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Abstract clouds of a city.

This paper investigates the design of a system for rec- Data representing geometry of this scale is relatively
ognizing objects in 3D point clouds of urban environments. nNew, and not many algorithms exist to try to identify objects
The system is decomposed into four steps: locating, segfrom 3D data in real-world cluttered city environments. Al-
menting, characterizing, and classifying clusters of 3D gorithms have been proposed for modeling speci ¢ object
points. Speci cally, we rst cluster nearby points to form types (e.g., buildings?, 9] and trees 18, 3(]), for extract-

a set of potential object locations (with hierarchical clus ing geometric primitives (e.g.2p, 25]), and for identifying
tering). Then, we segment points near those locations intoobjects in cluttered scenes;, [L5, 10]. However, they have
foreground and background sets (with a graph-cut algo- been demonstrated only for synthetic scenarios and/or for
rithm). Next, we build a feature vector for each point cluste small scenes with relatively few object categories.

(based on both its shape and its context). Finally, we label  In this paper, we describe a system for automatically la-
the feature vectors using a classi er trained on a set of man- beling small objects in 3D scans of urban environments.
ually labeled objects. The paper presents several alterna-Our goal is to characterize the types of algorithms that are
tive methods for each step. We quantitatively evaluate themost effective to address the main challenges: locatign, se
system and tradeoffs of different alternatives in a truthed mentation, representation, and classi cation of objeEts.

part of a scan of Ottawa that contains approximately 100 each component, we provide several alternative approaches
million points and 1000 objects of interest. Then, we use and perform an empirical investigation of which approaches
this truth data as a training set to recognize objects amidst provide the best results on a truthed data set (Figaje
approximately 1 billion points of the remainder of the Ot- encompassing a large region of Ottawa, Canaiih &nd

tawa scan. containing about 100 million points and 1000 objects of in-
terest. Our results indicate that it is possible to label 65%
1. Introduction of small objects with a pipeline of algorithms that includes

Detailed models of cities with semantically tagged ob- hierarchical clustering, foreground-background sejatiat

jects (e.g., cars, street lights, stop signs, etc.) arailifef with minimum cuts, geometry and contextual object de-

numerous applications: city planning, emergency responsescrlptlon, and classi cation with support vector machines

preparation, virtual tourism, multimedia entertainmenot; Wetthen ulse this truthesg:ta set;s:riilnlngr]l'tohreco?mze ob-
tural heritage documentation, and others. Yet, it is very JECIS In a farger scan o awa (Figuik), which contains

dif cult to acquire such models. Current object recogni- about a b|II|on_ points. An example input scene is shown
tion algorithms are not robust enough to label all objects in at Fhe top of Figureic, and the outpu_t labeled, segmented
a city automatically from images, and interactive semantic objects are shown at the bottom of Figre
tagging tools require tremendous manual effort.
However, new types of data are now available to assistz' Related Work
with urban modeling. There has been a recent explosion in  Detection of objects in point clouds. Much of prior
worldwide efforts to acquire 3D scanner data for real-world analysis of urban point clouds concentrates on reconstruct
urban environments. For example, both Google and Mi- ing buildings. Fitting parametric models is often used for
crosoft have been driving cars with LIDAR sensors through- low-resolution aerial scand 4, 6, 21, 29 and partial scans
out most major cities in North America and Europe with of buildings []. Frueh et al. T[] developed a method
the eventual goal of acquiring a high-resolution 3D model for reconstruction of densely sampled building facades and
of the entire world. This new data opens unprecedented op- lling occluded geometry and texture. A lower quality but
portunities for object labeling and city modeling. Traditi faster reconstruction was presented by Carlberg et . [
ally, range scan processing algorithms have focused either Point cloud data has also been used to nd roads, trees,
on small objects in isolation or on large objects in scenes.and linear structures. Jaakkola et al”][ developed a
Never before has it been possible to reason about all smalimethod for identifying road markings and reconstructing
objects in an entire city. In this paper, we take a step in thisroad surface as a triangular irregular network. Among
direction by developing a set of algorithms to locate, seg- smaller objects, trees drew attention of a good number of
ment, represent, and classify small objects in scanned poinresearchers. Wang et al.3(] developed a method for de-
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(a) Truth area
Figure 1. Our method recognizes objects in 3D scans of cities. In thisp&aituses about 1000 manually labeled objects in the truth area
area (a) to predict about 6000 objects elsewhere in the scan (b).c(©aje depicted as colored points, with colors representing labels.) A
zoomed view, with the height-encoded input points on top, and classi déagmented objects on bottom, is shown in (c).(Automatically
generated classi cations are shown in red text, and colors denote aijésntces.)

tecting and estimating 3D models of trees in a forest from 3. Method
a LIDAR point cloud. Xu et al. £€] created visually ap- 3 1 overview

pealing reconstructions from a densely sampled point cloud _ . .
Our system takes as input a point cloud representing a

of a tree. Lalonde et al.lfj classify natural terrain into . T ' :
sscatter” “linear”. and “surface” city and a set of training objects (2D labeled locationsy an
These'- metho;js are synerdistic with ours. as recon_crea'[es as output a segmentation and labeling, where ev-
structed models of buildings and small objects 'can be com—ery pointin the city is associated with a segment, and every
bined to form a more complete model of a cit segment has a semantic label (possibly “Background”). The
P Y- system proceeds in four steps, as outlined in Figuiarst,

Point_lab_eling. Several papers use statistical_models to given the input point cloud (Figurga), we generate a list
label points in scenes based on examplesLif) pointsare ot |5cations for potential objects of interest — e.g., where

labeled with a Bayesian classi er based_on local properties point densities are highest (Figu#b). Second, we predict
Several papers have adapted the machinery of Markov Rans, gach of these potential locations which of the nearby

dom Fields to the problem of labeling 3D points 7, 24]. points are part of the object and which are background clut-
In '['hIS approach, the Iapel of a pomt is gs?umed to depgndter (Figure2c). Then, we extract a set of features describing
on its local shape descriptor (to assign similar labelsrte si 1,0 shape and spatial context of the object (Figle and

ilar shapes), and on its neighbors (to assign smooth labels) ;e them to classify the object according to labeled exam-
These methods have only been demonstrated on synthetic 0fjes i the training set. The end result is a set of labeled

small scenes, with relatively few object categories. The pr ‘objects, each associated with a set of points (Figaje
mary dlffere'nce between these method_s an.d ourapproachis e following four sections describe these steps in de-
that we assign labels at the level of object instances, rathe ;i For each step, we discuss the challenges, altersative

than individual points. algorithms, and design decisions made in our system. We

Shape descriptors. There has been considerable work present results of experiments aimed at quantitativelj eva
on constructing local and global shape descriptofs {3, uating the performance of each stage of our system in com-
4]. The work focuses on making shape descriptors more parison to alternatives in Sectiorsl- 4.3 The results of

discriminative for Object classi Cation, and on either eiet the System run on an entire C|ty are described in Sedtién
mining canonical frames or adding invariances to the de-

scriptors. In particular, 0] and [13] propose methods to  3-2- Localization

nd 3D models in cluttered scenes by starting with proposed  The rst step for our system is to start with a point cloud
correspondences from scene points to query model pointsand nd candidate object locations. This step needs to nd
that match shape descriptors. Shape descriptors based oat least one location per object (ideally close to the cen-
spin images were used by ] and [Lg] to categorize ob-  ter of the object), while minimizing false alarms. Although
jects such as vehicle types in 3D point clouds. We combine multiple locations per object and false locations are uindes
spin images with other shape and contextual features to recable, they can be merged and eliminated in future process-
ognize a variety of object types throughout an entire city.  ing steps, and so our main goal in this step is to not miss

(c) Zoomed view



(a) Input (b)Localization (c) Segmentation (d) Feature Extraction (e)Classiscation
Figure 2. Overview of our system. The input is a point cloud represgttia city (a). First, locations for potential objects are identi ed
(b). Second, they are segmented (c). Third, features are cotestrdescribing the objects' shape and context (d). Finally, these feature
are used to classify the objects (e).

true object locations.

Our rst step is to remove points that clearly are not part
of small objects. We lter out points close to the ground,
which is estimated at uniformly spaced positions with iter-
ative plane tting. We then remove isolated points. Finally
we Iter out points likely to belong to buildings by remov-
ing very large connected components. Once these lters
have been run, we proceed with one of four approaches to
nd potential object locations.

Since objects of interest are likely to rise above their lo- Figure 3. Sample results for the location nding algorithm, using
cal surroundings, a simple approach to nding potential ob- "ormalized-cut clustering.
ject locations is to generate a 2D scalar image representing  Finally, the fourth method re nes the connected compo-
the “height” of the point cloud, and performing image pro- nents approach by creating a better clustering of the point
cessing operations to nd local maxima. We experimented cloud and placing object locations at cluster centers. The a
with several variations of this approach. The most suc- gorithm proceeds by building a nearest neighbors graph and
cessful variant is to generate an image using the maximumysing a clustering algorithm similar to normalized cuig][
height of the points in each pixel, run a difference of Gaus- to extract clusters of points. Speci cally, we create a K-
sian lIters to nd hlgh frequencies, and then extract con- nearest neighbors graph (Wlth K= 4)1 connect nearby dis-
nected Components with area under a threshold to nd Smanconnected Components, and We|gh edges as a Gaussian on
objects. This method is effective at nding isolated poles, their length with a standard deviation of the typical point
but performs worse for cars and objects amongst clutter. Spacing (1m for our data). Then, we cluster by Starting

Another approach stems from the observation that ob-with each point in its own cluster and greedily merging to
jects are often found at local maxima of point density. A minimize sum of the ratio of each segment's cut cost to its
reasonable way of nding such maxima is to adapt a Mean number of points. We stop the merging when the reductions
Shift [11] approach to start with evenly spaced potential lo- of this error fall below a pre-set threshold. As with the con-
cations and iteratively move each location to the center of nected components algorithm, we reject clusters that are to
its support (we use all points a horizontal distance of 2m assmall and too high.
the support). This method has two problems: rst, in order  Example results of the normalized cut localizing method
to nd suf ciently small objects, the initial location spaty are shown in Figurd, with the resulting locations depicted
needs to be small, leading to unnecessary computation, andas black vertical lines. Note that larger objects such as car
second, the support size is dif cult to set to be effective fo are sometimes assigned two locations, and that building ex-
small and large objects. teriors and interiors are sometimes erroneously assignred |

The third method postulates that objects locations arecations.
likely to be in the center of connected components. The .
algorithm then extracts from the scene connected compo—3'3' Segmentation
nents at some distance threshold, and creates an object lo- Once potential object locations are found, the objects
cation at the center of each connected component. To reneed to be segmented from the background. This segmenta-
duce the number of false locations, we reject clusters thattion stage has two purposes: rst, it will identify the obfec
are too small or whose lowest points are too high (since weshape so that shape descriptors can be applied in the next
are interested in ground-based objects). This approach hastage, and, second, it will identify the segmentations &Ad a
trouble with objects that are sampled at different rates andsign points to objects once the potential objects have been
with objects that are near other objects or background. classi ed. We explore three approaches to segmentation.



One approach may be to use all above-ground points
within a preset horizontal radius, and under a pre-set lheigh
While this method has high recall, since it consistently in-
cludes almost all of the points inside small objects, it has a
low precision as it does not try to exclude the background.

A simple way to extract the foreground from background I_l I_l
is to start with the closest point to the predicted objecaloc
tion at a pre-de ned height and de ne the foreground object
as all connected points, where points are connected if they
lie within some distance threshold. In many cases, objects
are isolated from their surroundings, and this method works
well. However, due to noise, sparse sampling, and prox-
imity to other objects, there are cases in which no distance
threshold exists that separates the foreground from back

ground without also partitioning the foreground (such @&s th Figure 4. Example of a segmentation in a cluttered environment.
example in Figurel). The nearest neighbors graph is shown on the left, with foreground

nodes in black, edges in blue, and edges on the cut in red. The

To m_otlvate the thlrd approach, we note thgt an algorithm extracted object is shown on the right,
evaluating a potential foreground segmentation should con ) ) .
sider not only whether the foreground has a point close to determine the best background radius for the segmentation.

the background, but also how many points the foreground Starting from the smgllest radius in the range, we run the
has in proximity to the background. To measure this, we useabove algorithm, and increase the radius to the maximum of

the nearest neighbors graph from the previous section, andhe range until (i) the number of forgground ploints excegds
quantify the degree to which the foreground is connected & th.reshold (we use 35) segmentation and (ii) the resulting
to the background by the cost of its cut. Similarly to im- cutis below a threshold (we use .4).

age segmentation methods &f,[our algorithm extracts the _ ﬁnhexar_nple of a ie%menr:ation automgticilallyhproduced
foreground starting from the given object location with a WIth the min-cut method with an automatically chosen ra-
min cut. dius can be found in Figuré. On the left of the gure,

Speci callv. our seamentation error is the sum of two we show the graph, and on the right the segmentation re-
wei F;\telj teryr’nS'u a s?noothn;ss errErI that Znalizes sult. Note that in cases like this, an algorithm based on

' : S . . s P connected components would have a hard time separating
neighboring points from being given different labels and

. . the foreground from the signi cant background clutter.
prevents strongly connected regions from being cut, and a )
background errorEp, that penalizes nodes likely to be in  3.4. Feature Extraction

the background from being labeled as foreground nodes. The previous two stages yield segments representing po-
We setEs to the cut cost of edges of the nearest neigh- tential objects. In this stage, features are extractedritiesc
bors graph. E;, is set to a sum of a background penalty ing the shape of the objects as well as their context. Since
B (p) among all foreground nodes. In particular, given an this step takes as input automatically generated potential
expected background radil® as input to this algorithm,  object locations, which include spurious noise as well as
we set this background penalty to alinearly increasingfunc background objects, the features generated here must dis-
tion of the horizontal distance to the object location, stith  tinguish object types from one another as well as from the
points near the object location are not penalized from beingbackground. We investigate both shape and contextual fea-
labeled foreground, and points at distafcérom the loca- tures.
tion are forced by a high penalty to be in the background. As  Shape Features.We begin with features that describe
a hard constraint, we include the point closest to the (hori- the shape of the object in an orientation-invariant way. We
zontal) object location at a prede ned height andvitsclos- rst compute several quantities that describe the segndente
est neighbors in the foreground (we Ude= 3). Then, if  point set: the number of points, estimated volume, average
we create a virtual background node connected to all pointsheight, standard deviation in height, and the standard de-
with edge weight® (p), the minimizer of the segmentation  viations in the two principle horizontal directions. Nexéw
error is given by the min-cut between the constrained fore- gppend a spin image descriptaf] of the shape centered at
ground points and the virtual background node. the predicted object location with a radius of 2m and central
The min-cut approach produces segmentation for objectsaxis perpendicular to the ground.
for some radial scale. Since this scale is not known (it  Multiple Segmentations. Different segmentation meth-
ranges from 1m to 5m for our objects of interest), we run ods provide different information about the geometry of the
the min-cut algorithm for several iterations to automdlyca  object. A segmentation that takes all points within a radius



for example, consistently retrieves the entire objectfdilsg 4. Results

to remove the background. Min-cut based methods, on the We tested our prototype system on a LIDAR scan cover-
other hand, usually remove the background but are less ConTng 6 square kilometers of Ottawa, Canadal[ The data
sistent to include all Of. the object. To take advantage of , 5¢ o jlected by Neptec with one airborne scanner and four
the different segmentations, we append togethgr the above. ;. mounted TITAN scanners, facing left, right, forward-
shape features computed on several segmentations. In paﬁp, and forward-down. Scans were merged at the time of

ZCuIar, c\i/ve.use aII-_ahbove groqnd 29““5 at 2m, min-cut at collection and provided to us only as a single point cloud
m, and min-cut with automatic radius. ) ) covering containing 954 million points, each with a posi-
_Conte>_<tua| Featgres.The position of an object relative tion, intensity, and color (Figurgéb). The reported error in
o its environment is a useful cue apout !tS type. Cars, for alignments between airborne and car-mounted scans is 0.05
example, are found on streets, often na I|n(_a, whereas Iamp'meters, and the reported vertical accuracy is 0.04 meters.
posts are found on sidewalks, sometimes in a pattern. Wesince the colors collected with car-mounted scanners were

extI;act featu(rfs':hlat descnb.ets?r::htcues]; | iiable f not very accurate, we focused on using geometry for classi-
ecause digital maps exist that are freely available for ... in this study.

most cities, we incorporated one (OpenStreetMpifto Ground truthing was performed in conjunction with BAE

g;{r:(?tt;n;r?g%izltg?lzghtmo.thzhniarrztssz?rteeé(ttual feature we Systems within an area of the city covering about 300,000
Then, we create a feature that indicates Where objects ar square mgte_rs apd containing.about 100 miIIion.point.s (Fig-
likely to ,be with respect to other objects. Speci cally, we eI‘Jrela). Within this area, all objects of the types listed in Ta-
. - ; . ' ©.7 ble4were manually located and classi ed. The object types

locally orient each training truth object with respect t® it ere chosen to describe man-made objects found in outdoor

closest street. Then, we create a histogram on a 2-d grid O%lljvrban scenes whose sizes range from re hydrants to vans.

the chauons of other objects of .that clasg in this local ori This “truth” data provides the basis for our quantitativalev
entation. We aggregate these grids for objects of each, class

. . . . uation experiments (we split it into training and testing re
creating a locally orientated “autocorrelation”-like djifior b ( P g 9

each object type. This tells us, for example, that the pres_gions for the recognition experiments) and the trainingdat

. for labeling all objects throughout rest of the city.
ence of a car predicts another car further down the street.0 abeling all objects throughout rest of the city

Then, for each object type, for both training and testing, 4.1. Localization
we create a “prediction” grid by adding to a globally ori-
ented 2d grid the autocorrelation grids locally oriented at
each object location. This feature is able to provide, for
each 2d locationn features (if there ar@ object types),
with the each feature indicating the likelihood of an object
with the corresponding label at that location. To created¢he
globally-oriented prediction grids, for training, we uget
correct object locations and labels, and for testing, we use
the automatically generated locations, classi ed by thee pr
vious features.

To quantitatively evaluate the localization methods, we
ran each algorithm on the truth area, and recorded the num-
ber of locations produced by each algorithm, how many of
these locations were in range of an object (within 1m), and
how many of the truth objects were in range of a location
(Tablel).

The 3D clustering algorithms performed best, with the
normalized cut clustering locating more truth objects than
the connected components. Class-speci c location results
are shown in Columns 3-4 of Table Note that some cars
3.5. Classi cation and re hydrants are dif cult to locate because the former

In the nal stage, we classify the feature vector for each are very sparsely sampled and the latter are both very small
candidate object with respect to a training set of manually and sparsely sampled, making it dif cult to distinguishriro
labeled object locations. The training set does not includeisolated, small blobs of noise. In addition, cars show worse
examples of background objects, and thus we augment itperformance because of the choice of a constant 1m dis-
with automatically generated locations that are not close t Precision Recall
truth objects, and label them as “Background”. Then, dur-  \ethod Predicted Correct (%) Found (%)

ing the testing stage, any query location that is classigd a Image Filters| 3267 423 (13) 510 (48)
“Background” is assumed to be part of the background, and pjean Shift 17402 573 (3) 680 (64)

is disregarde(_i . _ . CC Clustering 9379 1287 (14) 962 (90)
We experimented with several classiers using the yc Clustering 10567 1236 (12) 976 (92)

Weka 6] toolkit, including: a k-nearest neighbors (NN)  Taple 1. Performance of localization algorithms. The rst col-
classier with k = 1 andk = 5, random forests, and  umn has the number of predicted locations, and how many were
support vector machines (SVM) with complexity constant in range of an object (precision). The second column shows the
C = 2:5 and 5th order polynomial kernels. A comparison number of objects located and their percentage, out of the 1063 in
of their performance can be found in Sectigs. our dataset (recall).




Precision Recall
*s& Feature # Predicted Correct (%)Correct (%)

[

0.9 1 «w=All Points

K] Shape Feature 568 313 (58) 298 (55)
& 5 | “TConnected Component + Multiple Segs| 591 336 (59) 314 (59)
....mgz: Automalc Radius + Context 586 360 (64) 327 (61)
74 : . = . r r r , Table 2. Effect of features on recognition rates.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 .
Precision 4.3. Recognition

Figure 5. Precision-recall plots of four segmentation algorithms: For the recognition experiment, we designate the north
all points at varying radii (blue), connected components at varying quarter of the truth area to be the training area, and the rest
thresholds (red), the min-cut algorithm with varying background g pe the test area. In this section, we present three experi-
rad!! (green): and the min-cut algorithm with automatically chosen . ants that evaluate the effect of some of our design choices
radi, at varying cut cost thresholds (purple). onthe nal recognition results: rst, we present the effett
tance threshold for evaluation of all classes; truth caadoc different features, then of different classi ers, and, liya
tions are at the centers of cars, so a predicted locatioreat th we present the per-class results of all the stages of our algo
hood of a car, for example, is often evaluated as incorrect. rithm.
. To test how much each of the features add to the perfor-

4.2. Segmentation mance, we evaluate the recognition rates as more features

To evaluate the segmentation algorithms, ground truth are added. To evaluate the recognition, similarly to the lo-
segmentations are required. To produce these segmentacalization evaluation, we consider an automatically letel
tions, we augmented our min-cut segmentation method withlocation to be correct if there exists a truth object of the
a simple user interface for manual segmentatignihstead same type in range (1m), and we consider a truth object to
of automatically selecting foreground nodes and a back- have been found if our algorithm produces a location of the
ground penalty function, the user clicks to add foreground same label in range. Therefore, each classi cation experi-
and background nodes, and the segmentation is interactivel ment yields a precision/recall pair of values.
recomputed to respond to the new constraints. Because different classi ers are able to make more use

Using this manual segmentation tool, we created groundof some features than others, to get a more robust measure
truth segmentations for all truth objects. Then, we com- of how much each feature set improves performance, we
pared each automatic segmentation against the ground trutlaverage the recognition results for the classi ers listed i
segmentation by nding (a) how much of the automatic seg- Section3.5 (and discussed in more detail below). For each
mentation contains the object (precision), and (b) how muchclassi er, we start with the shape features (computed on an
of the object is contained in the automatic segmentation all-point within 2m segmentation), then add shape features
(recall). An ideal segmentation yields 1 for each, and to- computed on multiple segmentations, and nally add con-
gether these numbers evaluate the degree of over and undetext features. The results, shown in TaBlelescribe, for
segmentation. To isolate the effects of segmentation, weeach choice of features, how many non-background objects
perform evaluations with true object locations. the algorithm predicted, how many of those and what per-

We evaluate four algorithms. First, we evaluate all above centage was correct, and how many and what percentage of
ground points at varying radii and connected componentsthe truth objects were found.
at varying thresholds. Then, we run the min-cut algorithm  Shape features identify the easiest objects, with an aver-
with a single, static background radius for several choicesage precision of 54% and recall of 55%. Adding multiple
of this background radius. Finally, we run the min-cut algo- segmentations enhances the performance, and adding con-
rithm with automatically chosen radius, for several chsice textual features raises average the precision and retedl ra
of the cut cost threshold used to choose the radius. The reto 64% and 61%, respectively. Note that the location algo-
sults are shown in Figurg Note that the min-cut segmen- rithm is able to nd 92% of the objects, which places a limit
tation outperforms the connected points segmentation, anddn the number of objects this stage can recognize.
that automatically determining the radius (rather thangisi Next, in Table3 we present the differences in perfor-
a static radius for all objects) further enhances the perfor mance due to the choice of classi ers described in Sec-
mance. The per-class results are shown in Columns 5-6 oftion 3.5 NN1, NN5, Random Forest, and SVM. SVM per-
Table4 for the best algorithm (min-cut with automatic ra- forms comparably to the NN5, which outperforms NN1,
dius). Note that some classes, such as newspaper boxes arahd the Random Forest classi er has considerably higher
tall posts, are very strongly connected to the background,precision rates at the cost of lower recall. Because of its
which leads to relatively low precision. Other objects,isuc higher recall rate, we use SVM for the subsequent experi-
as cars, are large and unevenly sampled, which causes relanents.
tively low recall rates. Finally, we present per-class results for all stages of our



Precision Recall that the results for these two stages validate this approach
Classi er # Predicted Correct (%)Correct (%) we can locate most objects, and segment with a high degree
NN1 707 379 (54) 344 (64) of accuracy. Therefore, it makes sense to perform further
NN5 582 374 (64) 342 (63) processing at the level of point clouds representing piatent
Random Fores 368 288 (78) 270 (50) objects, rather than at the level of individual points. While
SVM 687 400 (58) 351 (65) both location and segmentation algorithms have room for
Table 3. Effects of classi ers on recognition rates. improvement, we believe that the direction of future work

algorithm in Table4. For each class (ordered by number of that would most bene t recognition rates lies in the creatio
instances), we present: the number of objects in the truthof additional features. Our system would bene t from more
area, the number and percent of truth objects found by thediscriminative shape features as well as additional centex
localization algorithm, precision and recall values of the tual features.

segmentation algorithm (initialized at truth locationtje

number of objects in the test area, the number of predic-6- ACknowledgments

tions made by our recognition algorithm, and the precision  Thjs work originated as part of the DARPAsS URGENT
and recall rates of this algorithm. Note that the labels & th program. We thank BAE Systems for including us in the
table do not include the special “Background” category; of project, especially Erik Sobel, Matt Antone, and Joel Dou-
the 6514 |locations predlcted in the test area, 5827 are ClaSg|aS’ whose efforts provided the genesis and substrate for
si ed as background, 96% of them correctly (in the sense the project. We also thank Neptec, John Gilmore, and
that they do not have a true object in range). Wright State University for the 3D LIDAR data set. Alek-
From these results, recognition rates are clearly highestsey Boyko, Xiaobai Chen, Forrester Cole, and Yaron Lip-
for object types with more examples. Looking closely atthe man provided useful code, data, and ideas, and Kristin and
classes with few training examples (lower rows of the table) Kelly Hageman provided ground truthing data. Finally,
we note that the the location and segmentation algorithmswe acknowledge NSF (CNFS-0406415, 11S-0612231, and
perform very well for these classes, and thus we concludeCCF-0702672) and Google for providing funding to sup-
that the main bottlenecks in recognition performance ae th port this project.
feature extraction and/or classi cation stages. Thesali®s
suggest that investigation of better shape descriptors, co References
textual cues, and/or classi ers that explicitly adapt tavfe
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Location Segmentation Recognition
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Short Post 338 328 (97) 92 99 116 131 79 91
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