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Abstract Existing instance segmentation techniques are pri-
marily tailored for high-visibility inputs, but their perfor-
mance significantly deteriorates in extremely low-light envi-
ronments. In this work, we take a deep look at instance seg-
mentation in the dark and introduce several techniques that
substantially boost the low-light inference accuracy. The pro-
posed method is motivated by the observation that noise in
low-light images introduces high-frequency disturbances to
the feature maps of neural networks, thereby significantly
degrading performance. To suppress this “feature noise”, we
propose a novel learning method that relies on an adaptive
weighted downsampling layer, a smooth-oriented convolu-
tional block, and disturbance suppression learning. These
components effectively reduce feature noise during down-
sampling and convolution operations, enabling the model
to learn disturbance-invariant features. Furthermore, we dis-
cover that high-bit-depth RAW images can better preserve
richer scene information in low-light conditions compared
to typical camera sRGB outputs, thus supporting the use of
RAW-input algorithms. Our analysis indicates that high bit-
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depth can be critical for low-light instance segmentation. To
mitigate the scarcity of annotated RAW datasets, we lever-
age a low-light RAW synthetic pipeline to generate realis-
tic low-light data. In addition, to facilitate further research
in this direction, we capture a real-world low-light instance
segmentation dataset comprising over two thousand paired
low/normal-light images with instance-level pixel-wise an-
notations. Remarkably, without any image preprocessing,
we achieve satisfactory performance on instance segmenta-
tion in very low light (4 % AP higher than state-of-the-art
competitors), meanwhile opening new opportunities for fu-
ture research. Our code and dataset are publicly available to
the community'.

Keywords Instance segmentation - feature denoising -
low-light image dataset - object detection.

1 Introduction

Instance segmentation, as a technique that solves the prob-
lem of object detection and semantic segmentation at the
instance level simultaneously, plays a critical role in help-
ing computers understand visual information and thus sup-
ports applications such as robotics (Fang et al., 2018; Mohan
and Valada, 2021) and autonomous driving (De Brabandere
etal., 2017), and etc.

With the advent of deep learning, many learned instance
segmentation methods have been proposed (Bolya et al., 2019;
Chen et al., 2020, 2019b; He et al., 2017; Lee and Park,
2019), and have achieved promising performance in well-lit
scenarios. However, these methods often fail to work well
in dimly-lit environments, where the detailed contents are
“buried” by severe noise caused by limited photon count and
imperfections in photodetectors. While low-light instance
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(a) Short-exposure camera output (b) Result of enhanced image

(c) Our result from RAW data

(d) Long-exposure reference

Fig. 1 Extreme low-light instance segmentation with Mask R-CNN
(He et al., 2017) based upon (a) a short-exposure low-light image di-
rectly; (b) the image preprocessed by the state-of-the-art low-light en-
hancement algorithm (Guo et al., 2020) plus the denoising algorithm
(Gu et al., 2019); (c) our proposed method on the amplified RAW im-
age (the displayed result here is converted from RAW space to sSRGB
for visualization); and (d) the corresponding long-exposure reference
image.

segmentation is an important task, there are few methods
or datasets specifically designed for this purpose. Relevant
low-light recognition/detection methods (Cui et al., 2021;
Sasagawa and Nagahara, 2020) and datasets (Loh and Chan,
2019; Morawski et al., 2021; Yang et al., 2021) are still in
their infancy. In this context, a common and simple solu-
tion is to combine image enhancement/denoising algorithms
with instance segmentation models (Liu et al., 2020a). How-
ever, the additional image restoration process increases the
computational cost and the overall latency of the pipeline.
Even then, under extremely low light, these image restora-
tion algorithms, as shown in Figure 1, can only recover lim-
ited scene information due to the permanent loss of image
details in typical camera sSRGB outputs.

In this work, we aim to craft a practical low-light in-
stance segmentation framework in an end-to-end manner with
marginal additional computational cost. To this end, we look
deep into the instance segmentation model and analyze how
low-light images harm the instance segmentation performance.
We observe that the noise in low-light images brings “fea-
ture noise” (i.e., high-frequency disturbance as shown in Fig-
ure 2(a)) into features inside the neural network. This leads
to lower semantic responses of scene content in deep fea-
ture maps, therefore causing the low recall of scene con-
tent and degenerating the performance. This important phe-
nomenon is also observed in adversarial defense/attack lit-
eratures (Szegedy et al., 2014; Xie et al., 2019), which sug-
gests that restoring features from samples with adversar-
ial noise can be critical for model robustness (Xie et al.,
2019). Motivated by this observation, we propose to aug-
ment existing instance segmentation methods with an adap-
tive weight downsampling layer, smooth-oriented convolu-

tional block and disturbance suppression learning. They sub-
stantially improve the capability of models to learn noise-
resisted features and thus boost the low-light segmentation
accuracy appreciably. It is worth noting that they are model-
agnostic and lightweight or even cost-free.

Specifically, the adaptive weight downsampling layer can
generate content-aware low-pass filters during feature map
downsampling. It aggregates local features adaptively and
suppresses the high-frequency disturbance caused by noise
as well as keeping the details in deep features. The smooth-
oriented convolutional block enhances the ordinary convolu-
tional layers by adding a smooth-oriented convolution branch.
It helps to improve the robustness of the network for fea-
ture noise and can be re-parameterized (Ding et al., 2021) to
the normal convolutional layer. The disturbance suppression
learning guides networks to learn noise-resisted features, so
as to keep stable semantic responses of scene content for
noisy low-light images. Remarkably, they are model-agnostic.
And only minor computational overhead is added by the
adaptive weight downsampling layer, while smooth-oriented
convolutional block and disturbance suppression learning
introduce no extra computational cost since they are only
involved during training.

Moreover, we notice that the high bit-depth can be cru-
cial for low-light conditions. Thus to reduce the loss of scene
information in dark conditions, instead of 8-bit SRGB cam-
era outputs, we use 14-bit RAW sensor data as inputs, which
have higher bit-depth and better potential to preserve scene
information even under extreme low-light conditions (See
Figure 2(b)). However, to date, there is no low-light RAW
image dataset for instance segmentation, and its collection
and annotation could be tremendously labor-intensive. To
solve this, we leverage a low-light RAW synthetic pipeline.
It can generate realistic RAW image datasets from any ex-
isting SRGB image datasets (e.g., PASCAL VOC 2012 (Ev-
eringham et al., 2010), COCO (Lin et al., 2014a)), which
makes an end-to-end training of RAW-input instance seg-
mentation model feasible.

To systematically examine the performance of existing
approaches under real low-light environments, we also cap-
ture and label a low-light instance segmentation (LIS) dataset
with 2230 pairs of low/normal-light images, covering di-
verse real-world indoor/outdoor low-light scenes. Extensive
experiments validate the superior instance segmentation per-
formance of our method in the dark, consistently outper-
forming existing methods in accuracy and computation cost.

Our main contributions can be summarized as follows:

— We propose an adaptive weighted downsampling layer,
smooth-oriented convolutional block and disturbance sup-
pression learning to address the high-frequency distur-
bance within deep features that occurred in very low
light. Interestingly, they also benefit the normal-lit in-
stance segmentation.
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Low light image Noisy shallow feature Noisy deep feature

(a) Degraded feature maps under low light

Camera output RAW image Reference

(b) Amplified camera SRGB output and the corresponding RAW image

Fig. 2 TIllustration of our key observations under dark regimes that drive our method design: (a) Degraded feature maps under low light. For
clean normal-light images, the instance segmentation network is able to clearly capture the low-level (e.g., edges) and high-level (i.e., semantic
responses) features of objects in shallow and deep layers, respectively. However, for noisy low-light images, shallow features can be corrupted and
full of noise, and the deep features show lower semantic responses to objects. (b) Comparison between camera SRGB output and RAW image in
the dark. Due to significantly low SNR, the 8-bit camera output loses much of the scene information, for example, the seat backrest structure is
barely discernible, whereas is still recognizable in the RAW counterpart (Zoom in for better details).

— We exploit the potentials of RAW-input design for low-
light instance segmentation and leverage a low-light RAW
synthetic pipeline to generate realistic low-light RAW
images from existing datasets, which facilitates end-to-
end training.

— We collect a real-world low-light dataset with precise
pixel-wise instance-level annotations, namely LIS, which
covers more than two thousand scenes and can serve as
a benchmark for instance segmentation in the dark. On
LIS, our approach outperforms state-of-the-art competi-
tors in terms of both segmentation accuracy and infer-
ence speed by a large margin.

2 Related Work

Normal instance segmentation. With the birth of deep
learning, the field of computer vision has flourished (Wei
etal., 2021; ?; ?). Instance segmentation (Bolya et al., 2019;
Chen et al., 2020, 2019b, 2022; He et al., 2017; Lee and
Park, 2019; ?) aim to predict the class label and the pixel-
specific instance mask for objects. It localizes different classes
of object instances present in various images. Many meth-
ods (Chen et al., 2019b; He et al., 2017) rely on Faster R-
CNN (Ren et al., 2015) detector. By adopting the detect-
then-refine strategy, they can achieve superior performance
but run at a relatively slow speed. Other methods (Bolya
etal., 2019; Chen et al., 2020; Lee and Park, 2019) are based
on simple yet effective detectors (Lin et al., 2017b; Red-
mon et al., 2016; Tian et al., 2019), they can run in real-time
and achieve competitive accuracy. Though achieving signif-
icant progress, most existing works only consider normal-
light scenarios and largely overlooked low-light conditions.

Instance segmentation in the dark. To adopt instance seg-
mentation for very low-light, a straightforward solution is
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Fig. 3 Overview of our proposed method. The adaptive weighted
downsampling (AWD) layer, smooth-oriented convolutional block
(SCB), and disturbance suppression loss are designed to reduce the
feature disturbance caused by noise, and the low-light RAW synthetic
pipeline is employed to facilitate end-to-end training of instance seg-
mentation on RAW images.

casting the low-light enhancement methods (Chen et al., 2018;
Jiang et al., 2021; Lv et al., 2021; Yang et al., 2020a; Zhang
et al., 2021b) or image denoising methods (Gu et al., 2019;
Hahn et al., 2011; Hajiaboli, 2011; Liu et al., 2021b; Tan and
Jiao, 2007; Ulyanov et al., 2020) as pre-processing steps.
Compared with normal-light instance segmentation, research
for low-light instance segmentation is at its early stage and
relatively less at present.

A diverse body of work explores low-light classifica-
tion. Gnanasambandam et al. (Gnanasambandam and Chan,
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2020) present a new low-light image classification method
using Quanta Image Sensors (QIS) and show promising re-
sults by utilizing a student-teacher learning scheme to clas-
sify the noisy QIS raw data.

As for low-light object detection, Liu et al. (Liu et al.,
2020a) use a high-level vision model to guide the training
of denoiser and demonstrate the benefit for image denoising
and high-level vision tasks. Diamond et al. (Diamond et al.,
2021) introduce Anscombe networks, which are lightweight
neural camera ISP for demosaicking and denoising. It shows
desirable performance on low-light classification by jointly
learning Anscombe networks with classification networks.
Julca-Aguilar et al. (Julca-Aguilar et al., 2021) propose a
novel 3D object detection modality that exploits temporal il-
lumination cues from a low-cost monocular gated imager. It
shows better potential to deal with low-light or low-contrast
regions. Wang et al. (Wang et al., 2021) propose a joint
High-Low Adaptation (HLA) framework. By adopting a bidi-
rectional low-level adaptation and multi-task high-level adap-
tation scheme, the proposed HLA-Face outperforms state-
of-the-art methods even without using dark face labels for
training. Sasagawa et al. (Sasagawa and Nagahara, 2020)
propose glue layer to “glue” SID model (Chen et al., 2018)
and YOLO model (Redmon et al., 2016) together. Cui et
al. (Cui et al., 2021) propose to learn the intrinsic visual
structure by encoding and decoding the realistic illumination-
degrading transformation. They achieve desired performance
on the low-light classification or low-light objection detec-
tion task but do not consider more challenging low-light in-
stance segmentation.

Low-light synthesis. The low-light enhancement methods
usually need low-light/normal-light image pairs for train-
ing (Chen et al., 2018; Lamba and Mitra, 2021; Lore et al.,
2017; Wang et al., 2018a; Wei et al., 2018; Xiang et al.,
2019; Zhang et al., 2021a), which is hard to obtain. Some
works (Fu et al., 2022; Guo et al., 2020; Jiang et al., 2021)
solve it by learning in a zero-reference way or utilizing un-
paired images for training. And some works explore synthe-
sizing low-light images from normal-light images. Retinex-
Net (Wei et al., 2018) collects normal-light RAW images
from RAISE (Dang-Nguyen et al., 2015) and makes their
histogram of Y channel in YCbCr fit the result in low-light
images from public datasets, thus getting synthetic low-light
images with Adobe Lightroom. The GLADNet (Wang et al.,
2018a) also synthesizes low-light images from RAW images
in RAISE (Dang-Nguyen et al., 2015), which is done by ad-
justing the exposure, vibrance, and contrast parameters. And
the recent works (Punnappurath et al., 2022; Xu et al., 2020)
make progress in synthesizing low-light images by taking
noise into consideration, but they still rely on RAW images
that existing datasets for instance segmentation do not have.
Though some works (Cui et al., 2021; Lore et al., 2017)
try to synthesize low-light sSRGB images from normal-light

ones, they only consider simple Gaussian and Poisson noise.
Moreover, they are not applicable for synthesizing low-light
RAW images from existing SRGB datasets. To solve this,
we leverage unprocessing (Brooks et al., 2019) and employ
a recently proposed physics-based noise model (Wei et al.,
2020, 2021) to synthesize realistic low-light RAW images
from any sRGB images with labels.

Datasets for low-light instance segmentation. Existing
common datasets for instance segmentation, e.g., PASCAL
VOC (Everingham et al., 2010), cityscapes (Cordts et al.,
2016) and COCO (Lin et al., 2014a), play an important role
in the progress of instance segmentation algorithms under
normal illumination. And there are several datasets available
for nighttime detection (Liu et al., 2021a; Loh and Chan,
2019; Morawski et al., 2021; Yang et al., 2021) and seman-
tic segmentation (Dai and Van Gool, 2018; Sakaridis et al.,
2019; Tan et al., 2021). There are also some benchmark
studies for understanding poor visibility environments (Dai
et al., 2020; Fu et al., 2022; Sakaridis et al., 2018; Yang
et al., 2020b). However, images in these datasets are cap-
tured in somewhat dim environments instead of extremely
low-light, whose noise levels are low. Moreover, they are
not suitable for instance segmentation due to the lack of
instance-level pixel-wise labels. To better develop instance
segmentation in extremely low-light, we collect and anno-
tate a real-world low-light image dataset with precise pixel-
wise instance-level annotations called Low-light Instance Seg-
mentation (LIS).

3 Learning Segmentation in Low Light

The overview of the proposed method is shown in Figure 3.
In this section, we first describe our motivation. Then we in-
troduce the low-light RAW synthetic pipeline in Section 3.2.
Finally, we show the details of the Adaptive Weighted Down-
sampling (AWD) layer, Smooth-oriented Convolutional Block
(SCB), and Disturbance Suppression Learning (DSL) in Sec-
tions 3.3, 3.4 and 3.5, respectively.

3.1 Motivation

A practical low-light instance segmentation framework should
be accurate and efficient. We notice the RAW images have
better potential to recover scene information (see Figure 2
(b)), owing to higher bit depth. This should benefit the low-
light instance segmentation. Nevertheless, collecting RAW
image dataset for low-light instance segmentation is expen-
sive and labor-intensive, and it is better if the existing normal-
light image datasets (Everingham et al., 2010; Lin et al.,
2014a) could be utilized for training target models. To this
end, we leverage unprocessing and noise injection to synthe-
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size realistic low-light RAW images from any sSRGB images
with labels.

Furthermore, we observe noise in low-light images can
disturb the prediction, and solutions of this degradation usu-
ally bring extra computational cost, e.g., prepending enhanc-
ing/denoising step. To avoid this, instead of denoising the
image, we aim to denoise the feature inside the instance seg-
mentation model, i.e., suppress the high-frequency distur-
bance within feature maps (see Figure 2 (a)). This should be
more economical in computation than adding extra image-
enhancing/denoising models. Next, we introduce the pro-
posed method in detail.

3.2 Low-light RAW Synthetic Pipeline

Our low-light RAW synthetic pipeline consists of two steps,
i.e., unproccessing and noise injection. We introduce them
one by one.

Unprocessing. Collecting a large-scale RAW image dataset
is expensive and time-consuming, hence we consider utiliz-
ing existing SRGB image datasets (Everingham et al., 2010;
Lin et al., 2014a). The sRGB image is obtained from RAW
images by a series of image transformations of on-camera
image signal processing (ISP), e.g., tone mapping, gamma
correction, color correction, white balance, and demosaick-
ing. With the help of the unprocessing operation (Brooks
et al., 2019), we can invert these image processing transfor-
mations, and RAW images can be obtained. In this way, we
can create a RAW dataset with zero cost.

Noise injection. After obtaining clean RAW images by un-
processing, to simulate real noisy low-light images, we need
to inject noise into RAW images. To yield more accurate re-
sults for real complex noise, we employ a recently proposed
physics-based noise model (Wei et al., 2020, 2021), instead
of the widely used Poissonian-Gaussian noise model (i.e.,
heteroscedastic Gaussian model (Foi et al., 2008)). It can ac-
curately characterize the real noise structures by taking into
account many noise sources, including photon shot noise,
read noise, banding pattern noise, and quantization noise.

3.3 Adaptive Weighted Downsampling Layer

To be robust to image noise, the features of networks should
be clean and consistently respond to the scene content. As
shown in Figure 2(a), noise in low-light images introduces
high-frequency disturbance in feature maps of convolutional
neural networks, which can mislead the following semantic
information extraction and degrade the final prediction. We
observe that the feature map downsampling is done by 1 x 1
convolution layers with a stride of 2 in wide-used vanilla
ResNet (He et al., 2016), as shown in Figure 4(b). This is

similar to applying nearest neighbor interpolation for down-
sampling, which only considers the value of a single “pixel”.
It helps to reduce the computational cost but is useless for
suppressing the noise in features. To better understand this,
we show an example in Figure 5. We first obtain a noisy im-
age from a clean one by injecting Gaussian noise (¢ = 60),
then downsample the noisy image by nearest neighbor in-
terpolation and mean filter, respectively. Due to the local
smoothness prior, the mean filter is able to suppress image
noise during downsampling, whereas nearest neighbor inter-
polation can do nothing with noise. This applies to feature
maps as well.

Downsample with low-pass filter. On the basis of this anal-
ysis, we propose to use a low-pass filter (e.g., Gaussian filter,
mean filter, or bilateral filter, with stride=2) for feature map
downsampling. To verify if it is helpful for feature noise sup-
pression, we evaluate the feature noise with

D(w,a, f(0) = Y _[IF D (w:0) = fO 05, (1)
i=1

where D indicates feature disturbance caused by image noise,
i.e., feature noise, x and z’ are clean normal-light image and

corresponding noisy low-light image, and () (z; ) is the

i-th stage of feature maps in network f(-) with parameters

of 6. As shown in Table 1, these low-pass filters are able to

reduce the feature disturbance caused by noise in low-light

images, and the instance segmentation performance also im-

proves, which shows their effectiveness.

Learning to generate spatial-variant filter. Though these
low-pass filters help to achieve better low-light instance seg-
mentation results with minor extra computational cost, they
are still suboptimal. For example, they may blur edge/texture
features with relatively high frequency in the scene content.
Furthermore, different spatial locations usually have differ-
ent signal frequencies in feature maps. We need to apply
different filters to them separately. Therefore, we propose to
use spatial-variant filters, which can be formulated as

A p,q
Yi;j= E Wi,j

p,qES

“Xitpjtas )

where X, Y are input and output feature maps, (4, j) indi-
cates the location in height, width dimensions, S points to
the set of spatial locations surrounding (4, j), and W is the
filter weight predicted by the network

Vij = o(Xw, ),

exp(V;") (3)
Ypges xp(VE)
where ¢ is the weight generation function, ¥; ; indexes the

set of pixels V; ; conditioned on. The softmax function can
ensure the filter kernels are low-pass.

P,q __
Wi =
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(d) Adaptive weighted downsampling layer

Fig. 4 Illustration of adaptive weighted downsample layer. The original downsampling operation in ResNet (He et al., 2016) is done by con-
volutional layers (b) with stride=2, which fails to leverage 3/4 of spatial features for feature noise suppression. The proposed adaptive weighted
downsampling (AWD) layer (c) can selectively aggregate all surrounding features to generate downsampled features with less feature noise. FC in
(d) indicates a fully connected layer, and “r” indicates the channel reduction ratio.

Table 1 Ablation study of different mechanisms for feature denoising during feature map downsampling.

Filter type Kernelsize | AP APso AP75 | APP°® AP2%3®  AP52® | Disturbance | GFlops | Parameters
None - 38.0 59.9 39.1 45.2 67.1 50.2 1.5292 109.95 43.78M
Gaussian 3 x3 38.3 60.5 39.1 45.5 67.2 49.1 1.4264 109.96 43.78M
Bilateral 3 %3 38.1 59.3 38.5 45.3 66.7 49.3 1.5288 109.96 43.78M
Mean 3x3 38.5 60.4 384 45.7 67.1 50.9 1.4524 109.96 43.78M
Spatial-variant 3 x3 39.0 61.0 39.8 46.3 68.0 51.3 1.4011 110.08 43.93M
AWD 3 x3 39.3 614 40.2 46.4 68.0 51.6 1.3715 110.25 44.65M
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Fig.5 Downsampling the noisy image with low-pass filters, e.g., mean

filter, can suppress the noise, whereas nearest neighbor interpolation
cannot.
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Fig. 6 Illustration of the smooth-oriented convolutional block. SConv
indicates the smooth-oriented convolution. (a) It explicitly employs a
linear combination of multiple branches during the training stage. (b)
And in the inference stage, it can be folded back to a normal 3 x 3
convolutional layer by using the re-parameterization technique (Ding
etal., 2021).

Adaptive weighted downsampling layer. Table 1 shows
the spatial-variant filter has superiority in feature denois-
ing, but it still has two following drawbacks. First, consid-
ering different channels of the feature maps show the se-
mantic responses to different image features, the signal fre-
quencies can be variant across channels at the exact spa-
tial locations. Thus spatial-variant is not enough to achieve

optimal results, it is necessary to generate spatial-variant
and channel-variant filters for different spatial and channel
locations. Second, the spatial-variant filter generates filter
weights from local features and fails to utilize the context
and global information. To solve these problems, we pro-
pose an adaptive weighted downsampling layer, which can
be formulated as

o Pq o
Yeij = E Wc,i,j Xeitp,jtas

P,qES

“)

where (c, ¢, j) indicates the location in the channel, height,
and width dimensions. The W is the filter weight predicted
by the network

VC@J = (ZS(XWc,i,j)’ T. = ¢/(GP(X))7

P _ exp(Veiy - Te) ®)
ol Zp,qes exp(foj : TC)’

where ¢, ¢’ are also the weight generation functions, e i
indexes the set of pixels V. ; ; conditioned on, and GP is the
global pooling operation. As illustrated in Figure 4(d), it is
estimated by combining the local information V' (by using
local features) and global information 7' (by using global
pooling features). The predicted 7. can adjust the smooth-
ness of kernel W, ; ;, which is similar to the temperature
parameter in softmax (Hinton et al., 2015). To ensure that
generated filters are low-pass, we use softmax to constrain
weights to be positive and sum to 1. In this way, we predict
content-aware low-pass filters for each position and channel,
so as to keep the foreground signal and suppress the feature
noise adaptively.
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(a) RGB-normal
. 3

(b) RGB-dark

(c) RAW-normal (d) RAW-dark

ycle

Fig. 7 Example scenes in our LIS dataset. Four image types (long-exposure normal-light and short-exposure low-light images in both RAW and

sRGB formats) are captured for each scene.

3.4 Smooth-Oriented Convolutional Block

The adaptive weighted downsampling layer improves the ro-
bustness of networks with a carefully designed downsam-
pling process. To further enhance the networks, we turn to
focus on increasing the strength of ordinary convolutional
blocks. The principles of convolutional block design are two
sides. First, the improved convolutional block should be more
robust to the feature noise. Second, the extra computational
cost should be minor or free. To this end, we propose the
smooth-oriented convolutional block. It can replace the or-
dinary 3 x 3 convolutional layers to enhance the network.
Remarkably, it brings no extra computational cost during
inference by using the re-parameterization technique (Ding
etal., 2021).

The structure of the smooth-oriented convolutional block
is shown in Figure 6, it explicitly employs a linear combi-
nation of multiple branches during the training stage. The
main convolutional branch is the same as the original 3 x
3 convolutional layers. The auxiliary branch consists of a
1 x 1 convolutional layer and a smooth-oriented convolu-
tion, which can learn smooth kernels to suppress the feature
noise in high-frequency. To ensure the filters are smooth, we
use the mean filter or Gaussian filter to initialize the weights
of smooth-oriented convolution and regularize its weights
with the softmax function, so as to ensure that the learned
3 x 3 kernel for each channel is all positive and sum to 1.
And it is followed by a 1 x 1 convolutional layer to fuse the
filtered feature into the main convolutional branch.

And in the inference stage, the smooth-oriented convo-
lutional block can be folded back to a normal 3 x 3 con-
volutional layer by the re-parameterization technique (Ding
et al., 2021). Formally, we use W € RE2XC1X3x3 {g de-

note the kernel of a 3 x 3 convolutional layer with C; input
channels and C'y output channels. The kernel of folded 3 x 3
convolutional can be re-parameterized as follows

Wéxs[i7j7 hvt] = W3><3[i,j, h, t]

o . (6)
+ (WIXI[Lja 17 1] * WSCOHV[Z7 17 ha t])a

where i € {1,2,...,C2}, j € {1,2,...,C1}, and h,t €
{1,2,3} are indicators. W}, ; € REXC1x3%3 ig the ker-
nel weights of folded convolutional layer for inference, and
W3><3 c RC2><01 ><3><3, W1><1 c RC2 xCi1x1x1 and WSConv c
RC2>1x3x3 indicate 3 x 3 convolutional layer, 1 x 1 convo-
lutional layer and smooth-oriented convolution during train-
ing, respectively.

3.5 Disturbance Suppression Learning

Ideally, a robust network should extract similar features re-
gardless of whether the input image is corrupted by noise or
not. Orthogonal to the architectural considerations, we in-
troduce disturbance suppression learning to encourage the
network to learn disturbance-invariant features during train-
ing. As shown in Figure 3, the total loss for learning is

L(0) = Lis(x;0) + aLis(2';0) + BLps(z,2';0), (7

where x is the unprocessed clean synthetical RAW image
and 7’ is its noisy version, a and /3 are the weights of the
losses. We empirically set «, 3 to 1, 0.01 for weighing. The
Ljs is instance segmentation loss, which consists of classifi-
cation loss, bounding box regression loss, and segmentation
(per-pixel classification) loss. Its specific formula is related
to the instance segmentation model, please refer to Mask R-
CNN (He et al., 2017) for details. The model should learn to
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Table 2 Ablation study for the low-light RAW synthetic pipeline on our LIS testing set. “UP” and “NI” indicate unprocessing and noise injection
operations, respectively. The “*” indicates processing with gamma correction. All models are based on the vanilla Mask R-CNN (He et al., 2017)
with the backbone of ResNet-50-FPN (He et al., 2016; Lin et al., 2017a).

Data Type Training Set Testing Set UN NI | AP APso AP75 | APP°®  AP23®  APbe®
LIS sRGB-normal LIS sRGB-normal - - 48.1 71.8 50.3 54.6 76.5 60.2

LIS RAW-normal LIS RAW-normal - - 45.4 70.0 46.6 52.8 74.7 63.4

REAL LIS RAW-normal* LIS RAW-normal* - - 48.1 71.5 50.5 54.7 76.0 60.3
LIS sRGB-dark LIS sRGB-dark - - 35.5 57.5 36.1 429 64.3 46.1

LIS RAW-dark LIS RAW-dark - - 39.0 61.3 40.1 46.1 67.8 50.5

- - 232 40.0 22.5 26.1 42.7 27.3

v - 234 38.0 233 26.6 42.5 28.7

COCO sRGB-normal LIS RAW-dark Y V| 272 463 277 310 507 326

J v | 294 490 285 | 344 546 366

SYNTHETIC - [ 316 302 316 | 366 560 393
} . 4 - 33.8 52.7 34.2 39.6 58.8 43.2

LIS sRGB-normal LIS RAW-dark Y V| 351 555 354 206 611 441

v v/ | 38.0 59.9 39.1 45.2 67.1 50.2

work stably whether the image is noisy or not. Hence Lig is
applied to both clean image x and noisy image z’. The Lps
is feature disturbance suppression loss, which is defined as

n
Lps(x,2':0) = Y _|If9(x:0) = 19" 0)]3, ®
i=1

where f()(z; ) is the i-th stage of feature maps of model.

By minimizing the Euclidean distance between clean fea-

tures f(¥)(z;6) and noisy features f()(a’;6), disturbance

suppression loss induces model to learn disturbance-invariant
features. Therefore the feature disturbance caused by image

noise can be reduced, and its robustness for corrupted low-

light images is improved.

Different from perceptual loss (Gnanasambandam and
Chan, 2020), we do not need to pretrain a teacher model,
which makes our training simpler and faster. With Lg(x; 6),
Lis(z’; ), our model can learn discriminative features from
both clean and noisy images, so as to keep stable accuracy
no matter images are corrupted by noise or not. Whereas
“student” in perceptual loss (Gnanasambandam and Chan,
2020) only sees noisy images, which leads to degradation
on clean images and limits its robustness. Moreover, the do-
main gap of feature distribution between the teacher model
and student model may harm the learning procedure. While
we minimize the distance between clean features and noisy
features predicted by the same model, which avoids this prob-
lem.

4 Low-light Instance Segmentation Dataset

Though evaluating on synthetic low-light images is a com-
mon and convenient practice (Cui et al., 2021), its results can
severely deviate from the real world due to the much more
complicated lighting conditions and image noise (Anaya and
Barbu, 2018; Plotz and Roth, 2017). To reveal and system-
atically investigate the effectiveness of the proposed method
in the real world, a real low-light image dataset for instance

segmentation is necessary and urgently needed. Considering
there is no suitable dataset, therefore, we collect and anno-
tate a Low-light Instance Segmentation (LIS) dataset using
a Canon EOS 5D Mark IV camera. In Figure 7, we show
some examples of annotated images in our LIS dataset. It
exhibits the following characteristics:

— Paired samples. In the LIS dataset, we provide images
in both sSRGB-JPEG (typical camera output) and RAW
formats, each format consists of paired short-exposure
low-light and corresponding long-exposure normal-light
images. We term these four types of images as sRGB-
dark, sRGB-normal, RAW-dark, and RAW-normal. To en-
sure they are pixel-wise aligned, we mount the camera
on a sturdy tripod and avoid vibrations by remote con-
trol via a mobile app.

— Diverse scenes. The LIS dataset consists of 2230 im-
age pairs, which are collected in various scenes, includ-
ing indoor and outdoor. To increase the diversity of low-
light conditions, we use a series of ISO levels (e.g., 800,
1600, 3200, 6400) to take long-exposure reference im-
ages, and we deliberately decrease the exposure time by
a series of low-light factors (e.g., 10, 20, 30, 40, 50, 100)
to take short-exposure images for simulating very low-
light conditions.

— Instance-level pixel-wise labels. For each pair of im-
ages, we provide precise instance-level pixel-wise labels
annotated by professional annotators, yielding 10504 la-
beled instances of 8 most common object classes in our
daily life (bicycle, car, motorcycle, bus, bottle, chair, din-
ing table, tv).

We note that LIS contains images captured in different
scenes (indoor and outdoor), and different illumination con-
ditions. In Figure 7, object occlusion and densely distributed
objects make LIS more challenging besides the low light.
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Table 3 Ablation study for adaptive weighted downsampling (AWD), smooth-oriented convolutional block (SCB), and disturbance suppression
learning (DSL). “Synthetic LIS” indicates using unprocessing and noise injection operations to synthetic low-light images from sRGB-normal
images for training. “Real LIS” indicates the RAW-dark and RAW-normal image pairs in the training set are accessible for training. Results are

reported on the LIS RAW-dark test set.

Training Data Backbone AWD SCB DSL | AP AP5o AP75 | APP°®  APS®  AP%2® | GFlops | Parameters
ResNet-50-FPN - - 380 599 39.1 452 67.1 50.2 109.95 43.78M
ResNet-101-FPN - - - 395 622 40.5 46.7 68.4 52.7 128.01 62.78M
Synthetic LIS | ResNet-50-FPN V4 E - 393 614 40.2 46.4 68.0 51.6 110.25 44.65M
ResNet-50-FPN v Vv - 399 618 41.1 473 68.8 52.3 110.25 44.65M
ResNet-50-FPN Vv Vv v | 408 627 41.5 48.0 69.2 52.6 110.25 44.65M
ResNet-50-FPN - - - 390 613 40.1 46.1 67.8 50.5 109.95 43.78M
ResNet-101-FPN - - - 407  63.6 41.4 48.7 70.2 53.5 128.01 62.78M
Real LIS ResNet-50-FPN V4 E - 410 636 415 486 70.8 51.9 110.25 44.65M
ResNet-50-FPN Vv v - 415 643 419 48.9 71.6 52.7 110.25 44.65M
ResNet-50-FPN v Vv v | 427 662 43.3 50.3 72.6 55.2 110.25 44.65M

5 Experiments

In this section, we first introduce implementation details and
evaluation metrics. Then we conduct ablation studies to eval-
uate the effectiveness of the proposed method. Finally, we
compare our method against existing multi-step methods.

5.1 Implementation Details

All experiments here are conducted on Mask R-CNN (He
et al., 2017) baseline with ResNet-50-FPN (He et al., 2016;
Lin et al., 2017a) backbone for simplicity. Notice that our
proposed method can be equipped with any network-based
instance segmentation model.

Training details. Our framework is trained by synthetic
low-light RAW-RGB? images generated from COCO (Lin
et al., 2014b) dataset using our low-light RAW synthetic
pipeline®. Our implementation is based on MMDetection.
During training, we use random flip as data augmentation
and train with a batch size of 8, a learning rate of le-2 for
12 epochs, with a learning rate dropping by 10x at 8 and
11 epochs, respectively. To make the model quickly adapt to
low-light settings, we use COCO pre-trained model as ini-
tialization.

Dataset and Evaluation Metrics. The real low-light in-
stance segmentation performance is evaluated on the LIS
dataset, in which the total 2230 image pairs are randomly
split into a train set of 1561 pairs and a test set of 669 pairs.

Following (He et al., 2017), we measure the performance
by using COCO-style AP (averaged over thresholds from
0.5 to 0.95 with an interval of 0.05), AP5q and AP75 (i.e., AP
at an IoU of 0.5). We also provide the results of detection,

2 To make the detector compatible with sSRGB inputs, instead of the
Bayer RAW images, we follow (Chen et al., 2019a) to use demosaicked
3-channel RAW-RGB images as inputs, where the green channel is ob-
tained by averaging the two green pixels in each two-by-two Bayer
block. In the following, we refer to "RAW” and "RAW-RGB” inter-
changeably.

3 We use COCO samples belonging to the same 8 object classes in
the LIS dataset.

Table 4 Ablation study for various bit-depth and encodings. The
sRGB-dark with italics indicates images are obtained from correspond-
ing RAW images. It is worth noting that we simulate various color
encodings by quantizing the captured 14-bit RAW images to RAW im-
ages of different color encodings (e.g., 8, 10, and 12 bits). This can be
different from directly capturing images in corresponding bits.

Data type AP AP5o  APgs | APP°T  APBoT  APEeT
sRGB-dark (8-bit) | 355 575  36.1 429 64.3 46.1
SRGB-dark (10-bit) | 37.7 595 383 445 66.5 48.7
SRGB-dark (12-bit) | 382 604 393 453 67.2 49.0
SRGB-dark (14-bit) | 38.7 608  39.5 46.0 67.4 50.8
RAW-dark (8-bit) | 355 582 358 | 427 65.6 452
RAW-dark (10-bit) | 38.6 607 399 | 459 67.6 50.0
RAW-dark (12-bit) | 39.0 614 400 | 46.0 68.5 50.3
RAW-dark (14-bit) | 39.0 613  40.1 46.1 67.8 50.5

Table S Ablation for global pooling branch in adaptive weighted
downsampling layer.

Method AP AP5o  AP75 | APP°®  APo®  Apber
w/ Global Pooling 39.1  6l1.1 39.8 46.3 68.0 51.4
w/o Global Pooling | 39.3  61.4 40.2 46.4 68.0 51.6

Table 6 Ablation study for kernel size of adaptive weighted down-
sampling layer. We use synthetic LIS training set for training. Results
are reported on the LIS test set.

Kernelsize | AP AP5o AP75 | APP°®  APRe®  APDS®
None 380 599 391 452 67.1 50.2
2x2 389 613 301 46.4 68.1 51.0
3x3 393 614 402 | 464 68.0 516
4x4 389 614 395 | 464 68.1 50.2
5x5 384 605 394 | 455 67.6 50.6

(b)

Fig. 8 Illustration of SRGB-normal and RAW-normal with or with-
out gamma correction. The sSRGB-normal (a) is much visually brighter
than the RAW-normal (b), especially for the dark region. And after
gamma correction, RAW-dark (c) shows similar illumination to sSRGB-
normal.

which are represented as AP*”, AP2%7, and AP%2%. To eval-
uate inference speed, we measure Frame Per Second (FPS)
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Fig. 9 Visualization of filter weights predicted by adaptively weighted downsampling (AWD) layer. The top row shows input images, we convert
RAW images to SRGB images for visualization. The bottom row shows the visualized standard variance of learned filter weights for each position,

brighter color means a higher standard variance of predicted filter weights.

Table 7 Comparison and combination with different attention mech-
anisms. The baseline model is Mask R-CNN (He et al., 2017) with
ResNet-50-FPN (He et al., 2016; Lin et al., 2017a). We compare and
combine the proposed Adaptive Downsampling (AWD) layer with typ-
ical spatial attention (i.e., non-local (Wang et al., 2018b)), channel at-
tention (i.e., squeeze-and-excitation (SE) (Hu et al., 2018)) and both
spatial and channel attention (i.e., CBAM (Woo et al., 2018)). Mod-
els are trained on synthetic LIS and evaluated on the LIS test set. AT

indicates the extra improvement brought by the AWD.

Method AP APsg AP7s | AP  APE3®  AP52®
baseline 380 599 39.1 452 67.1 50.2
+AWD 393 614 402 46.4 68.0 51.6
At +1.3  +1.5 +1.1 +1.2 +0.9 +1.4
Non-local 385  60.0 39.8 45.6 67.4 50.5
Non-local + AWD | 39.5 614 402 46.6 68.8 51.7
At +1.0 +14 +0.4 +1.0 +1.4 +1.2
SE 392 614 40.3 46.1 67.8 52.0
SE + AWD 403 628 41.4 472 69.4 52.5
At +1.1  +14  +1.1 +1.1 +1.6 +0.5
CBAM 38.7  60.7 40.0 45.7 67.3 51.1
CBAM + AWD 400 628 40.5 47.4 69.6 52.8
AT +1.3  +2.1 +0.5 +1.7 +2.3 +1.7

Table 8 Ablation study for the smooth-oriented convolutional block.
SConv indicates smooth-oriented convolution. We use synthetic LIS

training set for training. Results are reported on the LIS test set.

Method AP AP5, AP;; | APPT  APLeT  Aphe®
Bascline Jw AWD) | 393 614 402 | 464 680 516
Gaussian 394 616 398 | 465 682 514
Mean 394 617 402 | 466 686 514
SConv 399 618 411 | 473 688 523

Table 9 Ablation study for disturbance suppression learning (DSL)
and perceptual loss (PL). We use synthetic LIS training set for training.

Results are reported on the LIS test set.

Method RAW-dark RAW-normal
AP  APs0 APrs AP APso APy
Baseline | 39.9 61.8 41.1 44.7 68.2 45.7
w/ PL 40.2 619 40.7 45.1 68.4 459
w/DSL | 40.8  62.7 41.5 46.6  69.5 48.6

for each method on 600 x 400 images with a single RTX

3090.

Table 10 Ablation study for adaptive weighted downsampling
(AWD), smooth-oriented convolution block (SCB), and disturbance
suppression learning (DSL) under normal-light conditions. Models are
trained on the COCO train set, and results are reported on the COCO
val set.

Method AP AP5o APrs | APP°T  APBeT  APEeT
Mask R-CNN 344 556 369 | 380 58.6 415
+AWD 355 566 379 | 388 59.7 425
+AWD+SCB 355 566 380 | 390 59.9 425
+AWD+SCB+DSL | 361 574  39.0 | 395 60.3 432

Original image

Noisy image Noisy feature (baseline) Noisy feature (proposed)

Residual error (baseline)

Image noise Residual error (proposed)

Fig. 10 Visualized high-level features. The residual error shows the
difference between the clean feature and the noisy feature. It can be
seen that the proposed method helps to reduce feature disturbance and
keeps semantic responses to scene content when the image is noisy.

5.2 Ablation Studies

In this section, we first conduct ablation studies on input im-
age types to reveal the advantage of RAW images for low-
light instance segmentation and verify the effectiveness of
low-light synthetic pipeline in Table 2. Then, we investigate
the adaptive weighted downsampling layer, smooth-oriented
convolutional block, and disturbance suppression learning.
As shown in Table 3, they all contribute to performance im-
provement. Finally, we verify the effectiveness of the low-
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light synthetic RAW pipeline. All results are reported on the
LIS test set.

SRGB vs. RAW. To explore the upper bound of sSRGB im-
age and RAW image under normal-light and low-light con-
ditions, we experiment with sSRGB-normal, RAW-normal,
sRGB-dark, and RAW-dark separately on our LIS dataset.
As shown in Table 2, under normal light, SRGB and RAW
have similar performance upper bound. But there is a con-
sistent performance gap between RAW-normal and sRGB-
normal (45.4 AP vs. 48.1 AP). To investigate deeper into
this phenomenon, we notice that though they contain sim-
ilar scene information, the SRGB-normal is much visually
brighter than the RAW-normal, especially for the dark re-
gion (see Figure 8). This is caused by gamma correction in
the pipeline of processing RAW to sSRGB. Owing to the non-
linear manner in perception, the sensitivity of humans to rel-
ative differences between darker tones is more significant
than between lighter tones. And gamma correction can avoid
allocating too many bits to highlights that humans cannot
differentiate. Generally, the gamma correction can be writ-
ten as:

Iout = I;Yn (9)

where I € [0,1] is the normalized image pixel, and = is
usually set as 1/2.2 for processing RAW to sRGB (Brooks
et al., 2019). After applying gamma correction, RAW-dark
with gamma correction shows similar illumination as shown
in Figure 8 (c). And the corresponding performance is con-
sistent with SRGB-normal, as shown in Table 2.

As for low-light conditions, the result of RAW images
largely outperforms that of SRGB images, showing that RAW
images keep richer scene information under very low light.
This is critical for the instance segmentation task. We as-
sume it is due to the higher color encodings of RAW images
(14-bit RAW from Canon EOS 5D vs. 8-bit sSRGB ). To ver-
ify this, we simulate various color encodings by quantizing
the captured 14-bit RAW images to RAW images of differ-
ent color encodings (e.g., 8, 10, and 12 bits). And the SRGB-
dark of 10, 12, and 14-bit are obtained from correspond-
ing RAW images with the image processing pipeline, which
shows the necessity of RAW images. The image processing
pipeline includes digital gain, white balance, demosaicing,
color correction, and gamma correction. It is worth noting
that quantizing the captured 14-bit RAW images to RAW
images of various color encodings can be different from di-
rectly capturing them. However, since a specific commercial
camera model only support RAW capture with constant bit
depth (typically 14 bits in high-end DSLR), here, we simu-
late their results with quantization for fast verification.

As shown in Table 4, we can see the performance of
both sSRGB-dark and RAW-dark gradually increase from 8-
bit to 14-bit, and the results of SRGB-dark are very similar to

RAW-dark. Besides, we also notice that the results of RAW-
dark are slightly better than the SRGB-dark. The reason may
be that the steps in the image processing pipeline can make
the noise of SRGB more complex than RAW (Brooks et al.,
2019), which leads to accuracy degradation. These quantita-
tive results show that the high-bit property of RAW images
plays a crucial part in low-light instance segmentation.

Low-light Synthetic RAW Pipeline. The unprocessing op-
eration inverts SRGB images to synthetical RAW images,
and noise injection simulates the corruption caused by lim-
ited photon count and imperfection of photodetectors. As
shown in Table 2, they bring in 2.2 AP and 3.5 AP per-
formance improvements, respectively. Moreover, when we
combine these two steps together, the accuracy increases
from 31.6 AP to 38.0 AP, which is very close to the result
of training with real RAW-dark images 39.0 AP. It shows
our synthetic pipeline is able to generate realistic RAW im-
ages. When we adopt the COCO dataset, the trend of results
is similar and shows the satisfying generalization ability of
low-light RAW synthetic pipeline.

Adaptive weighted downsampling (AWD) layer. Table |
shows AWD reduces the feature disturbance compared with
baseline, which means effectiveness on feature denoising.
Though traditional filters can also be helpful, they may blur
the foreground signal, which is not optimal. AWD avoids
this problem by predicting content-aware filters. It surpasses
all traditional low-pass filters and considerably improves the
AP by 1.3 and 1.6 points when trained on LIS and COCO,
respectively. And Table 5 verifies the effectiveness of the
global pooling branch in the AWD.

To find out the best kernel size of the proposed AWD
layer, we conduct experiments on different kernel sizes rang-
ing from 2 X 2 to 5 x 5. As shown in Table 6, the AWD layer
can bring 0.4-1.3 AP improvement, and the kernel size of
3 x 3 shows the best results, which is 1.3 AP better than the
baseline.

Comparison with attention mechanisms. Here, we com-
pare the AWD layer with attention mechanisms and discuss
their essential differences. First, the AWD layer has a differ-
ent motivation. Attention mechanisms are motivated by the
human perception that treats information unequally. They
assign different weights to input so as to pay more atten-
tion to important information. While the AWD layer is moti-
vated by the fact that traditional low-pass filters (e.g., Gaus-
sian filter) can suppress high-frequency noise. To suppress
high-frequency feature noise as well as keep the details, the
AWD layer is designed to predict input-variant low-pass fil-
ters. Second, the AWD layer is technically different. Atten-
tion mechanisms such as (Woo et al., 2018) aim to improve
the convolutional blocks while the AWD layer is proposed to
improve the downsampling operation between convolutional
blocks, which makes them orthogonal and complementary
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Integrated Segmentor
Segmentor Enhancer ~ Segmentor Enhancer ~ Denoiser ~ Segmentor Enhancer + Denoiser Segmentor with feature denoising
> > > > > > > > > > > > > >
(a) Direct (b) Enhance (c) Enhance + Denoise (d) Integrated Enhance + Denoise (e) Ours

Fig. 11 Competing Methods. We illustrate different pipelines for comparison in Table 11. It can be seen that the proposed method is straight and

concise.

Table 11 Quantitative comparisons of low-light instance segmentation. To show the low-light performance in the uncontrolled real world, all
models only use COCO data for training and evaluate on test set of the LIS dataset Our method is trained on synthetic COCO (synthesized
by the low-light RAW synthetic pipeline), and evaluated on RAW-dark images in the LIS dataset. Whereas the Mask R-CNN in other pipelines is
optimized with original images in COCO, and evaluated on enhanced sSRGB images outputted by the preprocessing methods in the LIS dataset.

Pipeline Preprocessing method Method AP AP5o  AP7s | APY°®  APSST  APYeT | FPS
Direct - Mask R-CNN | 19.8 36.2 18.4 22.8 38.4 24.4 56.2

HE (Gonzalez et al., 2002) Mask R-CNN | 189 33.0 18.4 22.5 36.5 24.1 42.7

GLADNet (Wang et al., 2018a) Mask R-CNN | 14.0 24.4 13.8 16.0 259 17.5 31.2

Enhance Retinex-Net (Wei et al., 2018) Mask R-CNN | 18.2 30.9 18.5 21.0 332 229 33.1
EnlightenGAN (Jiang et al., 2021) Mask R-CNN | 19.0 333 18.6 223 36.5 242 38.0

Zero-DCE (Guo et al., 2020) Mask R-CNN | 19.7 344 19.1 22.8 37.0 242 474

HE (Gonzalez et al., 2002) + SGN (Gu et al., 2019) Mask R-CNN | 21.0 36.4 20.7 25.1 40.2 26.5 314

GLADNet (Wang et al., 2018a) + SGN (Gu et al., 2019) Mask R-CNN | 21.8 37.5 21.5 25.4 41.0 26.4 254

Enhance + Denoise Retinex-Net (Wei et al., 2018) + SGN (Gu et al., 2019) Mask R-CNN | 22.1 375 222 25.8 41.7 27.8 26.0
EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) | Mask R-CNN | 26.0  45.7 25.0 30.8 50.2 33.1 29.0

Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) Mask R-CNN | 26.5 46.1 259 312 504 339 34.1

Integrated SID (Chen et al., 2018) Mask R-CNN | 27.2 454 26.5 30.9 49.6 329 43.8
Enhance + Denoise REDI (Lamba and Mitra, 2021) Mask R-CNN | 23.3 41.7 223 272 44.6 29.0 44.0
End-to-end (Ours) - Mask R-CNN | 31.8 52.3 314 37.6 58.4 40.4 53.1

to each other. Therefore the AWD layer can steadily fur-
ther improve the performance of the attention-based model
as shown in Table 7. We compare the proposed AWD with
CBAM (Woo et al., 2018) in Table 7. And we observe two
interesting results that are consistent with the analysis. First,
the AWD helps the baseline model achieve better results
than CBAM (39.3 AP vs. 38.7 AP). Second, the AWD fur-
ther improves the performance of CBAM by 1.3 (from 38.7
AP to 40.0 AP), which is the same degree of improvement
as the baseline, i.e., the AWD also improves the baseline by
1.3 (from 38.0 AP to 39.3 AP). These results verify that the
improvement brought by AWD is entirely orthogonal to the
CBAM. Furthermore, we conduct more experiments with
different attention mechanisms including non-local (Wang
et al., 2018b) and squeeze-and-excitation (SE) (Hu et al.,
2018), which are spatial attention and channel attention, re-
spectively. Their results in Table 7 draw the same conclu-
sion, i.e., the AWD helps the baseline model achieve bet-
ter results than non-local and SE and the AWD can fur-
ther steadily improve the results of non-local (Wang et al.,
2018b) and SE (Hu et al., 2018).

Smooth-oriented convolutional block (SCB). The SCB ex-
plicitly employs a branch to learn to reduce the feature noise
with a smooth filter. And at inference, the SCB can be folded
to a normal convolutional layer, which means it boosts the
model with no extra computational cost. Here, we try to re-
place the smooth-oriented convolution (SConv) with differ-

ent traditional smooth filters for comparison. As shown in
Table 8, using Gaussian or mean filter also brings perfor-
mance improvements for low-light instance segmentation.
But due to their fixed filter weight, they fail to learn to deal
with the feature noise in a flexible way. And SConv can be
optimized during training, so as to learn the most appropri-
ate filter weights for each channel and achieve better perfor-
mance.

Disturbance suppression vs. Perceptual loss. Here, we
compare our disturbance suppression learning with percep-
tual loss (Gatys et al., 2016; Gnanasambandam and Chan,
2020) for low-light instance segmentation. The perceptual
loss (Gatys et al., 2016; Gnanasambandam and Chan, 2020)
adopts a teacher-student structure for learning, its pretrained
teacher extracts clean features from clean images to super-
vise the student for noisy images. Compared with percep-
tual loss (Gnanasambandam and Chan, 2020), the proposed
disturbance suppression learning shows two beneficial char-
acteristics. First, the disturbance suppression learning needs
not to pretrain a teacher model, which makes our training
simpler and faster. Second, the disturbance suppression learn-
ing can learn discriminative features from both clean and
noisy images, whereas “student” in perceptual loss only sees
noisy images and cannot fully utilize the clean images. Thus
the disturbance suppression learning can keep stable accu-
racy no matter whether images are corrupted by noise or not.
As shown in Table 9, on RAW-dark, the disturbance sup-
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Table 12 Quantitative comparisons of low-light instance segmentation after finetuning on the LIS dataset. All methods can access to train set
of the LIS dataset for finetuning and are evaluated on test set of the LIS dataset. Our method is trained on image pairs of RAW-dark and
RAW-normal, and evaluated on RAW-dark images in the LIS dataset. While the Mask R-CNN in “Enhance + Denoise” and “Integrated Enhance
+ Denoise” pipelines use enhanced sSRGB/RAW-dark images outputted by the preprocessing methods in the LIS dataset for training/finetuning
and evaluation. The U-Net and Mask R-CNN in*Jointly optimized” pipeline are jointly optimized and evaluated on RAW-dark images in the LIS
dataset, where the U-Net preprocessor is supervised by an extra image restoration (L2) loss using RAW-Normal images as ground truth.

Pipeline Preprocessing method Method AP AP35 AP75 APbox Angm AP’;gI FPS
Direct Mask R-CNN | 35.5 57.5 36.1 429 64.3 46.1 56.2
Direct (RAW) - Mask R-CNN | 39.0 61.3 40.1 46.1 67.8 50.5 56.2
Enhance + Denoise EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) | Mask R-CNN | 37.1 60.2 37.4 44.5 67.0 48.6 29.0
Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) Mask R-CNN | 36.9 60.3 374 44.8 67.5 49.0 34.1

Integrated SID (Chen et al., 2018) Mask R-CNN | 37.8 60.0 38.3 447 66.6 46.9 43.8
Enhance + Denoise REDI (Lamba and Mitra, 2021) Mask R-CNN | 36.0 59.0 35.8 42.8 66.1 459 44.0
Jointly optimized U-Net (Ronneberger et al., 2015) Mask R-CNN | 39.2 614 40.0 46.2 67.8 50.7 43.8
End-to-end (Ours) - Mask R-CNN | 42.7 66.2 43.3 50.3 72.6 55.2 53.1

pression learning increases AP by 0.9 point, while percep-
tual loss (Gnanasambandam and Chan, 2020) only brings
0.3 AP improvement. And on RAW-normal, the disturbance
suppression learning shows 1.9 AP improvement while per-
ceptual loss (Gnanasambandam and Chan, 2020) brings 0.4
AP. These results verify the above analysis.

Extra ablation studies on normal-light dataset. More-
over, we have conducted a series of experiments to eval-
uate the impact of AWD, SCB, and DSL on the normal-
light dataset COCO (Lin et al., 2014a). We train the Mask
R-CNN (He et al., 2017) on the COCO (Lin et al., 2014b)
for 12 epochs, and the ResNet-50-FPN (He et al., 2016; Lin
et al., 2017a) serves as backbone. As shown in 10, the AWD
layer improves the performance by 1.0 AP without bells and
whistles. It means the AWD layer also improves the robust-
ness of networks under normal-light conditions by design-
ing the downsampling process carefully. As for SCB, it adds
a branch to learn smooth filters during training and can be
folded back to a normal 3 x 3 convolutional layer by a linear
combination. It helps the convolutional blocks to suppress
the high-frequency feature noise caused by image noise. But
the image noise is imperceptible in normal-light images of
COCO (Lin et al., 2014a). Therefore, the SCB brings mi-
nor improvement on COCO (Lin et al., 2014b). We further
evaluate the DSL for normal light images. We use the noise
injection to synthetic low-light noise images. Interestingly,
though it is proposed for the low-light task, it can also im-
prove performance under normal light. The possible expla-
nations are i) DSL pushes the model to learn noise-invariant
features, which is more discriminative. ii) DSL makes model
learn from both clean images and its noisy version, and the
noisy images can be regarded as a kind of augmentation.

Visualization of learned filter weights. As shown in Fig-
ure 9, we visualize the learned filter weights predicted by the
AWD layer. It can be seen that the predicted filter weights
have a high standard variance for edges of the scene con-
tent and a low standard variance for the background. High
variance corresponds to less blur, while low variance corre-

sponds to more blur. This means the AWD layer can cor-
rectly predict content-aware filters to blur high-frequency
content (e.g., edges of scene content) less to preserve fore-
ground signals and blur low-frequency background more to
suppress the feature noise.

Visualization of feature maps. As shown in Figure 10,
we visualize the high-level features of networks. It can be
seen that the proposed method helps to reduce feature dis-
turbance and keep semantic responses to scene content when
the image is noisy, which is important for precise low-light
instance segmentation. This visualized result verifies the ef-
fectiveness of the proposed method.

Summary. To sum up, the RAW images show better poten-
tial than sSRGB images for the low-light instance segmenta-
tion task. And the low-light synthetic RAW pipeline brings
6.2-6.4 AP improvements when only normal light SRGB im-
ages are available (see Table 2). Furthermore, the proposed
method achieves 2.8-3.7 AP improvements to the vanilla
model with minor extra computational cost, while replacing
ResNet-50-FPN with ResNet-101-FPN only brings 1.5-1.7
AP improvements (see Table 3). These results substantially
demonstrate both the effectiveness and efficiency of the pro-
posed method.

5.3 Method Comparisons

In this section, we compare the proposed approach with three
types of pipeline, i.e., directly predicting on camera output,
predicting on enhanced images, and predicting on enhanced
and denoised images.

We select representative traditional (histogram equaliza-
tion (Gonzalez et al., 2002)) and learning-based (GLAD-
Net (Wang et al., 2018a), Retinex-Net (Wei et al., 2018),
EnlightenGAN (Jiang et al., 2021), Zero-DCE (Guo et al.,
2020), SID (Chen et al., 2018), REDI (Lamba and Mitra,
2021)) methods as enhancers and adopt the state-of-the-art
SGN (Gu et al., 2019) as denoiser. Considering some com-
peting methods (SID (Chen et al., 2018) and REDI (Lamba
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Fig. 12 Visual comparisons on our LIS dataset. To make it easy to browse, we only show visualized results of the baseline and four of the best

competitors. Our RAW results are converted to sSRGB for visualization.

Table 13 Quantitative comparisons of low-light instance segmentation when using Swin-T (Liu et al., 2021c) and ConvNeXt-T (Liu et al., 2022) as
the backbone. And Mask R-CNN (He et al., 2017) serves as the instance segmentation model. For brevity, we choose four of the best competitors.
Results are reported on the LIS test set. The setting for training and testing is the same as Table 11.

Pipeline Preprocessing Method Backbone AP AP5o  AP75 | APP°®  APYST  APbe®
Direct - Swin-T 20.7 38.2 19.5 24.8 41.4 25.5

. EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) Swin-T 27.8 48.4 283 332 53.9 36.3

Enhance + Denoise .

Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) Swin-T 283 49.7 27.8 338 544 36.3

Integrated SID (Chen et al., 2018) Swin-T 283 464 27.5 31.6 50.1 33.0
Enhance + Denoise REDI (Lamba and Mitra, 2021) Swin-T 25.7 43.7 253 29.8 483 31.2
End-to-end (Ours) - Swin-T 326 535 323 37.8 59.2 40.9
Direct - ConvNeXt-T | 23.7 414 237 279 43.8 30.0
Enhance + Denoise EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) | ConvNeXt-T | 29.5 50.8 29.1 359 56.2 39.6
Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) ConvNeXt-T | 302  51.7 30.2 36.1 56.2 40.0

Integrated SID (Chen et al., 2018) ConvNeXt-T | 31.8 51.4 317 36.6 55.1 40.0
Enhance + Denoise REDI (Lamba and Mitra, 2021) ConvNeXt-T | 27.6 46.6 27.5 322 499 35.1
End-to-end (Ours) - ConvNeXt-T | 36.8 58.5 36.9 42.7 64.0 47.4

and Mitra, 2021)) already have explicit denoising mecha-
nisms, so we do not append an extra denoising step. No-
tice that SID (Chen et al., 2018), REDI (Lamba and Mi-
tra, 2021), and the proposed method are designed for taking
RAW images as inputs while the rest of methods take SRGB
images as inputs. All pipeline is illustrated in Figure 11.

For fairness, all settings use the same instance segmen-
tation model (Mask R-CNN (He et al., 2017)). To accu-

rately reflect the practical use and unbiasedly evaluate the
proposed method in real-world low-light environments, we
assume the LIS dataset is never seen by any methods during
training, i.e., we regard the whole LIS dataset as a test set.

As shown in Table 11, without any preprocessing steps,
the baseline normal instance segmentation model only has
19.8 AP, which shows limited accuracy in low-light condi-
tions. After casting the enhancer to the pipeline, we intu-
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Table 14 Quantitative comparisons of low-light instance segmentation when using PointRend (Kirillov et al., 2020) and Mask2Former (Cheng
et al., 2022) as instance segmentation model. And ResNet-50-FPN (He et al., 2016; Lin et al., 2017a) serves as backbone. For brevity, we choose

four of the best competitors. Results are reported on the LIS test set. The setting for training and testing is the same as Table 11.

Pipeline Preprocessing method Method AP AP5o  AP;5 | APY°®  APber  Apber
Direct - PointRend 206 372 19.2 235 39.3 25.1

. EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) PointRend 26.9 46.3 26.2 31.2 51.7 333

Enhance + Denoise .

Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) PointRend 27.7 47.6 27.3 319 52.0 337

Integrated SID (Chen et al., 2018) PointRend 28.3 46.4 27.5 31.6 50.1 33.0
Enhance + Denoise REDI (Lamba and Mitra, 2021) PointRend 24.0 422 232 27.7 46.1 28.3
End-to-end (Ours) - PointRend 32.8 529 39.8 37.1 579 39.8
Direct - Mask2Former | 21.4 37.9 20.9 22.9 36.9 232
Enhance + Denoise EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) | Mask2Former | 28.0 47.1 27.1 30.9 48.2 32.1
Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) Mask2Former | 29.3 49.7 29.1 31.9 50.1 333

Integrated SID (Chen et al., 2018) Mask2Former | 31.7 49.6 31.0 332 49.5 343
Enhance + Denoise REDI (Lamba and Mitra, 2021) Mask2Former | 26.7 44.1 26.0 28.1 429 29.1
End-to-end (Ours) - Mask2Former | 35.6 55.2 35.2 378 55.9 39.9

Table 15 Quantitative comparisons of low-light object detection. The backbone is ResNet-

reported on the LIS test set. The setting for training and testing is the same as Table 11.

50-FPN (He et al., 2016; Lin et al., 2017a). Results are

Pipeline Preprocessing method Method APbo®  APYoT  APbo®
Direct - Faster R-CNN 219 37.4 224

HE (Gonzalez et al., 2002) Faster R-CNN 22.1 35.6 23.5

GLADNet (Wang et al., 2018a) Faster R-CNN 154 24.9 16.4

Enhance Retinex-Net (Wei et al., 2018) Faster R-CNN 19.6 31.1 21.5
EnlightenGAN (Jiang et al., 2021) Faster R-CNN 21.1 34.8 219

Zero-DCE (Guo et al., 2020) Faster R-CNN 22.0 359 23.5

HE (Gonzalez et al., 2002) + SGN (Gu et al., 2019) Faster R-CNN 25.1 39.8 26.9

GLADNet (Wang et al., 2018a) + SGN (Gu et al., 2019) Faster R-CNN 24.1 39.1 25.3

Enhance + Denoise Retinex-Net (Wei et al., 2018) + SGN (Gu et al., 2019) Faster R-CNN 25.5 41.0 27.4
EnlightenGAN (Jiang et al., 2021) + SGN (Gu et al., 2019) | Faster R-CNN 29.5 48.5 30.4

Zero-DCE (Guo et al., 2020) + SGN (Gu et al., 2019) Faster R-CNN 30.5 49.8 32.5

Integrated SID (Chen et al., 2018) Faster R-CNN 30.1 47.6 32.3
Enhance + Denoise REDI (Lamba and Mitra, 2021) Faster R-CNN 29.8 47.9 31.6
End-to-end (Ours) - Faster R-CNN 36.3 56.6 394

itively expect performance improvement, but the accuracies
stay the same (with histogram equalization (Gonzalez et al.,
2002) and Zero-DCE (Guo et al., 2020)) or even decrease
(with GLADNet (Wang et al., 2018a), Retinex-Net (Wei et al.,
2018) and EnlightenGAN (Jiang et al., 2021)). We guess
the reason is that these enhancers only improve the overall
brightness but cannot handle the noise. To verify it, we fur-
ther introduce denoiser to the pipeline, and the overall accu-
racy significantly increases as expected, e.g., Zero-DCE (Guo
etal., 2020) plus SGN (Gu et al., 2019) leads to 6.7 AP gain.
Notice that these methods for comparison use camera out-
puts. Then, we also perform experiments with SID (Chen
et al., 2018) and REDI (Lamba and Mitra, 2021), which
can restore SRGB images from low-light RAW images. And
numerical results are surprisingly good, i.e., 27.2 AP with
SID (Chen et al., 2018), which outperforms baseline by 7.4
points. This implies the superiority of using RAW images.

Though these enhancing and denoising steps boost the
low-light instance segmentation performance remarkably, our
method achieves the best quantitative results without extra
preprocessing steps. Besides, the inference speed of the pro-

posed method outperforms all other pipelines. And its speed
is very close to the original Mask R-CNN (He et al., 2017).
Moreover, qualitative results illustrated in Figure 12 show
the proposed method can consistently recall most of the tar-
gets even in challenging scenarios.

5.4 Finetuning on LIS Dataset

To compare the proposed approach more comprehensively,
we choose four of the best pipelines in Table 11 for further
comparison. Here, all methods can access to train set of the
LIS dataset for finetuning, and are evaluated on test set of the
LIS dataset. Moreover, we implement a jointly optimized
pipeline (U-Net + Mask R-CNN, the U-Net (Ronneberger
et al., 2015) is trained to recover clean normal light images
from low-light images) for competition.

The results are shown in Table 12. It can be seen that
all pipelines show better performance with the help of real
low-light image pairs in the LIS dataset. This shows the low-
light image dataset is important and necessary for solving
the low-light instance segmentation task. The jointly opti-
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mized pipeline outperforms all other pipelines but still un-
derperforms compared with the proposed method by a large
margin. Moreover, our solution shows a much higher infer-
ence speed than the jointly optimized and other pipelines.

5.5 Evaluation with Different Instance Segmentation Model

We note that the proposed method is model-agnostic, i.e.,
it should work well with existing methods (Bolya et al.,
2019; Chen et al., 2020, 2019b; Cheng et al., 2022; He et al.,
2017; Huang et al., 2019; Kirillov et al., 2020; Lee and Park,
2019). Here, in addition to Mask R-CNN (He et al., 2017),
we perform a series of extra experiments with CNN-based
PointRend (Kirillov et al., 2020) and recent transformer-
based Mask2Former (Cheng et al., 2022).

Similarly, as shown in Table 14, casting enhancers (En-
lightenGAN (Jiang et al., 2021) and Zero-DCE (Guo et al.,
2020)) and denoiser (Gu et al., 2019) to the pipeline can
bring significant improvement. We also compare our method
with SID (Chen et al., 2018) and REDI (Lamba and Mi-
tra, 2021), which can restore SRGB images from RAW im-
ages. Though they largely boost performance compared with
the baseline, our method achieves the best results. Notice
that our method does not see any real raw images during
training and can infer without any preprocessing steps. But
SID (Chen et al., 2018) and REDI (Lamba and Mitra, 2021)
require extra real-world paired RAW images for training.

5.6 Evaluation with Different Backbones

To further verify the proposed method, we also conduct ex-
periments with recent great works of backbones, including
the transformer-based Swin Transformer (Liu et al., 2021c¢)
and CNN-based ConvNeXt (Liu et al., 2022).

As shown in Table 13, though the proposed smooth-oriented
convolutional block is not available for the transformer-based

Swin Transformer (Liu et al., 2021c), the proposed method
still shows consistent advantages compared with other com-
petitors. And the results with ConvNeXt (Liu et al., 2022)
also draw the same conclusion.

5.7 Extension to Low-Light Object Detection

In addition to low-light instance segmentation, the proposed
method and dataset can also apply to object detection (Liu
et al., 2020b) in the low-light environment. We perform our
experiments with the classic Faster R-CNN (Ren et al., 2015)
detector, and results are provided in Table 15. We can see
that the trend and conclusion are similar to that of low-light
instance segmentation. It shows the effectiveness and gener-
alization of the proposed method.

6 Conclusion

This paper explores end-to-end instance segmentation in very
low light on RAW images. To deal with model degrada-
tion in low-light images, we propose adaptive weight down-
sample layer, smooth-oriented convolutional block, and dis-
turbance suppression learning to handle the feature noise
caused by notorious noise in low-light images. They can re-
duce feature noise during downsampling and convolution
operation, and help the model learn disturbance-invariant
features, respectively. Noticeably, the proposed method out-
performs state-of-the-art competitors by a large margin with
less computational cost.

Moreover, we also collect and annotate a large-scale real-
world low-light instance segmentation dataset, which con-
tains more than two thousand paired low/normal-light im-
ages with instance-level pixel-wise annotations. It can serve
as a benchmark for high-level tasks in low-light conditions.
We hope that our dataset and the experimental findings can
inspire more work on vision in extremely low light in future
research.
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