
Type systems for SDN Controllers

Marco Gaboardi
University of Dundee

m.gaboardi@dundee.ac.uk

Michael Greenberg
Princeton University

mg19@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

SDN controllers can “go wrong”
Software-defined networking (SDN) offers unprecedented control
over network operation, allowing network operators programmatic
control over switches’ forwarding behavior. In the compass-rose
metaphor for networks, an SDN controller sends commands that
modify switches’ forwarding tables (so-called flowmods), queues,
counters, etc., by means of the southbound API. Several different
southbound APIs exist. OpenFlow [9] is surely the most popular of
the SDN APIs, but others exist [1, 5].

SDN replaces old but working legacy distributed algorithms
like OSPF with new controller code—which, like all code, will
have bugs. Some of these bugs will manifest as bad forwarding
behaviors, but others will manifest as southbound protocol errors.
As SDN has matured, controllers’ capabilities have expanded—
and the southbound APIs have expanded with them. For exam-
ple, OpenFlow 1.0 specifies that a switch consists of a single
match/action table; by OpenFlow 1.1, a switch can have any acyclic
topology of tables, and by OpenFlow 1.3 each table can have vary-
ing capabilities. Expanding the capabilities of SDN is all to the
good, but these new features aren’t free: they introduce new failure
modes. OpenFlow 1.0 controllers can only send rules matching a
fixed set of headers to a single table, so there are only a few kinds
of bad rules that can be sent (e.g., matching on IP fields before
checking that the Ethertype is 0x0800 ). In OpenFlow 1.3, there
are new kinds of mistakes to be made: sending a rule to the wrong
table; sending a match, action, or instruction to a table that doesn’t
support it; or sending an instruction to a a table indicating an invalid
next table in the Goto-Table instruction.

Type systems for SDN controllers
What can we do about bugs in SDN controllers? We propose to
apply a classic bug prevention technique: type systems. Given a
way that a programming language can “go wrong”, type systems
identify a conservative set of programs that don’t go wrong [10]. In
Milner’s classic paper, “wrong” means applying a boolean instead
of a function or conditioning on a function instead of a boolean.
Writing SDN controllers, the notion of wrong is quite different.
Flipping through the OpenFlow specifications, we can see many
ways SDN controllers might go wrong:

(OFPFMFC BAD TABLE ID) Sending rules to non-existent ta-
bles.

OFPET BAD INSTRUCTION) Sending rules (matches, instruc-
tions, or actions) to tables that don’t support them, e.g., sending L2
routing rules to the L3 ACL table

(OFPBAC MATCH INCONSISTENT) Sending rules that don’t re-
spect protocol invariants, e.g., matching on the source IP address
before checking that the packet is an IP packet—optionally!1

1 “The effect of any inconsistent actions on matched packets is undefined.
Controllers are strongly encouraged to avoid generating combinations of
table entries that may yield inconsistent actions.” [2], p.38

(OFPFF CHECK OVERLAP) Sending duplicate/redundant rules.
(OFPFMFC TABLE FULL) Sending more rules than the flow table

can handle.

There are other forms of “soft” failure, which generally produce
dropped packets instead of error messages, and can be perniciously
hard to detect:

– Exhausting switch resources by, e.g., never responding to
Packet-In message with a corresponding Packet-Out message.2

– Failing to ensure in-order processing, e.g. forgetting to send
a Barrier message between sending Flow-Mod and Packet-Out
messages.

Finally, controllers can be subject to denial-of-service attacks: it
may be that certain packets can trigger expensive computations on
the controller or cause the controller to issue a large number of rules
very quickly.

Among all the different ways SDN controllers can go wrong
there are two particular cases where type systems can be particu-
larly effective. First, there is the case where the controller sends
rules that are too “wide”, matching on unavailable fields or using
unavailable instructions. Second, there is the case where the con-
troller sends rules that are too “deep”, exceeding the match/action
tables’ capacity. These two cases correspond to two traditional
ways of using type systems: to ensure that programs communicate
with their components respecting a predetermined grammar, and to
ensure that programs do not use more resources than are available.

Width correctness
We propose a type-based approach for ensuring that SDN con-
trollers send rules to tables that support them—in particular we en-
sure that a controller match only on fields that are available and that
uses only instructions that are available. We assign to each table
a type containing some abstract information about the set of rules
that is currently available in the table and ensures that the controller
program is well typed with respect to these information.

More precisely, the type of a table is annotated as follows:

(id1 7→ M , id2 7→ A,. . . ,idn 7→ MA)

where each id is an identifier for a field or instruction, and ev-
ery identifier is paired with the operation it is associated with:
“Match”’, “Action”, or “Match and Action”. A type checker can
then check that flowmods are sent to appropriately typed tables:
that is, the type checker ensures “width correctness”.

We have implemented this idea as a Haskell library based on
recent extensions of the Haskell’s typechecker that allow for type-
level sets [12]. These extensions allows us to use the typechecker to
ensures the correctness of the annotations. We sketch here a simple
example:

rule1 = Rule (Predicate srcMAC 1234)

2 A mistake seen in the wild by Jennifer Rexford.



(Seq (Assign dstMAC 5678)
(Assign ethtype 0x0800))

rule2 = Rule (Predicate dstMAC 1234)
(Seq (Assign dstMAC 5678)

(Assign dstMAC 6667))

prog :: Controller ’["SrcMAC" :-> ’M,
"DstMAC" :-> ’MA,
"Ethtype" :-> ’A]

()
prog = do

flowMod rule1
flowMod rule2

The rules are defined in a NetCore-like AST [11], and then
used to issue flowmods to a switch in our Controller monad.
Controller is essentially a writer monad, but the key point is
that Haskell’s type checker can identify which fields are used for
matches (M), actions (A), or both (MA). The Controller monad
then tracks which fields are used, allowing a programmer to match
these with the capabilities of a switch.

Depth correctness
Katta et al. [7] use a CPU-cache setup to automatically prevent
a controller from sending too many rules to a switch: when an
overflow is about to occur, they ‘evict’ some rules from the switch
and send them to software switches, just like an eviction from L0
into L1 cache. A type system for depth correctness could not only
verify Katta et al.’s controller, but it would allow controllers to
make different compromises between network topology—not all
networks can accomodate a layer of L1 software switches—and
depth correctness.

Depth correctness poses challenges that are very different from
those posed by width correctness. Indeed, to ensure depth correct-
ness we need some technique for tracking the number of rules that
are sent to a table; depth correctness is a form of resource anal-
ysis. The standard tools here are then linearity and dependent or
refinement types. Recent advances in these areas [4] are promising,
but don’t go all the way: there are some novel problems here. Con-
trollers tend to work in two phases: an initial, proactive configura-
tion phase, followed by a reactive population phase. In the former,
proactive phase, the controller immediately issues some number of
rules and configuration directives to switches. After this configu-
ration phase, the controller becomes reactive, waiting for network
events to incite it action. We believe that Barthe et al. offer a ba-
sis for setting up invariants (using refinement types) and enforcing
them with linearity. Even so, previous work on linearity has focused
on programs that look like the configuration phase: they run once
and are done. But the interesting case is when the controller has
non-trivial reactive behavior. Krishnaswami [8] may offer insights
into this.

A type system with robust support for depth correctness also
serves as a tool for analyzing how sensitive controllers are to pack-
ets: are there packets that can cause controllers to flood switches
with rules?

Related work
Ball et al. [3] verify connectivity controllers for a simplified table
model where there can’t be any errors in the southbound proto-
col from controllers to switches. Padon et al. [13] generate sound
controllers in a similarly simplified model. Guha et al. [6] verify
that a compiler for NetCore correctly issues commands to switches
without races or violations of the protocol dependencies we de-

scribed above. They don’t consider more dynamic, reactive con-
trollers, synthesizing a whole network-wide policy at a time.

Acknowledgments
This work was supported in part by the NSF under grant CNS
1111520.

References
[1] Network configuration protocol (NETCONF), June 2011. URL http:

//tools.ietf.org/html/rfc6241.
[2] Openflow 1.4, Oct. 2013. URL https://www.opennetworking.

org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.4.0.
pdf.

[3] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller
programs in software-defined networks. In Programming Language
Design and Implementation (PLDI), 2014. .

[4] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and P. Strub.
Higher-order approximate relational refinement types for mechanism
design and differential privacy. In Principles of Programming Lan-
guages (POPL), 2015.

[5] Broadcom. Openflow data path abstraction. URL
http://www.broadcom.com/products/Switching/
Software-Defined-Networking-Solutions/
OF-DPA-Software.

[6] A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. In Programming Language Design and Implementation
(PLDI), 2013. .

[7] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Infinite cacheflow
in software-defined networks. In Hot Topics in Software Defined
Networking (HotSDN), 2014. .

[8] N. R. Krishnaswami. Higher-order reactive programming without
spacetime leaks. In International Conference on Functional Program-
ming (ICFP), 2013.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation
in campus networks. SIGCOMM Computing Communications Review,
38(2), 2008. .

[10] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, Aug. 1978.

[11] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and
run-time system for network programming languages. In Principles of
Programming Languages (POPL), 2012. .

[12] D. Orchard and T. Petricek. Embedding effect systems in haskell. In
Haskell Symposium, 2014. .

[13] O. Padon, N. Immerman, A. Karbyshev, O. Lahav, M. Sagiv, and
S. Shoham. Decentralizing SDN policies. In Principles of Program-
ming Languages (POPL), 2015.

http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.broadcom.com/products/Switching/Software-Defined-Networking-Solutions/OF-DPA-Software
http://www.broadcom.com/products/Switching/Software-Defined-Networking-Solutions/OF-DPA-Software
http://www.broadcom.com/products/Switching/Software-Defined-Networking-Solutions/OF-DPA-Software

