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Abstract
Over the past 5-10 years, the rise of software-defined net-
working (SDN) has inspired a wide range of new systems,
libraries, hypervisors and languages for programming, mon-
itoring, and debugging network behavior. Oftentimes, these
systems are disjoint—one language for programming and
another for verification, and yet another for run-time moni-
toring and debugging. In this paper, we present a new, unified
framework, called Temporal NetKAT, capable of facilitating
all of these tasks at once. As its name suggests, Temporal
NetKAT is the synthesis of two formal theories: past-time
(finite trace) linear temporal logic and (network) Kleene Al-
gebra with Tests. Temporal predicates allow programmers
to write down concise properties of a packet’s path through
the network and to make dynamic packet-forwarding, ac-
cess control or debugging decisions on that basis. In addi-
tion to being useful for programming, the combined equa-
tional theory of LTL and NetKAT facilitates proofs of path-
based correctness properties. Using new, general, proof tech-
niques, we show that the equational semantics is sound with
respect to the denotational semantics, and, for a class of pro-
grams we call network-wide programs, complete. We have
also implemented a compiler for temporal NetKAT, evalu-
ated its performance on a range of benchmarks, and studied
the effectiveness of several optimizations.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Specialized appli-
cation languages

Keywords Software-defined networking, Network pro-
gramming languages, Domain-specific languages, Kleene
algebra with tests, NetKAT, Temporal logic.

1. Introduction
In software-defined networking, a general-purpose con-
troller machine, or cluster of machines, manages a collec-
tion of simple, programmable switches through a uniform
and open API such as OpenFlow [29]. In order to build
reliable SDN systems, one requires a combination of sev-
eral key technologies: a platform for programming packet-
forwarding policies, technology for monitoring dynamic
traffic patterns and sampling packets of interest, and mech-
anisms for SDN verification. Over the past decade, all of
these components have been tackled in a myriad of differ-
ent ways. For instance, FlowLog [34], Frenetic [9], L [36],
Maple [42], NetKAT [1], and others have given us effective
new languages for programming packet-forwarding policies.
DREAM [32], Open Sketch [43], Path Queries [33] and oth-
ers provide sophisticated monitoring infrastructure. Header
Space Analysis [17], NetPlumber [18], NetKAT again [10],
Network Optimized Datalog [25] and Veriflow [19] are tools
for checking various path properties of networks such as the
absence of loops, access control, and waypointing.

In this paper, we present a simple, new foundation for
managing many of these activities in the same framework.
More specifically, we begin with NetKAT [1], which serves
as a basis for modular programming of packet-forwarding
functions. NetKAT programs consist of simple predicates
that identify packets based on their current headers and lo-
cation, and policies that modify those headers and forward
packets through the network. A collection of combinators
makes it possible to take the union of two policies, stitch
policies together in sequence or iterate over a policy zero
or more times. In combination, these features allow users to
program network packet-processing functions.

However, as discussed above, network operators typically
need additional support above and beyond facilities for pro-
gramming packet-processing functions. In particular, many
network monitoring and debugging tasks are most easily
phrased in terms of packet history—the path and possible
state changes a packet took to arrive at the current loca-
tion. For instance, users might want to write queries that ask
where specific traffic causing congestion is coming from or
whether any packets headed towards a secure host have cir-
cumvented a network firewall. Each such question requires
we understand the paths (or history) of packets as they flow



through a network. Moreover, the last question, in particu-
lar, suggests one might want to do something important de-
pending on the answer: If a packet is headed towards my
secure host and did circumvent the firewall, then I may want
to reroute it through my deep-packet inspection box. While
the above questions are dynamic—they ask about packets or
traffic volume—static questions, which ask about properties
of the routes (independent of the actual packets that might
be flowing over them right now) are equally important. For
instance, one might want to know given the current forward-
ing policy, whether any packet can travel from point A to B
without going through a particular waypoint.

It is well known that temporal logic can also be used to
specify static properties of networks such as connectivity
and waypointing. Indeed, it has been used in verification of
data plane properties [13, 38] and to specify invariants that
must be preserved during network update [28]. In this paper
we show that, when combined with the NetKAT language,
it can be used for other tasks as well, such as network
debugging, history-based routing and network monitoring.
A crucial observation is that temporal logic is strong enough
for all of the applications we have investigated and yet weak
enough so that it retains the sound and complete equational
theory akin to that of the original NetKAT language [1].

We make use of this observation to integrate the modal
fragment of linear time temporal logic in to NetKAT in a
deep way, by extending its language of predicates with the
past-time temporal modalities “last,” “ever,” and “always,”
calling the resulting system Temporal NetKAT. With these
modalities, rather than simply writing predicates that can
inspect the current state of the packet, programmers can
write conditions that refer to past states of a packet—where it
was, what middleboxes it went through, or what the original
state of its headers were prior to modification by NATs.
Such predicates can be used to write concise programs that
redirect packets to servers for logging, monitoring, traffic
engineering or debugging purposes.

We have implemented a compiler for temporal NetKAT
that converts temporal formula in to automata and then in-
tersects these automata with standard NetKAT automata rep-
resenting the rest of the policy. The combined automaton is
then compiled to standard OpenFlow rules using BDDs, fol-
lowing work on the fast NetKAT compiler [39]. Along the
way, we introduce new optimizations for improving compile
times, reducing the number of rules generated and minimiz-
ing the tag space required.

To summarize the central contributions of this paper:

1. We introduce the design, applications and semantics of
Temporal NetKAT, a simple, uniform language in which
users can engage in network programming, monitor-
ing, debugging and verification. (See Section 2 for an
overview and Section 3.2 for the formal definitions.)

2. We develop an equational theory for Temporal NetKAT
by combining NetKAT axioms, an original set of axioms
for LTLf , and new axioms relating actions and time.

3. We prove that, with respect to the denotational semantics,
this new equational theory is both sound and complete
for “network-wide” programs – programs where packet
history begins at network entry. Though our focus is on
networking, Kleene algebra and temporal logic have ap-
plications in other domains. We have developed a generic
meta-theory so our core results may be reused in other
settings where KAT embeds a richer notion of test. (See
Section 3.3 for the equational theory and Section 4 for a
proof outline; complete proofs appear in the appendix.)

4. We have implemented, optimized and studied the perfor-
mance of a Temporal NetKAT compiler on a range of
benchmarks (See section 5 for details). Our specialized
compiler optimizations reduce compile times by orders
of magnitude in some cases, allowing temporal policies
to compile in seconds on the Stanford University Campus
network, while also reducing rule set sizes by 20-50%.

2. Overview
In this section, we give an informal overview of Temporal
NetKAT, beginning with an overview of NetKAT itself.

NetKAT. NetKAT, the predecessor of Temporal NetKAT,
allows programmers to specify network policies using a
small set of primitive commands and a collection of com-
binators. As a first cut, each NetKAT policy may be thought
of as a function that takes a located packet as an input and
returns a set of located packets as an output. These located
packets are records that include the packet’s headers and its
location. The specific packet headers chosen are unimpor-
tant in this paper, but our examples will often include head-
ers such as source IP (src), destination IP (dst), and “packet
type” (typ — ssh or http perhaps). A packet’s location is
described in terms of its current switch (sw) and port (pt).

The simplest kind of NetKAT policy is a predicate that
tests a packet’s current contents and location. If the test
is true, the policy returns a singleton set containing the
packet unchanged. Otherwise, the policy returns the empty
set, indicating the packet should be dropped. For example,

sw = X ∧ pt = 3 ∧ (typ = ssh ∨ typ = http)

is true when a packet is currently at port 3 on switch X ,
and the “typ” field of the packet header is either ssh or http.
Such predicates restrict any policy that follows it to operate
on certain sets of packets—here, SSH and HTTP traffic on
port 3 of switch X . The always-false predicate (0) drops all
packets; and the always-true predicate (1) admits all packets.

More complex policies not only read packet state but
actively modify it. For example, the policy src ← 10.0.0.1
updates the src field of any packet to have value 10.0.0.1.
We also implement packet forwarding using assignment. For



example, to move a packet across the switch fabric to port
7, we write pt ← 7. Predicates and primitive actions are
combined to form more interesting policies using sequential
composition of policies (;), parallel union of policies (+),
and policy iteration (∗). For example, to define the behavior
of a switch X that sends SSH traffic out port 1 and all other
traffic out port 2, we would use the following policy:

((sw = X ∧ typ = ssh); pt← 1)

+ ((sw = X ∧ ¬typ = ssh); pt← 2)

The predicates (sw = X∧typ = ssh) and (sw = X∧¬typ =
ssh) identify subsets of the incoming switch traffic and the
appropriate forwarding behavior (sending the packet out port
1 or port 2, respectively) is applied to each subset.

Now, it turns out that NetKAT can also be given a more
refined semantics, one that transforms entire packet histories
in to sets of packet histories. These packet histories are non-
empty lists of packets that not only represent a packet’s
current state, but also prior states that occurred as it traversed
the network. For instance, a history pk1:pk2:pk3:[ ] indicates
that a packet is currently in the state pk1, was in the state pk2
before that and was in the state pk3 before that.

This history-based semantics makes it possible for a net-
work operator to examine a policy and reason about the path
that a packet takes through a network. However, all such
analysis occurs in the NetKAT metatheory. Even though
NetKAT’s semantics is in terms of packet histories, NetKAT
programs themselves have no means to inspect or take ac-
tion based on packet history: predicates are only allowed to
inspect the current packet and packet rewriting actions only
affect the current packet state. The only NetKAT operator
that has any effect on packet history other than the current
packet is the special dup action, which adds an extra copy of
a packet to the front of the history and indicates an observ-
able state change has occurred. For instance, if a history h is
a sequence of past packet states with pk the current packet,
then the semantics of dup can be explained as follows.

dup(pk:h) = {pk:pk:h}

Temporal NetKAT. Temporal NetKAT extends NetKAT by
enriching NetKAT’s sublanguage of predicates with the tem-
poral operators # a (“last a”), � a (“ever a”), � a (“always
a”), and a S b (“a since b”). Each of these operators is inter-
preted over a packet’s history as it traverses the network. In-
tuitively, these predicates have the following semantics: # a
is true now, if a is true in the prior packet state, � a is true
now, if a is true now or it was true at some point in the past,
� a is true now if a is true now and it was true at all points
in the past, and finally, a S b is true now if b was true at
some previous state, and a has been true in every state since
b held.

In the case that no prior packet state exists, what should
be the semantics of # a? A common trick for applying LTL

to finite domains is to extend the domain to be infinite, e.g.,
by repeating the initial packet state of a history forever. How-
ever, in doing so, we lose the ability to reason about the be-
ginning of the packet’s history. We adopt the convention of
LTLf (LTL over finite traces [6, 7]) and say# a is false when
no prior history exists. Under this semantics, in Temporal
NetKAT, we can define a special predicate start

def
= ¬# 1

that holds precisely when a packet first enters the network,
and has no previous history. It should also be noted that, al-
though we use the � and � operators extensively through-
out the rest of the examples in this section, they are in fact
defined in terms of the S operator (see Section 3.2).

In regular NetKAT, the programmer can filter packets
based on their current state; in Temporal NetKAT, the pro-
grammer can filter packets based on past states. Such facili-
ties are particularly useful in network debugging. For exam-
ple, one might want to look at packets that were accidentally
routed around the network firewall. In this example, let’s as-
sume the firewall is implemented at switches F1 and F2 and
a vulnerable host at switch V . Let’s also assume the cont
policy routes packets to the SDN controller for analysis and
debugging. To capture packets that evade the firewall, we
might use the following query.

q1
def
= ¬ �(sw = F1 ∨ sw = F2) ∧ sw = V ; cont

In English, it reads “if a packet has never passed through
switch F1 or switch F2 and has arrived at switch V , then
send it to the controller.” Of course, if the vulnerable hosts
attached to V send packets as well as receive them, we
might want to exclude those packets that begin their journey
through the network at switch V from our query. We may do
that by conjoining “¬start” as follows.

q2
def
= ¬ �(sw = F1 ∨ sw = F2) ∧ sw = V ∧ ¬start; cont

Temporal NetKAT, like ordinary NetKAT, is highly com-
positional. Hence, to use either debugging query in parallel
with any other routing program prog, we simply construct
the parallel composition (+) of the query and the program,
prog + qi, which both routes packets to their destination, as
dictated by prog, and also directs a copy of any packets that
match the query to the controller.

Narayana et al. [33] have also observed that path-based
queries are useful for a number of traffic engineering tasks—
tasks that involve collection of traffic statistics for later route
optimization. For example, a standard traffic matrix repre-
sents the traffic volume that flows between each network
ingress i and network egress j over a given time period. In
Temporal NetKAT, assuming the action collector(i,j) for-
wards traffic volume statistics to the traffic engineering ap-
plication,1 and predicates ingressi and egressj identify the

1 Such an action may be implemented in exactly the way as Pyretic’s
“buckets” are [31].



Example Predicate Goal
Simple path �((sw = S1)@(sw = S2)@(sw = S3)) Packets that travelled from S1 to S2 to S3

Slice iso. �(slice1@slice2 ∨ slice2@slice1) Packets travelling from slice1 to slice2 or vice-versa

Physical iso. �(sw = S1 ∨ . . . ∨ sw = Sn) Packets that only traverse switches S1 through Sn

DDoS sources
∑

Si
(start ∧ sw = Si)@server Packets from switches Si reaching a victim server

Congested link �((sw = X ∧#(sw = Y )) ∨ (sw = Y ∧#(sw = X))) Packets using a congested link between switches X and Y

Figure 1: Example queries inspired by Narayana [33]. We only give the temporal predicates; to generate a query, the given
predicates should be composed with the appropriate NetKAT actions (“forward to collector,” “collect stats,” etc.).

ith and jth ingress and egress locations respectively, we can
set up the appropriate temporal query as follows.

q3
def
=

�(start ∧ ingress1) ∧ egress1 ∧ ¬start; collector(1, 1)
· · ·
�(start ∧ ingressi) ∧ egressj ∧ ¬start; collector(i, j)

To make formula such as this slightly easier to read, we
can define a simple abbreviation for paths: a@b stands for
( � a)∧ b and @ is left associative so a@b@c is �(( � a)∧
b) ∧ c. Hence to travel from ingress1 (entering the network)
to egress1 (not entering the network), we write: (start ∧
ingress1)@(egress1∧¬start). Narayana et al. [33] give a va-
riety of other examples of path-based queries for debugging
and monitoring. We present a selection of these additional
examples in Figure 1, written as Temporal NetKAT queries.

In addition to network monitoring and debugging with
Temporal NetKAT, programmers can, of course, make or-
dinary routing decisions based on packet history—the basic
temporal mechanisms are the same, only the actions differ.
For example, suppose packets coming from badsrc are un-
trustworthy and must be subjected to deep packet inspec-
tion (DPI) before being forwarded on to secure machines at
the network edge. Due to the presence of network transla-
tion devices (NAT), such properties as “originated at bad-
src” are not always apparent at the network edge or on the
switches that make the final forwarding decision. However,
history-based forwarding allows us to express desired behav-
iors accurately at a high level of abstraction. For instance,
suppose we want to forward packets from badsrc that have
gone through the middlebox out port 1 and other packets out
port 2. We can formulate such a routing decision with the
following temporal NetKAT policy.

�(badsrc@dpi); pt← 1 + ¬ �(badsrc@dpi); pt← 2

Reasoning about packet histories. Verification of im-
portant network properties like reachability, waypointing,
and loop-freedom can be formulated as problems of policy
equivalence in the equational theory of NetKAT. To begin,
consider a NetKAT user policy p operating in a network with
topology t. In this case, the complete network policy can be

formulated as the NetKAT expression:

prog def
= dup; (p; t; dup)∗

Now, if a network analyst wants to prove that all network
traffic satisfies a given property, say that traffic traverses a
series of middleboxes m1 and m2, they can begin their anal-
ysis by formulating their condition as the following temporal
formula, which states that m1 precedes m2 in the past:

query def
= �(m1@m2)

Now, we can simply ask whether all our network traffic
traverses middleboxmwith the following NetKAT equation:

prog ≡ prog; query

This decomposition of policy and query is highly modular.
For example, if instead the operator wanted to ensure that all
traffic goes through a NAT, which rewrites the source IP to
x, then they could simply replace the query with:

query def
= (src = x) S (sw = NAT)

Such questions can also be posed in pure NetKAT, with-
out temporal operators, but doing so requires “mixing”
the property of interest into the program to be verified.
For instance, we might say that prog′ def

= (p; t; dup)∗. To
verify the waypointing property, we prove that prog ≤
prog;m1; prog′;m2; prog′, where ≤ is defined such that
a ≤ b is equivalent to a + b ≡ b. Why this is right thing
to prove isn’t at all obvious, and must itself be proved [1].
As the properties become more complex, the degree of inter-
leaving of property and program increases in NetKAT. Our
temporal operators help modularize these specifications and
keep proofs simple.

Summary. Temporal NetKAT facilitates modular debug-
ging, querying, programming and verification of properties
of packet history, all in the same uniform language, and it
does so by extending the NetKAT predicates with past-time
LTLf .



3. Temporal NetKAT
Temporal NetKAT enriches the NetKAT language by em-
bedding past-time LTLf into its predicate sublanguage.
Adding LTLf operators starts a cascade of changes: to the
semantics, to the equational theory, and to the metathe-
ory. For reference, Figure 2 presents the combined syn-
tax, denotational semantics and equational theory of Tem-
poral NetKAT. The temporal extensions are highlighted in
duckling. The details are explained below.

3.1 Preliminaries
A packet, written pk, is a record with a fixed number of ab-
stract, fixed-width fields f1, . . . , fn. In addition to conven-
tional networking header fields—IP and Ethernet fields like
source and destination, VLAN identifiers, etc.—our packets
have virtual fields representing the packet’s current location
at a given switch (sw) or port (pt). We write pk.f to denote
the value in field f of packet pk, and we write pk[f := v] to
update field f with value v in packet pk.

A packet history (h) is a non-empty list of packets. For
example, pk1:pk2: · · · :pkn:[ ] is a history. Here, the left-most
packet (pk1) is the most recent packet state; the right-most
packet (pkn) is the oldest packet state. Such histories record
the evolution of a packet as it traverses the network, in-
cluding the sequence of changes to a packet’s location, and
changes to the contents of its header fields. For instance, a
history may record changes to a packet’s destination MAC
address as it traverses a switch implementing Ethernet bridg-
ing. We call a history with one packet, pk:[ ], an initial his-
tory—it represents a packet that has just entered our net-
work. We often use the pattern “pk: · · · ” to bind pk to the
current packet (i.e., the most recent packet state) in a history,
ignoring that packet’s past states.

3.2 Syntax and semantics
Temporal NetKAT generally follows the structure of other
Kleene algebras with tests (KATs)—a Kleene algebra with
an embedded Boolean algebra. The critical difference, of
course, is the addition of the temporal operators from LTLf .

Syntax. We break Temporal NetKAT’s syntax (Figure 2,
upper left) into two levels: predicates a and b (LTLf expres-
sions) and policies p and q (Kleene algebra terms). The strat-
ified syntax ensures that negation and temporal operators are
only applied to predicates, and not to policies.

The predicates include 0, pronounced “drop”, the always-
false predicate; and 1, pronounced “id”, the always-true
predicate. The field test f = v tests whether a field has a
given value. In the introductory sections of this paper, we
wrote a∧ b and a∨ b for conjunction and disjunction respec-
tively to help ease the reader’s eye. However, from this point
forward, we adopt the convention of KAT and write a; b for
conjunction and a + b for disjunction. The ; and + symbols
have a single semantics, but may be used either to combine
two predicates or to combine two policies (the latter being

shown in the introductory section). We use ¬a for negation.
The two core temporal operators are # a (last a) and a S b
(a since b). The operators � a (ever a), � a (always a), and
a B b (a back to b) are derived forms, defined in terms of last
and since.

We also introduce syntactic sugar to account for the fini-
tude of LTLf : start and  a. The predicate start is defined
as ¬# 1, a predicate that only holds when packets first enter
the network—that is, on initial histories. The weak last op-
erator,  a, is defined as ¬#(¬a). It behaves just like # a
except for on initial histories, where it is always true.

Every predicate is also a policy. Policies also include field
assignments f ← v, which update the packet and lengthen
the packet history to record the state change, and Kleene
star p∗. As mentioned above, policies also reuse two of the
predicate connectives: p+ q and p; q. When used as a policy,
p + q may be thought of as “parallel composition” (or the
“union” policies) — it applies both p and q to any packet.
The policy p; q may be thought of as sequential composition
of p and q. We let the unary operators (¬, #, �, �, and
∗) bind more tightly than (;), which binds more tightly than
(+), which binds more tightly than S and B.

Readers familiar with NetKAT will notice that we re-
moved the dup operator from the syntax of policies. In Tem-
poral NetKAT, we fold dup in to the semantics of the up-
date operation. Hence, we automatically record every state
change. Doing so helps slim down the notation used in our
proofs, but it is not a change of any fundamental interest.

Semantics. We give a denotational semantics ([[−]] in Fig-
ure 2) defining Temporal NetKAT terms as functions from
packet histories to sets of packet histories; the denotations
are defined as a fixpoint on policies and histories. Intuitively,
if [[p]] h = ∅, then p drops its input packet. If it produces a
singleton set, then p forwards a single copy of its input. If
it produces a set of two or more packet histories, then p has
multicast its input.

Given an input history, every predicate will either return
the empty set of histories or a singleton set containing the in-
put. For example, the denotation of 0 (false) is the empty set,
while the denotation of 1 (true) is the singleton set contain-
ing the input packet. Field tests f = v check the current, top-
most packet pk of the input history to see whether pk.f = v,
returning either the singleton set containing the input his-
tory (if they’re equal) or the empty set (if not). Negation is
defined using set difference, since predicates return either
their inputs (as a singleton set) or the empty set. Field writes
f ← v extend the input history by copying the top-most
packet and updating it: the new current packet is equal to the
last current packet, but with field f set to v. Parallel compo-
sition p + q (and disjunction) returns the union of the histo-
ries returned by p and q respectively. Sequential composition
(and conjunction) returns the Kleisli composition (defined at
the bottom-left of Figure 2) of p followed by q. Kleene star
is defined as union of all finite sequences of a policy p.



Syntax
Predicates
a, b ::= 0 drop

| 1 id
| f = v field test
| a; b conjunction
| a+ b disjunction
| ¬a negation
| # a last
| a S b since

� a = 1 S a ever
� a = ¬ �¬a always
start = ¬# 1 history start
 a = ¬#¬a weak last
(a B b) = (a S b) +� a back to

Policies
p, q ::= a predicate

| f ← v field update
| p; q sequence
| p+ q parallel
| p∗ Kleene star

Packets and packet histories
f ::= {f1, . . . , fn} fields
V = {v1, . . . , vm} values
pk : F ⇀ V packets

h ::= pk:[ ] pkt. history
| pk:h

Semantics
[[p]] : History→ 2History

[[0]] h = ∅
[[1]] h = {h}

[[f = v]] h = {h | h = pk: . . . ∧ pk.f = v}
[[¬a]] h = {h} \ ([[a]] h)

[[f ← v]] h = {pk[f := v]:h | h = pk: . . .}
[[p+ q]] h = ([[p]] h) ∪ ([[q]]h)
[[p; q]] h = ([[p]] · [[q]]) h
[[p∗]] h =

⋃
i∈N([[p]]

i h)

[[# a]] pk:h = {pk:h | [[a]] h = {h}}
[[a S b]] pk:h = ([[b]] pk:h) ∪

([[a]] pk:h ∩
{pk:h | [[a S b]] h = {h}})

[[# a]] pk:[ ] = ∅
[[a S b]] pk:[ ] = [[b]] pk:[ ]

(F ·G) h =
⋃

h′∈F h(G h′)
F 0 = [[1]]

F i+1 = (F · F i)

Equational theory
Kleene Algebra

p+ (q + r) ≡ (p+ q) + r KA-PLUS-ASSOC
p+ q ≡ q + p KA-PLUS-COMM

p+ 0 ≡ p KA-PLUS-ZERO
p+ p ≡ p KA-PLUS-IDEM

p; (q; r) ≡ (p; q); r KA-SEQ-ASSOC
1; p ≡ p KA-SEQ-ONE
p; 1 ≡ p KA-ONE-SEQ

p; (q + r) ≡ p; q + p; r KA-DIST-LEFT
(p+ q); r ≡ p; r + q; r KA-DIST-RIGHT

0; p ≡ 0 KA-ZERO-SEQ
p; 0 ≡ 0 KA-SEQ-ZERO

1 + p; p∗ ≡ p∗ KA-UNROLL-LEFT
1 + p∗; p ≡ p∗ KA-UNROLL-RIGHT

q + p; r ≤ r → p∗; q ≤ r KA-LFP-L
p+ q; r ≤ q → p; r∗ ≤ q KA-LFP-R

p ≤ q ⇔ p+ q = q
Boolean Algebra

a+ (b; c) ≡ (a+ b); (a+ c) BA-PLUS-DIST
a+ 1 ≡ 1 BA-PLUS-ONE

a+ ¬a ≡ 1 BA-EXCL-MID
a; b ≡ b; a BA-SEQ-COMM
a;¬a ≡ 0 BA-CONTRA
a; a ≡ a BA-SEQ-IDEM

Linear Temporal Logic
#(a; b) ≡ # a;# b LTL-LAST-DIST-SEQ

#(a+ b) ≡ # a+# b LTL-LAST-DIST-PLUS
 1 ≡ 1 LTL-WLAST-ONE

a S b ≡ b+ a;#(a S b) LTL-SINCE-UNROLL
¬(a S b) ≡ (¬b) B (¬a;¬b) LTL-NOT-SINCE

a ≤  a; b → a ≤ � b LTL-INDUCTION
� a ≤ �(start; a) LTL-FINITE

Packet Axioms
f ← v; start ≡ 0 PA-MOD-START

f ← v;# a ≡ a; f ← v PA-MOD-LAST
f ← v; f ′ = v′ ≡ f ′ = v′; f ← v, if f 6= f ′ PA-MOD-COMM

f ← v; f = v ≡ f ← v PA-MOD-FILTER
f = v; f = v′ ≡ 0, if v 6= v′ PA-CONTRA∑

v f = v ≡ 1 PA-MATCH-ALL

Useful Consequences
Finite LTL
 a ≡ start+# a WLAST-START
¬# a ≡ start+#¬a NOT-LAST
� a ≡ a+# � a EVER-UNROLL
� a ≡ a; � a ALW-UNROLL
a B b ≡ b+ a; (a B b) BACK-UNROLL
start; a ≡ start START-WLAST
start;# a ≡ 0 START-LAST
start; (a S b) ≡ start; b START-SINCE
start; (a B b) ≡ start; (a+ b) START-BACK
Temporal NetKAT
(p+ q)∗ ≡ q∗; (p; q∗)∗ KA-DENEST
p; (q; p)∗ ≡ (p; q)∗; p KA-SLIDING
p; a ≡ a; q + r → p∗; a ≡ (a+ p∗; r); q∗ TN-INVARIANT
p; a ≡ a; q + r → p; a; (p; a)∗ ≡ (a; q + r); (q + r)∗ TN-EXPAND

Figure 2: Temporal NetKAT syntax, semantics, and equational theory (extensions of NetKAT are highlighted in duckling)



Temporal connectives are predicates, so their denotations
must return either their input history as a singleton set or
the empty set. We split our definitions into two cases: the
inductive case, where the input history has length two or
more, and the initial history case of pk:[ ].

To determine whether # a holds on pk:h (where h
is a history — a non-empty list of packets), we simply
check whether a holds on h. We use set builder notation:
{pk:h | [[a]] h = {h}} to capture this idea. Since a is a pred-
icate, if a holds on h, then it returns the singleton set: {h},
and therefore # a returns the singleton set {pk:h}. Other-
wise, if a does not hold on h, it will return the empty set,
and thus the denotation of # a will result in the empty set as
well. Finally, # a simply does not hold on an initial history
pk:[ ], since there was no previous time step.

We define [[a S b]] pk:h by unrolling the temporal con-
nective: It is the union of [[b]] pk:h, which characterizes
whether b holds now, and the intersection of [[a]] pk:h with
{pk:h | [[a S b]] h = {h}}, which characterizes whether a
holds now and (a S b) holds in the previous time step. For
initial histories, (a S b) holds if and only if b holds now.
This is a crucial property for reducing Temporal NetKAT
to NetKAT: It suggests that if we can rewrite Temporal
NetKAT policies so that the temporal operators appear only
at network entry, we may eliminate them.

Because the semantics of (a S b) is such that b must be
true at some point in the past, we can define the modal oper-
ator � a as (1 S a). This ensures that a holds at some point
in the past, but is otherwise unconstrained. The other modal
operator, �, is dual to �; we define � a

def
= ¬ �¬a

def
=

¬(1 S ¬a), ensuring that a holds at every time step up to the
present.

The LTLf semantics also has the useful property that a
program can detect the entry point of a packet to the network.
The formula start (¬# 1) is true with respect to h (i.e.,
returns a non-empty set) if # 1 is false, and # 1 is false
only if the history h is initial — in any other case, 1 will
be satisfied by the prior state. This reasoning justifies our
decision to define start as ¬# 1. If a programmer wished to
log all packets entering their network (by applying the “log”
action), they need merely write start; log.

Since # is “brittle”—it fails at packet entry—it is useful
to define a weak last operator  a as ¬#(¬a) that succeeds
at packet entry but otherwise acts as # a. To see why, notice
that #(¬a) is false when a is true at the prior time step, or
the history is initial. Consequently ¬#(¬a) is true when a is
true at the prior time step or the history is initial. Similarly,
the since operator (a S b) can be “brittle” in that it requires
that b hold some time in the past. We define the back to
operator (a B b), which acts like the since operator, but
allows for the case that b never holds.

3.3 Equational Theory
Formally, a Kleene algebra (KA) forms an idempotent
semiring 〈0, 1,+, ;〉 with a closure operator ∗ called Kleene
star satisfying extra unfolding axioms (KA-UNROLL- and
KA-LFP- in Figure 2). A Kleene algebra with tests (KAT)
embeds a Boolean subalgebra 〈0, 1,+, ;,¬〉 into the KA,
with appropriate distributivity axioms [21]. Like other alge-
braic structures, the laws for KATs are typically phrased in
terms of sets of (in)equations that must hold.

KATs typically enjoy sound and complete equational
theories—powerful reasoning tools. NetKAT is a KAT with
three extra kinds of terms: tests f = v, in the Boolean al-
gebra; assignments f ← v and history markers dup in the
Kleene algebra. Accordingly some packet axioms are nec-
essary to reason about how these new terms interact [12].
NetKAT also has a sound and complete equational theory.

Our equational theory (Figure 2) is broken up into four
parts, named with corresponding prefixes: Kleene algebra
axioms (KA-), Boolean algebra axioms (BA-), past-time
LTLf axioms (LTL-), and packet axioms (PA-). The ma-
jority of these axioms are standard, and we refer the curious
reader to Anderson et al. [1] for in depth explanation. Three
axioms from NetKAT are dropped, as they no longer hold:

f = v; f ← v ≡ f = v PA-FILTER-MOD
f ← v; f ← v′ ≡ f ← v′ PA-MOD-MOD
f ← v; f ′ ← v′ ≡ f ′ ← v′; f ← v, if f 6= f ′

PA-MOD-MOD-COMM

These axioms no longer hold because f ← v does not
just update a field—it extends its history, too. Some of the
axioms are phrased as implications and using ≤. The partial
order p ≤ q is defined to be p+ q ≡ q.

Kleene algebra axioms. These axioms include the familiar
semiring laws plus the axioms for Kleene star.

Temporal logic axioms. LTL axioms are usually given in
terms of implications or as a logical inference system [4, 24,
27]. However, here we are interested in an equational presen-
tation. As part of the Temporal NetKAT equational theory,
we provide an axiomatization of LTLf that is, to the best of
our knowledge, completely new. The axioms for LTLf listed
in Figure 2 are inspired by the complete axiomatizations for
modal LTL given in Kröger and Merz [24] and the discussion
of LTLf by de Giacomo et al. [6, 7]. The use of LTLf en-
ables reasoning directly about the beginning of history and
any other equivalences that hold only in the finite domain.
This distinction plays an important role in the completeness
proof in Section 4.

The axioms LTL-LAST-DIST-SEQ and LTL-LAST-DIST-
PLUS say that # distributes over products and sums. The
LTL-WLAST-ONE axiom tells us that, if there is a next state,
then 1 will be true. The LTL-SINCE-UNROLL axiom says
we can check if (a S b) is true by checking if either b is true
now, or a is true now and a S b is true in the previous state.



The axiom LTL-NOT-SINCE describes how the negation and
S operators interact. Intuitively, it states that if (a S b) does
not hold, then either ¬b always holds, or ¬b holds until
some state where neither a nor b hold. The axiom LTL-
INDUCTION provides a way for reasoning about properties
that hold over the entire history. It says that if whenever a is
true, b is true and a also holds in the previous state when it
exists, then b must always be true.

The final LTLf axiom LTL-FINITE is a single new axiom
capturing the finiteness of packet histories. It says that if we
know a always holds, then we know eventually we will be
at the beginning of the history and a will hold. This single
new axiom allows us to reason directly about the end of
packet histories. For example, the predicates � � a, �� a,
and �(start; a) are all provably equivalent over finite traces
even though they are distinct in the infinite setting.

Packet axioms. Only two new axioms relating temporal
operators to the rest of the NetKAT are needed. The axiom
PA-MOD-LAST relates adding to the history (f ← v) with
going back in time to inspect the history (# a). The axiom
PA-MOD-START tells us that we can not be at an initial
history after we have added to history via a modification.

Consequences. Useful consequences that play a role in the
completeness proof are also given in Figure 2. Several of
these consequences tell us how to expand temporal operators
in terms of # as well as how to remove negation in front of
#. This ends up being important for LTLf , since the usual
equivalence for the duality of negation in LTL: ¬# a ≡
#¬a no longer holds. The *-UNROLL axioms show how
to unroll the � and � operators a single step. The START-
lemmas are also unique to LTLf , and provide a way to
remove temporal operators at the beginning of history.

Of particular importance are the consequences: TN-
INVARIANT and TN-EXPAND. These consequences deal
with equivalences of the form p; a ≡ a; q + r, a situation
that often arises due to the increased expressiveness of the
LTLf predicate language. For example, (f ← v); � a ≡
� a; (f ← v) + (f ← v; a). These equivalences show

how to rewrite terms where temporal predicates appear in
sequence with (p∗; a), or nested under (p; a)∗ the Kleene
star operator into terms where the temporal predicate ap-
pears only at the beginning. They are used for the most diffi-
cult cases of the completeness proof, which shows that such
rewriting can always occur and will eventually terminate.

4. Metatheory
Our main theoretical results involve soundness and com-
pleteness of the equational theory with respect to the de-
notational semantics for network-wide programs. The proof
of completeness develops a new normalization strategy for
dealing with rich predicate languages embedded in a Kleene
algebra. This strategy allows us to rewrite policies into a
form that cleanly separates the temporal logic fragment from

the Kleene algebra fragment. Importantly, our new technique
applies to other Kleene algebra domains that embed non-
standard tests.

4.1 Soundness
Temporal NetKAT is sound if the policies that are equivalent
in the theory—p ≡ q—have equivalent denotations [[p]] =
[[q]]—i.e., for all packet histories h, [[p]] h = [[q]] h. A full
proof of soundness appears in the appendix.

Theorem 1 (Soundness). If p ≡ q then [[p]] = [[q]], i.e., for
all histories h, [[p]] h = [[q]] h.

4.2 Completeness
In this section, we prove that the Temporal NetKAT equa-
tional theory is complete with respect to its denotational
semantics for network-wide programs. That is, we show
that for all policies p and q, if [[start; p]] = [[start; q]], then
start; p ≡ start; q. Network-wide programs describe the
class of networks where packets entering the network have
no prior history — e.g., previous switch locations. In prac-
tice, network-wide programs are usually the only case we
are concerned with since historical information about pack-
ets before entering the network is typically not available. The
proof of completeness proceeds in three steps:

1. We show that every policy is provably equivalent to a
policy in negation free form, where negation appears only
implicitly in the start predicate.

2. We introduce a new normal form for Temporal NetKAT
in which tests appear only at the beginning of policies and
show that every negation-free Temporal NetKAT policy
is provably equivalent to a policy in normal form.

3. Using the normal form, we show that every network-wide
policy is provably equivalent to a history-free NetKAT
policy in which no temporal operators appear. We derive
completeness for Temporal NetKAT through the com-
pleteness proof for NetKAT.

Key Proof Idea. The normal form used for NetKAT is a
sum of policies of the form α;x;π, in which a single lead-
ing test over all fields α appears at the beginning of the pol-
icy, and a single assignment for all fields π appears at the
end of the policy (with x also taking on a particular regu-
lar structure). Composition of normal forms in the NetKAT
completeness proof, particularly in the sequence and Kleene
star cases, is made easier by the fact that the leading tests
of one normal form will either cancel or be absorbed by the
trailing assignments of another. For example, consider the
following normalized policies placed in sequence (simpli-
fied for a single field):

(sw = S1;x; sw← S4); (sw = S4; y; sw← S6)

Normalizing this sequence is easy because sw ← S4; sw =
S4 is equivalent to sw ← S4 in NetKAT. This allows us to



remove the test sw = S4 from the middle of the expression
(and the goal of normalization is to eliminate tests appearing
in the middle of the normal forms). Hence we are left with
the following term, which can be re-normalized without
having to reason about the structure of x and y:

sw = S1; (x; sw← S4; y); sw← S6

Moreover, such cancellation always happens in NetKAT.
The presence of temporal operators makes normalization
more challenging since we can no longer treat x and y as
black boxes. Suppose instead we want to re-normalize two
policies in sequence with an intervening temporal operator.

(sw = S1;x; sw← S4); ( �(sw = S2); y; sw← S6)

The result will depend on x, which may be complex — po-
tentially consisting of arbitrarily nested Kleene star opera-
tors. In particular, we will need to be able to move the test
�(sw = S2) through x to re-normalize our policy.

Note that, although we use operators such as � for illus-
trative purposes here, the actual proof only deals with #, S,
B, and start. The main challenge is dealing with the com-
peting fixpoint characteristics of S and B in the backwards
direction for tests and Kleene star ∗ in the forwards direction
for policies. In fact, the fixpoint characteristic for S (and �,
�) means that tests may actually grow in size as we push
temporal operators back. For example:

sw← S4;�# a ≡ (�# a; a); sw← S4

A simple finite “unfolding” of the policy x is not enough.
Furthermore, pulling temporal operators out from under-
neath a Kleene star operator is even more difficult. These
challenges lead us to develop a notion of maximal tests, tests
that cannot be generated by any other tests during normal-
ization. Maximal tests combined with the TN- equivalences
in Figure 2 will guarantee that we can continue to make
progress towards normalizing a policy. Our main normaliza-
tion proof proceeds using a non-standard inductive hypothe-
sis based on maximal tests.

Step 1. As a first step, we translate Temporal NetKAT poli-
cies to negation free form by pushing negation symbols in-
ward until they appear only implicitly as part of the start
predicate. There is a straightforward conversion to negation
free form for each LTLf test, which is justified by the equa-
tional axioms and consequences. Figure 8 shows the syntax
and translation to negated normal form for tests. We can
make use of the packet axiom PA-MATCH-ALL to remove
negation from a primitive test on a field f = v:

¬(f = v) ≡ (
∑
v′

f = v′);¬(f = v) ≡
∑
v′ 6=v

f = v′

The other cases follow either from Boolean algebra, or from
the unfolding equivalences. The translation introduces the

Negated normal form (nnf)
a, b := start | 0 | 1 | f = v | a; b | a+ b | # a | a S b | a B b

Translation to nnf
nnf(¬0) = 1
nnf(¬1) = 0
nnf(¬(f = v)) =

∑
v′ 6=v f = v′

nnf(¬¬a) = nnf(a)
nnf(¬(a+ b)) = nnf(¬a);nnf(¬b)
nnf(¬(a; b)) = nnf(¬a) + nnf(¬b)
nnf(¬# a) = start+#nnf(¬a)
nnf(¬(a S b)) = nnf(¬b) B nnf(¬(a+ b))

Figure 3: Translation and syntax for negated normal form.

possible use of the start predicate and B operator. Because
the rest of the completeness proof works on terms with tests
in negated normal form, it thus always handles cases for
start and B in addition to the usual temporal operators.

Step 2. To normalize policies in Temporal NetKAT, we
show how to move an arbitrary LTLf test through an ar-
bitrary NetKAT program algebraically. We define a normal
form, in which all LTLf tests appear only at the beginning of
policies, and show that every expression is provably equiva-
lent to an expression in normal form.

Definition 1 (Normal forms). A policy p is a normal form if
it is a sum of policies:

∑
i ai;mi, where each ai is a test in

nnf, and each mi is either a test-free policy or 1. We say a
policy p normalizes to q if p ≡ q and q is a normal form.

Theorem 2 (Normalization). Every Temporal NetKAT pol-
icy p normalizes to some normal form q such that ` p ≡ q.

The proof relies on a helper lemma that shows normal
forms can be re-normalized when placed in sequence or
under a Kleene star. This proof is by induction on:

(i) an order on normal forms defined by maximal tests
(ii) the size of each normal form (# of AST nodes)

Step 3. The final step is to show how Temporal NetKAT
can be reduced to NetKAT. The high-level idea is that, be-
cause we are concened with network-wide completeness,
and because all temporal operators appear at the beginning
of the normal form, we can apply the START-* equational
consequences to remove temporal operators. For example,
start; ((# a); p + (b S c); q) ≡ start; (a; p + c; q), which
removes the temporal operators # and S. This process can
then be repeated inductively on a and c. The final resulting
terms will be vanilla NetKAT terms, and although there are
slight differences (e.g., our handling of the dup operator),
the same idea for the completeness proof of NetKAT now
applies. The final completeness theorem is:

Theorem 3 (Completeness). For all policies p and q, if
[[start; p]] = [[start; q]] then ` start; p ≡ start; q.



Our normalization procedure and maximal tests are a general
proof technique applicable beyond Temporal NetKAT. For
example, we have proven it can be used to deal with more
complex instructions, such as those that increment values
(like those in P4 [5]), or more general tests, such as equality
over numeric values.2

5. Compilation
In order to use Temporal NetKAT in real networks, we must
compile high-level policies into low-level forwarding rules
that can be installed on commodity network devices. As with
previous work on NetKAT, we target the OpenFlow [29]
standard for SDN, where forwarding rules consist of simple
prioritized match-action pairs on packet headers. Smolka et
al. [39] recently developed algorithms using symbolic au-
tomata for efficiently compiling arbitrary NetKAT policies,
which uses a variant of BDDs called Forwarding decision
diagrams (FDDs) to compactly represents the automaton’s
state transition and acceptance functions. The compilation
stategy will extract switch-local policies from the automa-
ton by tagging packets with the state of the automaton the
packet is in as it traverses the network.

The challenge for Temporal NetKAT lies in making de-
cisions based on a packet’s history even though such in-
formation is not present in the actual packet. The main in-
sight is that the same packet-tagging mechanism used in the
NetKAT compiler can be used to encode information about
pertinent temporal queries as well. In particular, we show
how to compile Temporal NetKAT policies into NetKAT
automata, thereby reusing existing compilation algorithms
to implement dynamic query monitoring. Our compilation
strategy builds on this previous work and extends it by:

1. Compiling LTLf formulae into symbolic automata that
track whether the query has been satisfied.

2. Replacing temporal predicates with abstract predicates
representing the result of the query, and compiling this
temporal-free policy into a symbolic automaton (thereby
reusing existing NetKAT compilation techniques [39]).

3. Using a non-standard automata intersection operation to
combine query and policy automata, while replacing ab-
stract predicates with concrete values.

4. Performing a number of new optimizations.

5.1 Symbolic NetKAT automata
Every NetKAT policy can be translated to an equivalent
NetKAT automaton that matches a corresponding set of
packet histories. Because NetKAT policies can both test
fields as well as update them, each transition in a NetKAT
automaton can be intuitively thought of as matching a pair
of packets as a base character – one for the test, and another
for the update. This idea is lifted to symbolic NetKAT au-

2 See appendix for additional discussion.

tomata [39] by letting the transition function describe sets
of pairs of packets. More formally, a symbolic NetKAT au-
tomaton is defined as:

• S – a finite set of states
• s0 ∈ S – the initial state
• ε : S → Pk→ P(Pk) – the acceptance function
• δ : S → Pk→ P(Pk× S) – the transition function

The acceptance function maps a state and a packet to a
set of output packets (i.e., the result of any packet modifica-
tions). For example, sw = X; pt = 1; (pt ← 2 + pt ← 3)
can be thought of as an acceptance function for state s of an
automaton that maps packets at switch x and port 1 to a set of
two output packets, one at port 2 and another at port 3 while
mapping all other packets to the empty set. Similarly, the
transition function maps a state and a packet to a set of new
packets, each with a new state. We write the transition func-
tion on edges and the acceptance function in square brackets
in Figure 4.

The transition and acceptance functions for NetKAT au-
tomata can be represented and manipulated efficiently using
FDDs, which can be thought of as a kind of Multi-Terminal
Binary Decision Diagram [11], where leaf nodes correspond
to sets of packet assignments, and internal nodes correspond
to tests on a particular packet field and value.

5.2 Compilation by Example
As a simple example to demonstrate compilation, suppose
we want to send packets across two switches A and B so
long as the source ip address was x at some point in the past.
We identify packets entering the network with the ingress
test in = (sw = A; pt = 1), and send them out port 2
with the assignment pt ← 2. Next we define a topology
link = (sw ← B; pt ← 1) that will move such packets
across the link from switch A to switch B afterwards and
port 1 afterwards. The basic policy for moving the packet
across switches A and B is now:

pol
def
= in; pt← 2; link

Next, we add a temporal query that drops any packets where
the source address has not been x at some point in the past,
by filtering packets at switch B with the query: �(src = x).
For those packets satisfying the query, we send the packet
out port 3 on switch B by attaching the modification pt← 3
after the query. The final policy is now:

pol′
def
= pol; �(src = x); pt← 3

Policy Automaton. The first step in our compilation pro-
cess is to extract all of the queries from the Temporal
NetKAT term, and replace each with a unique abstract
placeholder variable. In the example above, we replace
�(src = x) with variable α, resulting in (pol;α; pt ← 3).



q0

[src = x]

q1

[1]

src = x

¬src = x 1

q0 q1 q2

[α; pt← 3]

in; pt← 2 link

q(0,0)

q(0,1)

q(1,1)

q(0,2)

[src = x; pt← 3]

q(1,2)

[pt← 3]

in; src = x; pt← 2

in;¬src = x; pt← 2

src = x; link

¬src = x; link

link

q = (0, 0)

q = (0, 2) sw = A

q = (1, 2) src = x pt = 1

src = x

0pt← 3

pt← 2; q ← (0, 2) pt← 2; q ← (1, 2)

Match Action
1. q = (0, 0); sw = A; pt = 1; src = x pt← 2; q ← (1, 2)
2. q = (0, 0); sw = A; pt = 1 pt← 2; q ← (0, 2)
3. q = (0, 0) drop
4. q = (0, 2); src = x pt← 3
5. q = (0, 2) drop
6. q = (1, 2) pt← 3
7. true drop

Figure 4: Query automaton (top left), Policy automaton (middle left), Product automaton (bottom left), Policy FDD (top right),
forwarding rules (bottom right). Transition functions shown on edges. Acceptance functions in square brackets.

By treating α as abstract, we can compile the policy using
existing symbolic NetKAT compilation techniques. Figure 4
(middle left) shows a representation of the automaton for the
compiled NetKAT policy with the abstract variable α. In the
automaton, packets that match the in predicate move to state
q1 of the automaton and the packet itself will be modified to
move to port 2 of switch A. The transition from state q1 to
state q2 will match any packet, and then move the packet to
port 1 of switch B. Packets in state q2 that satisfy the query α
will move to port 3 and then be accepted by the automaton.

Query Automaton. The next step is to determine when the
abstract variable α is satisfied. We compile each query that
appears in the policy to a regular automaton that runs in
the forwards direction of time, and tells us, at each point in
time, what predicate must hold for the query to be satisfied
(square brackets in Figure 4). Algorithms for compiling an
LTLf term to an equivalent NFA have been explored by de
Giacomo et al. [7]. We use a relatively simple translation
from LTLf directly to an NFA that works fine in practice
given the relatively small size of queries in proportion to
the rest of the policy. To compile a test f = v, we create
a single state that accepts when f = v and transitions
unconditionally to itself. To compile a test of the form:
� a, we first compile the symbolic automaton for a, then

introduce a new state that “remembers” if a has ever been
satisfied. The new automaton for � a will replace each

acceptance function in the automaton for a with a transition
to the new state, which will then accept unconditionally.
The other operators plus (+), (; ), and (¬) become automata
union, intersection, and negation respectively. The case for
(a S b) is more complicated, but follows the same idea.
Using this construction, the final query automaton (after
determinization) for �(src = x) is shown in Figure 4. As
soon as a packet is observed with src = x, the query remains
in an accepting state and accepts unconditionally.

Product Automaton. Finally, we combine the query and
policy automata, resulting in a product automaton (Figure 4
bottom left) that uses information from the query automata
to determine what each abstract variable should be. The ac-
ceptance function for the product automaton is just the ac-
ceptance function for the policy automaton, where the ab-
stract placeholder variable is substituted for the acceptance
function for the current state of the query automaton. For
example, the acceptance function for state q(0,2) of the prod-
uct automaton will be α; pt ← 3 with α substituted with
the acceptance function src = x since we are in state q0
of the query automaton. Likewise, the acceptance function
for state q(1,2) will substitute 1 for α. The intuition is that
the query automaton acceptance function tells us under what
conditions the query is satisfied in any given state.

Transitions in the product graph are defined as follows:
when there is a trasition function t1 from state qx1 to qx2
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Figure 5: Compiler performance for shortest paths routing on the Topology Zoo

in the query automaton and a transition function t2 from
state qy1 to qy2 in the policy automaton, then there is a
transition function t1; t2 from state q(x1,y1) to state q(x2,y2)

in the product automaton. The resulting transition function
t1; t2 represents the conjunction of the transition functions
where any occurences of α are substituted with the concrete
value from the query automaton’s acceptance function.

From Automata to Forwarding Rules. The next step in
compilation involves going from a network-wide NetKAT
automaton to switch-local forwarding rules. This is accom-
plished by encoding the state of the automaton in a packet
field (e.g., using an MPLS tag) so that each switch can sim-
ply see what automaton state the packet is in, and use that
information to decide what forwarding action to take.

The idea is to extract a single FDD that encodes the for-
warding actions of the entire network as shown in Figure 4
(top right). This FDD is obtained by taking the union (+) of
both the transition and acceptance functions of the combined
automaton, where the state itself is encoded as a field in the
FDD. One subtle difference is that the FDD does not encode
“topology” states – i.e., states in the automaton that modify
the switch, since such modifications happen due to physi-
cal network infrastructure rather than the switch hardware
itself. For example, packets in state q(0,0) will be modifed to
transition directly to state q(0,2) or state q(1,2). We refer the
curious reader to Smolka et al. [39] for more information.

Network forwarding rules, e.g., like those of the Open-
Flow standard can be thought of as simple prioritized match
action rules on packet fields. Compilation from the FDD to
network forwarding rules is straightforward – one simply
traverses each path of the FDD, taking the conjunction of

positive tests along the path. The final forwarding rules are
shown in Figure 4 (bottom right).3

5.3 Optimizations
We use several optimizations to improve compile times and
reduce rule overhead for Temporal NetKAT policies.

State-tag reduction. Often the forwarding rules will per-
form the same actions when in most states, and different ac-
tions when in a few other states. Whenever there is a col-
lection of rules that differ only by the state they match, and
collectively they match on all states, then we are free to re-
order these rules. In particular, since forwarding rules are
priority-based, we can select the largest subset of rules with
the same forwarding action, and move them after the others.
Since there is an implicit negation in the rule priority, we can
drop the state test and compress them into a single rule. For
example, consider the following rule optimization:

Match Action
sw = A; dst = x; q = 1 pt← 2; q ← 2
sw = A; dst = x; q = 2 pt← 1
sw = A; dst = x; q = 3 pt← 1
sw = A; dst = x; q = 4 pt← 1
sw = A; dst = x; q = 5 pt← 2; q ← 4

Match Action
sw = A; dst = x; q = 1 pt← 2; q ← 2
sw = A; dst = x; q = 5 pt← 2; q ← 4
sw = A; dst = x pt← 1

If there are only 5 possible states, q1 through q5, then
the above rules can be rearranged so the largest subset with
the same action (pt ← 1 in this case) are covered with an
implicit negation. The resulting rules would be: Any packets

3 We omit rules that tag packets entering the network with the initial state



Size Time (sec) Rules
unopt opt ratio unopt opt ratio

5 .01 .01 1.0 102 52 .51
10 .02 .02 1.0 503 213 .42
15 .07 .06 .86 1354 484 .67
20 .23 .20 .87 3206 886 .28
25 .48 .40 .83 5632 1382 .25
30 1.14 1.03 .90 9008 1988 .22
35 2.52 1.33 .53 13484 2704 .20
40 12.41 2.93 .24 20811 3571 .17
45 48.66 4.51 .09 28362 4512 .16
50 245.89 6.70 .03 37513 5563 .15
55 T.O. 9.39 N/A T.O. 6724 N/A
60 T.O. 15.41 N/A T.O. 8056 N/A
65 T.O. 19.32 N/A T.O. 9442 N/A
70 T.O. 30.97 N/A T.O. 10938 N/A

Figure 6: Effect of optimizations on compilation time and
rule overhead for the DDOS monitoring query with different
sized topologies on the Topology Zoo. Timeouts after ten
minutes shown with T.O.

that are not in state 1 or 5, but which match the same switch
and destination in this case, will be caught by the final rule.
This optimization is useful for only explicitly enumerating
forwarding actions in states where the different forwarding
action is meaningful.

Fall-through elimination. We use fall-through elimina-
tion, a rule-minimization technique [1] that eliminates rules
that have no impact on forwarding behavior. For example,
rules 3 and 5 from Figure 4 are unnecessary and can be safely
removed since the default rule, which matches all packets,
will drop the packets anyway.

Disjoint query check. Because query placeholder vari-
ables are abstract it is possible to experience a blowup in
compilation time due to the inability of the BDD data struc-
ture to prune branches that can be eliminated. In practice
however, many queries are disjoint. For example, in the
DDoS sources query, each test assumed the packet entered
from a unique ingress location in the network. Our compiler
tests if queries are disjoint by checking if their intersection
is empty. When a query, with the abstract variable α, is dis-
joint from another query, represented by β, we can encode
the disjointness by replacing occurences of α with α ∧ ¬β.

Partial Minimization. Because the size of the automata
can have a large effect on both compilation time and, in par-
ticular, rule overhead, we perform partial minimization of
the automata at each step of the compilation. Rather than
performing full symbolic automata minimization, we ob-
serve that most of the unnecessary states arise from con-
tinuing to track the state of unsatisfiable queries. Our mini-
mization merges states in the intersected automaton that will
never reach an accepting state.

Query Time (sec) Rules
unopt opt ratio unopt opt ratio

No Query 12.73 9.90 .78 3363 3363 1.0
Congested 13.81 11.77 .85 23538 4299 .18
Physical Iso. 12.28 10.83 .88 6757 3379 .50
DDOS 14.97 14.14 .94 23540 6363 .27
Simple Path 10.36 10.49 1.01 10088 4213 .42
Slice Iso. 12.80 9.97 .78 3363 3363 1.0

Figure 7: Effect of optimizations on compilation time and
rule overhead per query on the Stanford campus network.

6. Evaluation
We have built a prototype compiler in OCaml for Temporal
NetKAT that compiles network-wide policies down to for-
warding rules – sequences of prioritized match-action rules.
To evaluate our compiler, we measure its performance on
several real-world examples, including the Stanford Univer-
sity network [16], and a large collection of real-world net-
works from the Topology Zoo [20]. For each network, we
compile policies using variants of each of the queries listed
in Figure 1 to monitor and collect traffic. For the DDoS
sources example, since the number of queries can be vari-
able, we fix the number of source locations from which we
monitor traffic at N=20. We measure performance in terms
of compilation time and forwarding rule overhead to deter-
mine whether temporal queries can (a) be compiled in a rea-
sonable amount of time and (b) fit into switch memory. All
experiments were run on a MacBook Pro with an 8-core, 2.4
GHz Intel Core i7 with 8GB RAM.

Topology Zoo. First, we evaluate our compiler on the
Topology Zoo [20], a collection of hundreds of real-world
network topologies. For each topology, we use a shortest
paths routing policy that routes based on the packet’s desti-
nation. Since each node in the network is associated with a
unique destination, for a network with n switches, there will
be on the order of n2 total forwarding rules without queries.

Stanford Network. Next, we evaluate our compiler on the
Stanford University network [16], a mid-sized campus net-
work consisting of 16 backbone routers with hundreds of
interfaces. The Stanford network policy is less uniform than
the Topology Zoo examples and provides a useful point of
comparison. When translated to Temporal NetKAT syntax,
the policy totals 35676 AST nodes.

Compilation Time. Compilation time for networks of
varying topology sizes in the Topology Zoo are shown in
Figure 5a. The compiler scales to policies for large topolo-
gies in tens of seconds in most cases. For all queries except
the DDOS sources query, the compiler adds very little over-
head over the case where no queries exist. The most expen-
sive query is the DDoS sources query, which not scale as
well due to the large number of queries in the policy. Fig-
ure 7 shows compilation times for the Stanford University



campus network. All queries for the campus network com-
pile in under 15 seconds in the worst case. Query overhead
in the Stanford network over the case with no queries is in
line with that of the Topology zoo as well and is never worse
than a factor of 1.5 from the case without queries.

Rule Overhead. Figure 5b shows the effect of each query
on the number of forwarding rules per switch in the Topol-
ogy Zoo. For all queries except the DDOS sources query,
only a small constant number of additional forwarding rules
are needed to implement the query. In almost all of these
cases, the rule overhead for the queries is near minimal and
roughly what a human operator could reasonably be ex-
pected to write. The DDOS query on the other hand requires
roughly 2x the number of forwarding rules. Although twice
as many rules can still reasonably fit into switch memory in
this case, this query is not optimal, and would likely benefit
further from full automata minimization.

Optimization Effectiveness. The rule compression opti-
mizations discussed in Section 5.3 are effective, greatly re-
ducing the number of rules needed to implement the pol-
icy for many examples. Figure 6 shows the effect of our
optimizations for Topology Zoo policies on varying sized
topologies with the DDOS query. These optimizations re-
sult in a 50-85% reduction in the number of forwarding
rules, and improve compilation time dramatically. Queries
that time out on a topology of size 55 easily compile with
optimizations. We also measure the effectiveness of our opti-
mizations by query rather than topology size. Figure 7 shows
the effects of our optimizations for each query on the fixed
Stanford topology. Once again, the optimizations are effec-
tive, reducing the number of forwarding rules to a fraction
of the original size.

7. Related work
A number of new programming languages for SDN have
been proposed recently including Maple [42], Flowlog [34],
Nettle [41] and Merlin [40]. Our work on Temporal NetKAT
is most closely related to NetKAT [1], one language in the
Frenetic family of languages [9, 30, 31]. These languages
do not include a notion of packet history that makes it easy
to write queries based on where packets came from or what
states they might have been in when first entering the net-
work. L [36], is a declarative language for synthesizing net-
work programs based on history. However, its notion of his-
tory is that of previous packets entering the network rather
than the history of a single packet as it traverses the network.

Narayana et al [33] instrument the network with expres-
sive Path Queries for collecting traffic statistics, monitor-
ing, and debugging the network. While the current work was
heavily inspired by Path Queries, Path Queries has no formal
semantics. The main difference in design is that Path Queries
are based on regular expressions as opposed to Temporal
Logic, and our temporal predicates may be freely mixed

with other NetKAT terms whereas Path Queries may not.
We chose temporal logic because it seems to suit our appli-
cation domain just as well as regular expressions, and yet
we were able to develop a tractable equational theory for
the extended language. We were deterred from pursuing an
extension with a regular language that includes the useful in-
tersection and negation operations, because of the apparent
difficulty in developing a corresponding equational theory.
Axiomatizations for Kleene Algebra, without tests, and with
intersection but not negation are explored in Antimirov and
Mosses [3] and Andréka et al. [2], but we do not know of a
complete axiomatization for Kleene Algebra with Tests with
intersection and negation.

The networking community has also developed a num-
ber of verification tools recently [17–19, 26]. For instance,
the NetPlumber verification tool [18] includes a regular-
expression-based specification language for describing path
properties. Many of these properties (e.g., packet waypoint-
ing) can be encoded as equivalences in Temporal NetKAT.
The NetKAT language itself has also been used for veri-
fication, where program properties are framed as problems
of program equivalence. For example, Foster et al. [10] de-
velop a decision procedure that they use to verify properties
on large, real-world networks. Temporal NetKAT retains im-
portant theoretical properties of NetKAT including its sound
and complete equational theory while also admitting more
modular specifications for verification.

Traditionally, LTL is interpreted over infinite traces, and
has been used by programmers to specify properties of non-
terminating programs. LTL over finite traces, LTLf has be-
come an object of study more recently [6, 7] due to its subtle
differences with LTL — e.g., many formulas that hold in the
finite case may no longer in the infinite case. Axiomatiza-
tions of LTL have been well-studied and are usually given
as a logical inference system [4, 24, 27], however our equa-
tional axiomatization of LTLf is, to the best of our knowl-
edge, novel. Both LTL and LTLf are traditionally endoge-
nous languages — where the universe of discourse consists
of a single, globally fixed program. In contrast, LTLf is a
first-class citizen of the language in Temporal NetKAT. It is
freely mixed with NetKAT terms to direct network traffic.

Propositional Dynamic Logic (PDL) [15] subsumes KAT
by adding modalities to programs of the form [p]φ mean-
ing, after all executions of program p, φ holds. PDL rea-
sons about programs by asking hypothetical questions about
what is true after running a program, but it is not as well
suited for reasoning about the ongoing behavior of pro-
grams. For example, it is difficult to describe properties such
as p; �(sw = X) — i.e., at some point in the execution
of program p, the packet was at switch X . Modal Kleene
Algebra [8] adds domain and codomain operators to KAT,
yielding an algebraic alternative to PDL.

Process Logic [14, 35, 37], subsumes both temporal logic
and PDL through the addition of temporal path formulas to



PDL of the form [p]χ. Process Logic answers questions of
the form: if program p runs, will formula χ hold throughout
all or some executions. However, the semantics of Process
Logic differs from that of Temporal NetKAT, as each tem-
poral formula is associated with a particular program p. This
makes it difficult to describe many Temporal NetKAT pro-
grams, since all temporal queries are embedded in the same
monolithic program, not bound by any particular scope.

Completeness proofs for variants of Kleene algebra such
as KAT [23] and NetKAT [1] generally involve defining
a suitable language model to characterize the equational
theory. Kozen and Mamouras [22] identify a general set of
conditions for constructing free language models for Kleene
algebra with additional equational premises, which is based
on string rewriting systems. The normalization proof for
Temporal NetKAT can also be viewed as a (terminating and
confluent) string rewriting system, however, it fails to meet
the sufficient conditions set forth by the authors since the
system is not well-behaved, i.e., for each rewritting rule the
term may in fact grow in size.

8. Conclusions
In this paper we introduce Temporal NetKAT, a new lan-
guage and logic for reasoning about, and programming with
history in networks. Temporal NetKAT builds on the seman-
tic foundations of NetKAT to offer an appealing mix of lin-
ear temporal logic and (network) Kleene algebra with tests,
with applications in network programming, verification, run-
time monitoring, and debugging. We present a combined
equational theory of LTLf and NetKAT and prove that the
equational theory is sound and complete with respect to a
broad class of programs called network-wide programs. We
have also implemented, optimized and evaluated a compiler
for compiling temporal NetKAT programs.
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[24] F. Kröger and S. Merz. Temporal Logic and State Systems
(Texts in Theoretical Computer Science. An EATCS Series).
Springer Publishing Company, Incorporated, 1 edition, 2008.
ISBN 3540674012, 9783540674016.

[25] N. Lopes, N. Bjorner, P. Godefroid, K. Jayaraman, and
G. Varghese. Checking beliefs in dynamic networks. In NSDI,
2015.

[26] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King. Debugging the data plane with Anteater. In
SIGCOMM, 2011.

[27] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992. ISBN 0-387-97664-7.

[28] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient
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A. Discussion
The semantics of LTL is usually such that a formula is checked with respect to all possible executions of a program. For
Temporal NetKAT, the semantics of LTLf dictate that individual histories not satisfying the formula are dropped, while those
that do satisfy the formula are not. The traditional model-checking problem for LTL can be phrased as a program equivalence
problem. To check that all paths through program p satisfy LTL predicate a, we check if start; p; a ≡ start; p – that is, that all
paths through p satisfy a. The idea of maximal tests and the normalization proof for completeness is surprisingly general. As
long as there are axioms for moving tests through Kleene algebra terms without generating new maximal tests, a similar proof
will work. See Section E for details.

B. Soundness
Temporal NetKAT is sound if the policies that are equivalent in the theory—p ≡ q—have equivalent denotations [[p]] = [[q]]—
i.e., for all packet histories h, [[p]] h = [[q]] h.

Lemma 1 (Predicates don’t change histories). For all predicates a and packet histories h, [[a]] h ⊆ {h}.

Proof. By induction on a, going by cases on whether h is an initial history or not.

(0) [[0]] h = ∅ ⊆ {h}.
(1) [[1]] h = {h}.
(f = v) [[f = v]] h = {h | h = pk: . . . ∧ pk.f = v} ⊆ {h}.
(a+ b) [[a+ b]] h = [[a]] h ∪ [[b]] h ⊆ (by the IH) {h} ∪ {h} = {h}.
(a; b)

[[a; b]] h =
⋃
h′∈[[a]] h([[b]] h′) (by the IH on b)

⊆
⋃
h′∈[[a]] h {h′}

= [[a]] h (by the IH on a)
⊆ {h}

(¬a) [[¬a]] h = {h} \ [[a]] h ⊆ {h}.
(# a) [[# a]] pk:• = ∅ ⊆ {h}. For non-initial histories, [[# a]] pk:h = {pk:h | h ∈ [[a]]h} ⊆ {pk:h}.
( � a) [[ � a]] pk:• = [[a]]pk:•, so by the IH on a. For non-initial histories, [[ � a]] pk:h = ([[a]] pk:h)∪

{
pk:h | h ∈ [[ � a]]h

}
,

which is the union of two sets that are subsets of {pk:h} (again using the IH on a).
(� a) [[� a]] pk:• = [[a]]pk:•, so by the IH on a. For non-initial histories, [[� a]] pk:h = ([[a]] pk:h) ∩ {pk:h | h ∈ [[� a]]h},

which is the intersection of two sets that are subsets of {pk:h} (again using the IH on a).

Lemma 2 (Sequence on predicates is conjunction). For all predicates a and b and packet histories h, [[a; b]] h = [[a]] h∩ [[a]] h.

Proof. To start, we know:

[[a; b]] h = ([[a]] · [[b]]) h =
⋃

h′∈[[a]] h

[[b]] h′

By Lemma 1, we know that [[a]] h ⊆ {h}. By case analysis, we can determine that
⋃
h′∈[[a]] h[[b]] h′ = [[a]] h ∩ [[b]] h. Either

h ∈ [[a]] h (and then we return [[b]] h), or h /∈ [[a]] h (and we return ∅).

Lemma 3 (Temporal connectives disappear on singleton packets). For all a and pk, the following are equal:

1. [[b]] pk:•, and
2. [[a S b]] pk:•,

Proof. By observation.

Lemma 4 (Kleisli composition is associative). F · (G ·H) = (F ·G) ·H .



Proof. Let an input h be given. We compute:

(F · (G ·H)) h =
⋃
h′∈F h(G ·H) h′

=
⋃
h′∈F h

⋃
h′′∈G h′ H h′′

=
⋃
h′′∈

⋃
h′∈F hG h′ H h′′

=
⋃
h′′∈(F ·G) hH h′′

= ((F ·G) ·H) h

Lemma 5 (Ever/Always Semantics). For ever and always, we have the following:

1. [[ � a]] pk:• = [[� a]] pk:• = [[a]] pk: • h
2. [[ � a]] pk:h = ([[a]] pk:h) ∪

{
pk:h | h ∈ [[ � a]] h

}
3. [[� a]] pk:h = ([[a]] pk:h) ∩ {pk:h | h ∈ [[� a]]} h

Proof. Let the input packet history be given. We compute:

[[ � a]] pk:• = [[1 S a]] pk:•
= [[a]] pk:•

[[� a]] pk:• = [[¬( �¬a)]] pk:•
= [[¬(1 S ¬a)]] pk:•
= {pk:•} \ [[¬a]] pk:•
= {pk:•} \ ({pk:•} \ [[a]] pk:•)
= [[a]] pk:•

[[ � a]] pk:h = [[1 S a]] pk:h
= ([[a]] pk:h ∪ ([[1]] pk:h ∩ {pk:h | h ∈ [[1 S a]] h})
= ([[a]] pk:h ∪ ({pk:h} ∩ {pk:h | h ∈ [[1 S a]] h})
= ([[a]] pk:h ∪ ({pk:h} ∩

{
pk:h | h ∈ [[ � a]] h

}
) Lemma 1

= ([[a]] pk:h ∪ ([[ � a]] h)

[[� a]] pk:h = [[¬(1 S ¬a)]] pk:h
= {pk:h} \ ([[¬a]] pk:h ∪ ([[1]] pk:h ∩ {pk:h | h ∈ [[1 S ¬a]] h})
= {pk:h} \ ([[¬a]] pk:h ∪ ({pk:h | h ∈ [[1 S ¬a]] h})
= {pk:h} \ (({pk:h} \ [[a]] pk:h) ∪ ({pk:h | h ∈ [[1 S ¬a]] h}) set theory
= ([[a]] pk:h ∩ ({pk:h} \ {pk:h | h ∈ [[1 S ¬a]] h})
= ([[a]] pk:h ∩ ({pk:h | h ∈ ({h} \ [[1 S ¬a]] h)})
= ([[a]] pk:h ∩ ({pk:h | h ∈ [[¬(1 S ¬a)]] h})
= ([[a]] pk:h ∩ ({pk:h | h ∈ [[� a]] h})

Theorem 4 (Soundness). If p ≡ q then [[p]] = [[q]], i.e., for all histories h, [[p]] h = [[q]] h.

Proof. By induction on the derivation of p ≡ q. Induction is necessary so we can use the premises of KA-LFP-L and -R and
LTL-INDUCTION. (Induction hypotheses would have been necessary if congruence rules were explicit, but here we can rely
directly on substituting like for like.) Otherwise the proof is essentially by cases.

Kleene algebra axioms

(KA-PLUS-ASSOC) We have p + (q + r) ≡ (p + q) + r and we must show [[p + (q + r)]] = [[(p + q) + r]]. Let a packet
history h be given. Immediately, by associativity of ∪.

(KA-PLUS-COMM) We have p + q ≡ q + p and we must show [[p + q]] = [[q + p]]. Let a packet history h be given.
Immediately, by commutativity of ∪.



(KA-PLUS-ZERO) We have p+ 0 ≡ p and we must show [[p+ 0]] = [[p]]. Let a packet history h be given. We compute:

[[p+ 0]] h = [[p]] h ∪ [[0]] h
= [[p]] h ∪ ∅
= [[p]] h

(KA-PLUS-IDEM) We have p+ p ≡ p and we must show [[p+ p]] = [[p]]. Let a packet history h be given. Immediately, by
the idempotence of ∪.

(KA-SEQ-ASSOC) We have p; (q; r) ≡ (p; q); r and we must show [[p; (q; r)]] = [[(p; q); r]]. Let a packet history h be given.
By Lemma 5.

(KA-SEQ-ONE) We have 1; p ≡ p and we must show [[1; p]] = [[p]]. Let a packet history h be given. We compute:

[[1; p]] h =
⋃
h′∈[[1]] h[[p]] h′

=
⋃
h′∈{h}[[p]] h

′

= [[p]] h

(KA-ONE-SEQ) We have p; 1 ≡ p and we must show [[p; 1]] = [[p]]. Let a packet history h be given. We compute:

[[1; p]] h =
⋃
h′∈[[p]] h[[1]] h′

=
⋃
h′∈[[p]] h {h′}

= [[p]] h

(KA-DIST-LEFT) We have p; (q+ r) ≡ p; q+ p; r and we must show [[p; (q+ r)]] = [[p; q+ p; r]]. Let a packet history h be
given. We compute:

[[p; (q + r)]] h =
⋃
h′∈[[p]] h[[q + r]] h′

= (
⋃
h′∈[[p]] h[[q]] h′) ∪ (

⋃
h′∈[[p]] h[[r]] h′)

= ([[p; q]] h) ∪ ([[p; r]] h)
= [[p; q + p; r]] h

(KA-DIST-RIGHT) We have (p+ q); r ≡ p; r + q; r and we must show [[(p+ q); r]] = [[p; r + q; r]]. Let a packet history h
be given. We compute:

[[(q + r); p]] h =
⋃
h′∈[[q+r]] h[[p]] h′

=
⋃
h′∈[[q]] h∪[[r]] h[[p]] h′

= (
⋃
h′∈[[q]] h[[p]] h′) ∪ (

⋃
h′∈[[r]] h[[p]] h′)

= ([[q; p]] h) ∪ ([[r; q]] h)
= [[q; p+ r; p]] h

(KA-ZERO-SEQ) We have 0; p ≡ 0 and we must show [[0; p]] = [[0]]. Let a packet history h be given. We compute:

[[0; p]] h =
⋃
h′∈[[0]] h[[p]] h′

=
⋃
h′∈∅[[p]] h

′

= ∅
= [[0]] h

(KA-SEQ-ZERO) We have p; 0 ≡ 0 and we must show [[p; 0]] = [[0]]. Let a packet history h be given. We compute:

[[p; 0]] h =
⋃
h′∈[[p]] h[[0]] h′

=
⋃
h′∈[[p]] h ∅

= ∅
= [[0]] h

(KA-UNROLL-LEFT) We have 1 + p; p∗ ≡ p∗ and we must show [[1 + p; p∗]] = [[p∗]]. Let a packet history h be given. We
compute:

[[1 + p; p∗]] h = [[1]] h ∪ ([[p; p∗]] h
= [[1]] h ∪ (([[p]] · [[p∗]]) h)
= [[1]] h ∪ (([[p]] ·

⋃
i∈N[[p]]i) h)

= [[1]] h ∪ (
⋃
i∈N[[p]]i+1 h)

= [[p]]0 h ∪
⋃
i∈N[[p]]i+1 h

=
⋃
i∈N([[p]]i h)

= [[p∗]] h



(KA-UNROLL-RIGHT) We have 1 + p∗; p ≡ p∗ and we must show [[1 + p∗; p]] = [[p∗]]. Let a packet history h be given. We
compute:

[[1 + p∗; p]] h = [[1]] h ∪ ([[p∗; p]] h)
= [[1]] h ∪ (([[p∗]] · [[p]]) h)
= [[1]] h ∪ (((

⋃
i∈N[[p]]i) · [[p]]) h)

= [[1]] h ∪ (
⋃
i∈N[[p]]i+1) h

= [[p]]0 h ∪
⋃
i∈N[[p]]i+1 h

=
⋃
i∈N([[p]]i h)

= [[p∗]] h

(KA-LFP-L) We must show that q+ p; r ≤ r =⇒ p∗; q ≤ r. Unfolding the inequivalence, we find that (q+ p; r) + r ≡ r.
By the IH, this means that [[(q+ p; r) + r]] = [[r]]—unfolding this one more level lets us see that, for all h, [[q+ p; r]] h ⊆ [[r]] h.
Doing a similar unfolding for our proof goal, we must show for all h that [[p∗; q]] h ⊆ [[r]] h. Let an h be given. We first prove,
by induction on the natural numbers, that ([[p]]i · [[q]]) h ⊆ [[r]] h.

If i = 0, then:
([[p]]i · [[q]]) h = ([[1]] · [[q]]) h

= [[q]] h
⊆ [[q]] h ∪ [[p; r]] h
= [[q + p; r]] h (by assumption)
⊆ [[r]] h

In the inductive case, we find:

([[p]]i+1 · [[q]]) h = ([[p]] · [[p]]i · [[q]]) h
⊆ ([[p]] · [[r]]) h (by the IH)
= [[p; r]] h
⊆ [[q]] h ∪ [[p; r]] h
= [[q + p; r]] h (by assumption)
⊆ [[r]] h

Now we can observe that:

[[p∗; q]] h = ([[p∗]] · [[q]]) h
= ((

⋃
i∈N[[p]]i) · [[q]]) h

=
⋃
h′∈

⋃
i∈N[[p]]

i h[[q]] h

=
⋃
i∈N([[p]]i · [[q]]) h (by the induction above)

⊆
⋃
i∈N[[r]] h

= [[r]] h

(KA-LFP-R) We must show that p+ q; r ≤ q =⇒ p; r∗ ≤ q.
Unfolding the inequivalence, we find that (p+q; r)+q ≡ q. By the IH, this means that [[(p+q; r)+q]] = [[q]]—unfolding this

one more level lets us see that, for all h, [[p+ q; r]] h ⊆ [[q]] h. Doing a similar unfolding for our proof goal, we must show for
all h that [[p; r∗]] h ⊆ [[q]] h. Let an h be given. We first prove, by induction on the natural numbers, that ([[p]] · [[r]]i) h ⊆ [[q]] h.

If i = 0, then:
([[p]] · [[r]]i) h = ([[p]] · [[1]]) h

= [[p]] h
⊆ [[p]] h ∪ [[q; r]] h
= [[p+ q; r]] h (by assumption)
⊆ [[q]] h

In the inductive case, we find:

([[p]] · [[r]]i+1) h = ([[p]] · [[r]]i · [[r]]) h
⊆ ([[q]] · [[r]]) h (by the IH)
= [[q; r]] h
⊆ [[p]] h ∪ [[q; r]] h
⊆ [[p+ q; r]] h (by assumption)
⊆ [[q]] h



As before, we can now see:

[[p; r∗]] h = ([[p]] · [[r∗]]) h
= ([[p]] · (

⋃
i∈N[[r]]i)) h

=
⋃
h′∈[[p]] h

⋃
i∈N[[r]]i h′

=
⋃
i∈N
⋃
h′∈[[p]] h[[r]]i h′

=
⋃
i∈N([[p]] · [[r]]i) h (by the induction above)

⊆
⋃
i∈N[[q]] h

= [[r]] h

Boolean algebra axioms

(BA-PLUS-DIST) We have a+ (b; c) ≡ (a+ b); (a+ c) and we must show [[a+ (b; c)]] = [[(a+ b); (a+ c)]]. Let h be given.
We compute:

[[a+ (b; c)]] h = [[a]] h ∪ [[b; c]] h
= [[a]] h ∪ ([[b]] h ∩ [[c]] h) (Lemma 2)
= ([[a]] h ∪ [[b]] h) ∩ ([[a]] h ∪ [[c]] h)
= ([[a+ b]] h) ∩ ([[a+ c]] h) (Lemma 2)
= [[(a+ b); (a+ c)]] h

(BA-PLUS-ONE) We have a + 1 ≡ 1 and we must show [[a + 1]] = [[1]]—an immediate consequence of Lemma 1, [[1]] h
being equal to {h} for all h, and the definition of ∪.

(BA-EXCL-MID) We have a+ ¬a ≡ 1 and we must show [[a+ ¬a]] = [[1]]. Let h be given. We compute:

[[a+ ¬a]] h = [[a]] h ∪ [[¬a]] h
= [[a]] h ∪ ({h} \ ([[a]] h))
= {h}
= [[1]] h

(BA-SEQ-COMM) We have a; b ≡ b; a and we must show [[a; b]] = [[b; a]]. By Lemma 2 and commutativity of ∩.
(BA-CONTRA) We have a;¬a ≡ 0 and we must show [[a;¬a]] = [[0]]. Let h be given. We compute:

[[a;¬a]] h = [[a]] h ∩ [[¬a]] h (Lemma 2)
= [[a]] h ∩ ({h} \ ([[a]] h))
= ∅
= [[0]] h

(BA-SEQ-IDEM) We have a; a ≡ a and we must show [[a; a]] = [[a]]. By Lemma 2 and idempotence of ∩.

LTLf axioms For each of these cases, we must split our analysis based on whether or not we are given a singleton history,
pk:•. Some temporal operators are ignored for singleton histories (Lemma 3), reducing most of these cases to tautologies.

(LTL-LAST-DIST-SEQ) We have #(a; b) ≡ # a;# b and we must show [[#(a; b)]] = [[# a;# b]].
Let a packet history h be given. If h is a singleton history pk:•, then we have:

[[#(a; b)]] pk:• = ∅
= ∅ ∩ ∅
= [[# a]] pk: • ∩[[# b]] pk: • (Lemma 2)
= [[# a;# b]] pk:•

Otherwise, we compute over the history pk:h:

[[#(a; b)]] pk:h = {pk:h | h ∈ [[a; b]] h} (Lemma 2)
= {pk:h | h ∈ ([[a]] h) ∩ ([[b]] h)}
= {pk:h | h ∈ ([[a]] h)} ∩ {pk:h | h ∈ ([[b]] h)}
= ([[# a]] pk:h) ∩ ([[# b]] pk:h) (Lemma 2)
= [[# a;# b]] pk:h



(LTL-LAST-DIST-PLUS) We have #(a+ b) ≡ # a+# b and we must show [[#(a+ b)]] = [[# a+# b]].
Let a packet history h be given. If h is a singleton history pk:•, then we have:

[[#(a+ b)]] pk:• = ∅
= ∅ ∪ ∅
= [[# a]] pk: • ∪[[# b]] pk:•
= [[# a+# b]] pk:•

Otherwise, we compute over the history pk:h:

[[#(a+ b)]] pk:h = {pk:h | h ∈ [[a+ b]] h}
= {pk:h | h ∈ ([[a]] h) ∪ ([[b]] h)}
= {pk:h | h ∈ ([[a]] h)} ∪ {pk:h | h ∈ ([[b]] h)}
= ([[# a]] pk:h) ∪ ([[# b]] pk:h)
= [[# a+# b]] pk:h

(LTL-WLAST-ONE) We have  1 ≡ 1 and we must show [[ 1]] = [[1]]. Let a packet history h be given. If h is a singleton
history pk:•, then we have:

[[ 1]] pk:• = [[¬#¬1]] pk:•
= {pk:•} \ [[#¬1]] pk:•
= {pk:•} \ ∅
= {pk:•}
= [[1]] pk:•

Otherwise, we compute over the history pk:h:

[[ 1]] pk:h = [[¬#¬1]] pk:h
= {pk:h} \ [[#¬1]] pk:h
= {pk:h} \ {pk:h | h ∈ [[¬1]] h}
= {pk:h | h /∈ [[¬1]] h}
= {pk:h | h /∈ {h} \ [[1]] h}
= {pk:h | h /∈ {h} \ {h}}
= {pk:h | h /∈ ∅}
= {pk:h}
= [[1]] pk:h

(LTL-SINCE-UNROLL) We have a S b ≡ b+ a;#(a S b) and we must show [[a S b]] = [[b+ a;#(a S b)]].
Let a packet history h be given. If h is a singleton history pk:•, then we have:

[[a S b]] pk:• = [[b]] pk:•
= [[b]] pk: • ∪ {}
= [[b]] pk: • ∪ ([[a]] pk: • ∩ {})
= [[b]] pk: • ∪ ([[a]] pk: • ∩ [[#(a S b)]] pk:•)
= [[b]] pk: • ∪ ([[a;#(a S b)]] pk: • (Lemma 2)
= [[b+ a;#(a S b)]] pk:•

Otherwise, we compute over the history pk:h:

[[a S b]] pk:h = [[b]] pk:h ∪ ([[a]] pk:h ∩ {pk:h | h ∈ [[a S b]] h})
= [[b]] pk:h ∪ ([[a]] pk:h ∩ [[#(a S b)]] pk:h) (Lemma 2)
= [[b]] pk:h ∪ (([[a]] · [[#(a S b)]]) pk:h)
= [[b+ a;#(a S b)]] pk:h

(LTL-NOT-SINCE) We have ¬(a S b) ≡ (¬b S ¬a;¬b) + �(¬b) and we must show [[a S b]] = [[(¬b S ¬a;¬b) + �(¬b)]].
Let a packet history h be given. If h is a singleton history pk:•, then we have:

[[¬(a S b)]] pk:• = {pk:•} \ [[b]] pk:•
= [[¬b]] pk:•
= [[¬a;¬b+ ¬b]] pk:•
= [[¬a;¬b]] pk: • ∪ [[¬b]] pk:•
= [[(¬b S ¬a;¬b)]] pk: • ∪ [[�(¬b)]] pk:•
= [[(¬b S ¬a;¬b) + �(¬b)]] pk:•



Otherwise, we compute over the history pk:h:

[[¬(a S b)]] pk:h

= {pk:h} \ [[a S b]] pk:h
= {pk:h} \ ([[b]] pk:h ∪ ([[a]] pk:h ∩ {pk:h | h ∈ [[a S b]] h}))
= {pk:h} \ ([[b]] pk:h ∪ ([[a]] pk:h ∩ {pk:h | h ∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= ({pk:h} \ [[b]] pk:h) ∩ ({pk:h} \ ([[a]] pk:h ∩ {pk:h | h ∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= [[¬b]] pk:h ∩ ({pk:h} \ ([[a]] pk:h ∩ {pk:h | h ∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h})
= [[¬b]] pk:h ∩ ([[¬a]] pk:h ∪ ({pk:h} \ {pk:h | h ∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ ({pk:h} \ {pk:h | h ∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ ({pk:h | h /∈ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ ({pk:h | h ∈ {h} \ [[¬((¬b S ¬a;¬b) + �(¬b))]] h}))
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ ({pk:h | h ∈ [[(¬b S ¬a;¬b) + �(¬b)]] h}))
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ ({pk:h | h ∈ [[(¬b S ¬a;¬b)]] h}) ∪ {pk:h | h ∈ [[�(¬b)]] h})
= [[¬a;¬b]] pk:h ∪ ([[¬b]] pk:h ∩ {pk:h | h ∈ [[(¬b S ¬a;¬b)]] h}) ∪ [[�(¬b)]] pk:h
= [[(¬b S ¬a;¬b) + �(¬b)]] pk:h

(LTL-INDUCTION) a ≤  a; b =⇒ a ≤ � b
That is, given that a +  a; b ≡  a; b. By the IH, [[a +  a; b]] = [[ a; b]]. Unfolding and applying the IH, we see that

we actually have, for all h, [[a]] h ⊆ [[ a; b]] h. We must show that [[a + � b]] = [[� b]], that is, for all h, we must show that
[[a]] h ⊆ [[� b]] h. Let a packet history h be given. We go by induction on h.

If h is a singleton history, of the form pk:•, then we are done immediately by Lemma 3, since the conclusion reduces to our
first assumption.

Otherwise, we compute over the history pk:h:

[[a]] pk:h = [[a]] pk:h (assumption)
⊆ [[ a; b]] pk:h (definition)
= [[b]] pk:h ∩ [[¬#¬a]] pk:h
= [[b]] pk:h ∩ ({pk:h} \ [[#¬a]] pk:h) ∩ [[b]] pk:h
= [[b]] pk:h ∩ ({pk:h} \ {pk:h | h ∈ [[¬a]] h})
= [[b]] pk:h ∩ ({pk:h | h /∈ [[¬a]] h})
= [[b]] pk:h ∩ ({pk:h | h /∈ {h} \ [[a]] h})
= [[b]] pk:h ∩ {pk:h | h ∈ [[a]] h} (inner IH on packet histories)
⊆ [[b]] pk:h ∩ {pk:h | h ∈ [[� b]] h} (definition)
= [[� b]] pk:h

(LTL-FINITE) We have � a ≤ �(start; a), i.e., that � a+ �(start; a) ≡ �(start; a). We must show that the denotations are
equal: [[� a+ �(start; a)]] = [[ �(start; a)]].

It suffices to show that for all histories h that [[� a]] h ⊆ [[ �(start; a)]] h, as we have done for other inequalities. We go by
induction on the length of the input history.

(Initial history pk:•) In this case, the two will actually be equal. We compute:

[[� a]] pk:• = [[a]] pk: • (Lemma 1)
= {pk:•} ∩ [[a]] pk:•
= ({pk:•} \ ∅) ∩ [[a]] pk:•
= ({pk:•} \ [[# 1]] pk:•) ∩ [[a]] pk:•
= [[¬# 1]] pk: • ∩[[a]] pk: • (Lemma 2)
= ([[¬# 1]] · [[a]]) pk:•
= [[(¬# 1); a]] pk:•
= [[start; a]] pk:•
= [[ �(start; a)]] pk:•



(Non-initial history pk:h) We compute:

[[� a]] pk:h = ([[a]] pk:h) ∩ {pk:h | h ∈ [[� a]]h} (inner IH)
⊆ ([[a]] pk:h) ∩

{
pk:h | h ∈ [[ �(start; a)]]h

}
(Lemma 1)

⊆ {pk:h} ∩
{
pk:h | h ∈ [[ �(start; a)]]h

}
=

{
pk:h | h ∈ [[ �(start; a)]]h

}
= ∅ ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= (∅ ∩ [[a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= (({pk:h} \ {pk:h | h ∈ {h}}) ∩ [[a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= (({pk:h} \ {pk:h | h ∈ [[1]] h}) ∩ [[a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= (({pk:h} \ [[# 1]] pk:h) ∩ [[a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= ([[¬# 1]] pk:h ∩ [[a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
(Lemma 2)

= (([[¬# 1]] · [[a]]) pk:h) ∪
{
pk:h | h ∈ [[ �(start; a)]]h

}
= (([[start]] · [[a]]) pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= ([[start; a]] pk:h) ∪

{
pk:h | h ∈ [[ �(start; a)]]h

}
= [[ �(start; a)]] pk:h

Packet axioms

(PA-MOD-START) We have f ← v; start ≡ 0; we must show that [[f ← v; start]] = [[0]]. Let a packet history h be given—
unlike other temporal parts of this proof, we don’t have to condition on the length of the history—just let h = pk: . . . . We
compute:

[[f ← v; start]] h = ([[f ← v]] · [[start]]) h
=

⋃
h′∈[[f←v]] h[[start]] h′

=
⋃
h′∈{pk[f :=v]:h}[[start]] h

′

=
⋃
h′∈{pk[f :=v]:h}[[start]] h

′

= [[start]] pk[f := v]:h
= [[¬# 1]] pk[f := v]:h
= {pk[f := v]:h} \ [[# 1]] pk[f := v]:h
= {pk[f := v]:h} \ {pk[f := v]:h | h ∈ [[1]] h}
= {pk[f := v]:pk:h | h /∈ [[1]] h}
= {pk[f := v]:pk:h | h /∈ {h}}
= ∅
= [[0]] h

(PA-MOD-LAST) We have f ← v;# a ≡ a; f ← v and we must show [[f ← v;# a]] = [[a; f ← v]]. Let a packet history h
be given such that h = pk: . . . . We compute:

[[f ← v;# a]] h = ([[f ← v]] ·# a) h
=

⋃
h′∈[[f←v]] h[[# a]] h

=
⋃
h′∈{pk[f :=v]:h}[[# a]] h′

= [[# a]] pk[f := v] : h
= {pk[f := v] : h | h ∈ [[a]] h}
=

⋃
h′∈[[a]] h pk[f := v] : h′

=
⋃
h′∈[[a]] h[[f ← v]] h′

= ([[a]] · [[f ← v]]) h
= [[a; f ← v]] h



(PA-MOD-FILTER-COMM) We have f ← v; f ′ = v′ ≡ f ′ = v′; f ← v and f 6= f ′ and we must show [[f ← v; f ′ =
v′]] = [[f ′ = v′; f ← v]]. Let a history h = pk: . . . be given. We compute:

[[f ← v; f ′ = v′]] h = ([[f ← v]] · [[f ′ = v′]]) h
=

⋃
h′∈[[f←v]] h[[f ′ = v′]] h′

=
⋃
h′∈{pk[f :=v]:h}[[f

′ = v′]] h′

= [[f ′ = v′]] pk[f := v]:h
= {pk[f := v]:h | pk[f := v].f ′ = v′}
= {pk[f := v]:h | pk.f ′ = v′} (by assumption)
= [[f ← v]] {h | pk.f ′ = v′}
=

⋃
h′∈{h|pk.f ′=v′}[[f ← v]] h′

=
⋃
h′∈[[f ′=v′]] h[[f ← v]] h′

= ([[f ′ = v′]] · [[f ← v]]) h
= [[f ′ = v′; f ← v]] h

(PA-MOD-FILTER) We have f ← v; f = v ≡ f ← v and we must show [[f ← v; f = v]] = [[f ← v]]. Let a history
h = pk: . . . be given. We compute:

[[f ← v; f = v]] h = ([[f ← v]] · [[f = v]]) h
=

⋃
h′∈[[f←v]] h[[f = v]] h′

= [[f = v]] pk[f := v]:h
= {pk[f := v]:h | pk[f := v].f = v}
= {pk[f := v]:h}
= [[f ← v]] h

(PA-CONTRA) We have f = v; f = v′ ≡ 0 and v 6= v′, so we must show [[f = v; f = v′]] = [[0]]. Let a history h = pk: . . .
be given. We compute:

[[f = v; f = v′]] h = [[f = v]] h ∩ [[f = v′]] h (Lemma 2)
= {h | pk.f = v} ∩ {h | pk.f = v′}
= {h | pk.f = v ∧ pk.f = v′}
= {h | v = v′}
= ∅
= [[0]] h

(PA-MATCH-ALL) We have
∑
v f = v ≡ 1 and we must show [[

∑
v f = v]] = [[1]]. Let a history h = pk: . . . be given. We

compute:
[[
∑
v f = v]] h =

⋃
v[[f = v]] h

=
⋃
v {h | pk.f = v} (by finiteness)

= {h}
= [[1]] h

C. Completeness
We prove that the Temporal NetKAT equational theory is complete with respect to its denotational semantics for network-wide
programs. That is, we show that for all policies p and q, if [[start; p]] = [[start; q]], then ` start; p ≡ start; q. The proof of
completeness for network-wide programs proceeds in 3 steps:

1. We show that every policy is provably equivalent to a policy in negation free form, where negation appears only implicitly
in the start predicate.

2. We introduce a new normal form for Temporal NetKAT in which tests appear only at the beginning of policies and show
that every negation-free Temporal NetKAT policy is provably equivalent to a policy in normal form.

3. Using the normal form, we show that every network-wide policy is provably equivalent to a history-free NetKAT policy in
which no temporal operators appear. We derive completeness for Temporal NetKAT through the completeness of NetKAT
by equating history-free policies with NetKAT policies



Negation Free Form
a, b :: = start | 0 | 1 | f = v | a; b | a+ b | # a | a S b | a B b
p, q :: = a | p; q | p+ q | p∗

Restricted Policy
m,n :: = 1 | f ← v | p; q | p+ q | p∗

Normal Form
x, y, z :: =

∑
i ai;mi

Figure 8: Notation and reduced forms for completeness proof

C.1 Step 1: Negation Free Form
As a first step, we translate Temporal NetKAT policies to negation free form by pushing negation symbols inward until they
appear only implicitly as part of the start predicate. There is a straightforward conversion to negation free form for each LTLf
test, which is justified by the equational axioms and consequences. The translation is given by:

Translation to nnf
nnf(¬0) = 1
nnf(¬1) = 0
nnf(¬(f = v)) =

∑
v′ 6=v f = v′

nnf(¬¬a) = nnf(a)
nnf(¬(a+ b)) = nnf(¬a);nnf(¬b)
nnf(¬(a; b)) = nnf(¬a) + nnf(¬b)
nnf(¬# a) = start +#nnf(¬a)
nnf(¬(a S b)) = nnf(¬b) B nnf(¬(a+ b))

We can make use of the packet axiom PA-MATCH-ALL to remove negation from a primitive test on a field f = v:

¬(f = v) ≡ (
∑
v′

f = v′);¬(f = v) ≡
∑
v′ 6=v

f = v′

The other cases follow either from Boolean algebra, or from the unfolding equivalences. The translation introduces the possible
use of the start predicate and B operator. Negation still appears implicitly in the start predicate, which is defined as ¬# 1,
but this is not an issue, as the Temporal NetKAT axioms provide a way to deal with start directly. The remainder of the
completeness proof operates on this reduced negated normal form.

C.2 Step 2: Normalization
Definition 2 (Restricted Policy). A restricted policy is a term m, that uses only operators (+), (; ), (∗), assignments f ← v,
and the identity test 1.

Definition 3 (Guarded Policy). A guarded policy is any test followed by a restricted policy (a;m).

Definition 4 (Normal forms and normalization). A policy p is a normal form if it is a sum of guarded policies
∑
i ai;mi. We

say a policy p normalizes to x if p ≡ x and x is a normal form.

Throughout the remainder of the paper, we will use metavariables a, b, c to refer to tests,m,n, l to refer to restricted policies,
and t, u, v, x, y, z to refer to normal forms. An important observation is that every test can be thought of as its own normal
form. The test a ≡ a; 1 is, in fact, a normal form for Temporal NetKAT.

Definition 5 (Sequenced tests). The sequenced tests of a test a gives the top-most tests in sequence:

seqs(a) =

{
seqs(b) ∪ seqs(c) if a is b; c
{a} otherwise

The definition of sequenced tests can be lifted to sets of tests in the straightforward way: seqs(A) =
⋃
a∈A seqs(a).



Definition 6 (Unit subterms). The unit subterms of a test a is defined to be all subterms of a, and possibly 0 or 1.

sub(0) = {0}
sub(1) = {1} ∪ sub(0)

sub(start) = {start} ∪ sub(1)
sub(f = v) = {f = v} ∪ sub(1)
sub(a+ b) = {a+ b} ∪ sub(a) ∪ sub(b)
sub(a; b) = {a; b} ∪ sub(a) ∪ sub(b)
sub(# a) = {# a} ∪ sub(a)

sub(a S b) = {a S b} ∪ sub(a) ∪ sub(b)
sub(a B b) = {a B b} ∪ sub(a) ∪ sub(b)

We lift the notion of unit subterms to a set of tests A by defining sub(A) =
⋃
a∈A sub(a)

Definition 7 (Tests of normal forms). The tests of a normal form tests(a1;m1 + · · ·+ ai;mi) is defined as {a1, . . . , ai}

Definition 8 (Maximal tests). The maximal tests of a set of tests A is defined as:

mt(A) = {b ∈ seqs(A) | ∀c 6= b ∈ seqs(A), b /∈ sub(c)}

We lift the definition of maximal tests to normal forms. The maximal tests of a normal form x is defined as mt(x) =
mt(tests(x)).

Definition 9 (Ordering normal forms). We define a partial order on normal forms. For normal forms x and y, we say:

x � y ⇐⇒ sub(mt(x)) ⊆ sub(mt(y))
x ≺ y ⇐⇒ sub(mt(x)) ⊂ sub(mt(y))

We write ≈ for the corresponding equivalence relation, i.e., x ≈ y when x � y and y � x

Lemma 6. a ∈ sub(a).

Proof. Immediate from cases on a.

Lemma 7 (Maximal tests are tests). For any set of tests A, mt(A) ⊆ seqs(A)

Proof. Follows directly from the definition of maximal tests:

mt(A) = {b ∈ seqs(A) | ∀c 6= b ∈ seqs(A), b /∈ sub(c)}
⊆ seqs(A)

Lemma 8 (All tests are in the unit subterms of maximal tests). For any set of tests A, seqs(A) ⊆ sub(mt(A)).

Proof. Suppose a ∈ seqs(A). If a ∈ mt(A), then a is certainly in sub(mt(A)) (Lemma 6).
If a /∈ mt(A), there must exist some b ∈ mt(A) such that a ∈ sub(b), so a ∈ sub(mt(b)).

Lemma 9 (Tests distribute over union). For any sets of tests A, and B, seqs(A ∪B) = seqs(A) ∪ seqs(B).

Proof.
seqs(A ∪B) = ∪c∈A∪B seqs(c)

= (∪c∈A seqs(c)) ∪ (∪c∈B seqs(c))
= seqs(A) ∪ seqs(B)

Lemma 10 (seqs is idempotent). For all tests a, seqs(a) = seqs(seqs(a)).

Proof. By induction on a.



(a = c; d)
seqs(seqs(c; d)) = seqs(seqs(c) ∪ seqs(d))

= seqs(seqs(c)) ∪ seqs(seqs(d))
= seqs(c) ∪ seqs(d) (IH)
= seqs(c; d)

(a = 0, 1, start, f = v, c+ d,# b, a S b, a B b)

seqs(seqs(a)) = seqs({a})
= {a}
= seqs(a)

The lemma can be immediately generalized to sets, showing seqs(A) = seqs(seqs(A)).

Lemma 11 (Sequence extraction). If seqs(a) = {a1, . . . , ak}, then a ≡ a1; . . . ; ak

Proof. By induction on the structure of a.

(a = b; c) Assume seqs(a) = {a1, . . . , aj}. We also know seqs(a) = seqs(b; c) = seqs(b) ∪ seqs(c) Then we know
seqs(b) and seqs(c) ⊆ {a1, . . . , aj}. Let us assume seqs(b) = {b1, . . . , bk} and seqs(c) = {c1, . . . , cl}. By the IH, we know
b ≡ b1; . . . ; bk and c ≡ c1; . . . ; cl. Finally, a ≡ b; c ≡ b1; . . . ; bk; c1; . . . ; cl. However, due to associativity, commutativity, and
idempotency, this is the same as a1; . . . ; aj .

(a = 0, 1, start, f = v,# b, a S b, a B b) seqs(a) = {a}, so a ≡ a

Lemma 12 (Maximal tests over seqs). For all sets of tests A, mt(A) = mt(seqs(A)).

Proof.
mt(A) = {b ∈ seqs(A) | ∀c 6= b ∈ seqs(A), b /∈ sub(c)}

= b ∈ seqs(seqs(A)) | ∀c 6= b ∈ seqs(seqs(A)), b /∈ sub(c)
= mt(seqs(A))

Lemma 13 (Subterms subterms are subterms). For all tests a, b, a ∈ sub(b) =⇒ sub(a) ⊆ sub(b).

Proof. By induction on the structure of b.

(b = 0) a ∈ sub(0), so a ∈ {0} so a = 0 and sub(a) = {0} ⊆ sub(b).
(b = 1) a ∈ sub(1) = {0, 1}. If a = 1, then sub(1) ⊆ sub(1). If a = 0, then sub(0) = {0} ⊆ sub(b).
(b = start) a ∈ sub(start) = {0, 1, start} ∪ sub(1). If a = start, then sub(start) ⊆ sub(start). If a = 1, then

sub(1) = {0, 1} ⊆ sub(start). If a = 0, then sub(0) = {0} ⊆ sub(start).
(b = (f = v)) This case has the same structure as the start case.
(b = # b′) a ∈ sub(# b′) = {# b′} ∪ sub(b). If a = # b′, then this case is trivial. Otherwise, we apply the IH.
(b = c+ d) a ∈ sub(c+ d) = {c+ d} ∪ sub(c) ∪ sub(d). If a ∈ sub(c) or a ∈ sub(d), we can apply the IH. If not, then it

must be that a = c+ d, and so sub(a) = sub(c+ d) = sub(c) ∪ sub(d) ⊆ sub(b).
(b = c; d, c S d, c B d) This case is the same as for b = c+ d.

Lemma 14 (Unit subterms smaller). For all tests a and b, if a ∈ sub(b), then either a = 0 or a = 1 or a = b or |a| < |b|

Proof. By induction on the structure of b.

(b = 0) a ∈ sub(0), so a ∈ {0} so a = 0.
(b = 1) a ∈ sub(1) = {0, 1}. Therefore a = 0 or a = 1.
(b = start) a ∈ sub(start) = {0, 1, start}. If a = start, then a = b. Otherwise a = 0 or a = 1.
(b = (f = v)) a ∈ sub(f = v) = {0, 1, f = v}. If a = (f = v), then a = b. Otherwise a = 0 or a = 1.
(b = # c) a ∈ sub(# c) = {# c} ∪ sub(c). If a = # c, then a = b. Otherwise, we apply the IH. Either a = 0 or a = 1 or

a = c or |a| < |c|. If a = 0 or a = 1, then we are done. Otherwise, we know |a| ≤ |c| so |a| < |# c|



(b = c+ d) a ∈ sub(c + d) = {c+ d} ∪ sub(c) ∪ sub(d). If a = c + d, then a = b and we are done. If a ∈ sub(c) or
a ∈ sub(d), we can apply the IH and follow the same proof as in the � c case.

(b = c; d, c S d, c B d) This case is the as for b = c+ d.

Definition 10. We say a normal form x is vacuous if x is the empty sum, or seqs(tests(x)) = {0}. A vacuous normal form
x ≡ 0.

Lemma 15 (Maximal tests always exist). For all non-empty sets of tests A, mt(A) 6= ∅. Subsequently, a maximal test always
exists for a non-vacuous normal form.

Proof. First, recall that mt(A) ⊆ seqs(A), so any maximal test will be in seqs(A).
If seqs(A) = {a} is a singleton set, a is a maximal test by definition. If seqs(A) = {0, 1}, then 1 is a maximal test.
Otherwise, let a be the syntactically largest test in seqs(A)—something other than 0 or 1 must exist.
To prove it is a maximal test, we must show it is not a unit subterm of any other test. Assume, by contradiction, that we have

a ∈ sub(b) for another test b. We know from Lemma 14 that either a = 0 or a = 1 or a = b or |a| < |b|. We can’t have a = 0
or a = 1 by construction. We can’t have a = b since seqs(A) is a set. And finally, we can’t have |a| < |b| since we chose the
syntactically largest test. Thus a must be a maximal test, so mt(A) 6= ∅.

Lemma 16 (Maximal tests generate all terms). For all sets of tests A, sub(mt(A)) = ∪a∈seqs(A) sub(a).

Proof. We can factor the union into those for the maximal tests and those for the rest due to Lemma 7. That is:⋃
a∈seqs(A)

sub(a) =
⋃

a∈mt(A)

sub(a) ∪
⋃

a/∈mt(A)

sub(a)

For each term a /∈ mt(A) we know that a ∈ seqs(A). Since seqs(A) ⊆ sub(mt(A)) by Lemma 8, we know that
a ∈ sub(mt(A)). By Lemma 13 we have sub(a) ⊆ sub(mt(A)). For tests a ∈ mt(A), we know that

⋃
a∈mt(A) sub(a) =

sub(mt(A)) according to the definition since at least one test will be maximal by Lemma 15. In the end, we get back
sub(mt(A)) unioned with a bunch of its subsets—that is, just sub(mt(A)).

Lemma 17 (Union distributes over unit subterms of maximal tests). For all set of tests A and B,

sub(mt(A ∪B)) = sub(mt(A)) ∪ sub(mt(B)).

Proof. By Lemma 16 we have

sub(mt(A ∪B)) =
⋃
a∈seqs(A∪B) sub(a)

=
⋃
a∈seqs(A)∪seqs(B) sub(a)

=
⋃
a∈seqs(A) sub(a) ∪

⋃
a∈seqs(B) sub(a)

We can apply Lemma 16 one more time to see that this is equal to again sub(mt(A)) ∪ sub(mt(B)).

Lemma 18 (Unit subterms of maximal tests is monotonic). For all sets of tests A and B,

A ⊆ B =⇒ sub(mt(A)) ⊆ sub(mt(B)).

Proof.
sub(mt(B)) = sub(mt(A ∪B))

= sub(mt(A)) ∪ sub(mt(B))

Lemma 19 (Normal form size). For all tests a, b, c, d and normal forms x, y, z:

1. a � a; b

2. if a ∈ tests(x), then a � x.
3. x ≈

∑
a∈tests(x) a

4. if x � x′ and y � y′, then x+ y � x′ + y′



5. if x+ y � z then x � z and y � z
6. if a � c and b � d, then a; b � c; d
7. if a � z and b � z, then a; b � z
8. if a � c and x � d, then a;x � c; d

Proof.

1.
sub(mt(a)) = sub(mt(seqs(a)))

⊆ sub(mt(seqs(a))) ∪ sub(mt(seqs(b)))
= sub(mt(seqs(a) ∪ seqs(b)))
= sub(mt(seqs(a; b))
= sub(mt(a; b))

2. Since {a} ⊆ tests(x), then a � x by Lemma 18.
3.

sub(mt(x)) = sub(mt(tests(x)))
= sub(mt({a1} ∪ · · · ∪ {an}))
= sub(mt(

⋃
a∈tests(x) a))

= sub(mt(tests(
∑
a∈tests(x) a; 1)))

= sub(mt(
∑
a∈tests(x) a))

4. Expanding definitions, we have:
sub(mt(x)) ⊆ sub(mt(x′))
sub(mt(y)) ⊆ sub(mt(y′))

and we must show:
sub(mt(x+ y)) ⊆ sub(mt(x′ + y′))

We compute:
sub(mt(x+ y)) = sub(mt(tests(x+ y)))

= sub(mt(tests(x) ∪ tests(y)))
= sub(mt(tests(x))) ∪ sub(mt(tests(y)))
= sub(mt(x)) ∪ sub(mt(y))
⊆ sub(mt(x′)) ∪ sub(mt(y′))
= sub(mt(x′ + y′))

5. We have sub(mt(x+ y)) = sub(mt(x)) ∪ sub(mt(y)). Since sub(mt(x)) ∪ sub(mt(y)) ⊆ sub(mt(z)), we know:

sub(mt(x)) ⊆ sub(mt(z))
sub(mt(y)) ⊆ sub(mt(z))

6. Expanding definitions, we have:
sub(mt(a)) ⊆ sub(mt(c))
sub(mt(b)) ⊆ sub(mt(d))

and must show:
sub(mt(a; b)) ⊆ sub(mt(c; d))

We compute:
sub(mt(a; b)) = sub(mt(seqs(a; b))) by Lemma 12

= sub(mt(seqs(a) ∪ seqs(b)))
= sub(mt(seqs(a))) ∪ sub(mt(seqs(b))) by Lemma 17
= sub(mt(a)) ∪ sub(mt(b)) by Lemma 12
⊆ sub(mt(c)) ∪ sub(mt(d))
= sub(mt(c; d)) Symmetric



7. Given: sub(mt(a)) ⊆ sub(mt(z)) and sub(mt(b)) ⊆ sub(mt(z))

sub(mt(a; b)) = sub(mt(seqs(a; b)))
= sub(mt({a} ∪ {b}))
= sub(mt(a)) ∪ sub(mt(b))
⊆ sub(mt(z)) ∪ sub(mt(z))
= sub(mt(z))

8.
sub(mt(a;x)) = sub(mt(tests(a;x)))

= sub(mt({a; b1, . . . , a; bn}))
= sub(mt({a; b1})) ∪ · · · ∪ sub(mt({a; bn}))

From 1, we know that bi � x � d and we also know that a � c. We have a; bi � c; d. From 3 and 4, we know that∑
a; bi;mi = a;x ≈

∑
a; bi � c; d.

Note: Similar equations hold for strict inequality.

Lemma 20 (Sequence split). If a ∈ mt(c), then c ≡ a; b for some b ≺ c

Proof. We know a ∈ seqs(tests(c)) = seqs(c) by definition. Assume seqs(c) = {a, c1, . . . , ck}. By Lemma 11, c ≡
a; c1; . . . ; ck. Let us refer to c1; . . . ; ck as b. We observe that seqs(b) = {c1, . . . , ck} and c ≡ a; b. It remains to show that
b ≺ c. That is: sub(mt(b)) ⊂ sub(mt(c)). By Lemma 12, we show

sub(mt(seqs(b))) ⊂ sub(mt(seqs(c)))
sub(mt({c1, . . . , ck})) ⊂ sub(mt({a, c1, . . . , ck}))
sub(mt(c1)) ∪ . . . sub(mt(ck)) ⊂ sub(a) ∪ sub(mt(c1)) ∪ . . . sub(mt(ck))

Finally, we know this holds since a is a maximal test, and thus does not appear in the unit subterms of any ci, yet a ∈ sub(a).

Lemma 21 (Maximal test strict inequality). If a ∈ mt(y) and x � y, then either a ∈ mt(x) or x ≺ y

Proof. Since x � y, we know sub(mt(x)) ⊆ sub(mt(y)). We also know that a ∈ mt(y), so a ∈ sub(mt(y)). Assume
a /∈ mt(x), then a /∈ sub(mt(x)). To see why, assume that a is the subterm of some maximal test b. Then we have
b ∈ sub(mt(x)) by Lemma 6, yet b /∈ sub(mt(y)) since a is a maximal test. This is a contradiction to x � y. Therefore,
it must be the case that a ∈ sub(mt(y)) but a /∈ sub(mt(x)) Thus sub(mt(x)) ⊂ sub(mt(y)), and x ≺ y

Lemma 22 (Sequence removal). If a ∈ mt(c), then c ≡ a; b with b ≺ c

Proof. We know a ∈ seqs(tests(c)) = seqs(c) by definition. Assume seqs(c) = {a, c1, . . . , ck}. By Lemma 11, c ≡
a; c1; . . . ; ck. Let us refer to c1; . . . ; ck as b. We observe that seqs(b) = {c1, . . . , ck} and c ≡ a; b.

It remains to show that b ≺ c. That is: sub(mt(b)) ⊂ sub(mt(c)). By Lemma 12, we show

sub(mt(seqs(b))) ⊂ sub(mt(seqs(c)))
sub(mt({c1, . . . , ck})) ⊂ sub(mt({a, c1, . . . , ck}))
sub(mt({c1})) ∪ . . . ∪ sub(mt({ck})) ⊂ sub(a) ∪ sub(mt({c1})) ∪ . . . sub(mt({ck}))

Finally, we know this holds since a is a maximal test, and thus does not appear in the unit subterms of any ci.

Lemma 23 (NF Split). If a ∈ mt(x), then there exists y and z such that x ≡ a; y + z and y, z ≺ x.

Proof. Suppose x =
∑k
i=0 ci;mi.

We know a ∈ mt(x), so by definition,

a ∈ seqs(tests(x))

= seqs(tests(
∑k
i=0 ci;mi))

= seqs({c1, . . . , ck}))
=

⋃k
i=0 seqs(ci)



Therefore, we know a ∈ seqs(ci) for one or more i. Let us divide x as
∑j
i=0 ci;mi +

∑k
i=j+1 ci;mi, where a is in seqs of

c1, . . . , cj and a is not in seqs of cj+1, . . . , ck. By Lemma 19, we know ci � x. Also, a must be a maximal test of c, otherwise
it would not have been a maximal test of x. By Lemma 22, we know ci ≡ a; bi with bi ≺ ci for i = 1, . . . , j. Thus bi ≺ ci � x.
We will choose our y to be

∑
bi;mi. By Lemma 19, y ≈

∑
bi ≺

∑
ci � x. By the same reasoning, for ci where a /∈ sub(ci)

since a is a maximal test, By Lemma 19 and Lemma 21, ci ≺ x for i = j + 1, . . . , k. We choose our z =
∑k
i=j+1 ci;mi. By

Lemma 19, we have z =
∑k
i=j+1 ci;mi ≈

∑
cj ≺ x. Finally, we know that

x =
∑j
i=0 ci;mi +

∑k
i=j+1 ci;mi

=
∑j
i=0 a; bi;mi +

∑k
i=j+1 ci;mi

= a; (
∑j
i=0 bi;mi) +

∑k
i=j+1 ci;mi

= a; y + z

Lemma 24 (Sequence Decomposition).

1. If x � z and y � z and for all m, m; y normalizes to some y′ with y′ � y, then x; y normalizes to some z′ with z′ � z.
2. If, for all m and all a � x, m; a normalizes to some y with y � a, then m;x normalizes to some y′ with y′ � x.

Proof.

1. We have x; y = (
∑
i ai;mi); y (by the definition of normal form, Definition 4), which we can rewrite as

∑
i ai; (mi; y).

By assumption, we can normalize each mi; y to yi with yi � y � z. This gives us
∑
i ai; yi. We know that∑

i

ai; yi =
∑
i

ai; (
∑
j

bj ;mj) =
∑
i

∑
j

(ai; bj);mj

which is a normal form.
By Lemma 19, ai � x � z and bi � yi � y � z, so ai; bi � z.
Therefore, ∑

i

∑
j

(ai; bi);mi ≈
∑
i

∑
j

(ai; bi) � z

2. We have m;x = m; (
∑
i ai;ni) (by the definition of normal form, Definition 4), which we can rewrite as

∑
i(m; ai);ni.

By Lemma 19, ai � x. We have by assumption that each m; ai normalizes to yi with yi � ai, so we can again rewrite
m;x as

∑
i yi;ni, which will be our y′. It remains to show that y′ � x. Since yi � ai � x, by Lemma 19 and Lemma 7,

y′ =
∑
i yi;wi ≈

∑
i yi � x.

Lemma 25 (Normalization of sequence and star). For all x and m:

1. m;x normalizes to some y with y � x
2. x∗ normalizes to some y with y � x

Proof. The proof is by induction on lexicographical order of:

(i) the order defined on maximal terms of x (≺)
(ii) the structural size of x (number of AST nodes)
(iii) the structural size of m (number of AST nodes, for 1)

(Part 1) First, for the basis, we will check if x is vacuous. If so, we know x ≡ 0. andm;x is trivially normalizable to the empty sum.
Using pushback decomposition (Lemma 24), it suffices to show that we can normalize any test. That is,m; a is normalizable
as y with y � a. While we use the measure described above, we go by cases on m and a.
(m, 0) : Trivially normalized to the empty sum

(m, 1) : Normalizes to 1;m



(m, (a; b)) : We can reorder m; (a; b) ≡ (m; a); b. By Lemma 19, we know a � a; b and b � b; a ≡ a; b. Now we can
apply the IH (decreasing in (ii), since a is structurally smaller than a; b) to normalize m; a to y, with y � a.
We can apply Lemma 24 to (m; a); b ≡ y; b (using IH (ii) since b is structurally smaller than a; b) and y � a � a; b and
b � a; b. Thus y; b normalizes to z with z � a; b.
(m, (a+ b)) : We have m; (a + b) = m; a + m; b. By the IH on m; a and m; b, we can normalize to z � a and z′ � b,

respectively. (We can apply the IH because we decrease in (ii) since a and b are structurally smaller than a+b.) We conclude
by Lemma 19 that z + z′ � a+ b.
(f ← v, start) : (f ← v); start ≡ 0 as an axiom, which is trivialy normalized to the empty sum.

(f ← v, f ′ = v′) : If f 6= f ′, then we have (f ← v; f ′ = v′) ≡ (f ′ = v′; f ← v). Clearly (f ′ = v′) � (f ′ = v′).
Otherwise, we have f = f ′. In this case, we check if v = v′. If so, then (f ← v; f = v) ≡ (f ← v). where 1 � (f = v)
by the normal definition. Otherwise, we have (f ← v; f = v′) ≡ 0, which trivially normalizes to the empty normal form
with y � (f = v) by the normal definition.
(f ← v;# a) : (f ← v);# a ≡ a; (f ← v), which is normalized (since a ≺ # a).

(f ← v, (a S b)) : We have:

(f ← v); (a S b) ≡ (f ← v); (b+ a;#(a S b))
≡ (f ← v); b+ (f ← v); a;#(a S b)
≡ (f ← v); b+ (f ← v);#(a S b); a
≡ (f ← v); b+ (a S b); (f ← v); a

We know that a ≺ (a S b) and b ≺ (a S b), so can we apply IH (using measure (i)) on (f ← v); a and on (f ← v); b,
yielding a term a normalized term x + (a S b); y for some x and y such that x � b ≺ (a S b) and y � a ≺ (a S b). By
Lemma 19, x+ (a S b); y � (a S b), and we are done.
(f ← v, (a B b)) : We have:

(f ← v); (a B b) ≡ (f ← v); (b+ a; (a B b))
≡ (f ← v); b+ (f ← v); a; (a B b)
≡ (f ← v); b+ (f ← v); (a B b); a
≡ (f ← v); b+ (f ← v); (start +#(a B b)); a
≡ (f ← v); b+ (f ← v);#(a B b); a
≡ (f ← v); b+ (a B b); (f ← v); a

The argument is symmetric to the S case.
((m+ n), a) : We have (m + n); a = m; a + n; b. By the IH on m; a and n; a, we can normalize to z � a and z′ � a,

respectively. (We can apply the IH because we decrease in (ii)) We conclude by Lemma 19 that the normal form z+z′ � a.
((m;n), a) : We can reorder (m;n); a ≡ m; (n; a). Now we can apply the IH (decreasing in (ii)) to normalize n; a to y,

with y � a. We can apply the IH again to m; y (decreasing in (ii) on m) to normalize to y′ with y′ � y.
(m∗, a) : a must be a test—(f = v) or a S b or a B b or # b—because the a; b and a+ b cases were already handled. This

means that a ∈ mt(a).
We consider the IH on m; a—noting that m is structurally smaller than m∗ (measure (iii)). We can normalize m; a to some
y with y � a. By Lemma 21, we know that either a ∈ mt(y) or y ≺ a.

Case 1 (y ≺ a): We have
m∗; a ≡ a+m∗;m; a

≡ a+m∗; y

We can apply the IH to normalizem∗; y to some y′ using measure (i), and y′ � y � x ≺ a and, by Lemma 19, (a+y′) � a.

Case 2 (a ∈ mt(y)): Since a ∈ mt(x), we can apply Lemma 23 to see that there exist t and u such that:

m; a ≡ y ≡ a; t+ u

where t and u ≺ y � a. By TN-INVARIANT:

m∗; a ≡ (a+m∗; t);u∗

≡ a;u∗ +m∗; t;u∗



Because t and u are both smaller than a, which is smaller than x according to (�), we can normalize u∗ to u′ by IH
(decreasing on (i)) with u′ � u, yielding the term a;u′ +m∗; t;u′. We have u′ ≺ y � a and t ≺ y � a and by IH (1), we
can apply Lemma 24 to find that t;u′ normalizes to u′′, with u′′ ≺ a. We now have the term a;u′ +m∗;u′′ Finally, we can
apply the IH for (1) on m∗;u′′, since u′′ ≺ a. We can normalize m∗;u′′ to some u′′′ where u′′′ � u′′ ≺ a. This allow us to
produce our final normal form:

a;u′ + u′′′

It remains to see that this term is small enough. Since u′ ≺ a, Lemma 19 gives us a;u′ � a. By Lemma 19 we finally have
(a;u′ + u′′′) � a.

(Part 2) For the basis, we will first check if x is vacuous. If so, we know x ≡ 0. and x∗ ≡ 0∗ ≡ 1 which is trivially normalized.
Otherwise, we know there exists a maximal test a — i.e., a ∈ mt(x). By Lemma 23, we can rewrite x as a; y + z such that
y and z ≺ x. We break our argument into two parts: either z is vacuous, or not.
(z is vacuous) : We have x∗ ≡ (a; y + 0)∗ ≡ (a; y)∗. We know y ≺ x and a � x. We can apply IH (1) on y; a (a � x and

measure (ii) decreases because a is structurally smaller than x). Since y ≺ x and a � x (and all m; a are normalizable to z
with z � a � x by IH (ii)), we can apply Lemma 24 to normalize y; a to some y′ such that y′ � x. We have y′ � x and
a ∈ mt(x). By Lemma 21, we know that either a ∈ mt(y′) or y′ ≺ a � x

Case 1 (a ∈ mt(y′)): By Lemma 23, y′ = a; t+ u with t and u ≺ y′ � x. Therefore, t+ u ≺ x (Lemma 19).
From TN-EXPANSION, if y; a ≡ a; t+ u, then y; a; (y; a)∗ ≡ (a; t+ u)(t+ u)∗. We calculate:

(a; y)∗ ≡ 1 + a; y + a; y; a; y; (a; y)∗

≡ 1 + a; y + a; y; a; (y; a)∗; y
≡ 1 + a; y + a; [y; a; (y; a)∗]; y
≡ 1 + a; y + a; [(a; t+ u); (t+ u)∗]; y
≡ 1 + a; y + a; (t+ u); (t+ u)∗; y
≡ 1 + a; (t+ u)∗; y

We know that y, t, and u are all structurally smaller than the x we started with, so we can normalize (t+ u)∗ to y′ with IH
(2), since t+ u ≺ x (measure (i)). Now we have 1 + a; y′; y. Since y′ and y ≺ x, Lemma 24 shows that y′; y normalizes to
y′′, with y′′ ≺ x. This gives us our final normal form:

1 + a; y′′.

By Lemma 19, we know (1 + a; y′′) � x, since 1 � x and a � x and y′′ ≺ x.

Case 2 (y′ ≺ x): We can compute:
(a; y)∗ ≡ 1 + a; y; (a; y)∗

≡ 1 + a; (y; a)∗; y
≡ 1 + a; y′; y

We can then normalize this term as in the other case. Since y′ and y ≺ x, Lemma 24 shows that y; y′ normalizes to y′′, with
y′′ ≺ x. This gives us our final normal form:

1 + a; y′′.

By Lemma 19, we know (1 + a; y′′) � x, since 1 � x and a � x and y′′ ≺ x.

(z is not vacuous) : We have

x∗ ≡ (a; y + z)∗

≡ z∗; (a; y; z∗)∗

We know that z ≺ x and y ≺ x, so we can apply IH (2) to normalize z to some z′ � z ≺ x. We can then rewrite our term
to z′; (a; y; z′)∗.
By Lemma 24 with the IH, we can normalize y; z′ to z′′ ≺ x, giving us the term z′; (a; z′′)∗.
We can proceed as in the previous case to normalize (a; z′′)∗ to z′′′ ≺ x, giving us the final normal form z′; z′′′.
Since z′ ≺ x, and z′′′ ≺ x, again by Lemma 24 can see that z′; z′′′ ≺ x after normalizing



Theorem 5 (Normalization). Every policy p normalizes to some normal form x.

Proof. First, convert p to reduced normal form, where ¬ doesn’t appear and all tests and assignments are complete. We go by
induction on the size of this reduced p, but our cases are on its structure. We use Lemma 25 for sequence and Kleene star.

(p = 0) 0 normalizes to the empty sum.
(p = a) any other test is already a normal form.
(p = (f ← v)) f ← v normalizes to 1; (f ← v).
(p = p1 + p2) Normalize pi by the IH to ri =

∑
ai; vi. We normalize p to r1 + r2.

(p = q; r) By the IH, we can normalize each of q and r

q; r ≡ (
∑
i ai;mi); (

∑
j bj ;nj)

≡
∑
i,j ai; (mi; bij);nij

Applying Lemma 25, we find
∑
ij ai;xij ;nij . We can normalize each xij ;nij with Lemmas 24 and 25 and then distribute the

test on the front.
(p = q∗) After normalizing q to x, we can normalize x∗ by Lemma 25.

C.3 Step 3: Network-wide Completeness
Now that we have proven Theorem 5, it is relatively straighforward to prove completeness for network-wide policies, which
take the form start; p. Completeness for network-wide policies says: if two policies are equivalent on singleton histories (i.e.,
a single packet entering the network), then we can prove they are equivalent.

Lemma 26 (Network-wide Reduction). For any test a, there is a history-free NetKAT test b (i.e., contains no temporal
operators) such that start; a ≡ start; b.

Proof. by induction on the structure of a

(0,1,f = v) this is trivially true
(start) start; start ≡ start; 1

(c+ d) By the IH, we know start; c ≡ start; c′ and start; d ≡ start; d′, which are normal NetKAT tests. Thus, start; (c + d) ≡
start; c+ start; d ≡ start; c′ + start; d′ ≡ start; (c′ + d′) where c′ + d′ is also a normal NetKAT test.

(c; d) By the IH, we know start; c ≡ start; c′ and start; d ≡ start; d′, which are normal NetKAT tests. Using associativity and
commutativity, we obtain start; c; d ≡ start; c′; d ≡ start; d; c′ ≡ start; d′; c′ ≡ start; (c′; d′) where c′; d′ is also a normal
NetKAT test.

(# c) start;# c ≡ 0 ≡ start; 0

(c S d) start; (c S d) ≡ start; d we proceed by induction on d
(c B d) Since we know that start; (c B d) ≡ start; (c + d) ≡ start; c + start; d, we proceed by induction on c and d separately,

resulting in: start; c′ + start; d′ ≡ start; (c′ + d′)

Definition 11. We write h1 ·h2 to concatenate h1 and h2. We lift concatenation to sets of histories writing {h1, . . . , hi} ·h for
{h1 · h, . . . , hi · h}. Concatenation distributes over set union, and difference.

Lemma 27 (NetKAT History Blind). For any history-free NetKAT policy p, and for all histories h1 and h2, [[p]] h1 · h2 =
([[p]] h1) · h2

Proof. By induction on p

(0) [[0]] h1 · h2 = {} = {} · h = ([[0]] h1) · h2
(1) [[1]] h1 · h2 = {h1 · h2} = {h1} · h2 = ([[1]] h1) · h2



(f = v) Let us write h1 as pk:h′1.
if pk.f = v, then [[f = v]] h1 · h2 = [[f = v]] pk:(h′1 · h2) = {h1 · h2} and ([[f = v]] h1) · h2 = ([[f = v]]pk:h′1) · h2 =
{h1} · h2 = {h1 · h2}
Otherwise, if pk.f 6= v, then [[f = v]] h1 · h2 = [[f = v]]pk:(h′1 · h2) = {} and ([[f = v]] h1) · h2 = ([[f = v]] pk:h′1) · h2 =
{} · h2 = {}

(¬b)
[[¬b]] h1 · h2

= {h1 · h2} \ [[b]] h1 · h2
= apply IH
= {h1 · h2} \ ([[b]] h1) · h2
= ({h1} \ [[b]] h1) · h2
= ([[¬b]] h1) · h2

(f ← v)
[[f ← v]] h1 · h2

= [[f ← v]] (pk:h′1 · h2)
= {pk[f : = v]:h1 · h2}
= {pk[f : = v]:h1} · h2
= ([[f ← v]] pk:h′1) · h2
= ([[f ← v]] h1) · h2

(p+ q)
[[p+ q]] h1 · h2

= [[p]] h1 · h2 ∪ [[q]] h1 · h2
= apply IH
= ([[p]] h1) · h2 ∪ ([[q]] h1) · h2
= ([[p]] h1 ∪ [[q]] h1) · h2
= ([[p+ q]] h1) · h

(p; q)
[[p; q]] h1 · h2

=
⋃
h′∈[[p]]h1·h2

[[q]] h′ apply IH
=

⋃
h′∈([[p]]h1)·h2

[[q]] h′ h′ = h′′ · h2 where h′′ ∈ [[p]]h1
=

⋃
h′′·h2∈([[p]]h1)·h2

[[q]] h′′ · h2
=

⋃
h′′∈[[p]]h1

[[q]] h′′ · h2 apply IH
=

⋃
h′′∈[[p]]h1

([[q]] h′′) · h2
= (

⋃
h′′∈[[p]]h1

[[q]] h′′) · h2
= ([[p; q]] h1) · h2

(p∗)
[[p∗]] h1 · h2

= (
⋃
i∈N[[p]]i h1 · h2)

apply IH
= (

⋃
i∈N([[p]]i h1) · h2)

= (
⋃
i∈N[[p]]i h1) · h2

= ([[p∗]] h1) · h2

Lemma 28 (Start Equivalence). For history-free NetKAT policies p and q, [[start; p]] = [[start; q]] =⇒ [[p]] = [[q]]

Proof. Assume that [[p]] h = [[q]] hwhere h = pk:h′. Since h = (pk:•)·h′, by Lemma 27, we have ([[p]] pk:•)·h′ = ([[q]] pk:•)·h′
If we can show [[p]] pk:• = [[q]] pk:• for all packets, then we are done. If our history is a single packet, h = pk:•, then
[[start; p]] h = [[p]] pk:• and [[start; q]] h = [[q]] pk:•. Therefore we know [[p]] pk:• = [[q]] pk:• for all packets.



C.4 History-free Completeness
The proof for completeness of history-free policies follows the same structure as the proof of completeness for NetKAT. We
refer the reader to the original NetKAT completeness proof for background. The main difference is the handling of dup. Our
language model is slightly different.

First we define a reduced form similar to NetKAT, where all tests are complete tests. We use α to refer to complete tests, and
we have α = f1 = v1; . . . ; fi = vi for all fields in a fixed order. However, assignments stay as single assignments f ← v due to
their packet copying semantics. We refer to assignments as π, a similar notation used in NetKAT, even though assignments here
are only over a single field. The translation to reduced form is simple. Each test b is replaced by

∑
α≤b α. It is easy to observe

that
∑
α ≡ 1 follows from repeated application of the

∑
v f = v Temporal NetKAT axiom. Similarly, α;α′ ≡ 0 if α 6= α′

follows from the boolean algebra axioms and PA-CONTRA The key difference in the proof is that we replace the coalesce (�)
operator in the language model with a new (�) operator.

We define:
R(p) ⊆ (Atom + Π)∗

R(π) = {π}
R(p+ q) = R(p) ∪R(q)

R(α) = {α}
R(p; q) = {xy | x ∈ R(p), y ∈ R(q)}
R(p∗) =

⋃
n≥0R(pn)

G(p) ⊆ I = Atom; Π∗

G(π) = {α;π | α ∈ Atom}
G(p+ q) = G(p) ∪G(q)

G(α) = {α}
G(p; q) = G(p)�G(q)
G(p∗) =

⋃
n≥0G(pn)

where p0 = 1 and pn+1 = p; pn

1
def
=

∑
α α

The “join-irreducible” strings in this case are strings of the form α;π1; . . . ;πn. We refer to join-irreducible strings as x
and y, where x, y = α or α; p, and where p = π1; . . . ;πn. We refer to the process of moving a test back through a policy as
p� α. In the case of history-free NetKAT though, we will only be dealing with complete tests α. In particular either π;α ≡ 0,
or π;α ≡ (

∑
α′≤f=v α

′);π. We know G(
∑
α′≤f=v α

′;πn) =
⋃
α′≤f=v {α′;πn}. Let (π1; . . . ;πn ← α) denote the set of

resulting join-irreducible terms from repeatedly moving tests α backwards (i.e., through each πi). Assume that πi = (fi = vi)
a The result will be

⋃
α≤(f1=v1;...;fi=vi);α;π1; . . . ;πn. In other words, all α that do not drop due to some assignment fi ← vi.

These are equivalent due to the Temporal NetKAT packet axioms for interactions with packet assignment and modification.
We can then define the � operator as follows:

α� β; q = {α; q | α;β ≡ α}

α; p� β; q = {α; r; q | γ; r ∈ (p← β), α; γ ≡ α}

Next we lift � to sets of strings:
A�B =

⋃
{p� q | p ∈ A, q ∈ B} ⊆ I

The key observation is that when x� y = A, we have
∑
a∈A a ≡ x; y.

The � operator is associative on strings and sets, and distributes over union
The rest of the proof follows the NetKAT completeness proof almost verbatim.
Now we can adapt Lemmas 1–3 from the NetKAT technical report:

Lemma 29. For all reduced policies p, we have
[[p]] =

⋃
x∈G(p)

[[x]].

Proof. By induction on p



(α) ⋃
x∈G(α)[[x]] =

⋃
x∈{α}[[x]]

= [[α]]

(π) ⋃
x∈G(π)[[x]] h =

⋃
x∈{α;π|α∈Atom}[[x]]

=
⋃
α∈Atom[[α;π]]

= [[
∑
α∈Atom α;π]]

= [[π]]

(p+ q) ⋃
x∈G(p+q)[[x]] =

⋃
x∈G(p)∪G(q)[[x]]

=
⋃
x∈G(p)[[x]] ∪

⋃
x∈G(q)[[x]]

= [[p]] ∪ [[q]]
= [[p+ q]]

(p; q) ⋃
x∈G(p;q)[[x]] =

⋃
x∈G(p)�G(q)[[x]]

=
⋃
r∈G(p)

⋃
s∈G(q)

⋃
x∈r�s[[x]]

=
⋃
r∈G(p)

⋃
s∈G(q)[[

∑
x∈r�s x]]

=
⋃
r∈G(p)

⋃
s∈G(q)[[r; s]]

=
⋃
r∈G(p)

⋃
s∈G(q)[[r]] · [[s]]

= (
⋃
r∈G(p)[[r]]) · (

⋃
s∈G(p)[[s]])

= [[p]] · [[q]]
= [[p; q]]

(p∗) ⋃
x∈G(p∗)[[x]] =

⋃
x∈

⋃
nG(pn)[[x]]

=
⋃
n≥0

⋃
x∈G(pn)[[x]]

=
⋃
n≥0[[pn]]

= [[p∗]]

Lemma 30. If x, y ∈ I then [[x]] = [[y]] iff x = y.

Proof. If x = α;π0; . . . ;πn, then xmatches any history where the first packet matches α. For such a history, call it h, we know
[[x]] h = h′ where h′ consists of an additional n packets, each matching a particular αi corresponding to the previous α and the
current πi. The only string in I that could produce this particular h′ is x. If any of the πi were different, then so too would be
αi. Therefore, x is uniquely determined by [[x]].

Lemma 31. For all reduced Temporal NetKAT policies p and q, we have [[p]] = [[q]] iff G(p) = G(q).

Proof.
[[p]] = [[q]] =⇒

⋃
x∈G(p)[[x]] =

⋃
y∈G(q)[[y]]

=⇒ ∀h,
⋃
x∈G(p)[[x]] h ⊆

⋃
y∈G(q)[[y]] h

=⇒ ∀h,∀x ∈ G(p), [[x]] h ⊆
⋃
y∈G(q)[[y]] h

=⇒ ∀h,∀x ∈ G(p),∃y ∈ G(q), [[x]] h ⊆ [[y]] h
=⇒ ∀x ∈ G(p),∃y ∈ G(q), x = y
=⇒ G(p) ⊆ G(q)

and similarly for the other direction.

Lemma 32. Every policy p is normalizable, where a normal form is a sum of tests α, or α;x where R(x) ⊆ Π∗



Proof. We will make use of the fact that we have already normalized Temporal NetKAT policies to the form
∑
i ai;mi

It is easy to preserve this form when going to the reduced form for history-free NetKAT since every test ai is simply replaced
by a sum of complete tests: ∑

i

(
∑
j

αj);mi ≡
∑
i

∑
j

αj ;mi

For the instances where mi = 1, we simply remove mi. It is easy to see that for the remaining mi, we have R(mi) ⊆ Π∗,
and we are in a normal form.

Lemma 33.
G(p) =

⋃
x∈R(p)

G(x)

Proof. By strucutral induction on p

(π) ⋃
x∈R(π)G(x) =

⋃
x∈{π}G(x)

= G(π)

(α) same as case for π.
(p+ q) ⋃

x∈R(p+q)G(x) =
⋃
x∈R(p)∪R(q)G(x)

=
⋃
x∈R(p)G(x) ∪

⋃
x∈R(q)G(x)

= G(p) ∪G(q)
= G(p+ q)

(p; q) ⋃
z∈R(p;q)G(z) =

⋃
x∈R(p)

⋃
y∈R(q)G(x; y)

=
⋃
x∈R(p)

⋃
y∈R(q)G(x)�G(q)

= (
⋃
x∈R(p))G(x)� (

⋃
y∈R(q)G(y))

= G(p)�G(q)
= G(p+ q)

(p∗) ⋃
x∈R(p∗)G(x) =

⋃
x∈

⋃
n≥0 R(pn)G(x)

=
⋃
n≥0

⋃
x∈R(pn)G(x)

=
⋃
n≥0G(pn)

= G(p∗)

Lemma 34. If R(p) ⊆ I then R(p) = G(p).

Proof. Suppose R(p) ⊆ I . Since G(x) = {x} for x ∈ I , then

G(p) =
⋃

x∈R(p)

G(x) =
⋃

x∈R(p)

{x} = R(p)

Lemma 35 (History-free completeness). For history-free policies p and q, if [[p]] = [[q]], then ` p ≡ q.

Proof. The reasoning here follows the same reasoning given for the NetKAT completeness proof since we have proven the
same Lemmas.



C.5 Network-wide Completeness
Theorem 6 (Completeness). For all Temporal NetKAT policies p and q, if [[start; p]] = [[start; q]] then `TN start; p ≡ start; q

Proof. First we normalize p and q to normal forms p̂ and q̂. Since p̂ has the form
∑
i ai;mi, we know ` start; p̂ ≡

start; (
∑
i ai;mi) and ` start; p̂ ≡

∑
i start; ai;mi. By Lemma 26, we can replace each ai with bi that are history-free,

so ` start; p ≡
∑
i start; bi;mi and ` start; p ≡ start; (

∑
i bi;mi) ≡ start; p′ where p′ is a simple NetKAT term that

contains no temporal operators. Similarly, we have ` start; q ≡ start; q′ where q′ is history-free. From Soundness, we know
[[start; p′]] = [[start; q′]]. By Lemma 28, we know [[p′]] = [[q′]]. Finally, from completeness for history-free NetKAT, Lemma 35
we obtain ` p′ ≡ q′, and thus ` start; p′ ≡ start; q′

D. Equational Consequences
D.1 Distributivity
Consequence 1.

 (a; b) ≡  a; b

Proof.
 (a; b) ≡ ¬#(¬(a; b))

≡ ¬#(¬a+ ¬b)
≡ ¬(#(¬a) +#(¬b))
≡ ¬#(¬a);¬#(¬b)
≡  a; b

Consequence 2.
 (a+ b) ≡  a+ b

Proof.
 (a+ b) ≡ ¬#(¬(a+ b))

≡ ¬#(¬a;¬b)
≡ ¬(#(¬a);#(¬b))
≡ ¬#(¬a) + ¬#(¬b)
≡  a+ b

Consequence 3.
�(a; b) ≡ � a;� b

Proof. We show two implications using ≤ to derive the equality
(LTR) We want to show �(a; b) ≤ � a;� b.

We can show �(a; b) ≤ � a and �(a; b) ≤ � b separately.

Case � a
�(a; b) ≤ � a

�(a; b) ≤  (a; b); a

�(a; b) + (a; b); a ≡  (a; b); a
a; b; ( �(a; b)) + (a; b); a ≡  (a; b); a
a; b; ( (a; b; �(a; b))) + (a; b); a ≡  (a; b); a
a; b; ( (a; b; );  �(a; b)) + (a; b); a ≡  (a; b); a
( (a; b; ); a); b;  �(a; b) + (a; b); a ≡  (a; b); a
( (a; b; ); a); (b;  �(a; b) + 1) ≡  (a; b); a
 (a; b; ); a ≡  (a; b); a

Case � b Symmetric proof



(RTL) We can to show � a;� b ≤ �(a; b)

� a;� b ≤ �(a; b)

� a;� b ≤  (� a;� b); (a; b)

� a;� b+ (� a;� b); (a; b) ≡  (� a;� b); (a; b)
(a; � a); (b; � b) + (� a;� b); (a; b) ≡  (� a;� b); (a; b)
( � a; � b); (a; b) + (� a;� b); (a; b) ≡  (� a;� b); (a; b)
 (� a;� b); (a; b) + (� a;� b); (a; b) ≡  (� a;� b); (a; b)
 (� a;� b); (a; b) ≡  (� a;� b); (a; b)

Consequence 4.
�(a+ b) ≡ � a+ � b

Proof.
�(a+ b) ≡ ¬�(¬(a+ b))

≡ ¬�(¬a;¬b)
≡ ¬(�(¬a);�(¬b))
≡ ¬(¬ � a;¬ � b
≡ � a+ � b

D.2 Unfolding
Consequence 5.

 a ≡ start +# a

Proof.
 a ≡ ¬#¬a

≡ ¬#¬a+ 0
≡ ¬#¬a+# 0
≡ ¬#¬a+#(a;¬a)
≡ ¬#¬a+# a;#¬a
≡ (¬#¬a); (¬# a+# a) +# a;#¬a
≡ (¬#¬a);¬# a+ (¬#¬a);# a+# a;#¬a
≡ (¬#¬a);¬# a+# a; (¬#¬a+#¬a)
≡ (¬#¬a);¬# a+# a
≡ ¬(#¬a+# a) +# a
≡ ¬(#(¬a+ a)) +# a
≡ ¬(# 1) +# a
≡ start +# a

Consequence 6.
# a ≡ ¬start;# a

Proof.
# a ≡ #(1; a)

≡ # 1;# a
≡ ¬¬# 1;# a
≡ ¬start;# a

Consequence 7.
� a ≡ a+# � a



Proof.

� a ≡ ¬�(¬a)
≡ ¬(¬a; �(¬a))
≡ a+ ¬ �(¬a)
≡ a+#(¬�(¬a))
≡ a+# � a

Consequence 8.
¬# a ≡ start +#(¬a)

Proof.
¬# a ≡  (¬a)

≡ start +#(¬a) Consequence 5

Consequence 9.
� a ≡ a+# � a

Proof.

� a ≡ (1 S a)
≡ a+ 1;#(1 S a)
≡ a+#(1 S a)
≡ a+#( � a)

Consequence 10.
� a ≡ a; � a

Proof.
� a ≡ ¬ �¬a

≡ ¬(¬a+# �¬a)
≡ a;¬# �¬a
≡ a; ¬ �¬a
≡ a; � a

Consequence 11.
a B b ≡ b+ a; (a B b)

Proof.
a B b ≡ (a S b) + � a

≡ b+ a;#(a S b) + � a
≡ b+ a;#(a S b) + a; � a
≡ b+ a; (#(a S b) + � a)
≡ b+ a; (#(a S b) + start +#� a)
≡ b+ a; (#((a S b) + � a) + start)
≡ b+ a; (#(a B b) + start)
≡ b+ a; (a B b)



D.3 Absorption
Consequence 12.

start a ≡ start

Proof.
start a ≡ start;¬#(¬a)

≡ (¬# 1);¬#(¬a)
≡ ¬(# 1 +#(¬a))
≡ ¬(#(1 + ¬a))
≡ ¬(# 1)
≡ start

Consequence 13.
start# a ≡ 0

Proof.
start# a ≡ start; (¬start;# a)

≡ 0

Consequence 14.
start � a ≡ start; a

Proof.
start � a ≡ start; (a+# � a)

≡ start; a+ start;# � a)
≡ start; a+ 0
≡ start; a

Consequence 15.
start� a ≡ start; a

Proof.
start� a ≡ start; (a; � a)

≡ start; a; � a
≡ a; start; � a
≡ a; start
≡ start; a

Consequence 16.
start(a S b) ≡ start; b

Proof.
start(a S b) ≡ start; (b+ a;#(a S b))

≡ start; b+ start; a;#(a S b))
≡ start; b+ start;#(a S b)); a
≡ start; b+ 0
≡ start; b

Consequence 17.
start(a B b) ≡ start; (a+ b)



Proof.
start(a B b) ≡ start; (a S b+ � a)

≡ start; b+ start; a
≡ start; (a+ b)

Consequence 18.
# a ≤  a

Proof.
# a+ a ≡ # a+ ¬#¬a

≡ # a+ start+# a
≡ # a+ start
≡  a

Consequence 19.
� a ≤  a

Proof.
� a+ a ≡ a; � a+ a

≡ a; (a; � a) + a
≡ a; a;  � a+ a
≡ (a;  � a+ 1); a
≡  a

Consequence 20.
� a ≤ � a

Proof. since � a ≤  a, then � a ≤  a; a. It follows from the induction axiom that � a ≤ � a

D.4 Temporal NetKAT
Consequence 21 (TN-INVARIANT).

p; a ≡ a;x+ y =⇒ p∗; a ≡ (a+ p∗; y);x∗

Proof. We show two implications using ≤ to derive the equality.

(LTR) We want to show p∗; a ≤ (a+ p∗; y);x∗.
We know that q + pr ≤ r =⇒ p∗q ≤ r by the induction axiom KA-LFP-L, so we can instantiate it with p as p and q as a

and r as (a+ p∗; y);x∗. We find:

a+ p; (a+ p∗; y);x∗ ≤ (a+ p∗; y);x∗

a+ p; a;x∗ + p; p∗; y;x∗ ≤ (a+ p∗; y);x∗

a+ p; a;x∗ + p; p∗; y;x∗ + (a+ p∗; y);x∗ = (a+ p∗; y);x∗

a+ p; a;x∗ + p; p∗; y;x∗ + a;x∗ + p∗; y;x∗ = (a+ p∗; y);x∗

(a+ a;x∗ + p; a;x∗) + (p; p∗; y;x∗ + p∗; y;x∗) = (a+ p∗; y);x∗

(a;x∗ + p; a;x∗) + (p; p∗; y;x∗ + p∗; y;x∗) = (a+ p∗; y);x∗

(1 + p); a;x∗ + (1 + p); p∗; y;x∗ = (a+ p∗; y);x∗

a;x∗ + p∗; y;x∗ = (a+ p∗; y);x∗

(a+ p∗; y);x∗ = (a+ p∗; y);x∗



(RTL) We can to show (a + p∗; y);x∗ ≤ p∗; a We can apply the other induction axiom (KA-LFP-R), q + r; p ≤ r =⇒
q; p∗ ≤ r, with p = x and q = (a+ p∗; y) and r = p∗; a. We find:

(a+ p∗; y) + (p∗; a);x ≤ p∗; a
a+ p∗; y + p∗; a;x+ p∗; a = p∗; a

a+ p∗; (a;x+ y + a) = p∗; a
a+ p∗; (p; a+ a) = p∗; a

a+ p∗; (a; (p+ 1)) = p∗; a
a+ p∗; a = p∗; a

p∗; a = p∗; a

Consequence 22 (TN-EXPANSION).

p; a ≡ a;x+ y =⇒ p; a; (p; a)∗ ≡ (a;x+ y); (x+ y)∗

Proof. First we observe that p; a; (p; a)∗ is equivalent to (p; a)∗; p; a (apply KA-SLIDING twice). We show two implications
using ≤ to derive the equality.

(LTR) We want to show (p; a)∗; p; a ≤ (a;x+ y); (x+ y)∗.
We know that q+ pr ≤ r =⇒ p∗q ≤ r by the induction axiom KA-LFP-L, so we can instantiate it with p and q as p; a and

r as (a;x+ y); (x+ y)∗. We find:

p; a+ p; a; (a;x+ y); (x+ y)∗ ≤ (a;x+ y); (x+ y)∗

p; a+ (p; a;x+ p; a; y); (x+ y)∗ ≤ (a;x+ y); (x+ y)∗

(a;x+ y) + ((a;x+ y);x+ (a;x+ y); y); (x+ y)∗ ≤ (a;x+ y); (x+ y)∗

(a;x+ y) + (a;x+ y); (x+ y); (x+ y)∗ ≤ (a;x+ y); (x+ y)∗

(a;x+ y); (1 + (x+ y); (x+ y)∗) ≤ (a;x+ y); (x+ y)∗

(a;x+ y); (x+ y)∗ ≤ (a;x+ y); (x+ y)∗

(RTL) We can to show (a;x + y); (x + y)∗ ≤ p; a; (p; a)∗ We can apply the other induction axiom (KA-LFP-R),
q + r; p ≤ r =⇒ q; p∗ ≤ r, with p = x+ y and q = a;x+ y and r = p; a(p; a)∗. We find:

(a;x+ y) + p; a; (p; a)∗; (x+ y) ≤ (p; a)∗; p; a
p; a+ p; a; (p; a)∗; (x+ y) ≤ (p; a)∗; p; a
p; a+ p; a; (p; a)∗; (x+ y) ≤ p; a+ (p; a)∗; p; a; p; a
p; a+ p; a; (p; a)∗; (x+ y) ≤ p; a+ (p; a)∗; p; a; (a;x+ y)
p; a+ p; a; (p; a)∗; (x+ y) ≤ p; a+ (p; a)∗; (a;x+ y); (x+ y)
p; a+ p; a; (p; a)∗; (x+ y) ≤ p; a+ (p; a)∗; (p; a); (x+ y)

E. Extensions
Increment As a simple example, suppose we wanted to add an increment operator to KAT of the form inc x as well as tests
over natural numbers of the form x = n. We could add two axioms of the form:

• inc x; (x = Z) ≡ 0

• inc x; (x = S n) ≡ (x = n); inc x

Maximal tests in this case include the largest valued test for each variable. Normalizing KAT terms with increment would
involve moving these tests through KA policies with increment by decrementing n along the way. For example we would
normalize (inc x)∗;x = S (S Z) as

(x = S (S Z)) + (x = S Z); inc x) + (x = Z; inc x; inc x)
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