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Fig. 1. Non-line-of-sight (NLOS) imaging aims at recovering the shape and albedo of objects hidden from a camera or a light source. Using ultra-fast pulsed
illumination and single-photon detectors, the light transport in the scene is sampled on visible surfaces (left). The global illumination components of these
time-resolved measurements (A,E) contain sufficient information to estimate the shape of hidden objects (B,C). Using a novel formulation for NLOS light
transport that models partial occlusions of hidden objects (D) via visibility terms (F), we demonstrate higher-fidelity reconstructions (C) than previous
approaches to NLOS imaging (B).

Imaging objects obscured by occluders is a significant challenge for many
applications. A camera that could “see around corners” could help improve
navigation and mapping capabilities of autonomous vehicles or make search
and rescue missions more effective. Time-resolved single-photon imaging
systems have recently been demonstrated to record optical information
of a scene that can lead to an estimation of the shape and reflectance of
objects hidden from the line of sight of a camera. However, existing non-
line-of-sight (NLOS) reconstruction algorithms have been constrained in the
types of light transport effects they model for the hidden scene parts. We
introduce a factored NLOS light transport representation that accounts for
partial occlusions and surface normals. Based on this model, we develop a
factorization approach for inverse time-resolved light transport and demon-
strate high-fidelity NLOS reconstructions for challenging scenes both in
simulation and with an experimental NLOS imaging system.
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1 INTRODUCTION
The capacity of imaging systems must continue to expand to keep
pace with rapidly emerging technologies. Autonomous vehicles,
for example, would greatly benefit from improved vision in fog,
snow, and other scattering media or from being able to see around
corners to detect what lies beyond the next bend or another car. Sens-
ing technology offering such non-line-of-sight (NLOS) capabilities
could help make self-driving cars safer and unlock unprecedented
potential for other machine vision systems.
Two challenges make NLOS imaging with time-resolved detec-

tors difficult. First, the low signal of multiply scattered light places
extreme requirements on photon sensitivity of the detectors. Second,
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inverse methods that aim at estimating shape, albedo, and other
properties of a hidden scene need to model the transient light trans-
port appropriately and devise means to robustly invert it. To address
the former issue, we follow recent work proposing acquisition se-
tups with a pulsed picosecond laser and single-photon avalanche
diodes (SPADs) for NLOS imaging and tracking [Buttafava et al.
2015; Chan et al. 2017; Gariepy et al. 2016; O’Toole et al. 2018].
SPADs are detectors that digitize the time of arrival of individual
photons with precision on the order of tens of picoseconds, thus
resolving light paths with centimeter resolution.

At the core of our paper is a factored representation of transient
light transport that models partial occlusions and surface normals in
the hidden scene. These effects have been largely ignored by other
NLOS imaging approaches [Buttafava et al. 2015; Gupta et al. 2012;
Heide et al. 2014; O’Toole et al. 2018; Velten et al. 2012; Wu et al.
2012]. Moreover, we derive a robust multi-convex reconstruction
algorithm that takes a measured transient image as input and factors
it into the proposed representation: a volume of hidden albedos
and surface normals along with visibility terms that model partial
occlusion in the hidden scene (see Fig. 1).
With the presented work, we take first steps towards making

NLOS imaging robust and practical for real-world applications.
Specifically, we make the following contributions:
• We introduce a factored nonlinear image formation model for
non-line-of-sight imaging that accounts for partial occlusions
and surface normals in the hidden scene.
• We propose a multi-convex solver for inverse transient light
transport and show that it achieves significantly higher recon-
struction quality than conventional NLOS imaging methods.
• We implement an experimental NLOS acquisition setup using
a single-photon avalanche diode and a picosecond laser.
• We validate the proposed reconstruction algorithms in simu-
lation and with example scenes captured with the prototype.

Overview of Limitations. Although the proposed inverse method
improves reconstruction quality for many types of hidden scenes, it
is also computationally more expensive than other methods. Specifi-
cally, thememory requirements of the proposed factorizationmethod
are two orders of magnitude higher than for matrix-free implementa-
tions of simpler inverse methods (see Sec. 6 for more details). Similar
to other non-line-of-sight methods, we make the assumption that
the measured transient light transport contains only first-order and
third-order bounces. The first-order bounces correspond to direct
illumination that is reflected off a visible wall back to the detector;
these contributions are used to estimate surface normals and albedos
of the visible wall and can be removed prior to recovering the hid-
den object from the indirect illumination. The third-order bounces
contain indirect illumination that bounced precisely three times
before reaching the detector: off the visible wall, then off a hidden
object, then off the visible wall again. We used a transient renderer
that supports global illumination [Jarabo et al. 2014] to verify that
higher-order bounces, which could result from interreflections in
the hidden scene, insignificantly contribute to the proposed confocal
image formation in our simulated scenes. We thus conclude that
these effects can be ignored in the imaging setup described in this
work.

2 RELATED WORK
Non-line-of-sight Imaging. Kirmani et al. [2009] first introduced

the idea of “looking around corners” by analyzing the feasibility of
reconstructing hidden objects from time-resolved light transport.
This concept was demonstrated in practice by Velten et al. [2012]
with a system capable of resolving the shape of a hidden object.
Velten’s hardware setup included a streak camera and a femtosecond
laser, which together account for a cost of several hundred thousand
dollars. The streak camera provides a theoretical precision of up to
2 ps, which corresponds to a travel distance of 0.6 mm. Correlation-
based time-of-flight sensors have also been demonstrated as a low-
cost alternative for non-line-of-sight imaging [Heide et al. 2014;
Kadambi et al. 2013]. While these systems are about three orders
of magnitude less expensive than Velten’s system, they also only
offer a very limited temporal resolution, thus limiting the quality
of reconstructed NLOS scenes. Recently, single photon avalanche
diodes (SPADs) have been proposed for NLOS imaging [Buttafava
et al. 2015; O’Toole et al. 2018] as a readily-available hardware
platform that offers a good balance between cost and precision.
NLOS imaging requires a model for the light transport of hid-

den scene parts as well as a large-scale reconstruction framework.
Existing proposals for NLOS imaging [Buttafava et al. 2015; Gupta
et al. 2012; Heide et al. 2014; Kirmani et al. 2009; O’Toole et al. 2018;
Velten et al. 2012; Wu et al. 2012] use an image formation model that
makes the following assumptions: (1) light bounces at most three
times within the scene; (2) the scene contains no occlusions; (3) light
scatters isotropically (i.e., surface normals are ignored). Under these
assumptions, the reconstruction becomes a linear inverse problem.
Velten et al. [2012], Gupta et al. [2012], Buttafava et al. [2015], and
Jarabo et al. [2017] solved this system using variants of the back-
projection algorithm. Due to the fact that this tends to emphasize
low frequencies and does not actually solve the inverse problem,
the reconstruction quality offered by backprojection-type inverse
methods tends to be low. Using the same assumptions, Gupta et
al. [2012], Wu et al. [2012], Heide et al. [2014], and [O’Toole et al.
2018] proposed to solve the inverse problem via large-scale iterative
optimization. While this approach is more accurate than backprojec-
tion, the underlying light transport model ignores partial occlusions
and surface normals, which we show to be crucial for accurate scene
reconstruction. Tsai et al. [2017] recently proposed a space carving
algorithm for estimating the convex hull of hidden objects; a full 3D
volume of the hidden scene cannot be recovered with this approach.
Finally, Pediredla et al. [2017] propose a plane-based parametric
model for reconstructing room scenes.
At the core of this paper is a novel image formation model that

models NLOS light transport more accurately than existing methods
by accounting for partial occlusions and surface normals in the
hidden scene; we derive inverse methods tailored to this model.

Single Photon Avalanche Diodes. SPADs are reverse-biased pho-
todiodes that are operated well above their breakdown voltage
(see e.g. [Burri et al. 2016]). Every photon incident on a SPAD
has some probability of triggering an electron avalanche which
is time-stamped. This time-stamping mechanism usually provides
an accuracy of tens to hundreds of picoseconds. SPADs and also
avalanche photodiodes (APDs) are commonly used for a wide range
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of applications in optical telecommunication, fluorescence lifetime
imaging, and remote sensing systems (e.g., LIDAR). Often, these
imaging modes are referred to as time-correlated single photon
counting [O’Connor 2012].

Recently, SPADs were applied to range imaging [Heide et al. 2018;
Kirmani et al. 2014; Lindell et al. 2018a; Rapp and Goyal 2017; Shin
et al. 2016], transient imaging [Hernandez, Quercus and Gutierrez,
Diego and Jarabo, Adrian 2017; Gariepy et al. 2015; Lindell et al.
2018b; O’Toole et al. 2017] as well as tracking [Chan et al. 2017;
Gariepy et al. 2016] and imaging [Buttafava et al. 2015; O’Toole et al.
2018] non-line-of-sight objects. Altmann et al. [2018] also provide
a comprehensive review of ultra-fast computational imaging. The
works by Buttafava et al. [2015] and O’Toole et al. [2018] are closest
to ours, but their reconstruction algorithms ignore hidden surface
normals and occlusions. While the approach proposed by O’Toole et
al. [2018] achieves computational efficiency by modeling NLOS light
transport as a shift-invariant convolution, normals and the visibility
term modeling partial occlusions create spatial variation in the
image formation and so are incompatible with this representation.

Imaging Through and Around Scene Objects. Other forms of non-
line-of-sight imaging have also been demonstrated that do not rely
on time-resolved imaging. For example, Sen et al. [2005] proposed
a projector-camera system where the viewpoints of camera and
projector could be interchanged. This approach allows the scene to
be hidden from the camera’s perspective, but it must be visible from
the projector’s perspective. In time-resolved NLOS imaging, the
scene is typically not directly observed from either detector or light
source. Snapshot NLOS imaging was demonstrated by exploiting
correlations that exist in coherent laser speckle [Katz et al. 2014],
though this has so far been demonstrated at microscopic scales.
Radio and terahertz frequencies were shown to be able to image
through objects due to the physical properties of these parts of
the electromagnetic spectrum [Adib et al. 2015; Redo-Sanchez et al.
2016]. Recovering and tracking hidden objects was also shown to
be possible with intensity measurements of conventional cameras
to a limited extent [Bouman et al. 2017; Klein et al. 2016].

In concurrentwork, Thrampoulidis et al. [2017] andXu et al. [2018]
developed an alternative model that also includes partial occlusions
for NLOS imaging. As opposed to our model, these works assume
that the shape of the NLOS scene, including occluders, is known
and only surface albedos need to be recovered. We make no such as-
sumptions; we model and recover unknown shape, albedo, visibility
and also surface normals.

3 FORWARD AND INVERSE LIGHT TRANSPORT
The non-line-of-sight imaging problem involves estimating 3D shape
and albedo of objects outside the line of sight of a detector from
third-order bounces of time-resolved global light transport. Specifi-
cally, a short light pulse is focused on a visible part of the scene, for
example a wall, the light scatters off that surface, reaches a hidden
object which scatters some of the light back to the visible surface,
where it can be recordedwith a time-resolved detector.While several
different acquisition setups have been proposed, each warranting
a slightly different image formation model, we follow O’Toole et
al. [2018] and model a confocal system, where a single time-resolved

Fig. 2. NLOS scene with partial occlusions. The detector and laser sample
the visible wall at point i to record the direct and indirect light transport.
The indirect components include contributions from hidden objects, such
as two patches j0 and j1. Whereas the optical path between i and j0 is
unoccluded, the path between i and j1 is partly obscured by another hidden
surface. These occlusions are modeled by a visibility term v .

detector is co-axially aligned with a pulsed light source to sample
positions x ′,y′ on a visible diffuse wall (see Figs. 1, 2).

3.1 Confocal NLOS Image Formation Model
A time-resolved detector measures the incident photon flux as a
function of time relative to an emitted light pulse. Such a detector
can be used to record the temporal impulse response of a scene,
including direct and global illumination, at sampling positions x ′,y′
on a visible surface, resulting in a 3D space-time volume that is
known as a transient image τ .

The direct illumination, i.e., light emitted by the source and scat-
tered back to the detector from an object, contains all information
necessary to recover the shape and reflectance of visible scene parts.
This is commonly done for 3D imaging or light detection and rang-
ing (LIDAR) [Kirmani et al. 2014; McCarthy et al. 2013; Schwarz
2010; Shin et al. 2016]. In the following image formation model,
the direct light is not considered because it can be removed from
measurements acquired in practice; only the global illumination
contains useful information for non-line-of-sight imaging.

The image formation model can be formulated as

τ
(
x ′,y′, t

)
=

∫∫∫
Ω

1
r4

ρ (x ,y, z) (1)

δ

(
2
√
(x ′ − x)2 + (y′ − y)2 + z2 − tc

)
dx dy dz,

where the Dirac delta function δ (·) relates the time of flight t to
the distance function r =

√
(x ′ − x)2 + (y′ − y)2 + z2 = tc/2. Here,

c is the speed of light. This image formation model makes several
assumptions on the light transport in the hidden scene: light scat-
ters only once (i.e., back to the visible scene parts), light scatters
isotropically (i.e., surface normals are ignored), and no occlusions
occur between different scene parts outside the line of sight.
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We lift two of these assumptions by augmenting Equation 1 by a
visibility factor v as well as surface normals n:

τ
(
x ′,y′, t

)
=

(
2
tc

)4∫∫∫
Ω

v
(
x ′,y′,x ,y, z

)
ρ (x ,y, z) (ω · n (x ,y, z))

δ

(
2
√
(x ′ − x)2 + (y′ − y)2 + z2 − tc

)
dx dy dz, (2)

The distance falloff 1/r4 (see Eq. 1) is replaced by the factor (2/tc)4,
which can be pulled out of the integral because it is space-invariant
for confocal scanning setups. The term v (x ′,y′,x ,y, z) ∈ [0, 1]
models the visibility of a hidden surface patch at location x ,y, z
observed from the position x ′,y′ on the visible wall. For partial
occlusion in the hidden scene, such a patch may be visible from
one sampling point on the wall but it may be occluded by another
hidden object from the perspective of another sampling point (see
Fig. 2).
In a confocal scanning setup, the bidirectional reflectance distri-

bution function (BRDF) fr of the hidden scene is only sampled at a
subset of all combinations of incident and outgoing light direction:
ωi = ωo = ω, where ω is the normalized direction from a location
x ,y, z to some sampling point x ′,y′. Thus, it may be infeasible to
recover arbitrary BRDFs from confocal measurements. However,
when the BRDF can be modeled as a spatially-varying but direction-
ally constant albedo ρ (x ,y, z) = fr (x ,y, z,ω,ω), which is the case
for diffuse and also retroreflective materials, this albedo can indeed
be estimated as shown in previous work.

For a confocal scanning system, retroreflective materials have the
benefit of significantly increasing the amount of light reflected from
hidden scene parts back to sampling point on the wall. In theory,
the distance falloff of 1/r4 becomes 1/r2 (cf. Eq. 1). In practice,
the BRDFs of these materials often exhibit extended retroreflective
lobes combined with some amount of Lambertian behavior, making
them non-ideal retroreflectors. Even though the proposed confocal
scanning scheme only samples the retroreflective component of the
hidden BRDF, any deviation from ideal retroreflectors leads to a
distance falloff term that is somewhere between 1/r4 and 1/r2. In the
Supplemental Material, we experimentally verify that the distance
falloff of “diamond grade” retroreflectors is close to ideal while
“engineer grade” retroreflectors or retroreflective paints are less than
ideal, but still exhibit a falloff that is significantly more favorable
than that of purely diffuse objects.

3.2 Factored Image Formation
We discretize Equation 2 by representing the hidden volume as
N × N × N voxels. Each voxel j = 1 . . .N 3 contains an albedo ρ j
and a surface normal nj . The discrete transient image is sampled at
N × N locations that coincide with the voxel centers on the visible
wall. For notational convenience, we model the transient image
with N temporal bins at each spatial location. The image formation
model becomes

τ = Aρ = (T ◦ I (N ◦ V)) ρ, (3)

where τ ∈ RN 3
+ is the vectorized transient image and ρ ∈ RN

3
+ is

the vectorized volume of nonnegative hidden albedos. The system
matrix A ∈ RN

3×N 3
+ combines all others terms of the transient

Fig. 3. Illustration of several light transport terms for a simple hidden scene
containing two partially-occluding white planes (top left). The transient
image of measurements is shown (top right) along with a single xt-slice
(center right). A 3D rendering of the ground truth visibility term for one sam-
pling location (center left) and two xz-slices (bottom) for different sampling
positions (blue circles) make it intuitive to understand what the visibility
terms are.

light transport (cf. Eq. 2). This matrix representation has also been
used in most previous approaches to NLOS imaging. We propose
to factor the transient light transport matrix A into several terms,
each modeling different aspects of light transport, as discussed in
the following and illustrated in Figure 3.

Visibility. The visibility term V ∈ RN
2×N 3
+ is time-invariant and

models how much of the light reflected by voxel j reaches measure-
ment location i = 1 . . .N 2 on the visible wall. As shown in Figure 2,
when the path between j and i is unoccluded: Vi j = 1. When an-
other surface occludes the path between j and i: Vi j = 0. We allow
for a continuous range of values, i.e. 0 ≤ Vi j ≤ 1, to model partial
occlusion along a light path.

Normals. The matrix N ∈ RN
2×N 3 is also time-invariant and

models the factor ω · n, such that Ni j = ωj→i · nj where ωj→i
is the normalized direction pointing from voxel j to the visible
wall location i . For the purpose of this paper, we parameterize the
surface normals in spherical coordinates. That is, the normal nj
at voxel j is represented using two scalars nuj ,n

v
j , such that nj =

[cos(nuj ) sin(n
v
j ), sin(n

u
j ) sin(n

v
j ), cos(n

v
j )]

T . This representation
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enforces unit length on all surface normals and only requires two,
instead of three, parameters to be estimated per hidden normal.

CopyMatrix. To account for the fact that neitherV norN are time-
dependent, but the transport matrix T is, the matrix I ∈ RN 3×N 2

+

simply copies the time-independent quantities of the hidden volume
projected on the sampling locations to all time bins of the transient
image.

Transport Matrix. The matrix T ∈ RN
3×N 3
+ models the time-

dependent aspects of the hidden light transport. Specifically, the jth
column of T is the surface of the hypercone

(
x ′ − x j

)2
+
(
y′ − yj

)2
+

z2j = (tc/2)
2 modeling time-resolved propagation in free space from

voxel j to the entire transient image. The super-position principle
holds, such that the hypercones for each voxel contribute to the
transient image in an additive way.

3.3 Inverse NLOS Light Transport
Several inverse methods for the non-line-of-sight imaging problem
have been proposed. We briefly review backprojection-type meth-
ods and linear inverse methods before introducing a factorization
approach that allows us to recover the unknown visibility terms
and surface normals along with the hidden albedos.

3.3.1 Backprojection. The NLOS problem can be reduced to a
linear one under certain assumptions. First, the visibility term is
ignored (i.e., Vi j = 1,∀i, j) and, second, the surface normals are
fixed. For the latter, one could either make the assumption that the
hidden scene is comprised of isotropic scatterers (i.e., Ni j = 1,∀i, j)
or assume that the hidden normals are known, but that is typically
not the case. Previous work on NLOS imaging has shown that these
assumptions lead to the linear image formation model τ = Aρ, with
A = T (cf. Eq. 3).

Filtered and unfiltered backprojection methods are standard al-
gorithms for solving many linear inverse problems, particularly
in computed tomography [Kak and Slaney 1988]. The beauty of
backprojection methods is their simplicity, i.e., both compute time
(O

(
N 5)) and memory requirements (matrix-free implementation

O
(
N 3) ; with sparse matrixO

(
N 5)) are tractable even for large-scale

inverse problems. Velten et al. [2012], Gupta et al. [2012], Buttafava
et al. [2015], and Arellano et al. [2017] all employ a variant of back-
projection by multiplying the measured transient image by the
transpose of the system matrix, i.e., ρ ≈ AT τ , and then optionally
applying a sharpening filter, such as a Laplacian, and a thresholding
operator [Velten et al. 2012].

Unfortunately, filtered backprojection only solves the linear prob-
lem correctly when measurements over the full sphere are available.
The acquisition setups of NLOS imaging discussed in the literature
resemble that of a limited-baseline tomography problem, for which
backprojection only gives a rough estimate of the latent variable,
but it does not solve the actual inverse problem.

3.3.2 Linear Inverse Light Transport. Several other NLOS recon-
struction algorithms [Gupta et al. 2012; Heide et al. 2014; Wu et al.
2012] solve the system of linear equations directly, but they make
the same assumptions on visibility and normals as the backprojec-
tion algorithm. The inverse problem of recovering hidden albedos

can be expressed as

minimize
ρ

τ − Aρ22 + Γ
(
ρ
)
, s.t. 0 ≤ ρ (4)

Although the nonnegativity constraints were not directly enforced
by all previous proposals, including it in the reconstruction can
improve the estimated solution. An additional prior on the albedos
Γ
(
ρ
)
can help further improve the estimated albedos. For example,

Heide et al. [2014] used a combination of sparseness and sparse
gradients (i.e., total variation). The runtime and memory require-
ments for an iterative solver are in the same order as those of the
backprojection method per iteration.

3.3.3 Factorized Light Transport. Assuming that neither the hid-
den albedos ρ, surface normals n, or visibility terms V are known,
inverting Equation 3 becomes a nonlinear inverse problem with the
cost function

minimize
ρ,n,V

τ − (T ◦ I (N ◦ V)) ρ22 + Γ
(
ρ
)
.

s.t. 0 ≤ V ≤ 1, 0 ≤ ρ
(5)

An important insight for solving Equation 5 efficiently is that
although the cost function is nonlinear, it is tri-convex when the
prior Γ is convex. As is standard practice for multi-convex problems,
we use an alternating least-squares (ALS) approach. To this end,
Equation 5 is solved in an alternating manner by fixing two of
the unknown terms and optimizing for the third. Each of these
subproblems is convex; the method is outlined in Algorithm 1.

Algorithm 1 Triconvex Factorization via Alternating Least Squares

1: V(0) = 1, N(0) = Niso ρ(0) = 0
2: for k = 1 to K

3: ρ(k) ← arg min
0≤ρ

τ − (
T ◦ I

(
N(k−1) ◦ V(k−1)

))
ρ
2
2
+ Γρ

(
ρ
)

4: V(k ) ← arg min
0≤V≤1

τ − (
T ◦ I

(
N(k−1) ◦ V

))
ρ(k )

2
2

5: n(k )← arg min
n

τ − (
T ◦ I

(
N ◦ V(k)

))
ρ(k)

2
2
+ Γn (n)

6: end for

We initialize the unknowns with full visibility, null albedo, and we
use isotropic normals Niso in the first two substeps (until we solve
for n(1)). Warmstarting the albedo vector with the backprojection
estimate improves the overall runtime of the algorithm.

Updating ρ (Alg. 1, line 3). In this subproblem, the system matrix
A = T ◦ I

(
N(k−1) ◦ V(k−1)

)
is fixed for a given iteration k . The

resulting inverse problem is similar to that of Equation 4; we use
the alternating direction method of multipliers (ADMM) [Boyd et al.
2011] to solve it.

Updating V (Alg. 1, line 4). This subproblem is also convex be-
cause we could construct a system matrix that absorbs T,N,I and
ρ and write the image formation as a matrix-vector multiplication.
Unfortunately, the size of this problem is very large – the system
matrix would have N 3 × N 5 non-zero elements. Thus, we solve this
subproblem using a projected gradient algorithm that minimizes
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the objective function J =
τ − (T ◦ I (N ◦ V)) ρ22 while enforcing

0 ≤ V ≤ 1. For this algorithm, we simply take a step into the direc-
tion of the negative gradient of J and clamp the result to the feasible
range, i.e., between 0 and 1, using the projection operator Π:

V← Π (V − α∇v J ) , with (6)

∇v J = −2N ◦ IT
(( (

τ − (T ◦ I (N ◦ V)) ρ
)
ρT

)
◦ T

)
Here, α is the step length. In practice, this intuitive method can be
improved using an adaptive step length which changes per iteration.
We derive this in detail in the Supplemental Material.

Updating n (Alg. 1, line 5). Using the spherical coordinate repre-
sentation of the normals, this subproblem can be solved with an
unconstrained nonlinear solver to minimize the objective function
J with respect to nu ,nv . We chose the L-BFGS algorithm for this
task and, using the chain rule, derive the gradient of the objective
as

∇n(u,v ) J = ∇N J · ∇n(u,v )N, with (7)

∇N J = −2V ◦ IT
(( (

τ − (T ◦ I (N ◦ V)) ρ
)
ρT

)
◦ T

)
,

∇n(u,v )Ni j=

[
−ωx

j ✮i sin(n
u
j ) sin(n

v
j )+ω

y
j ✮i cos(n

u
j ) sin(n

v
j )

ωx
j ✮i cos(n

u
j ) cos(n

v
j )−ω

y
j ✮i sin(n

u
j ) cos(n

v
j )−ω

z
j ✮i sin(n

v
j )

]T

4 EVALUATION
In this section, we evaluate the proposed factorization method in
simulation and show detailed comparisons to other non-line-of-
sight reconstruction methods. Figure 4 shows maximum intensity
projections generated with the Chimera volume renderer1 for one
of the scenes we used for this evaluation. Several additional results
can be found in the Supplemental Material. This scene contains two
hidden objects that partly occlude each other (row 1, column 1).
The measured transient image is simulated for 64 × 64 sampling
locations x ′,y′ over an area of 1 m × 1 m on the visible wall with
a temporal bin size of 16 ps (row 1, column 2). Although we simu-
late time-resolved light transport that includes direct and indirect
illumination, we visualize only the indirect components in Figure 4.
Rows 2 and 3 of Figure 4 show two different perspectives of the

reconstructions obtained with the following algorithms: backprojec-
tion, filtered backprojection as described by Velten et al. [2012], the
linear method with identical regularization parameters as those used
in the proposed factorization method, the proposed factorization
method, and a reference solution obtained by fixing the ground
truth visibility term and applying the linear method to recover only
the hidden albedos. The latter represents an upper bound on the
reconstruction quality that can be achieved with the full factoriza-
tion method, where the visibility is unknown and also needs to be
estimated. Whereas previously-proposed algorithms fail in recover-
ing the partially occluded scene parts, our factorization accurately
estimates this challenging scene; our solution closely matches the
reference solution.
The linear and proposed methods use identical priors and reg-

ularization weights. Moreover, in the Supplemental Material, we
1http://www.cgl.ucsf.edu/chimera/

Fig. 4. Evaluation of reconstruction algorithms using the “Dragon & Logo”
scene. The hidden scene contains two objects that partially occlude each
other. Time-resolved measurements are shown along with reconstructions
obtained with several algorithms. Previously-proposed algorithms, including
backprojection, filtered backprojection, and the linear method with regular-
ization parameters identical to the ones used in the proposed method fail in
adequately recovering partially occluded scene parts, such as the logo in the
background. The proposed factorization method accurately estimates this
challenging scene via the visibility term and it additionally recovers surface
normals. Slight variations in intensity, for example for the logo between
backprojection and filtered backprojection, are introduced by the volume
rendered used to generate these visualizations.

have included additional results of the linear method with the regu-
larization parameters suggested by Heide et al. [2014], and we also
show results of the backprojection method followed by the same
regularization used by the proposed method. These supplemental
results validate the claim that the improved recovery performance
stems from the factorization method and not the choice of priors.
In addition to the hidden albedos, the proposed factorization

method also recovers a visibility term (row 1, columns 3–4) and
the surface normals of the scene (row 1, column 5). The estimated
visibility term contains a full 3D volume of values for each of the
64×64 sampling locations on thewall.We show one of these volumes
for a single sampling point (row 1, column 4) as well as the average
visibility term for all sampling locations (row 1, column 3). The
estimated visibility terms can be interpreted as an intermediate
variable that helps improve the estimated albedos in the presence
of partial occlusions.

Table 1 shows quantitative comparisons of the estimated albedos.
For this purpose, we simulate a set of scenes with isotropic BRDFs
without surface normals (Tab. 1, top part) and a set of scenes with
Lambertian BRDFs that include surface normals (Tab. 1, bottom
part). Again, the filtered backprojection (FBP) method uses the filter
described by Velten et al. [2012]. The regularized backprojection
(RBP) applies a regularized least-squares projection of the output
of the BP method on an identical regularizer as used for the linear
(Lin) and the proposed methods. With RBP, regularization can only
be applied as a two-step process, i.e. BP followed by regularization,
whereas it is jointly solved with the regularized linear method.
We list reconstruction fidelity using the peak-signal-to-noise ratio
(PSNR) metric. In all cases, the proposed factorization approach
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BP FBP RBP Lin Factored Lin with
known V

Bunny 15.8 13.3 17.8 26.6 40.8 46.1
Dragon 14.4 8.8 15.9 17.6 19.5 19.8
Dragon & Logo 14.5 10.3 16.5 23.7 38.7 42.3
Dragon & Bunny 14.3 10.3 16.1 22.1 31.6 37.0
Logo 20.9 13.2 24.5 41.1 57.9 62.2
2 Planes 19.7 13.4 22.6 29.9 40.5 40.6
Plane & Logo 19.9 12.1 23.1 33.3 48.2 49.8
Average 17.1 11.6 19.5 27.8 39.6 42.7

BP FBP RBP Lin Factored Lin with
known N+V

Bunny 13.5 11.1 15.5 25.2 34.4 41.9
Dragon 13.1 8.3 14.9 17.4 18.7 19.7
Dragon & Logo 13.6 9.4 15.5 24.3 30.9 46.3
Dragon & Bunny 13.3 9.5 15.1 22.3 27.3 40.1
Logo 17.8 9.5 21.3 39.1 52.3 63.9
2 Planes 16.4 11.0 19.1 28.0 37.6 53.1
Plane & Logo 16.1 9.3 19.2 31.5 43.4 60.9
Spheres 14.8 10.1 17.3 24.5 28.5 34.9
Average 14.8 9.8 17.2 26.5 34.1 45.1

Table 1. Quantitative evaluation of estimated albedos for various NLOS re-
construction algorithms: backprojection (BP), filtered backprojection (FBP),
regularized backprojection (RBP), the linear estimation method (Lin) with
identical parameters to the proposed method, and the proposed factoriza-
tion method. We compare these algorithms for scenes with isotropic BRDFs
(top 7 scenes) and scenes with Lambertian BRDFs, including surface normals
(bottom 8 scenes). As a reference solution, we also apply the linear method
with fixed ground truth visibility term (top) and visibility as well as normals
(bottom); these values represent an upper bound on what quality can be
achieved. All values are reported as peak signal-to-noise ratio (PSNR) in dB.

results in the highest PSNR. The solutions Lin w/ V and Lin w/ N+V
apply the linear method with ground truth visibility fixed, and with
ground truth visibility and normals fixed. Due to the fact that the
resulting problems are convex, these values can be interpreted as
the reference solution representing an upper bound on what PSNR
could be achieved.
Table 2 shows a quantitative evaluation of the estimated point

clouds. For this purpose, all albedo volumes are thresholded by
discarding all voxels with an albedo below 0.1. The geometric error
between estimated point clouds and ground truth is then calculated
as the average Haussdorf distance. This metric can be interpreted
as measuring the fidelity of the estimated geometry rather than
the albedo. We show visualizations of these point clouds in the
Supplemental Material.

5 VALIDATION WITH PROTOTYPE

5.1 SPAD-based Imaging System
Our prototype uses a single photon avalanche diode (SPAD) and a
pulsed picosecond laser. We summarize the hardware components,
calibration procedure, and acquisition parameters in the following.

5.1.1 Hardware. We use a Micro Photon Devices SPAD with a
100 × 100 µm active area. Light is focused on the detector using a

BP FBP RBP Lin Factored Lin with
known V

Bunny 271 263 274 278 23 8
Dragon 413 233 270 243 103 85
Dragon & Logo 295 180 235 298 29 23
Dragon & Bunny 287 412 371 199 54 23
Logo 222 91 136 29 8 8
2 Planes 202 116 135 129 23 23
Plane & Logo 214 139 149 56 23 23
Average 272 205 224 176 38 28

BP FBP RBP Lin Factored Lin with
known N+V

Bunny 275 211 222 211 29 15
Dragon 326 211 255 166 99 72
Dragon & Logo 319 199 291 264 42 15
Dragon & Bunny 307 448 417 194 63 8
Logo 222 96 138 29 8 8
2 Planes 217 117 150 129 39 15
Plane & Logo 243 139 165 56 23 15
Spheres 275 159 190 129 56 15
Average 273 198 229 147 45 20

Table 2. Quantitative evaluation of estimated point clouds for various NLOS
reconstruction algorithms. We compare the average Haussdorf distance in
mm between ground truth and the estimated and thresholded point clouds
(lower number is better). This metric represents the per-point depth resolu-
tion of the reconstructions. The reported point cloud distances demonstrate
that the proposed method outperforms competing approaches in the quality
of the recovered geometry, independently of the object albedo.

75 mm achromatic doublet lens (Thorlabs AC254-075-A-ML). Photon
arrival times are time-stampedwith a PicoHarp 300 Time-Correlated
Single Photon Counting (TCSPC) module and stored in histograms
of photon counts with a 4 ps bin width. The laser is an ALPHALAS
PICOPOWER-LD-670-50, which operates at 670 nm wavelength
pulsed with a reported pulse width of 30.6 ps at a 10 MHz repetition
rate and 0.11 mW average power. The laser and SPAD are co-axially
aligned using a polarizing beam splitter cube (Thorlabs PBS251).
The aligned optical path is then scanned over the visible wall using
a 2-axis scanning galvanometer (Thorlabs GVS012) from a distance
of about 1.5 m from the wall. The combined temporal jitter of SPAD
and laser pulse width is measured to be approximately 60 ps. An
illustration of the setup and measurements are shown in Figure 5.

5.1.2 Calibration. Aligning the laser and SPAD is done by ad-
justing the beam splitter position and tilt angle to maximize the
recorded photon counts of the light directly reflected off the wall.
The SPAD is operated in free-running mode, which creates an effect
known as pileup. Pileup is basically a masking effect that makes it
difficult to see weak signals that occur right after a strong signal
in the temporal histogram. To avoid masking the weak indirect
reflections with the strong contribution of the direct reflections,
we slightly misalign SPAD and laser by moving the beam splitter
until we can see both direct and indirect contributions (cf. Fig. 5,
lower right). The confocal image formation model is not affected by
this procedure. Alternatively, a temporal gating mechanism could
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Fig. 5. Prototype and measurements. The prototype (top) consists of a
single-photon avalanche diode (SPAD), a pulsed laser, a 2-axis scanning
galvanometer, and a beam splitter that combines the optical path of the laser
and the SPAD (red line). With this setup, we scan a 2D array of sampling
locations capturing a temporal histogram of photon counts (lower right)
at each location. A spatio-temporal slice of these measurements is shown
(lower left), with only indirect illumination inside the displayed area.

be employed to remove the direct light; we did not have access to
hardware with this capability for our experiments.

To account for the differences in path length of different samples
on the wall and the imaging system, we align the measured his-
tograms in software such that the peak of the direct light appears
at time t = 0. Then, we reduce the histograms to a bin size of 16 ps
using area downsampling and remove the direct light for further
processing by setting the first 600 time bins to 0.

In total we captured six scenes. To keep the acquisition times
manageable, five of these scenes contain retroreflective objects and
only one scene contains a diffuse object. These scenes are recorded
with 64× 64 sample points spaced as an equidistant grid on a visible,
white planar surface. The sampling points of the retroreflective
scenes cover an area of 80 × 80 cm of the visible wall; the exposure
time for each of the samples is 0.1 s; reconstructed volumes of hidden
surface albedos have a resolution of 64 × 64 × 120 voxels and cover
80 × 80 × 80 cm. The diffuse scene was sampled over an area of
70 × 70 cm with an exposure time of 1 s per sample. All methods
compared in this work are processed at the same resolution.
For the reconstructions with the linear method, we run 150 iter-

ations with a weight of 0.1 on the sparsity prior and 0.001 on the
total variation (TV) prior. The proposed factorization method uses
5 ADMM iterations in total and 20 iterations for the linear method
in each of the ADMM iterations. Our source code is implemented
as unoptimized MATLAB code and takes about 2 h per scene on
a server with an Intel Xeon E5-4620 (2.20 GHz) and 768 GB RAM.
Please see the Sec. 6 for a more detailed discussion on potential
approaches to improving runtime and memory requirements.

5.2 Experimental Results
Figure 6 shows two of the experimental data sets; all six are shown in
the Supplemental Material. We show 3D maximum intensity projec-
tions of the acquired measurements and photographs of the imaged
objects along with two different perspectives of the reconstructions
obtained with several different methods. As expected from our simu-
lations, the backprojection and filtered backprojection methods give
a rough idea of the shape of hidden objects but fine geometric detail
is missing. The linear method with regularization weights match-
ing the ones of the proposed method achieves significantly better
results. The Light Cone Transform (LCT) was recently proposed
as a computationally efficient method for NLOS imaging [O’Toole
et al. 2018], but it uses similar assumptions on the image formation
model as the linear method and thus achieves similar reconstruction
quality for low regularization. The proposed factorization approach
recovers the scenes exhibiting partial occlusions most accurately
among all compared methods. For the “Diffuse S”, our factorization
method achieves a better quality than the other methods. The pri-
mary benefit of the proposed method for NLOS scenes containing
isolated objects without substantial amounts of occlusions is that
we can estimate surface normals. As expected for this planar scene,
the estimated normals mostly point towards the scanned wall.
For the retroreflective “Sign & S” scene, the proposed factoriza-

tion method amplifies the shape of the “S” compared to other recon-
struction algorithms. This is mostly due to the fact that the image
formation model of the other methods does not adequately model
partial occlusions in the hidden scenes, but our method does and
thus results in a more accurate reconstruction. Finally, there is also
ambiguity in the factored light transport representation. An object
with very low reflectivity (i.e., small albedo) that is unobstructed
could produce the same measurements as the same object with a
larger albedo but appropriately down-scaled visibility terms. This
ambiguity may boost the brightness of certain objects but could be
mitigated by placing additional constraints on the visibility terms
(see Sec. 6 for discussion).

6 DISCUSSION
In summary, we propose a novel light transport representation for
non-line-of-sight imaging along with inverse methods that factor
the global illumination components of a transient image of a visible
surface into a volume of hidden albedos, surface normals, and visibil-
ity terms. The visibility terms model partial occlusions in the hidden
scene parts. Our simulations indicate that the proposed factorization
approach has the potential to improve the robustness and quality of
NLOS imaging for complex scenes that often include partial occlu-
sions. With experimentally-captured data we show similar trends,
but also reveal that the non-convex nature of the factored light
transport model can result in ambiguities in the reconstructions.
Overall, we demonstrate that the reconstruction quality of the pro-
posed method is substantially higher than what is achieved by other
methods. In addition, the proposed approach is the first to facilitate
surface normal estimation. Whereas normals could alternatively be
fitted to the estimated point clouds, the proposed method jointly
estimates these two unknowns directly from the measured data.
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Fig. 6. Experimental results of the “Sign & S” (left) and the “Diffuse S” (right) scenes. The left scene contains two retroreflective objects that partly occlude
each other. We show measurements and compare the reconstruction quality of the backprojection method, filtered backprojection, the linear method, the
Light Cone Transform, and the proposed factorization method. For this example, the proposed method achieves the highest image quality. In the absence of
partial occlusions in the hidden scene, all methods, except for the backprojection, achieve a comparable quality. Unlike other methods, the factorization also
estimates surface normals of the hidden scene (top right).

Matrix-free implementations of backprojection-type methods re-
quireO(N 3)memory whereas an implementation that uses a sparse
matrix representation of the light transport requiresO(N 5)memory.
The linear method has similar memory requirements but a signif-
icantly increased computational cost. The Light Cone Transform
provides a closed-form solution to NLOS imaging that achieves a
similar quality as the linear method with only O(N 3logN ) memory.
The computational cost of the proposed factorization is slightly
higher than the linear method, but it is in the same order of magni-
tude. However, the fact that the factored light transport representa-
tion requires the visibility terms to be stored, which are generally
not sparse, results in memory requirements of O(N 5) making our
method two orders of magnitude more memory demanding than
other matrix-free NLOS algorithms.

6.1 Future Work
In the future, the memory requirements of the proposed method
could be mitigated by parameterizing the visibility terms as a sepa-
rate density volume with N 3 voxels. Inspired by techniques used in
the volume rendering community [Max 1995], such a representation
would represent the hidden scene using a density value as well as an
albedo for each voxel. Thus, memory requirements could be reduced
by two orders of magnitude to O(N 3). While such a parametriza-
tion is a promising direction to further improve the computational
efficiency of the proposed method, we leave this effort to future
work.

The runtime of our algorithm can be improved with a parallel
implementation on modern graphics processing units (GPUs). We
have implemented a preliminary GPU-based solver. This implemen-
tation achieves a speedup of 5× compared to our Matlab code at a
resolution of 40 × 40 × 75 voxels (matching the resolution reported
by Heide et al. [2014]) on a notebook computer (Intel 2.4GHZ, 16GB,

180 s total reconstruction time). However, the GPU solver is funda-
mentally limited by available memory resources. Scaling this fast
solver to operate on the same volume resolutions used throughout
this paper would require the memory management to be improved,
for example with the approach discussed above.
To improve the prototype hardware, we would like to replace

our laser with a more powerful option to reduce acquisition times
and improve the quality of hidden objects with Lambertian BRDFs.
Developing new inverse methods or learning them with a data-
driven approach are additional directions for future research. Finally,
similar to other NLOS imaging approaches, we assume that only
third-order light bounces contribute to the image formation. This
assumption could be lifted in future work to account for diffuse
interreflections and higher-order light transport effects in hidden
scene parts.

6.2 Conclusion
Non-line-of-sight imaging is a promising technology that has the
potential to unlock unprecedented imaging modalities for a va-
riety of applications. Recent advances in single-photon detector
technology and large-scale inverse light transport algorithms have
demonstrated that NLOS imaging is feasible in certain conditions.
With the proposed methods, we lift several important restrictions of
previous algorithms and take steps towards making NLOS imaging
more robust. Yet, further research and development is needed to
enable NLOS imaging “in the wild”, i.e. with strong ambient light,
at fast acquisition rates, and for more complex scenarios.
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