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Abstract

RGB-D scanning of indoor environments (offices, homes, museums, etc.) is important for a variety
of applications, including on-line real estate, virtual tourism, and virtual reality. To support these
applications, we must register the RGB-D images acquired with an untracked, hand-held camera into
a globally consistent and accurate 3D model. Current methods work effectively for small environments
with trackable features, but often fail to reproduce large-scale structures (e.g., straight walls along
corridors) or long-range relationships (e.g., parallel opposing walls in an office). In this paper, we
investigate the idea of integrating a structural model into the global registration process. We introduce a
fine-to-coarse algorithm that detects planar structures spanning multiple RGB-D frames and establishes
geometric constraints between them as they become aligned. Detection and enforcement of these
structural constraints in the inner loop of a global registration algorithm guides the solution towards
more accurate global registrations, even without detecting loop closures. During experiments with a
newly created benchmark for the SUN3D dataset, we find that this approach produces registration
results with greater accuracy and better robustness than previous alternatives.

1 Introduction

With the proliferation of inexpensive RGB-D video
cameras, there are now great opportunities for sys-
tems to capture 3D geometric models of real-world
indoor environments for later visualization, analy-
sis, storage, and editing [CLH15]. Potential appli-
cations include on-line real estate, virtual tourism,
home remodeling, training, simulation, and virtual
reality.

Motivated by these applications, our goal is to
build a system that takes a sequence of RGB-D im-
ages captured with a hand-held video camera as
input, and produces a geometrically detailed, glob-
ally consistent, geospatially accurate, and textured
3D model as output. We would like the system to
work robustly in a wide range of static indoor envi-
ronments (offices, homes, museums, etc.), execute
off-line within practical computational limits (runs
on a laptop within minutes or hours), and work au-
tomatically with inexpensive commodity cameras so
that it can be used by non-experts.

It is difficult to register RGB-D data acquired
with an untracked, hand-held camera into a glob-
ally consistent and accurate 3D model. Though
RGB-D camera poses can usually be tracked pre-

cisely over short distances [NDI+11], tracking of-
ten fails in texture-less regions and/or drifts over
long ranges [NZIS13]. Loop closure and global op-
timization can mitigate these issues when distinc-
tive features are observed multiple times in a scan
[HKH+10]. However, state-of-the-art global regis-
tration systems still produce warped surfaces and
improbable global structures (e.g., walls that are
not parallel/perpendicular to one another, as shown
in Figure 8). Though it might be possible to hide
these errors during a later surface reconstruction
[FG14] or model fitting phase [MMBM15], post-
processing the data as a point cloud does not ad-
dress the underlying problem: inaccurate global
registration.

We address this problem by integrating detection
and enforcement of a structural model into the inner
loop of a global registration algorithm. Specifically,
we detect planar structures, infer structural rela-
tionships between them (coplanarity, parallelism,
perpendicularity), and add soft constraints enforc-
ing those relationships into each iteration of a global
ICP algorithm. The advantage of this approach
is that the detected high-level geometric structure
can directly influence the camera pose estimations,
leading to more accurate and robust results even
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Figure 1: Our system performs global registration of RGB-D
scans in large indoor environments. Starting from a locally
aligned input (left), it iteratively detects and enforces a
structural model encoding hierarchical relationships between
planar surfaces at larger and larger scales. In the final
iteration (right), the global registration reproduces the global
structure of the real-world scene.

when loop closures are not possible. For example
in Figure 1, note how the walls of the corridor are
straight and all corners are right angles in the reg-
istration results produced by our algorithm (right).

Though the main idea of our algorithm is intu-
itive, its implementation is not because there is a
chicken-and-egg problem between global registra-
tion and structure detection. If the global regis-
tration is grossly inaccurate (as it often is in the
early iterations of ICP), then it is difficult to detect
large primitives and geometric relationships. If the
large primitives cannot be detected robustly, then it
is difficult to rectify the global registration. Neither
problem can be solved without the other.

We address this joint problem with a novel fine-
to-coarse ICP algorithm. During each iteration of
the ICP algorithm, primitives are detected and con-
straints are added only within “windows” of sequen-
tial RGB-D images. The windows overlap and cover
the entire sequence. They start small, become fewer
and gradually increase in size as the ICP iterations
proceed, ultimately leading to a single window con-
taining the entire sequence in the final iteration.
Because the global registration within each win-
dow is usually accurate enough to enable robust de-
tection of primitives and their relationships at the
scale defined by the window size, the constraints in-
terjected into each ICP iteration are able to guide
the algorithm towards a globally accurate solution.
During experiments, we find that our fine-to-coarse
ICP algorithm produces more accurate global regis-

trations and handles more difficult inputs previous
global registration algorithms.

Overall, the research contributions of this paper
are three-fold.

• A system that integrates detection of geometric
relationships (parallelism, perpendicularity, etc.)
between hierarchical planar structures into the
inner-loop of a global RGB-D registration algo-
rithm.

• A fine-to-coarse iteration strategy that detects
planar primitives, infers relationships, and finds
correspondences only within gradually expand-
ing windows with alignments optimized in previ-
ous iterations.

• A ground truth dataset containing 6,025 manu-
ally clicked point correspondences for evaluating
global registration algorithms on SUN3D scans.

• An experimental study of how different compo-
nents of the proposed approach affect global reg-
istration results with comparisons to alternative
methods.

2 Related Work

There has been a long history of research on reg-
istration of RGB-D images in computer graphics,
computer vision, augmented reality, robotics, and
other fields [Sto16]. The following paragraphs de-
scribe the work most closely related to ours.

Real-time Simultaneous Localization and
Mapping (SLAM): Most prior work has fo-
cused on real-time registration motivated by SLAM
applications in robotics and augmented reality
[Sto16]. Early systems used ICP to estimate pair-
wise alignments of adjacent video frames [BM92],
feature matching techniques to detect and align
loop closures [AFDM08], and graph-based opti-
mization algorithms to perform a final global reg-
istration (e.g., [GKSB10]). More recent meth-
ods have improved robustness by aligning frames
to a scene model, represented usually as a point
cloud [HKH+10, KLL+13, RHHL02, WLSM+15] or
an implicit function [CBI13, DNZ+16, KPR+15,
NDI+11, WKF+12, WKJ+14]. However, since
these model representations are unstructured, and
alignments are often noisy, sequences of small local
alignment errors can accumulate to form gross in-
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consistencies at large scales [NZIS13]. We address
this issue by adding structure to the scene model.

Off-line Global Registration: To acquire the
highest-quality final 3D model of a static environ-
ment from a RGB-D video, people usually use off-
line global registration procedures. A common for-
mulation is to minimizes an error function measur-
ing misalignments between all overlapping pairs of
frames [HKH+10, ZK13, ZK14]. A major challenge
in these approaches is to identify which pairs over-
lap – i.e., identify which pairs are true loop clo-
sures. Previous methods have searched for simi-
lar images with Bag of Words models [AFDM08],
randomized fern encodings [WLSM+15], convolu-
tional neural networks [CLJM14], and other meth-
ods. A recent approach by [CZK15] proposed a
method based on line processes that uses indicator
variables to identify true loop closures during the
global optimization using a least-squares formula-
tion. They achieve impressive registration results
for several scenes, but fail to preserve scene struc-
ture explicitly, do not scale well to larger environ-
ments, and fail completely for scans without loop
closures (see Section 5).

Hierarchical Registration: Computing loop clo-
sures is especially difficult in areas with few salient
features. So, some systems fuse sets of sequential
frames into “chunks” and then treat the chunks as
rigid bodies later in a global optimization [CZK15,
TF15]. This approach adds robustness to loop clo-
sure detection (because chunks have more features
to align than frames), and it saves computational
resources (because there are fewer variables to opti-
mize). Other methods fuse subgraphs of a loop clo-
sure graph hierarchically to improve optimization
robustness and efficiency [ENT05, FLD05, RS15,
TF15]. These methods share ideas with our fine-to-
coarse strategy. However, our method extends them
signficantly by integrating formation of new con-
straints (through a hierarchical structural model)
based on the current alignment solution within the
inner loops of the optimization.

Detecting Structural Features: Robust feature
detection is an important component of almost ev-
ery RGB-D registration system. Previous work has
been based mainly on keypoints like SIFT [XOT13]
and Harris corners [ZSN+16]. However, other
work has considered depth silhouette edges [ZK15],
building structure lines [ZZP+15], and planar re-
gions [BS03, DGFF12, ERAB15, NHS07, PBVP,
SMGKD14, TJRF13, TRC12, WS06] in order to

improve the repeatability and distinctiveness of fea-
tures. [MKSC16] associates planar features with
global planes estimated with an E-M algorithm. We
build upon this trend towards higher-order struc-
tural features by detecting planar regions and rela-
tionships between them in the inner loop of a fine-to-
coarse registration algorithm that is robust to poor
initial alignments.

Manhattan World Reconstruction: Many
man-made enviroments are composed of large pla-
nar features aligned with orthogonal axes. This
Manhattan World assumtion has been exploited in
previous 3D reconstruction systems. For example,
[SB08] reconstructs 2D floorplans by assigning the
local orientation of every 2D line to exactly one of
two global orthogonal directions based on its initial
alignment. [FCSS09] uses the Manhattan World as-
sumption for dense depth estimation in RGB images
they propose to cluster pixel normals into three di-
rections to improve the pairwise term for a CRF.
While these papers make the same assumption we
do, they do not share any of our goals, insights,
algorithms, or results.

Extracting Structural Models: There has been
concurrent work on extracting structural models
from RGB-D scans of objects and scenes. All of
this work assumes that the RGB-D scans have al-
ready been approximately registered, which makes
detection of the primitives relatively easy with
methods like RANSAC [OVWK16, SDK09, VLA15,
WKJ+14, WACS12]. For example, GlobFit de-
tected a set of primitives with RANSAC to form
an initial model and then optimized their fits by de-
tecting and enforcing geometric constraints between
them [LWC+11]. RAPter extended that work by in-
tegrating primitive and constraint detection into a
single optimization [MMBM15]. [NRS15] extended
it even further by integrating slight optimizations of
camera poses into the process. We draw upon many
ideas in these papers, including the RAP (regular
arrangement of planes) representation encoding lo-
cal planar regions and global inter-plane relation-
ships from RAPter [MMBM15]. However, we ex-
tend them to the more common case in which RGB-
D images are not registered in advance. Global
reconstruction of long RGB-D sequences in com-
plex indoor environments is very difficult, and so
detection and enforcement of structural constraints
is more important in that early stage of the RGB-
D processing pipeline than during beautification at
the end. Investigating that idea and its implemen-
tation is the main contribution of this paper.
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Figure 2: Fitting and enforcing a structural model compris-
ing planes with long-range constraints can yield more ac-
curate global registration. The top image shows our regis-
tration result without detecting and enforcing a structural
model, and the bottom one shows our result. The horizontal
red line depicts the planar proxy found in the later iterations
of our algorithm that guides the optimization to the correct
solution.

3 Approach

In this paper, we describe an algorithm that lever-
ages detection and enforcement of a structural
model to assist robust and accurate global regis-
tration of RGB-D video frames.

The core idea that makes our algorithm unique
is that it utilizes discovery and fitting of a struc-
tural model within the inner-loop of an iterative
alignment optimization. The algorithm follows the
general E-M strategy of ICP: alternating between a
discrete E step (extracting a structural model and
establishing constraints) and a continuous M step
(solving for the camera poses that best satisfy the
constraints). The core difference is in the E step:
we detect new structural features spanning multi-
ple frames and establish long-range geometric con-
straints between them based on the current trans-
formations at each iteration.

The benefits of this idea are self-evident: de-
tected relationships between large-scale structural
features spanning multiple frames provide valu-
able constraints for global registration. For exam-
ple, Figure 2 shows a simple case where a struc-
tural model incorporating coplanarity constraints
between sections of floor along a long corridor pro-
vide critical cues for accurate global reconstruction.
Constraints of this type are quite common in indoor
environments, where architecture generally adheres
to the Manhattan World assumption. So, we fo-
cus our study on structural models comprising hi-
erarchical sets of planes with geometric constraints
between them (coplanarity, parallelism, orthogonal-
ity). With rare exceptions, we find that this struc-
tural model is flexible enough to fit a wide variety

of indoor environments, but constrained enough to
guide our algorithm towards correct registrations.

However, the implementation of this core idea
is not easy, since large-scale planar features span-
ning multiple frames cannot be detected robustly
unless the frames have already been aligned. Un-
like prior systems for structural modeling of indoor
scenes (e.g., [LWC+11, MMBM15, NRS15]), we do
not assume that the RGB-D scans are initially in
nearly correct global alignments – achieving that is
actually the most difficult part of processing long
scans over large areas. We aim for a method to
detect and rectify structure in scans that exhibit
large-scale drifts leading to gross global misalign-
ments.

To address this issue, we introduce a fine-to-
coarse iterative algorithm for simultaneous struc-
ture detection and camera pose estimation. The al-
gorithm alternates between a) detecting structural
constraints within overlapping “windows” of se-
quential RGB-D frames based on their current cam-
era poses estimates, and b) optimizing the camera
pose estimates to satisfy the detected constraints.

The algorithm is called “fine-to-coarse” because
the windows start small and get larger as the algo-
rithm proceeds. In the early iterations, the windows
span just a few sequential RGB-D frames where rel-
ative camera poses estimated with a local tracking
algorithm should be nearly correct. At this early
stage, for example, it should be possible to detect
coplanarity and orthogonality constraints between
nearby surfaces in adjacent frames (see Figure 3b).
As the iterations proceed, the windows get larger,
enabling detection and enforcement of larger-scale
and longer-range structural constraints (Figure 3c).
At each iteration, we expect the relative camera
poses within each window to be approximately cor-
rect, since they have been optimized according to
constraints detected in smaller, overlapping win-
dows in previous iterations. Thus, we expect that
it will be possible to detect the relevant structural
constraints within each window robustly based on
the current camera pose estimates. Ultimately, in
the final iteration, the algorithm uses a single win-
dow encompassing the entire scan. At that stage,
it detects and enforces a single structural model
within a global optimization of all camera poses
(Figure 3d).
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Figure 3: Fine-to-coarse registration. Starting with an initial alignment T0 shown on the left, our algorithm detects and
enforces structures at small scales in the first few iterations (straightening the wall marked ’A’ by the 3rd iteration), then
detects and fixes longer-range structural misalignments in the middle iterations (aligning the walls marked ’B’ by the 6th
iteration), and finally snaps everything together into a rectified global registration by the final 16th iteration.

4 Methods

The input to our system is a sequence of n RGB-
D images I acquired with a hand-held camera with
measured intrinsic parameter, and the outputs are
1) a set of rigid transformations for all images, 2)
a structural model S representing planar structures
and geometric relationships between them, and 3) a
set of aligned surfels with positions, normals, colors,
and radii.1

As shown in Figure 4, our algorithm starts by
executing three “preprocessing” steps. First, for
each input image I[j] (j ∈ (1, n)) in the input scan,
we extract a dense set of 3D features F . Second,
we estimate a local transformation L[j] between
each pair of consecutive images I[j] and I[j + 1]
and concatenate them to obtain an initial set of
image transformations T0. Third, we initialize a
structural model S0 = {P,H = ∅, G = ∅}, where
P is a set of planar proxies representing sets of
connected coplanar pixels in each image, H is the
set of hierarchical structure of coplanar proxies, and
G is a set of geometrical relationships between the
members of H.

We then proceed to iteratively refine the image
transformations T and structural model S with the
proposed fine-to-coarse strategy. In each iteration
i, we choose a window size w[i] and process a set
of overlapping windows of w[i] consecutive images,
where adjacent windows overlap by a factor of 50%.
For each window W [i][j], we: 1) cluster coplanar
proxies from multiple images within W [i][j] to form
new larger-scale proxies and add them to P ; 2) in-
sert parent-child relationships between newly cre-
ated proxies and members of its cluster into H, 3)
detect geometric relationships between newly cre-
ated proxies in the same and adjacent windows and
add them to G; and 4) find closest point corre-

1The aligned surfels output by our system can be used by
any algorithm to reconstruct a continuous surface, but we do
not consider that part of our algorithm – i.e., we focus on
scan registration, not surface reconstruction.

Figure 4: Flow of data in our system.

spondences C between features F from pairs of im-
ages in W [i][j]. We then refine rigid motion pa-
rameters of the transformations T and proxies P to
minimize an error function that is a weighted sum
of terms penalizing deformations of structural re-
lationships (ES), distances between corresponding
features (EC), misalignments of local transforma-
tions (EL), and large changes to the solution (EI):

E(T, S,C) =wSES(S) + wCEC(T,C)

wLEL(T ) + wIEI(T )
(1)

We set the weights for the error terms dynami-
cally as the algorithm iterates. The early iterations
have higher weights for error term enforcing struc-
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ture (wS), and the later ones have higher weights for
closest point correspondences (wC), with a gradual
blend of weights during the middle iterations. In-
tuitively we want early iterations to roughly align
the large scale structures, and then let closest point
correspondences take over and align surfaces pre-
cisely.

Descriptions of these error terms, their computa-
tion, and the optimization appear in the following
subsections (and appendix). Though each subsec-
tion has limited novelty on its own, the system as a
whole is quite novel. Our main research contribu-
tion is the combination of the following steps into a
fine-to-coarse algorithm that performs simultaneous
structure estimation and global registration.

4.1 Feature Detection

The first step of our process is to extract a dense
set of features F from the input depth images.
These features will form the basis for associating
images to structures and for finding closest point
correspondences. Thus, we aim for a dense, but
well-spaced, set of features capturing salient planar
and edge properties of every depth image.

The image processing steps for feature detection
are described in the appendix. We experimented
with a variety of feature types, including corner
points and ridge/valley lines, but found that most
were too noisy to be helpful during our experiments.
So, we converged on a set of features comprising
points on silhouette edges, planar regions, and
uniform samples. Every feature is represented by a
3D position, direction, salience, and radius, where
the direction represents a line vector for features on
silhouette edges and a normal vector for others.

Since storing and searching a set of features for
every pixel in every images would be impractical
for a long RGB-D scan, we subsample features
with a Poisson dart algorithm. We first visit
pixels on silhouette edges of the depth image, next
on planar proxies, and finally all pixels, inserting
features into F if and only if they are at least a
minimum spacing from any previously generated
feature (min spacing=5cm). The net result is a
set of features for every image that densely covers
all salient surfaces, but is not too large to be
overwhelming for subsequent steps of the algorithm.
2

2These subsampled features are the ones drawn in all
renderings of results in this paper.

4.2 Adjacent Frame Registration

The second step of our process is to compute the
relative rigid transformation L[j] between each pair
of consecutive images I[j] and I[j + 1]. These
transformations will be concatenated to provide an
initial set of transformations for all images T0, and
they will be used to compute an error term EL
that favor trajectories matching the predicted local
transformations between nearby frames.

A possible way of estimating transformations for
adjacent viewpoints is to use frame-to-model pose
estimation, as presented in [NDI+11], [WKF+12]
or [KLL+13]. While those techniques are quite suc-
cessful for scans of objects and/or densely popu-
lated regions of a room, they are not as effective
in large-scale interior environments – i.e., they lose
tracking when cameras travel down long corridors,
pan flat walls, and/or visit regions of the scene with-
out distinctive depth features.

Instead, we decided to leverage matching of color
features for alignment of adjacent frames. Specif-
ically, using the method described in [XOT13], we
detect SIFT features in color images that have valid
depths, use RANSAC to find 3D feature correspon-
dences (xk, x

′
k), and solve for L[j] by minimizing∑K

k=1(xk − L[j](x′k)2.
The resulting pairwise transformations L[j] are

then concatenated to form an initial transforma-
tion for every image in a world coordinate sys-
tem (T0[0] = I, T0[j] = L[j − 1](T0[j − 1]) for
j ∈ [1, n− 1]).

Clearly these initial transformations suffer from
a lot of drift. However they are usually correct
locally, and thus we can use them to compute an
error term EL to favor preserving local relative
transformations between nearby images as:

EL(T ) =

n−1∑
j=0

kmax∑
k=0

Et(T0[j + 2k]−1(T0[j]), T [j + 2k]−1(T [j]))

where kmax=4 and Et measures the misalignment
of two transformations as described in the ap-
pendix.

4.3 Structural Model Initialization

The third step of our process is to initialize the
structural model with a set of planar proxies. These
proxies are extracted from the depth channel of each
input image independently. Hierarchical and geo-
metric relationships between them will be inferred
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during the iterative refinement steps described in
the next section.

To extract planes from depth images, we inves-
tigated a variety of standard algorithms, including
region growing and RANSAC as implemented in the
Point Cloud Library [RC11], but ultimately chose to
implement our own agglomerative hierarchical clus-
tering algorithm, which we found worked better on
noisy data sets, like SUN3D. In any case, the result
is a set of planar proxies P , each associated with
an image and represented by a centroid, normal,
radius, and set of associated planar features.

For each proxy P [j], we establish a set of copla-
narity relationships between the proxy and a sam-
pling of m of its associated features as:

EP (T, P ) =

|P |∑
j=1

m∑
k=1

Ecp(P [j], T [ik](F [k]))

where ik is the index of the image containing feature
F [k], Ecp(A,B) measures the deviation of two
planar structures from being coplanar as described
in the appendix, and m is a number proportional
to inliers of proxy P [j], selected such that

∑
mj =

100n

4.4 Structural Model Refinement

The next step of the process is to update the struc-
tural model based on the current transformations.
The inputs to this step at each iteration are the
structural model S and transformations T com-
puted in the previous iteration, and the output is
an augmented structural model S containing new
proxies and relationships between them, plus error
terms that favor adherence to the structural model
when solving for image transformations:

ES(T, S) = wPEP (T, P ) + wHEH(S) + wgEG(S)

where the three subterms account for fits of pla-
nar proxies to depth images (EP , wP=2000), copla-
narity of hierarchical proxy relationships (EH ,
wH=2000), and detected geometric relationships
between proxies (EG, wG=2000), as described in
the following subsubsections.

Planar Proxy Extraction: The algorithm be-
gins by grouping parentless planar proxies from the
previous iterations within the given window W [i][j]
into coplanar sets represented by new proxies in the
current iteration.

Our algorithm performs this grouping with a
hierarchical clustering strategy. At the start, a new

proxy is created for each parentless proxy from the
previous iteration. Then new proxies are iteratively
merged in order of highest affinity until no further
merges are possible, where affinities are computed
between two proxies with a function summing the
D minus the distance between one proxy and the
centroid of the other and A minus the angle between
proxy normals. Exceeding D=10cm or A = π/4
terminates the merging process. The final result
is a small set of proxies associated with co-planar
proxies from the previous iteration.

For each new proxy, we define a parent-child
coplanarity relationships with its associated proxies
from the previous iteration. After a few iterations,
we end up with a hierarchical set of planar prox-
ies linked by coplanarity relationships (Figure 5a).
The resulting structure has O(klogk) constraints
between k coplanar base proxies, which is far fewer
than O(k2) that would be required without any hi-
erarchy, and therefore more efficient. However, it
also provides some localized structure and redun-
dancy as compared to creating O(k) constraints
linking all off them to one master proxy, and there-
fore is more robust to mistakes.

Figure 5a depicts an example of how planar prox-
ies are extracted across three iterations (each color
represents a different iteration). In the schematic
image, input depth pixels are shown as dots, proxies
are shown as straight solid lines, and parent-child
coplanarity constraints are shown as dotted lines.
For ease of visual interpretation, proxies extracted
in later iterations are offset further from the in-
put depth images (like an exploding view diagram).
This figure depicts how earlier iterations form prox-
ies covering smaller windows and how multiple iter-
ations form a hierarchy of proxies linked by copla-
narity relationships. Please note that proxies over-
lap by 50% (not shown in the schematic), and so
each proxy from one iteration can be associated
with more than one proxy in the next.

The coplanarity constraints of the hierarchical
parent-child relationships between proxies P[j] and
P[k] are enforced with an error term:

EH(P ) =

|P |∑
j=1

Ecp(P [j], P [k])

where Ecp(A,B) measures the deviation of two
planar structures from being coplanar as described
in the appendix.

Structural Relationship Detection: Once the
planar proxies are detected, we search for salient ge-
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Figure 5: Visualization of a structural model (top row) with
a schematic representation (bottom row). a) Planar prox-
ies detected in individual depth images (solid red lines) are
linked via hierarchical relationships through fine-to-coarse it-
erations (blue and green). b) Planar proxies created in the
same iteration are linked by geometric relationships repre-
senting antiparallelism (dotted green line) and orthogonality
(thin solid lines). These relationships provide error terms to
guide the global registration.

ometric relationships between ones within the same
or adjacent windows. The goal here is to detect
relationships that are nearly perfect (nearly par-
allel, nearly perpendicular, and nearly coincident)
and then create weighted constraints between them
that encourage rectifying imperfections during the
global optimization.

Since the number of proxies considered in each
iteration is quite small, and the relative alignments
within each window are nearly correct as a result
of optimizations of transformations in the previ-
ous iterations, the algorithm for detecting geomet-
ric relationships between proxies can be quite sim-
ple. We consider all pairs of proxies. For each
pair (P [a] = {na, qa} and P [b] = {nb, qb}) within
the window, we create a typed structural rela-
tionship S[a][b] with weight w[a][b]. If the angle
θab = acos(na·nb) is less than π

4 , we create a parallel
relationship with weight w[a][b] = e((θab − π)/σθ).
If the θab >

3π
4 , we create an anti-parallel relation-

ship with weight w[a][b] = e(−θab/σθ). Otherwise,
we create a perpendicular relationship with weight
w[a][b] = e(−(1 − θab)/σθ). For parallel relation-
ships, we mark them as coplanar if the distance
from the plane of each proxy to the centroid of the
other is less than σdist.

Figure 5b depicts an example of structural rela-
tionships extracted across three iterations. Perpen-
dicular relationships are shown as thin-lines, and
antiparallel relationships are shown as dotted lines
(coplanarity relationships not shown). Please no-
tice that structural relationships are formed only
between proxies at the same iteration level, form-
ing a hierarchy of structural relationships match-
ing the hierarchy of proxies. Please also note that
long range relationships (e.g., the antiparallel green
proxies) are detected only in the later iterations
of the algorithm, when proxies have had a chance
to grow and converge. This feature of the fine-to-
coarse algorithm provides robustness to initial mis-
alignments.

For each detected geometric relationship g be-
tween proxies P [j] and P [k] with transformed nor-
mals nj and nk, respectively, we define an error
term:

Eg(g) =


w[j][k](P [j](nj)− P [k](nk))2 parallel

w[j][k](P [j](nj) + P [k](nk))2 antiparallel

w[j][k](nj · nk)2 orthogonal

w[j][k]Ecp(P [j], P [k]) coplanar

These errors are summed over all geometric re-
lationships constructed in all iterations to form an
aggregate error:

EG(G) =

i∑
j=1

|G|∑
j=1

Eg(G[j])

4.5 Closest Point Correspondences

During each iteration, we also construct a set
of closest point correspondences that help “snap”
scans together precisely across loop-closures. In
most ways, this step is like any other correspon-
dence finding operation in a global ICP optimiza-
tion – for every pair of scans, we construction corre-
spondences from features of one to the closest com-
patible feature of the other. However, we make a
few adjustments from the usual algorithms to ac-
count for the specifics of our setting.

First, we form closest point correspondences only
between features within the same window W [i][j] of
frames at each iteration. Closest point correspon-
dences are notoriously sensitive to initial transfor-
mations, and the transformations at the start of
each iteration of our algorithm have been optimized
only within windows during the previous iterations.
So, it is safest to construct correspondences between
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closest points on different images only if they are in
the same window. This is implemented very simply
by considering pairs of images only if they are sep-
arated by less than w[i] when forming closest point
correspondences.

Second, we utilize a new method for rejecting
outlier correspondence that depends on the window
size and the difference between image indices in the
scan. Other methods often utilize a single distance
threshold (max distance) for rejecting outlier corre-
spondences. They may compute the threshold from
statistics of previously computed closest point dis-
tances and/or reduce the distance in later iterations
[RL01]. However, they still use a single threshold
for all features in the same iteration because they
expect the registration error to be approximately
uniform across the scan. In contrast, since we use
a fine-to-coarse iterative strategy, we do not expect
the distance between inlier correspondences to be
uniform for all pairs of images. Features from im-
ages nearby in the scan will have had a chance to
form correspondences several times in early itera-
tions when windows are small before features from
distant pairs of images are considered for correspon-
dence even once. Thus, we apply a different thresh-
old for the maximum distance between inlier feature
correspondences for different features based on the
window size of the current iteration and the differ-
ence between image indices in the scan.

Third, we consider closest point correspondences
for all pairs of images within every window in
one large global optimization. This is in con-
trast to methods that use ICP to compute pair-
wise transformations and then optimize transfor-
mations to match them [GKSB10] and to meth-
ods that perform global ICP for small sets of range
scans [LSP08]. The advantage of the global ap-
proach is that joint optimization of all constraints
together helps converge more robustly to the global
optimum. The disadvantage is that computing and
storing correspondences for long scans is onerous.
Although a kd-tree is used to accelerate closest
point searches, performing searches for every fea-
ture of every image to find closest points on every
other image is impractical (a typical scan has 103

features, and a typical RGB-D video has 103 − 104

frames). To overcome this issue, we have developed
a randomized algorithm to select features to use for
closest point searches at each iteration. We first se-
lect a maximum number of closest point searches c
(in our implementation c = 100n). Then, for ev-
ery pair of images i and j, we compute the fraction
of c proportional to the volume of their bounding

box intersections and search with that many fea-
tures from image i to find closest compatible fea-
tures in image j. We select features from image
i with probability proportional to their salience.
For each of those features, we find the closest
compatible feature (within the dynamically com-
puted max distance and max angle=π/4) [Pul99],
discarding all correspondences whose closest point
is a boundary in its image [TL94].

The net result of this process is a set of feature
correspondences C containing pairs of salient fea-
tures spread nearly uniformly throughout the scan
sequence. Each one-way correspondence between
features F [a] and F [b] provides a constraint repre-
sented by an error term as follows, where pa and pb
are the transformed positions of features F [a] and
F [b], and na and nb are the transformed normals of
features F [a] and F [b], respectively.

E→c (T, F [a], F [b]) =

{
((pb − pa)× na)2 linearfeatures

((pb − pa) · na)2 planarfeatures

A symmetric error is computed for every corre-
spondence c associating features F [a] and F [b] as:

Ec(T, c) = E→c (T, F [a], F [b]) + E→−c(T, F [b], F [a])

These errors are summed over all correspon-
dences C created in the current iteration to form
an overall correspondence error:

EC(T,C) =

|C|∑
j=1

Ec(T,C[j])

4.6 Optimization

At the end of each iteration, we perform an opti-
mization to solve for new rigid transformations for
every image T and every proxy P .

The objective function contains a weighted com-
bination of the error terms described in the previous
subsections (Equation 1). Additionally, we include
an inertia term to encourage small changes at each
step:

EI(T, P ) =

|I|∑
j=1

(∆T [j])2 +

|P |∑
j=1

(∆P [j])2

where ∆A represents the sum of squared differences
between Euler angle rotations and translations for
A from one iteration to the next. This inertia term
not only provides stability for the optimization,
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by damping changes, but it also is required to
prevent the system of equations from being under-
constrained.

Although the error function is non-linear, we
find that our overall algorithm converges more
quickly when the variables are relaxed with a lin-
ear approximation once per iteration (e.g., using
CSparse[Dav06]). Though this approach is related
to solving the non-linear function with a series of
linear approximations (e.g., as is common in solvers
like Ceres [AMO]), there is a significant difference
– we update the structure of the error function be-
tween solving every linear approximation (by find-
ing new structural and closest point constraints).
Since updating the error function is faster than solv-
ing the linear approximation, and since the solution
to the updated function is generally closer to the
final solution, the overall convergence of our algo-
rithm is faster if only one linear approximation is
solved per iteration.

5 Evaluation

We have executed a series of experiments designed
to test the performance of our proposed method.
The following describes the datasets, evaluation
metrics, comparisons, and findings of these experi-
ments.

Datasets and Evaluation Metrics: Datasets
with RGB-D scans of large environments are
just now becoming available. Traditional RGB-
D datasets are targeted at surface reconstruction
and/or camera tracking over small ranges, and thus
mostly contain scans covering (parts of) a sin-
gle room [AKJS12, DNZ+16, HWMD14, LBF14,
MPM+14, SHKF12, SEE+12]. However, we target
scanning of large-scale interior environments, like
an apartment or museum.

The most commonly used public RGB-D dataset
of that type is SUN3D [XOT13]. It contains a set
of 415 RGB-D videos captured with a ASUS Xtion
PRO LIVE sensor attached to a hand-held laptop
in 245 distinct spaces (apartments, hotel rooms,
classrooms, etc.). Each scan contains 103 − 104

images, sometimes covering multiple rooms. Plus,
images are low-resolution and noisy. So, they
provide a challenging dataset for our work.

However, SUN3D does not provide ground truth
camera poses or even correct global registrations
(except for 8 scenes aligned approximately with
object bounding box correspondences). So, we were
compelled to create ground truth alignment data for

evaluation of our method. We selected 24 scenes,
of which 8 are the ones approximately aligned
manually by [XOT13] and previously studied in
[CZK15], plus 16 more selected because they appear
to be among the most interesting examples in the
dataset (we call this the SUN3D test set).

For these 24 test cases, we manually specified a
total of 6,025 ground truth point correspondences
with an interactive visualization tool (97-645 per
scan). The correspondences are concentrated in
global loop closures, but also contain pairs of points
spanning nearby frames spread evenly through the
scan (as shown in the supplemental material). We
measure the accuracy of an alignment by the root
mean squared distance (RMSD) between all pairs
in these ground truth correspondence sets.

Alternative Methods: We use this new SUN3D
test set to evaluate how accurately our proposed
system aligns RGB-D scans of interior environments
and compare to alternative methods proposed in
previous work.

We focus our comparisons on the following two
off-line global registration algorithms. These meth-
ods were chosen because: 1) they provide the best
previous results for our target dataset (SUN3D)
[CZK15], 2) they take very different approaches to
the global registration problem, and 3) they can be
executed with code provided directly by the authors
(we used that code with default parameters to pro-
duce results for all experiments). We would have
liked to compare to [DNZ+16], but their paper has
been on arXiv for only one month and their code is
not yet available.

• Robust Reconstruction [CZK15]: This
method fuses adjacent sequences of 50 frames
into fragments, aligns all pairs of fragments with
a variant of RANSAC using FPFH features ex-
tracted from depth images, selects pairs as poten-
tial loop closures, and then solves a least squares
system of nonlinear equations that simultane-
ously solves for camera poses and loop closure
weights. We believe this method is the state-of-
the-art for off-line, global registration using only
depth images.

• SUN3DSfM [XOT13]: This method aligns
pairs of frames with a RANSAC algorithm based
on SIFT features extracted from RGB images
and then solves for a global alignment with a
joint 2D+3D bundle adjustment. The solver
includes error terms for all consecutive pairs
of frames, plus expected loop closures found
with a Bag of Words model and verified to

10



have significant confidence. This method is
representative of the state-of-the-art for off-line,
global registration using mainly RGB features.

For completeness, the supplemental material
also contains (unfair) comparisons to ElasticFusion
[WLSM+15] and Kintinuous [WKF+12]. They do
not perform as well on our experiments, which is un-
derstandable since they are designed to run in real-
time robotic applications, while ours is designed for
off-line scene capture applications.

Qualitative Comparisons: Figure 6 shows a
visual comparison of results for several interesting
test cases from the SUN3D dataset (comparisons
for all 24 test cases appear in the supplemental
material).

Looking at these results, it is quite apparent that
fitting a structural model helps to guide our algo-
rithm (right column) towards a qualitatively cor-
rect result for these test cases. Generally speaking,
the corners of rooms appear as right angles, oppo-
site walls appear parallel, corridors appear straight,
floors are flat, etc.

In contrast, [XOT13] and [CZK15] produce re-
sults with obvious warps and misalignments. For
example, [XOT13] achieves good local alignments,
but almost always generates large-scale drifts.
Though they search for loop closures with a Bag of
Words approach, they do not always find the right
closures (left side of Figure 8a).

[CZK15] produces good results for single rooms
with loop closures (we are able to duplicate the
results from their paper). However, they do not
always reproduce the correct Manhattan structure
(left side of Figure 8b), and they seem to perform
poorly for longer RGB-D sequences in larger en-
vironments. [CZK15] was never tested for large
scenes, and so it is difficult to know if the latter
problem is only due to parameter settings. How-
ever, it appears to find incorrect loop closures that
cause gross misalignments. For example, in the
third row of Figure 6, it merges the two rooms into
one presumably because of incorrect matches be-
tween geometric elements repeated in the different
rooms. In this case and others, there are few loops
in the camera trajectory, and the geometry in re-
visited areas is not distinct, and so methods based
on loop closures are bound to fail. Our method can
succeed even when there are no loop closures at all.

Interestingly, our method works even in cases
where the scene does not adhere to the Manhattan
World assumption. For example, it correctly repro-
duces the non-rectangular shape of d507 2. Because

the weights assigned to off-angle geometric relation-
ships are quite low in comparison to closest point
correspondences in the later iterations, our algo-
rithm converges to the correct solution.

[Xiao et al., 2013] Ours

[Choi et al., 2015] Ours

Figure 8: Example problems addressed by our method.

Quantitative Comparisons: Figure 7a shows
quantitative results for our method in comparison
to alternatives on the SUN3D dataset. For each
scene listed along the horizontal axis, there are
three bars representing the RMSD error of ground
truth correspondences for [XOT13] (red), [CZK15]
(green), and our algorithm (blue). From this plot,
it can be seen that our reconstructions align the
ground truth correspondences better than either
of the other two methods. Our RMSD is better
(shorter bar) in 15/24 test cases, and nearly equiv-
alent in the other 5. Our average RMSD error is
10.8cm, which is 3.7X less than [XOT13] (40.1cm)
and 9.0X less than [CZK15] (97.1cm). Our max-
imum RMSD error is 25.7cm, which is 6.6X and
21.6X less than the others. These results (and the
more detailed information in the supplemental ma-
terial) suggest that our method out-performs the
previous state-of-the-art on global registration of
scans in multi-room indoor environments.

Evaluating Algorithmic Contributions: We
ran an additional experiment to test the impact
of the two core ideas of this paper: structural
modeling and fine-to-coarse refinement. The goal
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Figure 6: Qualitative comparison of global registration results for some examples. The rightmost column shows our results.
The leftmost column shows the solution used to initialize our algorithm (T0). The middle two columns show results produced
with alternative algorithms from the literature. Note that images were created by rendering points spaced by at least 5cm
in every 5th image for pragmatic efficiency.

is to quantify how much these ideas contribute to
our final results.

For this experiment, we run four executions
of our system, one for each combination en-
abling/disabling structural modeling and/or fine-
to-coarse refinement. When structural modeling is
disabled: wS = 0. When fine-to-coarse refinement
is disabled: wi = n. We run each variant of the
system on all 24 examples in the SUN3D test set
and compare the RMSD errors of the results.

Figure 7b shows the results with a bar plot with
the same axes as Figure 7a. Again, the bars
representing our proposed algorithm are blue. The
three to the left of them for each test scene, show
the RMSD for the variants of our algorithm with
different core ideas disabled.

From these plots, we see that structural model-
ing improves the results for most test scenes, though
some more than others (blue bars are almost always
shorter than yellow bars). For simple scenes with
lots of trackable features (e.g., 76-1studyroom2),
our algorithm performs well without a structural
model, and so there is no significant difference.
However, for large scenes with few loop closures
(e.g., brown cs 2, brown cs 3, etc.), there are big
differences (1.5-5.0X improvements). On the whole,
we conclude that enabling structural modeling al-
most always provides a noticeable improvement for
the difficult cases, and rarely diminishes results for
the easy cases.

We see a similar trend when studying the im-
pact of fine-to-coarse alignment. It it essential for
the long scans (e.g., the ones listed above, plus
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a) Comparison of our method (blue) to [Choi et al., 2015] (green) and [Xiao et al., 2013] (red).

b) Comparison of our method (blue) to versions without fine-to-coarse alignment (green), structural
modeling (yellow), and both (red).

Figure 7: Comparison of RMSD errors for ground truth correspondences of the SUN3D test set.

brown bm 1, brown bm 4, etc.), where the initial
transformations exhibit lots of drift. However, it
is not that helpful in small scenes with lots of sur-
face features where concatenating local alignments
is sufficient to provide an approximate global align-
ment. Again, we conclude that enabling fine-to-
coarse alignment almost always provides a notice-
able improvement for the difficult cases, and rarely
diminishes results for the easy cases.

Failure Cases: Our algorithm makes errors for
some types of inputs. For example, in Figure 9,
the structure is estimated correctly, but still our re-
sult is incorrect (the two rooms at the top are too
close to one another). In this case, the only con-
straints preventing the two rooms from translating
horizontally are local alignments of features in the
hallway across the bottom. Since there are few of
those, our optimization incorrectly slides the cam-
era poses parallel to the planes detected for the hall-
way walls. Better estimation of local transforma-

tions and/or extraction of finer-scale features might
improve failures of this type.

Timing Results: Our algorithm is intended for
off-line use and thus has not been optimized or
coded for a GPU. After preprocessing steps to de-
tect planes, perform alignment of adjacent images,
and sample depth image features, our core algo-
rithm (fine-to-coarse iterations of structural model
refinement, closest point correspondence, and opti-
mization) takes 36 minutes on average for the 24
examples in the SUN3D test set when executed on
a single CPU running Linux (the minimum time
was 4 minutes and the maximum was 136 minutes).
These compute times are competitive with previ-
ous work and well within practical limits, as they
are incurred once in the lifetime of each scan.
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6 Conclusion and Future
Work

This paper describes a method for off-line global
registration of RGB-D scans for typical indoor en-
vironments. The key idea is to integrate detec-
tion and enforcement of a structural model into the
inner-loop of a global registration algorithm. By
executing the registration with a fine-to-coarse it-
erative strategy, we find that it is possible to detect
a multi-resolution structural model while the regis-
tration is underway. Planar primitives and relation-
ships between them detected as the scene is regis-
tered provide constraints that guide the algorithm
towards accurate reconstructions in typical indoor
scenes. Results of experiments demonstrate that
the proposed method outperforms previous work
on benchmark datasets, including a new one cre-
ated with SUN3D data that will be made publicly
available.

This work is a first step into a large space of
potential algorithms combining shape analysis and
global registration, and thus there are vast oppor-
tunities for future related work. First, we use RGB
channels only to register adjacent frames in our
framework – clearly there are opportunities to get
much better alignments by utilizing RGB features
to detect loop closures, for example as they be-
come proximal during the fine-to-coarse alignment.
Second, our structural model focuses on Manhat-
tan Worlds – it will be interesting to explore which
types of structural models work best for other types
of environments. Finally, our study focuses only
on combining shape analysis and global registration
– integrating surface reconstruction into the inner
loop of the pipeline is a compelling avenue for future
study.

Appendix

This appendix contains low-level implementation
details.

Exracting planar proxies from images: The
following sequence of operations is performed on
the depth channel for each image I[j] to extract
an initial set of proxies (see Section 4.3):

1. Apply a bilateral filter to reduce noise and quan-
tization effects (σxy = 3pixels, σdepth = 5cm).

2. Mark pixels on silhouette/shadow boundaries if
their depths differ from any of their neighbors by
more than 10%.

Figure 9: Example failure case.

3. Compute connected components by partitioning
the image on silhouette boundaries.

4. Estimate normals for pixels using RANSAC on
neighborhoods of radius 10cm within the same
connected component.

5. Compute sets of coplanar pixels using hierarchi-
cal clustering.

6. Refine clusters with a RANSAC algorithm to re-
assign pixels to their largest compatible cluster.

7. Insert a proxy in P for each cluster. Assign the
centroid, normal, and radius for the proxy based
on PCA of the associated pixels.

Exracting features from images: The following
sequence of operations is performed on the depth
channel for each image I[j] to extract features (see
Section 4.1):

1. Construct a planar surface feature for each pixel
in coplanar clusters of size ≥ 100.

2. Construct a silhouette line feature for each pixel
marked silhouette, estimating the line direction
with PCA on neighboring silhouette pixels.

3. Construct a uniform surface feature for every
other pixel further than min spacing from any
previously created feature.

Computing errors: The following equations pro-
vide basic formulations used to define low-level error
terms in Section 4.

We compute the coplanar misalignment Ecp of
one planar entity A (represented by a position pA
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and a normal nA) to another B (represented by pB
and nB) by summing the squared distances from
samples of points ps (s ∈][1, smax]) sampled from
the center and on the boundary of a 1 meter radius
disk around pA to the plane of B (smax=5):

E→cp (A,B) =

smax∑
s=1

((pA − pB) · nB)2

Ecp(A,B) = E→cp (A,B) + E→cp (B,A)

We compute the misalignment Et of one rigid
transformation Tj to another Tk in the neighbor-
hood of a point cj by summing the squared dis-
tances between points ps (s ∈][1, smax]) sampled
uniformly on a 1 meter radius sphere when they
are transformed by Tj versus Tk (smax=8):

Et(Tj , Tk) =

smax∑
s=1

(Tj(ps)− Tk(ps))
2

These formulations provide error terms measured
in squared distances between corresponding points
(rather than differences of matrix elements, angles,
viewpoints, etc.) and thus are more natural to
combine with other error terms of the same form
in our multi-objective optimization (as noted in
[Pul99]).
Setting parameters: For all our experiments we
have run the algorithm for 16 iterations with the
window size creating 10 overlapping windows and
increasing it linearly until it reaches n in the final
iteration. We start with initial weights wL = 1000,
wS = 2000, wC = 1000, and final weights being
wL = 1000, wS = 1000, wC = 2000. We modify
these weights by increasing them linearly until they
reach maximum in 10th iteration, after which they
stay fixed. This is done intuitively to allow for a
couple of iterations when closest point alignment
dominates.

This one set of parameters is used for every input
(there is no tuning for specific examples). They
were chosen intuitively without significant amounts
of testing and refinement.
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