
Temporal NetKAT

Ryan Beckett
Princeton University

rbeckett@princeton.edu

Michael Greenberg
Princeton University

mg19@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract
Recent collaborations between networking and programming lan-
guages researchers have given rise to a new wave of high-level lan-
guages for specifying the behavior of networks. One such language
is Anderson et al.’s NetKAT [1], a formal system that allows pro-
grammers to both construct packet-forwarding policies and to rea-
son about them. NetKAT policies consist of tests on packet con-
tents, actions to modify packet contents, and combinators to build
more expressive policies from simpler ones.

In this talk, we will argue that NetKAT would benefit from
new operators that allow NetKAT programs to analyze and make
decisions based on a packet’s history instead of just a packet’s
current state. More specifically, we will show how to extend the
syntax and denotational semantics of NetKAT with several new
temporal operators that act on packet history. We will explore the
utility of these operators when it comes to constructing queries
for monitoring networks, implementing history-based routing, and
reasoning about network properties. We will also discuss our work-
in-progress on the equational theory and compilation techniques for
handling this new language.

1. Introduction
One of the most important, and perhaps underappreciated, out-
comes of early work on Software-Defined Networking (SDN) was
the development a very, very simple model of how networks of
switches could be programmed and controlled. The simplicity of
the model made network programming accessible to a broad range
of researchers, including those in programming languages and ver-
ification. Hence, almost immediately, new, higher-level languages
and programming abstractions for SDN control began to emerge.
Such languages and abstractions have provided many new prop-
erties and guarantees by construction, conveniences and reasoning
principles missing in the past.

One quadrant of the SDN language design space is inhabited by
the Frenetic family languages [2], the most recent of which being
NetKAT [1]. NetKAT programs consist of two main components:
predicates and policies. The predicates test a packet’s current con-
tents and location. For example,

sw = X ∧ pt = 3 ∧ (typ = ssh ∨ typ = http)

is true when a packet is currently at port 3 on switch X , and the
“typ” field of the packet header is either ssh or http. Such pred-
icates restrict the policy to operate on certain sets of packets—
here, SSH and HTTP traffic on port 3 of switch X . Policies, on
the other hand, modify a packet’s current state. Primitive policies
include operations to drop a packet (drop) or modify one of its
field (srcIP ← 10.0.0.1). The packet’s current location is consid-
ered a (virtual) field, so moving a packet from place to place is
also achieved via field assignment. For example, to move a packet
across the switch fabric to port 7, we write pt ← 7. Predicates
and primitive actions are combined to form more interesting poli-

cies using sequential composition of policies (·), parallel union of
policies (+), and policy iteration (∗). For example, to define the be-
havior of a switch X that sends ssh traffic out port 1 and all other
traffic out port 2, we would use the following NetKAT policy:

((sw = X ∧ typ = ssh) · pt← 1)

+ ((sw = X ∧ ¬typ = ssh) · pt← 2)

The predicates sw = X ∧ typ = ssh and sw = X ∧ ¬typ = ssh
identify subsets of the incoming switch traffic and the appropriate
forwarding behavior (sending the packet out port 1 or port 2, re-
spectively) is applied to each subset.

The semantics of NetKAT is given in terms of packet histories,
which are non-empty lists of packets (including both packet con-
tents and location). More precisely, every NetKAT policy is defined
as a function from a packet history and to a set of packet histories.
For instance, consider policy p and history h. If p(h) is the empty
set, then a packet with history h is dropped by the policy. If p(h) is
{h1} then the packet is forwarded somewhere. If p(h) is {h1, h2}
then the packet is multicast to two different destinations.

This history-based semantics makes it possible for an analyst
to examine a policy and reason about the path that a packet takes
through a network. For example, it is possible to use NetKAT se-
mantics to determine whether policy p forces all packets to way-
point through a particular firewall switch. However, all such anal-
ysis occurs in the NetKAT metatheory. Even though NetKAT’s se-
mantics is in terms of packet histories, NetKAT programs them-
selves have no means to inspect or take action based on packet
history: predicates are only allowed to inspect the current packet
as opposed to a past packet state; packet rewriting actions only af-
fect the current packet state. Indeed, the only NetKAT operator that
has any effect on packet history other than the current packet is the
dup action, which adds an extra copy of a packet to the front of the
history. For instance, if a history h is a sequence of packet states
〈s1, s2, . . . , sn〉, with s1 the current packet, then the semantics of
dup can be explained as follows.

dup(〈s1, s2, . . . , sn〉) = {〈s1, s1, s2, . . . , sn〉}

In this talk, we discuss our work-in-progress on extending
NetKAT with new features for programming with and reasoning
about packet histories. More specifically, we will discuss our efforts
to extend the NetKAT predicate language with past-time temporal
operators such as last(a), which asks if a is true at the previous
step in the history, and ever(a), which asks if a was ever true at
any point in the history. We will illustrate how these extensions (1)
allow analysts to concisely and directly specify interesting history-
based properties of networks, (2) allow programmers to define
network routing or security policies in terms of packet history, and
(3) allow network operators to express traffic queries in terms of
packet history. We also describe our work to date on the seman-
tics and meta-theory of these extensions to NetKAT, which we call
Temporal NetKAT.



Reasoning about packet histories. Verification of important net-
work properties like reachability and waypointing can be formu-
lated as policy equivalence in the equational theory of NetKAT. To
begin, consider a NetKAT user policy p operating in a network with
topology t. In this case, the complete network-wide policy can be
formulated as the NetKAT expression prog.

prog def
= dup · (p · t · dup)∗

Now, if a network analyst wants to prove that all network traffic
traverses a series of middleboxes, say m1 and m2, they can begin
their analysis by formulating their condition as the following tem-
poral formula, which states that m1 precedes m2 in the past:

middleboxes def
= ever(ever(m1) ∧m2)

Now, we can simply ask whether all our network traffic traverses
middlebox m with the following NetKAT equation:

prog = prog ·middleboxes

Such questions can also be posed in vanilla NetKAT, but doing so
requires “mixing” the property of interest into the program to be
verified. For instance, one might first define prog′:

prog′ def= (p · t · dup)∗

Now, without the temporal operators, we can verify the waypoint-
ing property by checking the following inequality :

prog ≤ prog ·m1 · prog′ ·m2 · prog′

The less than or equal operator (≤) is defined such that a ≤ b is
equivalent to a + b = b. As the properties become more complex,
the degree of interleaving of property and program increases; our
temporal operators facilitate modularization of these specifications.

History-based routing and security. From a programmer’s per-
spective, the benefit of Temporal NetKAT is that programs can
make routing decisions based on a packet’s history. For example,
suppose packets coming from badsrc are untrustworthy and must
be subjected to deep packet inspection (dpi) before being forwarded
on to secure machines at the network edge. Due to the presence of
network translation devices (NAT), such properties are not always
apparent at the network edge or on the switches that make the final
forwarding decision. However, history-based forwarding allows us
to express desired behaviors accurately at a high level of abstrac-
tion. For instance, suppose we want to forward packets from badsrc
that have gone through the middlebox out port 1 and other packets
out port 2. We can formulate such a routing decision with the fol-
lowing temporal NetKAT policy.

ever(ever(badsrc) · dpi) · pt← 1 +

¬ever(ever(badsrc) · dpi) · pt← 2

That is, not only can Temporal NetKAT verify waypointing
properties, as above, it can declare them. We believe that the equa-
tional theory for last and ever will allow us to rewrite history-
sensitive policies to implementable, history-free policies.

History-based queries. Despite great strides made by SDN in
improving network programmability, network monitoring remains
difficult because SDN’s current abstractions for monitoring are at a
very low level, in the form of individual rule match and byte counts
on the switches. Recently, Narayana et al. [3] have shown how
to define a higher-level network query language that uses regular
expressions to describe the paths that packets traverse through the
network. We are exploring the use of temporal NetKAT to express
similar kinds of queries and to provide rigorous semantics for
Narayana et al.’s query language. For example, given an arbitrary
program prog, Temporal Netkat makes it easy to detect any packets

that evade a firewall F and send them to the controller (via the
tocontroller action). The query we would write is:

query def
= ¬ever(sw = F ) · tocontroller

and then applying that query to the program is trivial:

prog · query

Narayana et al. also show how to answer other queries such as:
how many packets go through middlebox X and middlebox Y right
after each other in either order? Again, we can answer this query
by appending the following test to an arbitrary program:

ever(last(sw = X) · sw = Y + last(sw = Y ) · sw = X)

We believe that last and ever can express a large subset of Narayana
et al.’s queries within Temporal NetKAT itself.

Meta-theory. We have given a formal semantics to the last and
ever temporal operators and have augmented the equational theory
of NetKAT with several new axioms for reasoning about the tem-
poral operators. We have proven the axioms sound with respect to
the denotational semantics and are currently working to show com-
pleteness. Using the equational theory, we can rewrite a number
of policies that contain temporal operators into traditional NetKAT
that is temporal-operator-free. We are still exploring a full compi-
lation algorithm.

Acknowledgments
This work was supported in part by the NSF under grant CNS

1111520. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
References
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for net-
works. In POPL, January 2014.

[2] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
In ICFP, September 2011.

[3] S. Narayana, J. Rexford, and D. Walker. Compiling path queries in
software-defined networks. In HotSDN, pages 181–186, 2014.


	1 Introduction

