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Abstract

This paper describes network services to support
large multi-user virtual environments. A client-
server design is proposed in which multiple servers
coordinate execution, manage communication, off-
load processing, and provide persistent storage for
their clients. Using this design, it is possible to sup-
port real-time features, such as collision detection,
voice bridging, persistent updates, physical simu-
lation, and autonomous agents, that would be dif-
ficult to implement for large virtual environments
with a peer-to-peer design. The paper includes a
description of services being implemented in RING,
a client-server system for interaction between many
users in large virtual environments.

1 Introduction

Multi-user virtual environment applications incor-
porate computer graphics, sound simulation, and
networks to simulate the experience of real-time in-
teraction between multiple users in a shared three-
dimensional virtual world.
interactive interface program on a “client” com-
puter connected to a wide-area network. The in-
terface program simulates the experience of im-
mersion in a virtual environment by rendering im-
ages/sounds/etc. of the environment as perceived
from the user’s simulated viewpoint. Each user is
represented in the shared virtual environment by
an entity rendered on every other user’s computer
(see Figure 1). Multi-user interaction is supported
by matching user actions to entity updates (e.g.,
motion/sound generation) in the shared virtual en-
vironment.

Each user runs an

Applications for multi-user virtual environment
technology include distributed training, simula-
tion, education, home shopping, virtual meetings,
and multiplayer games. For example, consider a
virtual city in which multiple users interact in real-
time. As each user moves through the city, a graph-
ical representation of that user is displayed moving
on each other user’s screen. When any user talks
into a microphone, his/her voice is played with ap-
propriate stereo control so as to appear to come
from the position of the entity representing the
speaker. Social interactions and commerce might
be more compelling with a 3D virtual city interface
incorporating both graphics and sound than with
textual or 2D multimedia interfaces such as those
employed by current chat programs and browsers
for the world wide web.

Figure 1: Multiple users (represented by spheres)
interact in a virtual environment.

There are several examples of multi-user virtual
environments available in research and commercial
systems today. First, various research systems al-
low simple multi-user interactions in 3D virtual en-
vironments [2, 6]. Second, commercial multi-player



games allow a small number of users to play in a
shared 3D gaming experience [9]. Third, MUDs
and chat groups allow hundreds of people to inter-
act via text over networks in real-time [8]. Finally,
military simulators allow up to a few hundred sol-
diers to train simultaneously on a shared virtual
battlefield [4, 13]. Although there are many ex-
amples of interactive, real-time applications with a
shared experience between multiple users, none of
them provides the important combination of real-
time graphics, real-time voice, and persistent data;
and none scales to a very large number of users.

Interactive virtual environments with many si-
multaneous users distributed over a wide-area net-
work provide an interesting research challenge due
to their unique performance and distribution char-
acteristics. The system must provide real-time,
synchronized, and persistent access to data describ-
ing the virtual environment, even though the data
is logically distributed across many clients and can
be updated very frequently.

Historically, most multi-user virtual environment
systems have been built using a peer-to-peer com-
munication design. Clients store replicate copies
of the virtual environment and maintain consistent
state by passing messages via point-to-point [2, 15],
multicast [5, 13], and/or broadcast networks [3, 4]
(see Figure 2). The difficulty with peer-to-peer sys-
tem designs is that they don’t scale well. Generally,
every client must store a representation for every
entity, every client must process messages for every
entity, and every client must simulate behavior for
every entity in the virtual environment. Addition-
ally, fully distributed algorithms must be used to
synchronize access to shared data.
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Figure 2: A multi-user virtual environment system.

The focus of this paper is to investigate services
that can be provided to support multi-user virtual
environments via a client-server design [10, 12, 16].
The idea is to include multiple server computers
that perform processing and manage communica-
tion for their clients. In this case, the “dumb” net-
work shown in Figure 2 is replaced by an “intelli-
gent” network which provides coordination, com-
putation, and storage services for the system (see
Figure 3). We aim to overcome the difficulties of
peer-to-peer system designs by implementing sev-
eral components of the system in network-resident
servers ! which provide coordinating infrastructure
and off-load processing, networking, and storage
burden from the client computers. Our goal is
to develop systems that are more realistic, more
scalable, more persistent, more interactive, and /or
more affordable than is possible with a peer-to-peer
system design.
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Figure 3: Servers manage communication and pro-
cessing for a multi-user virtual environment.

The next section motivates the need for network
services. Sections 3-6 describe specific services that
may be supported in the network for multi-user vir-
tual environment systems. Finally, a brief discus-
sion and conclusion appears in Section 7.

'A service is considered to reside logically “in-the-
network” if it does not execute on any client. Of course,
it may actually execute on any computer connected to the
network.



2 Network Services

The primary motivation for providing services in
the network is that many functions of a multi-user
virtual environment system are not logically con-
trolled by any of its clients. For instance, which
client should manage updates to the shared parts
of the virtual environment (e.g. the roads of the
virtual city)? Which client should control au-
tonomous agents (e.g., tour guides)? How are up-
dates to the shared environment stored persistently
(e.g., when all users have turned off their comput-
ers)? Servers also provide a convenient location for
coordination and synchronization of distributed al-
gorithms (e.g., consider algorithms for generating
unique entity IDs). Although it is possible to im-
plement shared functions in a purely peer-to-peer
system via complex election and agreement pro-
tocols, it is simpler and more efficient to manage
and synchronize shared resources using a few server
computers connected by fast networks.

Another motivation is that supporting the illu-
sion of immersion and real-time interaction among
many users in a virtual environment requires a lot
of processing, networking, and storage capacity.
The system must generate realistic-looking images
on the screen of each client computer at frame rates
suitable for interactive user control (i.e., more than
ten frames per second). It must bridge streams of
voice input from all users into a stream of voice
output to be played on each client computer. Also,
it should support collision detection, persistent up-
dates, physical simulation, autonomous agents, and
several other features requiring large amounts of
computing resources. In conflict with these compu-
tational demands, practical economics dictate that
affordable, large scale, multi-user systems must be
built primarily using low-cost client computers. Al-
though the capabilities of desktop computers is
growing at an astounding rate, it will be quite a
while before computers supporting all these fea-
tures are widely available and inexpensive. Cer-
tainly, today’s high-end PCs (with pentium pro-
cessors, 8MB of memory, and 28.8 Kb/s modems)
are insufficient for simulation of large multi-user
virtual environments by themselves.

Server computers can assist the clients by exe-
cuting some operations remotely. We aim to mi-
grate operations whose computing requirements

exceed what is generally available in clients, and
whose latency requirements allow remote execu-
tion, onto server computers with faster proces-
sors, faster network connections, larger memories,
and possibly special hardware. Since servers are
shared between many clients, large scale systems
can be constructed affordably using inexpensive
clients (PCs) with low bandwidth network connec-
tions (modems), while more expensive high per-
formance workstations (SGIs) and high bandwidth
networks (ATM) are required only for a relatively
few servers and their interconnections.

The challenge of building a client-server system
is to identify which operations should be imple-
mented in clients, and which should be imple-
mented in servers. In general, the choice is dic-
tated by function, expense, and performance. Op-
erations requiring hardware too expensive to in-
clude in each client must be performed in servers
(e.g., voice bridging). Other operations may be im-
plemented in either clients or servers depending on
their processing, memory, messaging, and latency
requirements. In particular, operations that are
extremely sensitive to latency (e.g., rendering for a
head-mounted display) are not good candidates for
execution in remote servers.

For the remainder of this paper, we describe
and discuss services that are being included in
servers for a multi-user virtual environment system
called RING (Real-time Interactive Networked
Graphics) [10]. Although a mulitude of network
services are possible, this paper focuses on the fol-
lowing ones: 1) message distribution, 2) interaction
detection, 3) voice bridging, and 4) database ser-
vices.

3 Message Distribution

In order to support very large numbers of users
(> 1000) interacting simultaneously in a multi-user
virtual environment it is necessary to develop a sys-
tem design and communication protocol that does
not require sending update messages to all partic-
ipating clients for every entity state change. To
accomplish this goal, we can off-load message dis-
tribution responsibilities from clients into message
servers. If we include intelligent message servers in
the network, clients do not need to send messages
directly to other clients, but instead can send them



to message servers which forward them to other
clients and servers participating in the same multi-
user virtual environment (see Figure 4).
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Figure 4: Message servers manage communication
for their clients.

A key feature of this system design is that mes-
sage servers can process updates before propagat-
ing them to clients, culling, augmenting, or altering
them, and therefore off-load some message process-
ing burden from their clients. For instance, a mes-
sage server may determine that a particular update
is relevant only to a small subset of clients and then
propagate the message only to those clients or their
message servers. In addition, a message server may
send clients auxiliary messages that contain status
information helpful for future client processing. Fi-
nally, a message server may replace some set of
messages intended for a client with another (pos-
sibly simpler) set of messages better suited to the
client’s performance capabilities.

An important advantage of message servers is
that they can dramatically reduce the message pro-
cessing and network bandwidth burden of their
clients. For instance, consider distribution of mes-
sages for updates to the positions of entities moving
through the environment shown in Figure 1. If we
aim to support only visual interactions, then each
client must receive updates only for the subset of
entities that are visible to its own entities (see Fig-
ure 5).

In RING, message servers use object-space vis-
ibility algorithms to compute the region of influ-
ence for each update and propagate the update
only to the small subset of clients to which the up-
date is relevant. Message filtering is implemented
using precomputed line-of-sight visibility informa-

tion stored in the message server for each region
of the environment. As entities move through the
environment, message servers keep track of which
regions contain which entities by exchanging “pe-
riodic” update messages when entities cross region
boundaries. Real-time update messages are propa-
gated only to servers and clients containing entities
inside some region visible to the one containing the
updated entity.

With servers filtering messages based on entity
visibility, each client must process only 2% of up-
date messages in the virtual environment shown
in Figure 1. For densely occluded environments,
client message rates scale with the density of enti-
ties rather than the number of entities in the envi-
ronment, and thus the RING system design scales
to very large environments with very many simul-
taneous users while client message processing rates
remain constant. It would be difficult to dupli-
cate these results in a peer-to-peer system since the
storage for precomputed visibility regions and the
network bandwidth for periodic messages would ex-
ceed the capabilities of most client computers. See
[10] for more details.
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Figure 5: Update messages must only be propa-
gated to clients managing entities that can perceive
the updates.

Another advantage of message servers is that dis-
tribution of messages for high-level management
of the virtual environment can be performed by
servers without the involvement of every client.
For instance, adding or removing an entity to or
from the virtual environment requires notification
of only one message server. That message server



handles notification of other appropriate servers
and clients. Since the message servers maintain
the routing tables necessary for distribution of mes-
sages, clients are more modular, and may be added
or removed from the system seemlessly. More-
over, the client-server design allows use of efficient
networks and protocols available between server
workstations, but not universally available to all
clients. For instance, clients may connect to servers
via low-bandwidth, connection-oriented networks
(modems), while servers communicate with each
other via high-bandwidth, packet networks (ATM).

The disadvantage of message servers is that la-
tency is introduced as messages are routed through
one or more server. In our experience, the extra la-
tency is not significant. In extreme situations, long
latencies can be mitigated with predictive behav-
ioral models simulated in clients.

4 Interaction Detection

Detecting interactions (e.g., sight, sound, colli-
sions, etc.) between entities in a multi-user vir-
tual environment often requires complex geometric
computations, and thus is a good candidate for as-
sistance from server machines. Naive algorithms
for detecting interactions between n entities exe-
cute in O(n?) and require up-to-date locations for
all n entities. More efficient algorithms use spa-
tial data structures [7, 14] and/or precomputed re-
gional interactions [1, 17] to search for potential
interactions. In any case, typical interaction de-
tection algorithms for large virtual environments
require more processing power, storage capacity,
and/or network bandwidth than is available on af-
fordable client computers.

Unfortunately, real-time interactions (e.g., colli-
sions) require low latency response, and thus it is
not practical to execute real-time interaction detec-
tion algorithms entirely in compute servers. How-
ever, servers can still assist clients with interaction
detection by performing latency tolerant parts of
the computation, while latency sensitive parts are
executed locally in each client. In virtual envi-
ronments with many entities, a large portion of
an interaction detection computation is devoted
to determining which entities can possibly inter-
act. The O(n?) space of potential interactions is
pruned via conservative approximation techniques

(e.g., bounding boxes). Then, exact interactions
are computed for the remaining subset using more
precise algorithms. Based on this model of com-
putation, we include interaction detection servers
in the network that monitor updates to entities
and conservatively predict interactions, notifying
clients of potential interactions via messages (see
Figure 6). With this server assistance, each client
must compute exact interactions only for a small
subset of the entities in the virtual environment.
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Figure 6: Interaction detection servers monitor en-
tity updates and notify clients of potential entity
interactions.

In RING, interaction detection servers compute
potential visual interactions between entities and
notify their clients via messages whenever an entity
might become visible or invisible. Servers store a
precomputed cell-to-cell visibility mask which con-
tains over-estimates for visibility from any partic-
ular entity viewpoint (see Figure 7). Whenever an
entity moves between cells, the server sends “Add
Entity” messages to clients whose entities are in
cells visible to the new cell, but not visible to the
old cell. Likewise, “Remove Entity” messages are
sent to clients whose entities are in cells visible to
the old cell, but not visible to the new cell.

The server originated messages warn clients of
potential visual interactions before they occur.
Therefore, operation is tolerant of long message la-
tencies. They allow clients to execute exact visi-
bility algorithms considering fewer entities so that
clients require less processing power, less memory
capacity, and less network bandwidth. Since en-
tities move between cells relatively infrequently,
the extra messages sent by servers do not increase
the network bandwidth to each client significantly.
Similar techniques can be used for other types of
interactions.



Figure 7: RING servers use precomputed cell-to-
cell visibility (stipple) to predict potential visual
interactions between entities.

5 Voice Bridging

In order to allow natural human interaction in a
shared virtual environment, a system must sup-
port verbal communication between users. That
is, users should be able to talk to each other (and
hear each other) in a manner appropriate for the
context of the shared 3D virtual environment. As-
suming each client computer can capture an in-
put voice stream with a microphone, and can play
another (possibly stereo) output stream through
headphones or speakers, the challenge for the sys-
tem is to map the n input voice streams (one from
each client) into a n output streams (one for each
client). This mapping should simulate the proper-
ties of realistic sound propagation through the 3D
environment.

The process of combining n input voice streams
and producing a single output stream is called voice
bridging. Currently available voice bridges gener-
ally use DSP processors to produce n output voice
streams as weighted sums of n input voice streams
[11]. This type of voice bridge can be represented
by a matrix with element a; ; corresponding to the
gain of input; for output;. Conceptually, inputs
come in on the left (rows) and are weighted to form
outputs which come out on the bottom (columns).

We aim to approximate sound propagation
through a virtual environment by adjusting the
weights of a voice bridge dynamically so that voices
are combined with gains appropriate for entity po-

sitions and orientations in the virtual environment.
Of course, it is not possible to simulate complex
sound propagation patterns exactly using this tech-
nology, but perhaps it is sufficient to provide spatial
cues for speaker location and recognition. For in-
stance, voices for users represented by entities fur-
ther away in the virtual environment can be made
to appear fainter (a; ; < 1), and voices behind solid
walls can be masked out entirely (a;; = 0). If
stereo voice channels are available to each client,
and delays or reverberations can be added in the
voice bridge, we can provide further spatialization
cues.

Clearly, supporting voice interaction in a purely
peer-to-peer system is daunting, as it requires all
n clients to receive and bridge n — 1 voice streams
transmitted by other clients. Practical clients have
neither the network bandwidth nor the process-
ing power to support such operations. However,
it is feasible to support voice interaction in multi-
user virtual environments by including shared voice
bridge servers in the network.

The RING system design for voice bridging is
shown in Figure 8. Clients use SVD modems to si-
multaneously send and receive voice streams along
with update messages comprising entity positions
and orientations. Each client’s transmission is split
into its voice and data parts, with the voice part
going directly to a voice bridge, and the data part
going to a voice bridge controller. The voice bridge
controller updates the weights in the voice bridge
dynamically based on the positions and orienta-
tions of entities in the virtual environment. A pre-
computed cell-to-cell audibility map (similar to the
cell-to-cell visibility mask described in the previous
section) is used to accelerate computations in the
voice bridge controller.
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Figure 8: Voice bridges weight users’ voices based
on the position and orientation of entities in the
virtual environment.



The implementation of real-time voice in virtual
environments is still very experimental. Further re-
search is required to determine which types of spa-
tialization cues are valuable for meaningful com-
munication among multiple participants.

6 Database Services

An important aspect of real-life virtual environ-
ment systems is support for database services, such
as persistence, concurrency control, access control,
and crash recovery. Many multi-user virtual envi-
ronment applications require permanent updates to
shared data. For instance, if a person makes a pur-
chase in a virtual department store, the item should
be removed from the store’s inventory. Or, if an
engineer modifies a part in a 3D design, the mod-
ification should be permanently available to other
engineers sharing the design. It is important that
only users with appropriate priviledges be granted
access to shared data, and that no two users are
able to modify the same shared data concurrently.
If the system crashes, shared data should be recov-
ered reliably.

For multi-user virtual environment systems,
shared database operations are best implemented
in database servers located logically in the network
(see Figure 9). Although clients cache replicate
copies of shared data locally, a “master” copy for
each piece of persistent, shared data (i.e., not tran-
sient data — such as entity positions) is stored on
a database server. Whenever a client makes an
update to the shared data, a message is routed
to the appropriate database server managing the
data. The database server is responsible for pro-
tecting access to data, synchronizing updates, and
updating client data caches after modifications.
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Figure 9: Database server provides persistent up-
dates, concurrency control, access control, and
crash recovery for a multi-user virtual environment.

Systems incorporating database servers simplify
implementation of several services useful for multi-
user virtual environments. For instance, database
servers can provide access to on-line data (e.g.,
stock quotes, newspaper articles, banking transac-
tions, etc.) so that appropriate up-to-the-minute
and real-world data can be incorporated into vir-
tual environments. Servers can also monitor and
log updates in order to generate usage statistics,
provide play-back for multi-player games, or sup-
port billing services. These features would be diffi-
cult to implement in a peer-to-peer system without
complex agreement protocols and mutual trust be-
tween peers.

7 Conclusion

Multi-user virtual environment systems support in-
teractions between many users in a shared virtual
world. Many of the practical and technical chal-
lenges involved in implementing these systems can
be addressed with a client-server design wherein
multiple servers assist their clients with messaging,
processing, and storage. Server computers: 1) co-
ordinate the distributed system, 2) manage mes-
sage distribution, 3) off-load processing, 3) sup-
port voice bridging, and 4) provide database ser-
vices for the system. In a client-server system, the
processing power, memory capacity, and network
bandwidth requirements of clients is reduced sig-
nificantly. Therefore, affordable multi-user systems
can be constructed comprising mostly inexpensive
client computers with low-bandwidth network con-
nections, while a relatively small number of high
performance server workstations connected by fast
networks are needed to support these clients. As
a result, client-server systems scale affordably to
very large shared environments.
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