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Abstract

This paper investigates a method for semantic segmen-
tation of small objects in terrestrial LIDAR scans in urban
environments. The core research contribution is a hierarchi-
cal segmentation algorithm where potential merges between
segments are prioritized by a learned affinity function and
constrained to occur only if they achieve a significantly high
object classification probability. This approach provides a
way to integrate a learned shape-prior (the object classifier)
into a search for the best semantic segmentation in a fast
and practical algorithm. Experiments with LIDAR scans
collected by Google Street View cars throughout ∼100 city
blocks of New York City show that the algorithm provides
better segmentations and classifications than simple alter-
natives for cars, vans, traffic lights, and street lights.

1. Introduction
Applications in mapping, virtual reality, and city man-

agement have motivated a remarkable explosion in world-
wide effort to acquire 3D data in urban environments. Now,
several companies (e.g., Google, Nokia, Apple, etc.) are
driving cars mounted with cameras and LIDAR scanners
systematically up and down streets of urban areas through-
out the world to capture 3D point cloud data. For exam-
ple, Google Street View cars have three LIDAR scanners in
addition to their cameras, two of which point directly left
and right and capture vertical stripes of 3D point samples
at 1 degree increments over a 180 degree range approxi-
mately 75 times per second. These scanners yield a set of
3D points on both sides of the street at approximately 20
centimeter resolution on nearby building facades, as shown
in Figure 1. Although this data is directly useful for visual-
ization (e.g., in Google Street View), it lacks the semantic
information required for most 3D applications, like urban
planning, traffic simulation, safety analysis, etc.

A semantic segmentation of a point cloud, which asso-
ciates each point with a semantic class label (such as car,
tree, etc.) and a segment identifier is an ideal starting place
for many of these applications. However, automatic seg-

Figure 1. LIDAR point cloud captured by a Google Street View
car in New York City (top image) and an example ground truth
semantic labeling (bottom image).

mentation and classification of urban point cloud data is
complicated by a number of data characteristics. First, data
acquired from terrestrial vehicle-mounted scanners is lim-
ited – there is limited training data available online. Second,
the point clouds are also often sparse, with only a few points
representing small objects, and they contain data only from
the street side of every object. Missing data is also common
on reflective objects, such as windows or the sides of cars.
As a result, previous methods for analyzing LIDAR scans
of cities have had difficulties with semantic segmentation
of street-side objects.

We present a supervised algorithm that performs se-
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mantic segmentations of terrestrial LIDAR point clouds
by searching for the decompositions of points into seg-
ments that provide the highest category classification per-
formance. We start from an oversegmentation of points
into segments (like superpixels) and perform a hierarchi-
cal clustering to increase the confidence of category-level
classifications. At the core of our method are learned classi-
fiers that predict whether a pair of nearby segments are part
of the same semantic object and whether merging the seg-
ments produces a segment typical of a given object class.
We learn those classifiers from examples in a supervised
training set and leverage them when ordering and selecting
segment merges in a hierarchical clustering algorithm.

The main novel contribution is to integrate an object
classifier into a hierarchical segmentation algorithm. This
guides the algorithm to produce segments with properties
(shape, context, etc.) consistent with example objects in
a training set and is thus more likely to produce the cor-
rect semantic segmentation than alternative approaches that
produce candidate segments without a class-specific shape
prior. Experiments on large-scale Google Street View scans
in New York City suggest this algorithm outperforms com-
parable alternatives.

2. Related Work
There is an extensive literature on segmenting and clas-

sifying objects in image data (e.g., [9, 26, 29, 33]). The
following section highlights common methods, focusing on
ones previously applied to recognizing small objects in LI-
DAR scans of cities [1, 8, 19, 32, 34, 35].

The simplest approach is to predict the semantic label
for each point based on features of its local neighborhood
[5, 7, 14, 16, 23]. Markov random fields (MRF) or condi-
tional random fields (CRF) can be used to combine predic-
tions based on pairwise affinities [2, 31]. Or, implicit shape
models can be used to vote for object detections based on
recognition of local features [15, 24, 30]. These methods
do not explicitly consider the overall shapes of the resulting
object predictions and are not as accurate as methods that
classify objects based on complete segmentations.

Another simple approach is to perform segmentation and
classification of a point cloud separately in a sequence of
operations [6, 22]. Golovinskiy et al. [8] developed an
end-to-end pipeline for recognizing small objects in urban
point clouds, first removing the ground plane, then cluster-
ing points to identify possible object centers, using these
as seeds for object segmentation, and finally classifying the
segments based on segmented shapes. This approach can
leverage a training set of correctly segmented objects to
learn shape priors, and thus is effective for object classes
that can be segmented robustly (e.g., stand-alone poles)
[35]. However, it provides no feedback from object classi-
fication to segmentation, and therefore performs poorly for

data where segmentations are ambiguous.
More recently, several researchers have considered us-

ing CAD models and/or templates as shape priors for ob-
ject detection [11]. For example, [18, 17] use objects from
Google’s 3D Warehouse to train an object detection system
for 3D point clouds collected by robots navigating through
urban and indoor environments. [28] uses 3D CAD models
as templates for a sliding window search. Shen et al. [25]
use a database of segmented models and assembly-based
modeling algorithms to reconstruct novel 3D models. Nan
et al. [20] integrate a region growing segmentation algo-
rithm with object recognition for cluttered indoor scene un-
derstanding. Most work with 3D CAD models has been
demonstrated on only a few small scenes for objects with
small shape variations (e.g., chairs). They would be diffi-
cult to apply to trees, traffic lights, or other objects classes
with large intra-class shape variation.

Even more recently, there has been a strong trend to-
wards deep learning for object detection and semantic seg-
mentation. For example, Gupta et al. [10] propose methods
to learn convolutional neural networks that score object pro-
posals generated for region proposals and then use a random
forest to perform foreground segmentation for each detec-
tion. In work more related to ours, Socher trains a recursive
neural network on labeled images to score potential hier-
archical merges in an image to produce a semantic scene
segmentation [27]. These methods are very effective for
object detection in images, but need massive amounts of
labeled training examples and co-aligned RGB and depth
image data, neither of which is available for our data sets
(Google Street View).

Most closely related to our work are previous meth-
ods for learning affinity functions for hierarchical cluster-
ing [21]. For example, Jain et al. [13] train a convolu-
tional neural network to directly minimize the RAND er-
ror, a measure of segmentation quality, on segmentations of
neuron images. The CNN is used to cluster superpixels to
produce a segmentation of new images. Our work extends
this approach to work for LIDAR data and to include not
only learned classifiers for evaluating potential merges be-
tween clusters, but also to evaluate the resulting properties
of the merged clusters, in our case to validate whether the
resulting segment is likely to be an object of a target seman-
tic class.

3. System Overview
In this paper, we address the problems of segmenting and

classifying 3D points acquired from terrestrial LIDAR data
in urban environments.

The inputs to our system are: 1) a target semantic object
class, 2) a test set captured with LIDAR scanners mounted
on R5 Google Street View cars, and 3) a training set of such
LIDAR data augmented with semantic segmentations. The



output of our system is a semantic segmentation of the test
set – i.e., a semantic class label and instance label for each
LIDAR point.

Our system preprocesses each LIDAR point cloud by:
1) detecting and removing major structural elements of ur-
ban environments (e.g., roads, curbs, sidewalks, building fa-
cades, etc.); 2) computing a feature vector of properties for
each remaining LIDAR point (e.g., distance to the ground,
planarity of its neighborhood, etc.); and 3) partitioning the
LIDAR points into small segments akin to superpixels (e.g.,
clusters of points expected to be part of the same semantic
object). The result is a set of small segments S, each con-
taining a cluster of LIDAR points augmented with feature
vectors (see details in Section 4.1).

During the training phase, our system uses the prepro-
cessed training set to learn two functions: one that estimates
the probability P (C|A) that a segment A resides within an
instance of the target object class C, and a second that es-
timates the probability M(A,B) that two nearby segments
A and B are part of the same semantic object.

Finally, during the testing phase, our system uses the
learned functions to produce a semantic segmentation of
the preprocessed test set Ŝ. Ideally, our system would find
the semantic segmentation S∗ (labeled segments) that max-
imizes the a posteriori joint probability of the two learned
functions. However, finding that solution is NP-Hard (by
reduction to set partition). Therefore, we use a hierarchical
clustering strategy to iteratively merge segments in the order
dictated by M(., .) as long as the classification probability
P (C|...) of the merged segment is significantly high.

The main advantage of this approach is that it balances
high-quality semantic segmentations with efficient execu-
tion. It achieves high quality semantic segmentations by
utilizing a shape prior (a segment classifier P (C|A)) to
guide the search over potential segmentations, producing
segments that not only have high objectness but also match
the geometric properties of the target object class (note that
this use of P (C|A) for merged sets of segments is a signif-
icant difference from standard MRF methods). We achieve
efficient execution by incorporating the shape prior into the
inner-loop of a greedy hierarchical segmentation algorithm,
which runs in time roughly linear in the number of segments
output by the preprocessing steps. These two features make
it practical to run on large-scale data sets spanning entire
cities, as required by the Google Street View dataset.

4. Algorithmic Details
This section provides details for the main three steps of

the hierarchical semantic segmentation algorithm.

4.1. LIDAR Preprocessing

For every given LIDAR scan (during both the training
and test phases), we first apply a sequence of preprocessing

steps to extract structures and features from the raw point
cloud. Only one of the preprocessing operations (curb de-
tection) is particularly novel—the others are fairly standard.
They are described here as context for the following two
subsections, which describe the main algorithmic contribu-
tions of the paper.

The input data is a set of scans of street sides as seen
from either the left or right side of a Google Street View car
(Figure 1). Every scan is composed of a set of vertical scan-
lines, each composed of 180 depth samples spaced along 1
degree increments across 180 degrees ranging from straight
down (0 degrees) to straight up (180 degrees), with parallel
to the road appearing somewhere near the middle (90 de-
grees). Estimates for the scanner position and orientation
are provided by Google, and so every depth sample can be
represented by a 3D point in space.

The preprocessing for each 3D point begins by estimat-
ing its surface normal. It then estimates an RGB color by re-
projection into the RGB image collected by the same Street
View car with the closest timestamp. Finally, it computes a
set of geometric features for each point, including its depth
from the scanner, the cosine of the angle between its nor-
mal and the scanning direction, and differences between
the eigenvalues of the covariance matrix of points within its
one-meter neighborhood, (λ2−λ1) and (λ3−λ2), which es-
timate the “planarity” and ”linearity” of the scanned surface
surrounding the point. These color and geometric properties
form a feature vector (with two more features described in
the next paragraph) used later by a classifier to predict the
semantic class of each point.

In addition to these basic point processing steps, we also
execute an algorithm to partition points into several coarse
semantic classes: road, sidewalk, building facade, small ob-
ject, and other. This algorithm is somewhat novel in the way
it leverages the structure of the LIDAR point acquisition
process to discover boundaries between roads, sidewalks,
and building facades. Noting that every scan is a sequence
of vertical scanlines (a pushbroom depth image), and ev-
ery vertical scanline contains some samples on a road, then
possibly some on a sidewalk, and then possibly some on a
building facade when considered from the bottom (looking
straight down) to the top (looking straight up). Therefore,
detecting these structures simply requires detecting bound-
aries between them (e.g., curbs) and then partitioning each
vertical scanline according to the detections. Unfortunately,
the LIDAR data has noise, occlusion, and poor sampling
density, so detections of curbs, for example, based on local
shape and color features within each scanline individually
are not very robust. To address this issue, we formulate the
problem as a graph cut: given a function representing the
cost of labeling a point as a boundary (e.g., curb), (which
was a simple template in our case but could be learned from
examples), we aim for a solution that minimizes the sum
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Figure 2. Curb detection. The top image shows a pushbroom im-
age (sequence of vertical scanlines) showing 3D points acquired
along one street with Google Street View. The next shows the out-
put of a curb detector based on local image features (darkness is
proportional to strength of prediction). The bottom image shows
the output of the dynamic programming algorithm: a globally op-
timal curb detection (green curve).

of costs of a cut separating the bottom scanlines from the
top. This formulation simultaneously tries to minimize the
length of the boundary curve while aligning it with likely
boundary points. An optimal solution can also be found
with a dynamic program similar to ones proposed for seam
carving [3] (Figure 2). We run this algorithm once to find
road boundaries (curbs) and again to find building bound-
aries.

We label large planar horizontal regions directly below
the curbs as roads and directly above the curbs as sidewalks,
and we label large vertical planar regions within the build-
ing boundaries as facades. Then we eliminate the points as-
sociated with these large structures from further processing.
Finally, we add two more properties to the feature vector
for each remaining point representing the vertical distance
to the closest road and the signed horizontal distance to the
closest curb. These features are helpful because they pro-
vide semantic contextual cues.

The remaining points are candidates for small object seg-
mentation and classification. They are partitioned into an
initial segmentation using a clustering algorithm similar to
the hierarchical one in Golovinskiy et al [8], but tuned so
that segments are likely to be subsets of semantic objects,
rather than vice-versa. The result is an (over)segmentation
of the points akin to superpixels. For each segment, we
compute a feature vector containing statistics of the prop-
erty distributions for its member points (median, average,
variance, and maximum difference), geometric properties
of its 3D bounding box (volume, length of its vertical extent,
area of its horizontal cross section, and ratio of the longer
horizontal edge to the shorter one), geometric properties of
its point cluster (z component of the best fitting plane nor-

mal), and contextual properties of the segment (length and
depth extent relative to the curb). In all, there are 96 prop-
erties comprising the feature vector for each segment.

4.2. Learning Hierarchical Segmentations

During a training phase, our system takes as input a set of
preprocessed and semantically segmented example LIDAR
scans and outputs a Segment and a Merge Classifier.

Segment Classifier: the first classifier, P (C|A), estimates
the probability that a given segment A is part of an object
of the target class C.

Learning this classifier would be straight-forward if we
were only going to use it to classify segments of the initial
segmentation: each initial segment is represented by a pre-
computed feature vector and has a ground truth label and
thus provides exactly the type of data required to learn a
classifier. However, we aim to build a classifier that works
not only for the initial segments, but also for merged com-
binations of them that might be considered during hierar-
chical clustering. That is, if there are three initial segments
{A,B,C}, then we need a classifier that can predict whether
any combination of them {A,B,C,AB,AC,BC,ABC} is part
of the same object instance. This is difficult because the
number of possible merge combinations is exponential in
the number of initial segments, and few of those produce
positive examples. So, we must be clever about how to cre-
ate the training data.

We begin by extracting the ground truth label and seg-
ment id for each segment in the initial preprocessed seg-
mentation: we assign a segment to a particular object in the
ground truth data if the majority of its points overlap with
the objects truth segmentation. Then, we generate training
examples by considering merges involving at least one seg-
ment associated with a ground truth object (we don’t pol-
lute the training set with combinations of background seg-
ments). For each such candidate merge, the two segments
can be (a) within the same object, (b) within different la-
beled objects, or (c) between a segment in a labeled object
and an unlabeled background segment. We count (a) as a
positive example and (b) and (c) as negative examples.

Even if we consider only segments associated with
ground truth objects and their nearby neighbors, there still
are far too many combinations to consider training a clas-
sifier on all of them. As a result, we must limit the train-
ing set to include only combinations of segments similar to
ones that can be created by the hierarchical segmentation
algorithm in the testing phase. To achieve this, the simplest
approach would be to run the hierarchical segmentation on
the training set and then add positive and negative examples
as they are encountered by the algorithm. However, that
approach is not possible because the hierarchical algorithm
depends on the classifiers learned during the training phase.
A chicken and egg problem.



We address this by iterating between learning the clas-
sifiers and generating example hierarchical segmentations.
The process starts with classifiers trained on sampled com-
binations of nearby segments (within 1m). We then perform
the hierarchical merging process (described in next section)
to generate new candidate training examples. The result-
ing segments are labeled as positive and negative examples
based on the truth data, and classifiers are then re-trained
for the next iteration. We repeat this process until conver-
gence (or at most 10 iterations). We refer to this process as
hierarchical example mining.

Within each iteration, we execute merges between unla-
beled segments (to encourage a variety of background seg-
ment examples - these are not, however, added to the train-
ing set) and within the same truth segment. Whenever a
merge is executed, we consider all merge candidates created
between the resulting segment and neighbors. If a merge
is a positive example but has low probability according to
the current classifier, or is a negative example with a high
probability, then we add it to the training set. To keep the
candidate segment set a manageable size and to add diver-
sity through randomization, we randomly sample a subset
of 10K examples from the training set before re-training
the classifiers.

We then train a random forest [4] from this training set
using the Shark Machine Learning Library [12] with default
parameters. During experiments, we found that it provides
good classification rates in comparison to alternatives and
use it for all classification problems in this paper.

Merge Classifier: the second classifier estimates the prob-
ability M(A,B) that two segments A and B are part of the
same semantic object.

To learn this classifier, we must address three issues. The
first is the same problem encountered with the Segment
Classifier: exponential combinations of possible segment
merges to train on. Our solution to this problem is the same
as described for the Segment Classifier – i.e., we integrate
learning the Merge Classifier with the Segment Classifier
by using the same sets of positive and negative training ex-
amples. However, in this case, the training examples are
pairs of segments to merge rather than the merged segments
themselves. We say that a merge is correct if the resulting
segment lies wholly within a ground truth object.

The second issue is to create a discriminating feature
vector representing each merge between two segments, A
and B, to be used by the Merge Classifier. Our solution
is to concatenate four feature vectors: 1-2) the feature vec-
tors for both segments, 3) the differences between the fea-
ture vectors for the two segments, and 4) the feature vector
computed from the merged segments. We also include other
merge specific features related to the relative alignment of
the two merge candidates, including: (1) the amount of
overlap along each dimension (if A’s bounding box is con-

tained inside B’s bounding box along one dimension, then
the overlap is the A’s size along that dimension), and (2) the
distance between the two candidates centroids along each
dimension and in 3D. Together, this descriptor allows the
Merge Classifier to consider the shapes of the two candidate
segments, the differences between their shapes, the shape of
the combined segment, and the relative placements of the
candidate segments. The latter features are especially im-
portant because they indicate whether candidate segments
are stacked vertically or one projects from the other (as is
often the case in street lights).

The third issue is class-specificity. For the Segment Clas-
sifier, we train on examples from each object class sep-
arately. This makes sense for that classifier because the
shapes and spatial contexts of each object class are largely
different. However, for the Merge Classifier, it is possible to
consider a class-independent classifier that is learned from
examples of all classes together. This approach takes advan-
tage of similarities in how parts merge into whole objects
across all classes, and provides the classifier with signifi-
cantly more data to train on. During experiments, we found
that this class-independent approach to training the Merge
Classifier performs better than a class-dependent one, and
so we use it in all results of this paper.

4.3. Searching for Hierarchical Segmentations

During a testing phase, our system takes as input a novel
preprocessed LIDAR scan, the two classifiers learned in the
training phase, and a target object class C. It outputs a se-
mantic segmentation of the novel scan, where each output
point is associated with a segment and given a probability
that it is part of an object in class C.

The hierarchical segmentation algorithm starts with seg-
ments output by the preprocessing phase. It builds a graph,
where nodes represent segments and edges represent poten-
tial merges between them. An edge is added between two
segments if they have two points within some fixed distance
in 3D (1 meter in our experiments). The algorithm then it-
eratively collapses edges of the graph (merges segments) in
priority order (as estimated by the Merge Classifier) as long
as: 1) the probability the merge is correct is greater than 0.5
(as estimated by the Merge Classifier), and 2) the probabil-
ity that the merged segment is part of an object of class C is
greater than a threshold (0.01 in our experiments). The hi-
erarchical agglomeration process continues until no further
merges are possible meeting these criteria.

Each segment in the final set of segments is classified
with the Segment Classifier to produce final probabilities
for object class C. Those probabilities are assigned to all
points within the segment in cases where pointwise predic-
tions are required (as in our classification experiment in the
next section).



5. Experimental Results

In this section, we report results of experiments aimed
at investigating how well our algorithms are able to per-
form semantic segmentation of objects in street view LI-
DAR scans of cities.

Input Data Set: Our experiments were run on 3D point
cloud data acquired by the side-facing LIDAR scans of
the R5 Google Street View (GSV) cars driven through a
3.5km2 region of lower Manhattan. The data provided by
Google is partitioned into 20 “runs,” each collected during
a different time a GSV car went out to capture data. In total,
all the runs cover approximately 100 city blocks and contain
2.9M vertical scanlines and 390M LIDAR points.

Ground-Truth Annotation: We generated ground-truth
semantic segmentations for 6 of the largest runs manually
using an interactive tool that allows a person to merge, split,
and label segments of LIDAR points through key-clicks in
an interactive viewer. The viewer starts with the overseg-
mentation output from the preprocessing steps described in
Section 4.1 and then asks a person to split segments that
span more than one object, merge segments that contain
parts of the same object, and select a semantic label for
all objects of certain target object classes (trees, cars, vans,
trucks, street lights, traffic lights, traffic signs, etc.). The re-
sult is a ground-truth annotation with all instances of the tar-
get classes segmented and labeled (statistics for some runs
and classes appear in Table 5). In total, the ground truth
contains 5,633 labeled objects across all runs.

We focus on vehicle and lighting classes in our experi-
ments because they are well sampled in our dataset. Addi-
tionally, each shares similar parts with other objects in the
dataset. Vans and cars appear in similar contexts, but the
van is clearly differentiated by its size difference. Traffic
lights and street lights are a particularly good test of whether
improving the segmentation improves classification accu-
racy because sections of a traffic light are often only dif-
ferentiated from traffic signs or other poles when the top
section (which stretches over the street) is considered.

Experiment Methodology: All experiments were run with
a leave-one-out cross validation, where splits coincide with
non-overlapping GSV runs. We train on the ground-truth
data for all but one run using the algorithms described in
Section 4.2 and then test on the remaining run using the
algorithms described in Section 4.3. Once all splits are pro-
cessed, we average results across all runs to produce final
statistics.

Segmentation Results: We first present results that investi-
gate whether our hierarchical semantic segmentation algo-
rithm produces better segmentations than the inital baseline
ones provided by the preprocessing step.

Table 1. Number of labeled objects for the target object classes.

To address this question quantitatively, we measure the
quality of the highest overlap segment with each instance of
the class in the ground truth data using a Jaccard Index. That
is, for each object in the ground truth, we find the segment
with highest overlap from the predicted segmentation and
then calculate # intersecting points

# points in union . We then plot the cumulative
distribution of the Jaccard indices – i.e., where each point
on a curve indicates the fraction of ground truth objects (y-
axis) with Jaccard index below a threshold (x-axis).

Figure 3 shows the results for several object classes (cars,
vans, street lights, and traffic lights). Note that Jaccard
indices achieved with our hierarchical semantic segmen-
tation algorithm (solid blue curve) are better than those
achieved with the baseline segmentation algorithm (dotted
green curve). This indicates that the hierarchical algorithm
was able to learn classifiers that provide useful merge order-
ing and termination criteria.

Representative segmentation results are shown in Figure
4 (see the supplemental materials for more examples). The
segmentation results of the baseline preprocessing step are
shown directly to the left of the corresponding results of
the hierarchical merging algorithm. Note that preprocessing
segmentations, which are based solely on objectness using
algorithms from Golovinskiy et al. [8], can separate ob-
jects into multiple parts due to noise, undersampling, and
occlusion in the data, resulting in segments that provide low
probabilities for the learned object classifier (shown as gray
values). The hierarchical algorithm merges these parts to
form segments with higher classification probabilities. Of
course, the algorithm is not perfect – the example in the top-
right of Figure 4 shows a case where the end of the traffic
light was not merged with its pole, probably because it was
already highly likely to be part of a traffic light and merging
did not increase its probability in this case.

Classification Results: We next present results that inves-
tigate the classification performance of our hierarchical se-
mantic segmentation algorithm.

For this experiment, we aim to evaluate results indepen-
dent of the segmentations. So, rather than count correctly
labeled objects, we count correctly labeled LIDAR points.
That is, we predict a class label for every LIDAR point in
the test data set and then produce precision-recall plots de-
picting how the points’ predicted class labels agree with the



Figure 3. Cumulative distribution of Jaccard indices for cars, vans, street lights, and traffic lights using our hierarchical semantic segmen-
tation algorithm (solid blue curve) versus the baseline segmentation (dotted green curve).

Figure 4. Comparisons of segmentations produced by the initial baseline algorithm (left) and ones produced by our hierarchical merging
algorithm (right). Gray-levels are proportional to the probability that each segment is a member of the target object class according to our
learned classifier (street light for the first three examples, and traffic light for the last two). Orange represents no LIDAR return. Please
note that the quality of segmentation and predicted classification probability is generally increased in the hierarchical segmentation results.

ground truth. This evaluation method has the disadvantage
that larger objects get more weight in the results, but has the
advantage that direct comparison of classification results is
possible across a range of segmentation algorithms.

We compare our algorithm to two alternatives: 1) one
that applies a Point Classifier to every point independently
(i.e., a classifier that predicts the probability p(C|a) that a
given point a is part of an object of class C based on its
feature vector alone, and 2) one that applies the Segment
classifier P (C|A) to every initial segment A output by the
preprocessing phase. These baseline algorithms are repre-
sentative of simple approaches taken by previous work [8].

Figure 5 shows precision-recall curves for our method
(blue curves) and the two alternatives for four different ob-

ject classes. In all cases, the classification results with our
algorithm are at least as good and sometimes better than
the alternative approaches. For Cars, the Segment classifier
is very good, even without hierarchical merging, because
features such as “signed distance to the closest curb” and
“height off the ground” already provide great cues for de-
tecting Cars. However, for the other more difficult objects,
in particular Traffic Lights, which come in a variety of po-
sitions and shapes, the hierarchical segmentation algorithm
provides a significant improvement in classification rates in
comparison to both alternative approaches.



Figure 5. Precision-recall curves showing object classification per-
formance for classifiers trained on individual points (dotted green
curve), initial baseline segments (dotted red curve), and hierarchi-
cally merged segments – i.e., our method (blue curve).

6. Conclusion and Future Work

This paper investigates whether it is possible to learn
classifiers that guide a hierarchical agglomeration algorithm
to produce semantic segmentations for a target object class.
We learn classifiers that predict the probability that two seg-
ments should be merged and the probability that a segment
represents an object of the target class. These learned clas-
sifiers are used to guide a hierarchical search over possi-
ble segmentations towards ones that produce high proba-
bility semantic segmentations. Experiments on large-scale
Google Street View scans of New York City suggest this al-
gorithm performs at least as well as alternatives and some-
times better.

This work suggests several avenues for future work.
First, the segmentation algorithm used during the prepro-
cessing phase could be improved as it sometimes under-
segments scans. Testing the methods with a finer over-
segmentation (potentially even learning to merge individual
points), or learning to merge across multiple oversegmenta-
tions of the same point cloud could improve results. Sec-
ond, it would be informative to apply techniques such as
CRFs to point and segment classifications to provide addi-
tional points for comparison, potentially using the affinity
learning methods presented here to learn the pairwise po-
tentials between segments. Third, it will be interesting to
compare and combine object recognition results obtained
from the LIDAR data (as in this project) with ones obtained
from image data available with Google Street View. Finally,
it will be interesting to consider how the proposed methods
could be integrated into a semi-automatic semantic segmen-
tation tool – e.g., when the user selects a region to segment,
our system can present predicted hypotheses for the user
to choose between. These and other extensions of the pro-
posed method should be fruitful topics for further research.

This paper would not have been possible without the
generosity of Google, Intel, and NSF. All three provided
funding, and Google provided data (special thanks to
Tilman Reinhardt and Aleksey Golovinskiy). We also thank
Amy Ousterhout, Fisher Yu, and Aleksey Boyko, who laid
some of the early ground work for the project, and Robert
Matejek, who provided ground truth labelings.
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[10] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. Indoor
scene understanding with rgb-d images: Bottom-up segmen-
tation, object detection and semantic segmentation. Interna-
tional journal of Computer Vision (IJCV), 2014. 2
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