their siblings and first cousins
(g = 2), and so on. When k is greater than 1, the resulting tree is
equivalent to combining trees with multiple granularity parameters.

Figure 5 shows schematic replication results for a simple scene
graph using our k-way approach. The shade(s) shown in each ob-
ject, indicate the server(s) on which it is replicated. The top row
(Figure 5(a-c)) shows examples for k= 1 (each object has a single
shade). Note that when g = 0, each object is assigned to a server
distinct from its siblings. When g = 1, if we look at any given ob-
ject, then we notice that its siblings are assigned to the same server.
At g = 2, this condition extends to include cousins as well. Since
child nodes are spatially co-located, this strategy allows us to form
“blocks” of objects. In Figure 5(d-f), we set k = 2 and hence each
object now has two distinct shades. In this case, the replication pat-
terns are a combination of the ones for k = 1. For instance, the
pattern in the lower half of (e) (k = 2, g = 1) is equivalent to
the one in (b) (k = 1, g = 1), and the pattern in the upper half is
equivalent to the one in (a) (k = 1, g = 0).

(a) k = 1, g = 0

(d) k = 2, g = 0

(b) k = 1, g = 1

(e) k = 2, g = 1

(c) k = 1, g = 2

(f) k = 2, g = 2

Figure 5: Schematic diagram showing how every object (circle) is
replicated with the multiresolution cubes algorithm. The different
granularities cause trade-offs between screen-space coherence and
starvation at run-time.

5.3 Client: Scene Graph Traversal

Once the preprocessing steps are complete, a user can view the
model under interactive control of a client machine. It loads the
multiresolution scene graph (without the polygons) and traverses
the scene graph to find a set of objects for each server to render
in every frame. During the traversal, it culls objects to the current
view-frustum using hierarchical intersection tests with their bound-
ing spheres. A unique feature of our system is that the client inte-
grates load balancing into a multiresolution scene graph traversal.

In this way, it is able to predict the rendering times and overheads
for each server and use the estimates to guarantee an interactive
frame rate.

For each frame, the scene graph traversal proceeds by visiting
objects from top to bottom. Initially, the root object is assigned to
a server and placed on a queue. Then, as each object is popped
off the queue, it is marked “unassigned,” and all its children whose
bounding spheres intersect the view frustum are added to the queue
and assigned to servers. The process continues until the predicted
processing time of the maximally loaded server reaches a user-
specified time bound, or until the pixels/polygon density of objects
not yet on the queue is below some threshold.

This multiresolution assignment procedure allows our system to
either (1) vary the scene detail to maintain a target frame rate, or (2)
vary the frame rate to maintain a specified level of detail. We be-
lieve that this is the first system to integrate time-critical rendering
with coarse-grained parallelism.

5.4 Client: Object Assignment

During the multiresolution scene graph traversal, the client assigns
each object to be rendered by a server. The goal is to assign objects
in a manner that balances the load, minimizes overheads, and ad-
heres to the assignment constraints imposed by k-way replication.

As with any parallel system, the client must trade-off two factors
when assigning objects: balancing the work loads and minimiz-
ing the overheads. In our system (for small k) the former factor is
largely linked to starvation, while the latter factor is linked to avoid-
ing pixel composition – i.e., minimizing the number of screen-space
tiles overlapped by objects assigned to different servers.

Of course, finding an optimal solution for this assignment prob-
lem is NP-hard, and thus we focus our search on effective heuris-
tics. We have experimented with two greedy strategies. The first
one assigns objects to the least loaded server (“Least Server First”),
focusing only on load balance. The second strategy is motivated
by reducing pixel composition overheads. It assigns objects to the
server whose estimated pixel redistribution overheads will increase
the least. Yet, if the work load previously assigned to that server is
already above a per server threshold, it searches the list of objects
that were previously assigned to it and moves to another server the
object whose incremental overheads increase the least. This last
step helps balance the load and avoid starvation.

Within the second strategy, we have tried two methods. One
explicitly computes incremental object tile overlaps by “rasteriz-
ing” the object’s bounding box into the tile grid and counting the
number of new tiles that must be read for each server if the ob-
ject is assigned. We call this method “Least Cost First”. The other
method uses a simpler computation: each server is represented by
a “dot” on the screen, computed as the average of the screen-space
projections of the centroids of objects assigned to the server in the
previous frame. The relative cost of assigning an object to a server
is approximated by the distance between the server’s dot and the
projection of the object’s centroid. We call this method “Closest
Dot First”. The intuitive motivation for this method is that it can
utilize global knowledge about the distribution of objects from the
previous frame, and thus servers can “map out” separate regions
of the screen utilizing frame-to-frame coherence, thereby reducing
pixel composition overheads.

5.5 Client: Tile Assignment

After all objects have been assigned to servers, the client partitions
the screen into tiles and assigns each server a set of tiles to com-
posite. For each tile assigned to a server, other servers will send
their rendered pixels for the tile so that they can be composited
with depth comparisons to form a complete image for the tile. The



(a) Michelangelo’s “David” [13]
(8,254,150 triangles, ∼800MB)

(b) Face of Michelangelo’s “St. Matthew” [13]
(6,755,412 triangles, ∼700MB)

(c) Visible Man Skeleton (without feet) [14, 28]
(2,432,525 triangles, ∼250MB)

Figure 6: Test models used in our experiments.

goal of the client in this stage is to distribute the pixel composition
work evenly among the servers, possibly filling in any imbalances
created by uneven object assignments.

We have implemented two algorithms for the tile assignment.
The first algorithm assigns the tiles in a static interleaved manner.
This approach suffers from imbalances, as the work to composite
some tiles is much more than others. The second arranges the tiles
in decreasing order of predicted work and then performs a greedy
first-fit-decreasing assignment. This second algorithm consistently
outperforms static interleaved assignment, and thus we use it for all
the results presented in later sections.

5.6 Server: Rendering

Once the client has partitioned the work, the servers render their
respective portions of the model. In our system, the servers store
the geometry corresponding to its subset of the objects as a ver-
tex array. We use the glInterleavedArrays() function in
OpenGL to render the arrays with vertex normals and lighting. We
currently measure approximately 2.4M triangles per second with
this method using nVidia GeForce II graphics cards. We note that
triangle strips could generally be used in order to further improve
rendering performance on each server. However, finding the fastest
rendering mode for each API and graphics card is outside the scope
of this study.

5.7 Server: Peer-to-Peer Pixel Composition

After objects are rendered, the servers are responsible for depth
compositing the resulting pixels to form the final image. The com-
posite operations are performed by the servers in a peer-to-peer
fashion. The client sends information to servers indicating which
server is responsible for a given screen-space tile. Servers that have
rendered to tiles for which they are not responsible for the com-
positing operations must read back these tiles from the framebuffer
and forward these (with both color and depth information) to the
server in charge of this tile.

Two interesting issues arise during this stage. First, reducing
the total amount of data transferred over the network is important,
since network bandwidth is a potential bottleneck in our system.
Second, the servers must transmit data in a manner such that the
network is utilized efficiently by reducing contention and hiding
transfer latencies.

To reduce the required network bandwidth, the tile images are
compressed with run-length encoding after they are read back from

the framebuffer. In our tests we notice that we are able to cut down
network traffic by 50% as a result of this straightforward and effi-
cient compression scheme. An added advantage of this scheme is
that we are able to perform the depth composite of a tile using its
compressed representation. This reduces the number of compare
operations required leading to faster depth compositing of tiles.

As network contention is a critical issue in PC clusters, schedul-
ing network transfers carefully is important. One option is to have
each server render all of the objects assigned to it and then send
the pixels of its rendered tiles all at once. This creates bursty traf-
fic on the network. Instead, we choose to interleave rendering and
network sends. When the client informs the server which objects
should be rendered, it indicates which objects overlap each tile.
This allows the server to render all the objects that overlap a tile,
read back the color and depth for the resulting pixels, and send them
to the appropriate server before proceeding to the next tile. This
communication pattern utilizes the network far more efficiently and
we notice significantly lower latencies in our system.

After the server has received all pixels for a tile from its peers and
composited them together, it sends the resulting color pixel values
to the display.

5.8 Display

The display receives tiles that have been composited by the servers
and copies them into its framebuffer (without depth comparisons).
The resulting images are projected on a rear projection display.

6 Experimental Results

We have developed a prototype system that implements the meth-
ods described in this paper, and we use it to conduct experiments to
evaluate our design and algorithms. The goals of the experiments
are to answer the following questions:

• Which object assignment algorithms work best?
• What is the effect of varying the replication factor (k)?
• What is the effect of varying the replication granularity (g)?
• Can the system maintain a constant frame rate?
• Does our system perform well?

We use the system’s efficiency (useful polygon rendering
time divided by total frame time) at interactive frame rates (15
frames/second) as our primary metric for success.
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(c) k = 4
Figure 7: Comparison of measured (top) and simulated (bottom) results for our tests with the David model using 16 server PCs. The times
are decomposed into sections representing (from bottom to top) render time (blue), pixel read time (gray), pixel write time (orange), network
wait time (red), and imbalance time (yellow).

6.1 Experimental Platform

Our experimentation platform is a PC cluster with a client PC, 24
server PCs, and a display PC. Each PC is a Dell Precision Worksta-
tion 420 with a 733Mhz Pentium III CPU, an Intel 840 chipset with
133Mhz front-side bus, 256MB of dual-channel RDRAM mem-
ory, and a nVidia GeForce-II chip based graphics card. Each PC
runs Microsoft Windows 2000. The communication network is
Myrinet [3]. Each PC uses a previous-generation, 32-bit 33Mhz
PCI network interface card that has 2MB of SDRAM and a 33Mhz
LANai-4 network processor. The 26 PCs are networked together
with a 32-port switch which is implemented with eight 8-port cross-
bar switches. We have used the GM driver for Windows 2000 pro-
vided by Myricom. The total cost of the system is around $50K.

Experiments were executed with the three test models shown in
Figure 6. They were selected based on their complexities and de-
tails. Each one contains too much data to fit into the memory of
a single PC, and they have surface details that motivate a user to
zoom in and examine the models closely.

In every experiment, we logged performance statistics while the
system rendered images for a camera moving along a simulated
user’s viewing path. Each path started with the camera framing
the 3D model. It rotated around the model (1/2), zoomed up close
to the surface, panned for a while (1/2), and then zoomed back out.
Except for our final speedup results (in the last subsection), the mul-
tiresolution scene graph traversal was set to render around 100,000
polygons per frame on each server.

6.2 Comparison of Simulated and Measured Data

We have implemented both a real working system and a simula-
tion. The working system provides our main results. However, it
is sometimes interesting to use simulations to investigate the pre-
dicted performance of our approach in cases impractical to run on
the real system. For instance, the Michaelangelo sculptures do not
fit fully in memory (k = n) on our server PCs. In experiments
where these data points are relevant, we present simulation results.
We present real system results in the final subsection titled “Perfor-
mance Results.”

To validate our simulation results, we show both real and sim-
ulation results for n = 16 and k = 1, 2, 4 in Figure 7. The total

height of each plot represents the time in milliseconds required for
the slowest server in each frame of the test. The imbalance time
represents the difference between the slowest server and the aver-
age one. From these plots, which are representative of others, our
simulation data is quite close to our real measurements.

6.3 Evaluation of Object Assignment Algorithms

In our first experiment, we evaluated the performance of our system
with different object assignment algorithms using the David model
with n = 16 and g = 0. The goal of the experiment is to determine
which algorithms work best and which factors dominate the system
performance. Because we were interested in the performance of
each algorithm when k = n, we present simulation data here.

The results are shown in Table 1. The first column lists the algo-
rithm, second is the replication factor, the next four list the average
render, pixel read, pixel write, and imbalance times (same as in the
plots). The sum of these four times is the Frame Time. Finally,
the efficiency (render time / frame time) is listed in the rightmost
column.

Render Read Write Imbal Frame Effic
Alg k Time Time Time Time Time (%)

2 40.03 18.60 2.57 0.27 61.46 67.21
Least 4 40.03 18.15 2.51 0.35 61.03 67.60
Server 8 40.03 18.94 2.61 0.18 61.75 66.83

16 40.03 19.34 2.67 0.17 62.21 66.43
2 40.03 15.29 2.11 4.21 61.64 66.60

Least 4 40.03 11.87 1.64 6.51 60.04 68.16
Cost 8 40.03 9.70 1.33 13.36 64.41 63.12

16 40.03 4.72 0.62 3.89 49.26 82.28
2 40.03 13.25 1.83 5.25 60.35 67.57

Closest 4 40.03 9.56 1.31 6.43 57.33 71.26
Dot 8 40.03 8.27 1.14 5.97 55.40 74.02

16 40.03 4.33 0.57 4.42 49.35 82.05

Table 1: Comparison of object assignment algorithms during simu-
lation with David model for n = 16. All times are in milliseconds.

As expected, the “Least Server” algorithm provides very good
balance (the imbalance times for all k are at most .35ms). But, it
incurs more pixel read and pixel write overheads (>18ms) than the
other algorithms, and thus its efficiencies are less for most values of



k. Somewhat unexpectedly, the “Closest Dot” algorithm performs
better than “Least Cost” in all cases, except when k = n. It seems
that more exact local cost estimates for the current frame are not as
useful as global information garnished from the previous frame.

The client times average between 20ms and 35ms. Since this is
a single stage in a pipelined system, we notice that the client time
is unimportant as the servers are our bottleneck. We find that in
our current system, the client is fast enough to drive the servers at
interactive frame rates.

6.4 Analysis of Replication Factor and Granularity

We next conducted an experiment to evaluate the trends of perfor-
mance by varying the replication factor (k) and granularity (g) dur-
ing simulations with the David model running on 16 servers. We
used the “Closest Dot” algorithm. Our hypothesis is that even small
replication factors will provide performance comparable to full n-
way replication.

Table 2 shows the simulation results with values of g ranging
from fine granularity (g = 0) to coarse granularity (g = 3), and k
ranging from no replication (k = 1) to full replication (k = 16).
The meaning of each column is the same as Table 1, except for the
one labeled “Avail Ratio,” which is the minimum number of visible
primitives available to each server divided by the average number
primitives rendered by a server each frame. A value less than 1.0
means that a server is definitely starved for rendering work. Two
main trends are noticeable in this table.

Render Read Write Imbal Frame Avail Effic
g k Time Time Time Time Time Ratio (%)

1 40.0 19.1 2.6 5.8 67.5 0.9 60.3
2 40.0 13.3 1.8 5.3 60.4 1.6 67.6

0 4 40.0 9.6 1.3 6.4 57.3 3.3 71.3
8 40.0 8.3 1.1 6.0 55.4 3.5 74.0

16 40.0 4.3 0.6 4.4 49.4 16.0 82.1
1 40.0 16.2 2.2 10.0 68.4 0.7 59.8
2 40.0 12.1 1.7 9.3 63.1 1.5 64.2

1 4 40.0 9.9 1.4 6.1 57.4 2.4 71.1
8 40.0 7.7 1.1 4.7 53.5 5.2 75.9

16 40.0 4.3 0.6 4.4 49.4 16.0 82.1
1 40.0 12.1 1.7 20.7 74.5 0.6 55.3
2 40.0 10.8 1.5 10.7 63.0 1.2 64.9

2 4 40.0 9.3 1.3 14.7 65.2 1.8 62.2
8 40.0 8.0 1.1 4.9 54.0 4.1 75.5

16 40.0 4.3 0.6 4.4 49.4 16.0 82.1
1 40.0 8.7 1.2 30.5 80.4 0.4 51.0
2 40.0 8.7 1.2 25.0 74.9 0.6 54.6

3 4 40.0 7.7 1.1 28.2 77.05 0.8 53.4
8 40.0 7.8 1.1 4.8 53.7 4.9 75.8

16 40.0 4.3 0.6 4.4 49.4 16.0 82.1

Table 2: Comparison of performance for different replication fac-
tors (k) and granularities (g) for simulations with the David model
for n = 16. All times are in milliseconds.

First, as the granularity (g) of objects assigned to the same server
increases, we see that the pixel read and write times decrease, but
the imbalance times increase, causing overall efficiencies to vary
only slightly. The reason is because higher values of g represent
larger 3D clusters of objects replicated together on the same server.
This enables the view-dependent load balancing algorithm to assign
objects to servers with less cumulative screen overlaps when the
viewpoint is “zoomed out”. Yet, it causes servers to become starved
(Avail Ratio is low) when the replication factor is small (e.g., k ≤
4) and the viewpoint is “zoomed in” (see Figure 4(d)). Overall,
we find that fine to moderate granularity (of replication g = 0 or
g = 1) provides the best results on average in our tests.

Second, as the replication factor (k) increases, we see that the
system’s efficiency increases. The reason is due to reduced pixel
read and write times. With larger k, the view-dependent load bal-
ancing algorithm has fewer constraints regarding which objects can
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Figure 8: Plot of efficiency as we vary replication factor (k). Note
that the Y-axis begins at 50%.

be assigned to each server, and thus it can partition the objects into
sets with greater screen locality (see Figure 1). The net result is
less pixels to be rendered, read back from the frame buffer, trans-
mitted over the network, and composited by the servers. We note
that the efficiency improvement is non-linear (see Figure 8). This
is a positive result. It confirms that the k-way approach is an effec-
tive way to achieve view-dependent object assignments with small
replication factors.

6.5 Maintaining a Uniform Frame Rate

Our next experiment compares the results of our system rendering
a fixed number of polygons versus maintaining a uniform frame
time. The difference is whether the overheads due to pixel reads
and transfers are taken into account by the multiresolution assign-
ment algorithm. The graphs are shown in Figure 9. We observe
that the algorithm that maintains a fixed number of polygons has a
uniform render time. However, the overheads due to pixel transfers
and compositing cause the final frame time to vary significantly. In
contrast, we see that the time critical algorithm is able to take the
overheads into account during the assignment phase, allowing it to
trade-off render time (by reducing detail) for overhead time in or-
der to keep the sum nearly constant. This result indicates that it is
indeed feasible to combine multiresolution techniques for maintain-
ing uniform frame rates with a parallel rendering algorithm, taking
both rendering time and parallelization overheads into account.
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(a) Uniform rendering time
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(b) Uniform frame time

Figure 9: Comparison of assignment algorithm with uniform ren-
dering time and with uniform frame time (including overheads).
The times are decomposed into sections representing (from bottom
to top) render time (blue), pixel read time (gray), pixel write time
(orange), network wait time (red), and imbalance time (yellow).



6.6 Performance Results

In our final experiment, we tested the performance achievable with
our system using k-way replication for all three test models. For
simplicity of comparison, we set the total number of polygons ren-
dered by all server PCs in each frame to be 2.4 million in every test.
Note that this translates to around one frame per second on a single
PC.

An interesting aspect of this experiment is that we can load more
copies of the data as more PCs (and more memory) are added to the
system. Essentially, the 1/n portion of the model for each server
gets smaller as n grows, leaving room in memory for more repli-
cated copies of the data (greater k). In these experiments, we set
dk = 1

4ne for n = 2, 4, 8, 16, 24. We used the “Closest Dot” al-
gorithm and g = 1. To obtain results for n = 2, we temporarily
added extra memory to the two server PCs.

Figure 10 shows the scalability of our system as we add more
servers. We see that the system is able to achieve between 30M
and 48M triangles/sec for the three test models in our maximum
test configuration (k = 6 and n = 24). The performance includes
the overhead of software image composition and the overhead to
send result pixels to the display. This performance represents about
52.1%, 65.3%, and 73.9% efficiencies for St. Matthew, David,
and Visible Man, respectively, while executing at 12.9, 16.25, 20.0
frames per second.
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Figure 10: Plot of millions of polygons per second rendered by our
real system during tests with three large models.

7 Discussion

Our study has shown that using a multi-stage hybrid parallel ren-
dering pipeline with k-way replication works effectively on a PC
cluster to render a large, detailed scene database that does not fit in
the memory of a single PC. Yet, many problems remain open for
future research and investigations.

First, the sort-last based parallel rendering pipeline described in
this paper does not enforce primitive ordering. While this is not
a significant limitation for the visualization applications we have
tested, it would be a problem for ones that rely upon transparency.
To address this problem, we could partition objects into layers to be
composited in back-to-front order [22]. This approach is an inter-
esting topic for further study.

Second, the approach described in this paper only extends the
size of models by n/k where n is the number of rendering servers
and k is the replication factor. We have shown that k = 4 works
quite well. However, data visualization applications may require
an out-of-core method to store and traverse their databases. Pre-
vious studies have focused on out-of-core techniques for a single

machine [5, 8]. We believe that k-way replication principles can
apply to out-of-core database management for multiple computers.
For instance, it may be beneficial to store multiple copies of each
data element on different disks in order to provide flexibility regard-
ing which computers load and process data. This is an interesting
and important area of future research.

Third, the study reported in this paper considers a display at
1Kx1K resolution, and the current system area network bandwidth
is not adequate for software peer-to-peer image composition for dis-
plays with much higher resolution. It would be interesting to inves-
tigate how to use the k-way replication approach with display walls
and other distributed frame buffers [2, 11]. Samanta et al. [26]
proposed a screen partitioning approach for a PC cluster that drives
a multi-projector display system, but their method requires a copy
of the database on every rendering server. It is worthwhile to study
how to integrate their methods with our k-way approach.

Fourth, our current system has a single client. Certain parallel
rendering systems such as WireGL [4] separate clients from render-
ing servers and allow multiple clients to drive the rendering servers.
We believe that the k-way replication and assignment algorithms
proposed in this paper can apply to how a scene database is stored
on multiple clients.

Finally, we have only worked with static scenes in this study.
Supporting dynamic scenes would require updates to the scene
graph during the on-line stages of our process. An extension for
dynamic rigid body motions seems possible and presents an inter-
esting topic for further work. Similarly, one could consider inte-
grating k-way replication as a caching mechanism for a system with
dynamic data migration.

8 Conclusion

This paper describes the design, implementation and experiments
of a multi-stage hybrid parallel rendering system for a PC cluster.
Our work makes two main contributions.

First, we have proposed and demonstrated a k-way replication
approach to distribute a large scene database across multiple PCs.
This approach takes advantage of the aggregate memory resources
in a PC cluster (in addition to the aggregate rendering power) to ren-
der a detailed scene database far larger than the memory of a single
PC. We have demonstrated that our rendering pipeline from client
to display can render a complex scene database such as Michelan-
gelo’s David at the rate of about 40 million polygons a second on a
24 rendering server cluster at an interactive frame rate.

Second, we investigated replication strategies and load balanc-
ing algorithms within the framework of our k-way replication ap-
proach. In our experimental studies, we showed that a simple
method for dynamic screen partitioning based on proximity to dots
representing servers performs quite well. We learned from our ex-
periments that with a small k, the efficiency improves quickly, ap-
proaching the n-way (full) replication case. For example, we have
showed that k = 4 works quite well for medium size clusters such
as 24 rendering servers. Choosing k is a way to trade off commu-
nication and memory usage.

This is a first step towards studying how to design a parallel
graphics pipeline to trade off communication bandwidth and ag-
gregate memory resources for a PC cluster.
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