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Abstract: The simulation of rare edge cases such as adverse weather conditions is the enabler
for the deployment of the next generation of autonomous drones and vehicles into conditions
where human operation is error-prone. Therefore, such settings must be simulated as accurately
as possible and be computationally efficient, so to allow the training of deep learning algorithms
for scene understanding, which require large-scale datasets disallowing extensive Monte Carlo
simulations. One computationally-expensive step is the simulation of light sources in scattering
media, which can be tackled by the radiative transfer equation and approximated by analytical
solutions in the following. Traditionally, a single scattering event is assumed for fog rendering,
since it is the dominant effect for relatively low scattering media. This assumption allows us to
present an improved solution to calculate the so called air-light integral that can be evaluated fast
and robustly for an isotropic point source in homogeneous media. Additionally, the solution is
extended for a cone-shaped source and implemented in a computer vision rendering pipeline
fulfilling computational restrictions for deep learning uses. All solutions can handle arbitrary
azimuthally symmetric phase functions and were tested with the Henyey-Greenstein phase
function and an advection fog phase function calculated from a particle distribution using Mie’s
theory. The used approximations are validated through extensive Monte Carlo simulations and
the solutions are used to augment good weather images towards inclement conditions with focus
on visible light sources, so to provide additional data in such hard-to-collect settings.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Today’s computer vision methods enable autonomous vehicles and drones to reason about their
environment. A key factor behind their success are the underlying datasets used for training,
enabling to learn complex neural networks able to distill information from raw camera captures
[1–3]. However, rare events like driving in adverse weather are underrepresented in traditional
datasets [4]. Nonetheless, enabling the operation in such conditions would lead to beneficial
safety gains [4]. Typical approaches to close the data gap are based on the idea of augmenting
clear weather scenes to match real world inclement weather recordings [5–7]. Thereby, fog
is rendered through empirical models applying Koschmieder’s model and extracting physical
parameters from the clear reference. One of such assumptions is the constant ambient airlight,
only true for daytime fog [5,6] and which does not hold anymore in the presence of active light
sources. Extensions as presented in [7] introduce a handling of light sources but model the spread
of the light source illumination through scattering, empirically by matching a Gaussian filter to
experimental observations.

One approach to model this physically-accurate broadening is the use of Radiative Transport
Equations (RTE). Such equations are also known in related theoretical fields, as neutron transport
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[8]. Its importance for the simulation of foggy scenarios is elaborated for example by Cerezo et al.
[9]. But solving RTE equations numerically is not trivial and requires Monte Carlo simulations
[10]. Such methods have an important history in many applications from medicine to astrophysics
[11–14], but they require a high amount of computational power and contain statistical noise in
contrast to fast analytical solutions. In our example, the Monte Carlo simulation runs multiple
days on graphical processing units, whereas the analytical solution takes only seconds for the
single scattering solution. Analytical solutions are difficult to find but are important to improve
and accelerate rendering applications containing participating media like fog [15]. Due to this
challenges, the full RTE can be reduced to only consider single scattered light. It should be noted
that the solution employed to compute the single-scattered radiance is typically expressed in
terms of the so-called air–light integral. In fact, it has been used for fog rendering already by
Nishita, Miyawaki and Nakamae [16]. Pegoraro and Parker [17] derived an air-light integral
representation in isotropically and anisotropically scattering media, which they later improved
together with Schott [18]. In general, the role of the RTE for light transport in fog is outlined by
Bentz et al. [19]. They also developed an analytical model for weak angular dependence based
on the diffusion equation, which is limited to the moderate and high scattering regime. More
analytical solutions exist taking into account single scattering [20,21] as well as all scattering
events [22–24]. In our recent publication [25] we have derived some exact solutions for the
single-scattered radiance in semi-infinite media based on radiative transport theory. Further
applications of RTE solutions within the computer graphics field can be found in [26–30].

In this publication, two models for the single scattering radiance due to a point source located
in an infinitely extended scattering medium are presented as they offer a good approximation for
perception systems located within the scattering medium. An example image with traffic and
street lights in a foggy atmosphere is shown in Fig. 1. These models differ in the angular radiation
characteristics of the applied source. The first model applies an isotropic point source that emits
light uniformly in all directions. As stated above, the solution to this problem can be expressed
in terms of the air–light integral. The numerical evaluation of this integral representation can
become a challenging task. Therefore, we present a modified integral representation as an
alternative to the classical air-light integral, which can be efficiently evaluated without numerical
problems. The second model assumes a cone-shape source, where light is emitted in a cone
with opening angle θ0. To our knowledge, this is the first solution with a cone-shaped radiation

Fig. 1. Image of active light sources in foggy atmosphere, taken in Bucharest on Jan-
uary 9, 2022 by fusion-of-horizons [31]. The cone shape illumination pattern of street
lanterns, signal and traffic light motivate the found approximation. License: "CC BY 2.0
https://creativecommons.org/licenses/by/2.0/".
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characteristic of the source. It includes the isotropic solution in the limiting cases of θ0 = 180◦.
All models are verified using Monte Carlo simulations and the validity of the single scattering
approximation is investigated by comparing it to the solution containing all scattering events.
Additionally, an application of the derived solution for fog rendering is presented. It is used to
improve the rendering of light sources in adverse weather simulations.

2. Theory and method

In the following section, the theoretical framework for deriving the analytical solution is presented,
which is based on the single scattering solution to the radiative transfer equation according to
Chandrasekhar [32]. In detail, subsection 2.1 treats the isotropic point source with angular
uniform radiation characteristic and subsection 2.2 the cone source with truncated angular reach.

2.1. Isotropic source

The single scattering radiance at position r in direction ŝ due to an isotropic point source located
at the origin can be derived as [21]

Liso
1 (r, ŝ) = µs

4π

∫ ∞

0

e−µt(l+R)

R2 f
(︃
rµ − ℓ

R

)︃
dℓ, (1)

where f (µ) is the phase function and r, µ and R are defined as

r = |r|, (2)

µ =
r · ŝ

r
= cosα, (3)

R = |r − ℓŝ| =
√︂
ℓ2 + r2 − 2ℓrµ . (4)

Furthermore, we have µt = µa + µs as the total attenuation coefficient with µa and µs being
respectively the absorption and scattering coefficient. Equation (1) is the above-mentioned
air-light that we want to improve. This representation is very similar to the approach shown
by Pegoraro and Parker [17] but different coordinates are applied. Due to the symmetry of the
source, the angular dependency is only on the angle α between the position and the direction ŝ,
see a schematic view in Fig. 2. The integration path is depicted by the red line. This integral
must be computed numerically. Unfortunately, for the most important region of µ near 1, the
integrand has a sharp peak at l ≈ µr. This is shown in Fig. 3. Simple quadrature algorithms are
problematic for such integrals and even more sophisticated ones may not be optimal, due to the
sharp peak requiring thousands of evaluation points for small angles α. Therefore, the integral is
changed to an alternative form using the substitution

y = arccos
(︃

r cosα − ℓ
√
ℓ2 + r2 − 2ℓr cosα

)︃
, (5)

with
∂y
∂ℓ
=

r sinα
ℓ2 + r2 − 2ℓr cosα

=
r sinα

R2 . (6)

The angle y for this substitution is also depicted in Fig. 2. For the phase function argument, we
then get

r cosα − ℓ
R

= cos y . (7)

Additionally, Mollweide’s formula [33] provides the relation

ℓ + R
r
=

cos
(︂

y−2α
2

)︂
sin

(︁ π−y
2

)︁ , (8)
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which leads to
ℓ + R = r cosα + r sinα tan

(︂ y
2

)︂
. (9)

Plugging everything into the single scattering integral and adjusting the integral limits accordingly
results in the representation

Liso
1 (r,α) = µs

e−µtr cosα

4πr sinα

∫ π

α
e−µtr sinα tan( y

2 )f (cos y) dy . (10)

In contrast to the original integrand that exhibits a sharp peak for small angles α, this integrand
can be integrated even for very small angles. In addition, in the case of small angles, Liso

1 can be
approximated with

Liso
1 (r, θ) α≪1◦

≈ µs
e−µtr

4πr sinα

∫ π

0
f (cos y) dy, (11)

for faster computation. The integral Liso
1 (r,α) can be mapped to the standard interval [−1, 1]

resulting in

Liso
1 (r,α) = µs

e−µtr cosα

4πr sinα
π − α

2

∫ 1

−1
e−µtr sinα tan( π+α

4 +x π−α
4 )f

(︂
cos

(︂ π + α
2
+ x
π − α

2

)︂)︂
dx . (12)

The integral in Eq. (12) can be solved by double exponential substitution methods [34,35]:

x = tanh (2 sinh(u)) , (13)

dx =
2 cosh(u)

cosh2 (2 sinh(u))
du . (14)

The effect of these substitutions is shown in Fig. 4. The integrals can then be computed by the
simple trapezoidal rule with fast numerical convergence.

ŝ

detector

r = |r|

source

α

R

y

y − α

�

Fig. 2. Sketch illustrating the coordinates used in the solution for an isotropic point source
located at the origin. α is the angle between the position r and the radiance direction ŝ. The
angle y is used in the alternative representation.

The derived representation for the isotropic source was verified using Monte Carlo simulations,
see Fig. 5. Additionally, the Monte Carlo simulation considering all scattering events Liso

n≥1 is
plotted for comparison. A Henyey-Greenstein phase function [36] with an anisotropy factor
of g = 0.8 was used. The optical properties are chosen to be typical for fog. The scattering
coefficient µs = 0.08m−1 corresponds to a visibility of approximately 4

µs
= 50m, the distance

from the source to the detector is r = 20m and, thus, the optical depth is τ = µsr = 1.6. The
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Fig. 3. Plot of the single scattering integrand for different angles using the Henyey-
Greenstein phase function. The parameters are µs = 0.08m−1, µa = 1×10−5m−1, g = 0.8,
r = 20m, µsr = 1.6.

Fig. 4. Plot of the transformed single scattering integrand (Eq. (12)) for different angles using
the Henyey-Greenstein phase function. The parameters are µs = 0.08m−1, µa = 1×10−5m−1,
g = 0.8, r = 20m.

absorption coefficient µa = 1×10−5m−1 is very small, since it can be mostly neglected for fog
in the visible wavelength range. These optical properties are chosen as an example and will be
used further below. It should be noted that all the solutions were also tested with other values
and no significant differences were found. For α → 0 the solution diverges to ∞, but it is
integrable over a solid angle α ∈ [0, αc], γ ∈ [0, 2π] respecting the Jacobian sinα, it does
not depend on the azimuth γ. The inset shows the relative error between the derived solution
and the Monte Carlo simulation of the single scattered radiance. In Fig. 6, the calculation was
repeated for smaller angles. In the left image the distance is r = 20m giving an optical depth
of τ = µsr = 1.6 and in the right image it is r = 1m giving an optical depth of τ = µsr = 0.08.
It can be seen that for small angles and low optical depth the single scattering approximation
is a very good approximation to the complete solutions to the RTE considering all scattering
interactions. Looking at the relative errors, the statistical noise increases for very small angles
due to the Monte Carlo simulation. An additional verification with other phase function can be
found in the Appendix A.
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Fig. 5. Single scattering comparison using the Henyey-Greenstein phase function with
µs = 0.08m−1, µa = 1×10−5m−1, g = 0.8, r = 20m, for an isotropic point source at the
origin. The inset shows the relative error between the derived solution and the Monte Carlo
simulation of the single scattered radiance.

Fig. 6. Single scattering comparison using the Henyey-Greenstein phase function with
µs = 0.08m−1, µa = 1×10−5m−1, g = 0.8, for an isotropic point source at the origin for
small angles. The insets show the relative error between the analytical solution and the
Monte Carlo simulation of the single scattered radiance. Left: r = 20m, Right: r = 1m.

2.2. Cone source

This section deals with the single-scattered radiance due to a cone source of the form

S(r, ŝ, θ0) =
δ(r)

2π(1 − µ0)

∫
C
δ(ŝ′ − ŝ) dŝ′2 = δ(r)

2π(1 − µ0)

{︄
1, 0 ≤ θ ≤ θ0,
0, θ0<θ ≤ π,

(15)

where C = {ŝ′ ∈ S2 | 0 ≤ θ ′ ≤ θ0, 0 ≤ ϕ′<2π} with θ0 ∈ (0, π) being the opening angle,
µ0 = cos θ0 and θ is the angle between the direction ŝ and the z-axis ẑ: cos θ = ŝ · ẑ. The source
is normalized to unity. We additionally note on the limit

lim
θ0→0

S(r, ŝ, θ0) = lim
µ0→1

S(r, ŝ, µ0) = δ(r)
δ(1 − cos θ)

2π
= δ(r)δ(1 − ŝ · ẑ)

2π
= δ(r)δ(ŝ − ẑ), (16)

corresponding with a unidirectional point source that radiates along the positive z-direction.
The coordinates used within the derivations are illustrated in Fig. 7. The intended solution
can be derived in different ways. In our recent publication [25], we have obtained the single-
scattered radiance for the infinite and semi-infinite medium caused by the unidirectional beam
δ(r − r0)δ(ŝ − ŝ′) that radiates along an arbitrary direction ŝ′. Therefore, we can find the solution
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for the cone source via integration of Green’s function for the infinite space over C. The required
representation has the form [25]

G1(r, ŝ, ŝ′) = µsf (ŝ · ŝ′)
∫ ∞

0

e−µt(ℓ+R)

R2 δ

(︃
r − ℓŝ

R
− ŝ′

)︃
dℓ, (17)

where δ(·) denotes the Dirac delta function, r and R = R(r, ŝ, ℓ) are defined above in Eqs. (2) and
(4) and r̂ = r/r. Integration of (17) over C under the use of∫

C
f (ŝ · ŝ′)δ

(︃
r − ℓŝ

R
− ŝ′

)︃
dŝ′2 = f

(︃
r · ŝ − ℓ

R

)︃
Θ

(︃
z − ℓ cos θ

R
− µ0

)︃
(18)

and normalization leads to the following single-scattered radiance

Lcone
1 (r, ŝ) = 1

2π(1 − µ0)

∫
C

G1(r, ŝ, ŝ′) dŝ′2 (19)

=
µs

2π(1 − µ0)

∫ ∞

0

e−µt(ℓ+R)

R2 f
(︃
r · ŝ − ℓ

R

)︃
Θ

(︃
z − ℓ cos θ

R
− µ0

)︃
dℓ, (20)

with Θ(·) being the Heaviside step function. Similar to the substitution (5), we perform a variable
transformation ℓ : [0,∞) → [ϑ1, π) with the following monotonically increasing function

ℓ ↦→ ϑ(ℓ) := arccot

(︄
r · ŝ − ℓ

r
√︁

1 − (r̂ · ŝ)2

)︄
(21)

and the corresponding inverse ℓ(ϑ) = r · ŝ − r
√︁

1 − (r̂ · ŝ)2 cot ϑ. Furthermore, we have

dℓ
dϑ
=

r
√︁

1 − (r̂ · ŝ)2

sin2 ϑ
=

R(r, ŝ, ℓ)2

r
√︁

1 − (r̂ · ŝ)2
(22)

and cos ϑ = (r · ŝ − ℓ)/R. The new lower and upper limit of integration are given by

ϑ1 = ϑ(0) = arccot

(︄
r̂ · ŝ√︁

1 − (r̂ · ŝ)2

)︄
= arccos(r̂ · ŝ), (23)

ϑ2 = ϑ(∞) = arccot(−∞) = π. (24)

The resulting integral representation for the radiance in terms of the new variable is

Lcone
1 (r, ŝ) = µs exp[−µt(r · ŝ)]

2π(1 − µ0)r
√︁

1 − (r̂ · ŝ)2

∫
I
f (cos ϑ) exp

(︃
−µtr

√︁
1 − (r̂ · ŝ)2 tan

ϑ

2

)︃
(25)

×Θ(µc − µ0) dϑ, (26)

where I = (ϑ1, π) and the function

µc = µc(r, ŝ, ϑ) =
(z/r − (r̂ · ŝ) cos θ) sin ϑ + cos θ

√︁
1 − (r̂ · ŝ)2 cos ϑ√︁

1 − (r̂ · ŝ)2
. (27)

In order to eliminate the step function in (25), we have to perform the integration over the
restricted domain D := {ϑ ∈ I | µc(r, ŝ, ϑ) − µ0>0}. In the possible case of D = ∅, we have
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Lcone
1 = 0. We start with the following conversion

µc(r, ŝ, ϑ) − µ0>0 ⇐⇒ (28)

(z/r − (r̂ · ŝ) cos θ) sin ϑ + cos θ
√︁

1 − (r̂ · ŝ)2 cos ϑ>µ0
√︁

1 − (r̂ · ŝ)2. (29)

To isolate the integration variable ϑ, we convert the part left of the inequality sign into the form

(z/r − (r̂ · ŝ) cos θ) sin ϑ + cos θ
√︁

1 − (r̂ · ŝ)2 cos ϑ = A sin(ϑ + φ), (30)

where the amplitude A and the phase shift φ are given by

A =
√︁
(z/r)2 + cos2 θ − 2(z/r)(r̂ · ŝ) cos θ, (31)

φ = arg{z/r − (r̂ · ŝ) cos θ + i cos θ
√︁

1 − (r̂ · ŝ)2} ∈ (−π, π]. (32)

Thus, the inequality (28) can be written as

sin(ϑ + φ)>µ0

√︁
1 − (r̂ · ŝ)2

A
=: w. (33)

Next, we perform a short case analysis. In this context, we make use of the property (a, b) = ∅ if
a ≥ b. Furthermore, it is sufficient to consider the inequality (33) for values ϑ + φ ∈ (−π, 2π),
because ϑ ∈ I and φ ∈ (−π, π].

y

z

x
Fig. 7. Sketch illustrating the coordinates used in the solution for the cone-shaped source.
The source is located at the origin and pointing in z-direction ẑ in a cone-shaped manner
with opening angle θ0. The detection position r is given in cylindrical coordinates ρ, ϕl and
z. The angular variables of the radiance in direction ŝ are θ and ϕ.

Case 1: Opening angles with µ0 ≥ 0. In this situation, we have w ≥ 0. For w>1, the
inequality (33) cannot be satisfied so that D = ∅ and hence Lcone

1 = 0. If 0 ≤ w ≤ 1, we define
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β := arcsin w ∈ [0, π/2] and obtain sin(ϑ + φ)>w for ϑ ∈ (β − φ, π − β − φ). The intersection
with the integration interval results in

ϑ ∈ (β − φ, π − β − φ) ∩ (ϑ1, π) = D = (max{β − φ, ϑ1}, min{π − β − φ, π}). (34)

Case 2: Opening angles with µ0<0. In this case, we have w<0. If w< − 1, the inequality (33)
is satisfied for all ϑ ∈ I, yielding D = (ϑ1, π). For −1 ≤ w<0, when β ∈ [−π/2, 0), a slightly
longer analysis shows that

ϑ ∈ ((−π − φ,−π − β − φ) ∪ (β − φ, π − β − φ) ∪ (2π + β − φ, 2π − φ)) ∩ (ϑ1, π). (35)

The resulting integration domain becomes D = D1 ∪ D2 ∪ D3, where Di (i = 1, 2, 3) are disjoint
intervals defined by

D1 = (max{−π − φ, ϑ1}, min{−π − β − φ, π}), (36)

D2 = (max{β − φ, ϑ1}, min{π − β − φ, π}), (37)

D3 = (max{2π + β − φ, ϑ1}, min{2π − φ, π}). (38)

The integration over this union can therefore be carried out in the form
∫
D(·) dϑ =

∑︁∫
Di
(·) dϑ.

Both cases discussed above are illustrated in Fig. 8. The blue line segment displays exemplarily
the solution of the inequality (33) for the first case, whereas the three red segments correspond
with the three disjoint intervals which may appear in the second case. The final form for the
single-scattered radiance due to a cone source without the use of the Heaviside step function
becomes

Lcone
1 (r, ŝ) = µs exp[−µt(r · ŝ)]

2π(1 − µ0)r
√︁

1 − (r̂ · ŝ)2

∫
D

f (cos ϑ) exp
(︃
−µtr

√︁
1 − (r̂ · ŝ)2 tan

ϑ

2

)︃
dϑ, (39)

where the region of integration D has been determined in the case analysis above. As shown
above, the cone-shaped source includes the unidirectional point source in the limit θ0 → 0◦. The
resulting single-scattered radiance for this source type is given by [25]

Luni
1 (r, ŝ) = lim

θ0→0
Lcone

1 (r, ŝ) = µsf (cos θ)
exp(−µtz − µtρ tan(θ/2))

ρ sin θ
δ(ϕl − ϕ)Θ(z− ρ cot θ). (40)

On the other hand, the corresponding solution for the isotropic source, when θ0 → 180◦, can be
found in (12). Again, we verified the derived single-scattered radiance via comparisons with the
Monte Carlo method. The optical properties were the same as in the previous comparisons. Two
detector positions r1 = (1, 1, 1)m and r2 = (1, 1,−1)m and different opening angles between
5◦ and 180◦ were considered. In Fig. 9, it can be seen that the analytical results agree with the
simulations. For smaller opening angles, the radiance becomes narrower and weaker. This is
due to the fact that for the unidirectional source, there is no signal for ϕ ≠ ϕl due to the delta
distribution in Eq. (40). For opening angles smaller than 180◦, the single scattered radiance can
go to zero, depending on the detector position.
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Fig. 8. Illustration of possible solutions of the inequality (33). The blue segment corresponds
with µ0 ≥ 0 and the red ones demonstrate a situation for µ0<0.

Fig. 9. Single scattering comparison using a Henyey-Greenstein phase function with
µs = 0.08m−1, µa = 1×10−5m−1, g = 0.8, χ = |ϕl − ϕ| = 30.5◦ for cone-shaped point
sources at the origin pointing in z-direction. Left: x = 1m, y = 1m, z = 1m, Right: x = 1m,
y = 1m, z = −1m.
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3. Validity of the single scattering approximation

In this section we investigate the errors of the single scattering approximation compared to the full
solution of the RTE considering all scattering interactions. The relative error between the single
scattered radiance and the radiance considering all scattering events versus the optical depth
τ = µsr and the angle θ for µa = 1×10−5 m−1 is shown in Fig. 10. Two types of phase functions
were considered, a Henyey-Greenstein phase function with g = 0.8 (left) and a phase function for
advection fog (right). It was calculated from a model particle size distribution applying Mie’s
theory. Thus, it was assumed that the fog particles are spheres. The used phase function is shown
in Fig. 11. We emphasize that this phase function is calculated from a particle size distribution
that represents a fictitious fog. The particle size distribution is approximated using a modified
gamma distribution like the simulation software MODTRAN, with the parameters for advection
fog taken from Gebhart et al. [37]. It serves as an example for a general phase function generated
from a particle size distribution with Mie’s theory.

Fig. 10. Relative error between the single scattering radiance and the radiance calculated
using all scattering events for a Henyey-Greenstein phase function with g = 0.8 (left) and
advection fog [37] (right).

Fig. 11. Phase function for advection fog at 550 nm calculated with Mie’s theory from the
particle size distribution given by Gebhart et al. [37].

The errors are simulated with a GPU-based Monte Carlo simulation using the lookup table
based technique described by Naglič et al. [38]. As expected, for small angles and low scattering
distances the errors decrease. Already for moderate optical depths of µsr = 2, the relative error
is below 10%, even for the highly forward scattering advection fog.
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4. Application of the solution: improved light sources in artificial adverse weather
images

Here we show how to apply the solution derived above to improve the generation of artificial
adverse weather images from real good weather images. The unscattered light of an isotropic
light source in an infinitely extended medium is given by

I0 = P
exp(−µtr)

4πr2 δ(ŝ′ − r̂), (41)

where P is the source power. For a pixel with solid angle σ, the directly detected light is

Q =
∫
σ

I0(ŝ′)dŝ′2 = P
exp(−µtr)

4πr2 , (42)

as long as r̂ is within the angular range of the pixel. From images without fog, P can be estimated
to be

P = 4πr2Q(µt = 0) . (43)

With fog, the direct light can be calculated from the pixels without fog:

Q(µt ≠ 0) = exp(−µtr)Q(µt = 0) = tQclear, (44)

where t = exp(−µtr), and Qclear = Q(µt = 0) is the clear pixel value without fog. The scattered
light is onto the pixel is

V = P
∫
σ

R(µs, µa, r, g, r̂, ŝ′)dŝ′2 (45)

≈ PR(µs, µa, r, g, r̂, ŝ)σ (46)

= Qclear4πr2R(µs, µa, r, g, r̂, ŝ)σ =: Va, (47)

where R(µs, µa, r, g, r̂, ŝ) is the scattered radiance of a isotropic point source with a power of
unity and ŝ is the average direction of the solid angle σ. Since for small distances or tenuous fog
the scattered radiance can be approximated by the single scattered radiance, we set R = Liso

1 from
Eq. (12). For the images presented below, depth information for every pixel is available using a
deep learning stereo depth retrieval algorithm [39]. So the distance from each light source to the
camera is known. In previous works, the fog was added to the image by applying the following
formula [4]:

Afoggy = tQclear + (1 − t)M, (48)

where Afoggy is pixel value for the foggy image and M is the global ambient component, which
is retrieved applying the dark channel prior method [40] disallowing the simulation of active
light sources in twilight conditions. Contrarily, our approach follows the procedure described
by Shi et al. [7] in their Supplemental Material replacing the heuristic light source broadening
with a physically accurate model. The process predicts a light source pixel with index j. Then
each source was multiplied by the transmission coefficient t to consider the attenuation of the
unscattered component (Eq. (44)). Afterwards the single scattered light Vneigh for each light
source pixel onto the neighboring pixels was added. For each pixel i of the image, the value was
calculated using Eq. (47) by summing over all pixels j identified as light sources

Vneigh,i =
∑︂

j∈ light sources
i≠j

Va
(︁
ri, ŝj

)︁
. (49)
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(a) Clear image (b) Clear image (section)

(c) Fog with Gaussian filter (d) Fog with Gaussian filter (section)

(e) Advection fog, single scattering (f) Advection fog, single scattering (section)

(g) Advection fog, multiple scattering with Monte
Carlo (section)

Fig. 12. Fog is added to a clear image (a) using a Gaussian filter (c) and the single scattering
solution for advection fog (e). Images (b) to (f) zoom in on the section with the traffic lights,
marked with the red rectangles in the full images. In image (g) all scattering events are
considered with Monte Carlo simulations.
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In the case i = j, the approximation of Eq. (47) cannot be used, since Liso
1 (ri, ŝ = r̂i) = ∞, but the

integral (45) over the solid angle σ of a camera pixel can be computed

Vself,i = V (ri) . (50)

Thus, the light on the camera pixels i of the light sources in fog is

Wlight,i =

{︄
Vneigh,i + (tQclear,i + Vself,i) if i ∈ light sources
Vneigh,i else .

(51)

The final image is calculated via

Bfoggy = tQclear, no ls + (1 − t)M +Wlight (52)

= t
(︁
Qclear, no ls + Qclear, ls

)︁
+ (1 − t)M + Vself, ls + Vneigh (53)

= tQclear + (1 − t)M + Vself, ls + Vneigh, (54)

where Yy, ls is the subset of the image identified as light sources and Yy, no ls is the remaining
image, Yy ∈ {Qclear, Vself}. Comparing with Eq. (48), we find the same formula plus the single
scattering terms (P1, ls and Pneigh). The solution is applied to an example image in Fig. 12 from
the EU-project DENSE, for which depth information for the light sources exists. The applied
advection fog is characterized by the same phase function already used above, see Fig. 11. The
optical parameters are µs = 0.0287m−1, µa = 3×10−8m−1 which corresponds to a visibility of
4
µs
= 139m and to an optical depth at the distance of the traffic lights (≈ 35m) of τ ≈ 1.0. They

are directly derived from the particle distribution. One can clearly see the difference between
the approaches. Previously, the effect of fog around the light sources was added by applying a
Gaussian filter with a standard deviation of 12 pixels [7]. The distance to the light source, the fog
density and the type of fog were not regarded. In contrast to the simple Gaussian filter, the single
scattering solution takes the distance of the light source, the fog density and the fog type into
account. As can be seen in the example, this leads to a very different appearance of the light
source in a foggy environment. With Monte Carlo simulations we also calculated the appearance
of the traffic lights considering all scattering events using Liso

n≥1. This is shown in Fig. 12(g). Only
the small section was calculating due to the high computation time of the Monte Carlo simulation.
Comparing it to the single scattering solution (f), they show very similar results. This indicates
that the single scattering solution in these conditions is already a very good approximation. An
example with a different phase function is shown in the Appendix A.

5. Summary and conclusion

In summary this work presents an analytical solution for the RTE in case of single scattering for an
isotropic and a cone-shaped point source. Here, we assumed the location within a homogeneous
infinitely extended scattering medium. To proof the findings, model predictions were validated
using Monte Carlo simulations for small radiation angles and equivalent thin optical densities.
Further, the solution of the isotropic point source was used to improve the appearance of simulated
traffic light sources in dense foggy conditions. For cone-shaped light sources as street lanterns
and known opening angles, the introduced solution derived in Eq. (54) could be used. Fog
exists in different forms, depending on, e.g., the formation, location and environment, thus many
densities and phase functions are possible. Depending on the size of the droplets and the applied
wavelength the phase function can represent, both, strongly forward scattering as well as more
uniformly scattering behavior. The droplet size distribution also changes during the fog life cycle
[41]. We use the selected phase function as an example for a general phase function generated
from a particle distribution and using Mie’s theory. The chosen particle distribution does not
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necessarily coincide with that of real fog, which can be much more complex. The wavelength is
also only an example from the visible spectrum [42]. The presented method is not restricted
to this particular fog type or wavelength, it can model any phase function. To generate robust
datasets, we recommend simulating several fog types. We envision that these results can be
used in future work to foster the development of deep learning methods robust to challenging
illumination conditions as the one in Fig. 1, through an approach similar to [5,6]. In fact, the
extension to challenging illumination conditions includes not only environmental conditions like
advertising sign or street lighting, but more importantly also signal lights such as turn signals,
traffic lights as shown in Fig. 12, stop lights, warning lights and blue lights of emergency vehicles,
which are indispensable in complex urban traffic scenarios. All of those lightning conditions are
currently modeled using time consuming Monte Carlo approaches prohibiting the widespread roll
out of such of complex simulations due to time constraint issues. The here-proposed analytical
solutions offer a reduction of computational time of some orders of magnitude, allowing to
process millions of frames as required by state-of-the-art deep learning approaches [43,44]. We
further indicate that the single scattering approximation limits the application of the method to
certain circumstances. For very dense fog it may not be appropriate. In the future, the solution
could be further expanded to include double scattering to reduce this limitation. Extending
the solution to consider arbitrary angular radiation characteristics of the source will allow the
modeling of vehicle headlamps with known cone illumination profile and differing characteristics
for the US or European market.

Appendix

Since the phase function changes with the fog type and wavelength, we additionally show
calculations for further phase functions, plotted in Fig. 13. They are again calculated using a
modified gamma distribution to model the particle size distribution with parameters from [37].
As one can see, the advection fog is much more forward scattering than the convection fog. The
single scattering radiance highly depends on the fog type as shown in Fig. 14. It is calculated
using the analytical solution for all four phase functions from Fig. 13 for an isotropic point
source at a distance of r = 30m. It agrees well to the Monte Carlo simulations that are shown
for comparison. Figure 15 shows part of the images from Fig. 12 with an additional image (d),
where the single scattering solution with the phase function from convection fog for a wavelength
of 550 nm was used. A different fog type would also lead to a different visibility, but to compare

Fig. 13. Phase function for advection and convection fog at 550 nm and 1550 nm calculated
with Mie’s theory from the particle size distribution given by Gebhart et al. [37].
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Fig. 14. Single scattering radiance using different fog types at a distance of r = 30m and
two different wavelengths, for an isotropic point source at the origin.

(a) Clear image (section) (b) Fog with Gaussian filter (section)

(c) Advection fog, single scattering (section) (d) Convection fog, single scattering (section)

Fig. 15. Comparison of the different fog types. Images (a) to (c) are already presented
in Fig. 12. The additional image (d) show the same section, where the phase function of
convection fog at 550 nm is used instead of the one from advection fog.
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only the influence of the phase function, we simulated the image with the same visibility of 139m.
Since the convection fog phase function represents a more isotropically scattering behavior, it
has a very different effect on the light scattered from the traffic light compared to the advection
fog phase function.
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