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Safety through Types

e An architecture for safe mobile code;:

— Download code and typing annotations from untrusted
code producer

— Verify untrusted code using trusted type checker

— Link verified code into extensible system & run with-
out error

e Security hinges on an understanding of programming lan-
guage structure

— We must be able to reason precisely about what pro-
grams do.

— We must be able to define the “good” and “bad”
behaviors.

— We must be able to identify and rule out (mechani-
cally) those programs that might exhibit “bad” be-
haviors.

e Typed Assembly Language (TAL) is the language technol-
ogy we will use to accomplish the goals.
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What Is TAL?

e In theory:

— An idealized RISC-style assembly language and for-
mal operational semantics for a simple abstract ma-
chine

— A formal type system (collection of type systems)
that captures properties of processor register state,
stack and memory

— Rigorous proofs demonstrate that TAL enforces im-
portant safety guarantees in assembly language pro-
grams

e In practice [20, 11]:

— A type checker for almost all of the Intel Pentium
IA32 architecture

— Tools for assembly, disassembly, and linking of TAL
binaries (a pair of machine code segment and types
segment)

— A prototype compiler for a safe imperative language
(Popcorn)

e These notes concentrate on the development of the theory
of TAL and type-directed compilation. This presentation
streamlines the formal work from past papers.



Example Assembly Language Program

High-level code:

fact(n,a) =
if (n < 0) then
a
else

fact(n—1,axn)

Assembly language code:

% r1 holds n, r, holds a, r3; holds return address
% which expects the result in 71

fact: blery, L2 % if n < 0 goto L2
mul 79, 7o, 7y % a:=a X n
subry,ry, 1 % n:=n—1
jmp fact % goto fact

L2: mov 1y, Ty % result := a

jmp 731 % jump to return address



TAL-0

Syntax of a simple RISC-like assembly language.
e Registers: r € {r1,r2,73,...}
e Labels: L € Identifier
e Integers: n € [—2F71.2F1)
e Blocks: B ::= jmpwv | i; B
o Instrs: ¢ := aopry,rs,v | bopr,v | movr, v
e Operands: v :=71|n| L
e Arithmetic Ops: aop ::= add | sub |mul | ---

e Branch Ops: bop ::=beq | bgt | ---



TAIL-0 Abstract Machine

e Model evaluation as a transition function mapping ma-
chine states to machine states: > —— X

e Machine: ¥ = (H, R, B)

e H is a partial map from labels to basic blocks B.

e R maps registers to values (ints n or labels L). Notation:
n

L

v ifR={...,r—uwv,...}

EEE:
SRS
|l

e B is a basic block (corresponding to the current program
counter.)



Operational Semantics
(H, R,movry,v; B) — (H, R[rq := R(v)], B)

(H,R,addry,r,,v; B) — (H, R[rq := n|, B)
where n = R(v) + R(rs

(H, R, jmpv) — (H, R, B)
where R(v) = L and H(L) = B

(H, R,beqr,v; B) — (H, R, B)
where R(r) # 0

(H, R,beqr,v; B) > (H, R, B
where R(r) =0, R(v) =L, and H(L) = B’

The other instructions (sub, bgt, etc.) follow a similar pattern.
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Error Conditions

e The abstract machine is stuck if there is no transition from
the current state to some next state.

e The stuck states define the “bad” things that may happen.

e Our type system will ensure that the machine never gets
stuck.

e Example stuck states:

— (H, R,addry,rs,v; B) and 75 or v aren’t ints
— (H, R, jmpv) and v isn’t a label, or
— (H, R,beqr,v:B) and r isn’t an int or v isn’t a label

e To distinguish between integers and labels, we require a
type system.



11
Types

Basic types:

o Tu=int| [ —>{}

o ' :={ry:m,r9:70,...}
Code types:

e Code labels have type {ri:11,7m2:72,...} = { }.

e The order that register names appear in a code type is
irrelevant

e To jump to code with this type, register r; must contain
a value of type 7y, register ro must contain ...

e Intuitively, code labels are functions that take a record of
arguments

e The function never returns — the code block always ends
with a jump to another label



Example Program with Types

% r1 holds n, r9 holds a, r3; holds return address
% which expects the result in 7y

fact:  {rynt,roint, ry:{riint} > {}} = { }

blery, L2 % if n < 0 goto L2
mul 75, 79, T % a:=aXxXn
subry,ry, 1 % n:=n—1

jmp fact % goto fact

L2: {rozint,ra;:{rizint} > { }} = { }
mov ri, Ty % result := a
jmp 731 % jump to return address
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Mis-typed Program

fact:

L2:

{riant, rsp:{ryintt - {}} = { }

ble 7“1,L2

mul 79,79, 71 % ERROR! ry doesn’t have a type
movry,rs

jmp L1 % ERROR! no such label

{7‘2:int, rglz{rlzint} — { }} — { }
movrsy, o
jmp 31 % ERROR! r3; is not a label
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Type Checking Basics

e We need to keep track of:

— the types of the registers at each point in the code
(type-states)

— the types of the labels on the code
e Heap Types: ¥ will map labels to label types.

e Register Types: I' will map registers to types.



Typing Operands

e integer literals are ints:
U:I'Fn:int
e lookup register types in I':
U:TFr:T(r)
e lookup label types in W:

U:T'HL:W(L)

15
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Subtyping

e Our program will never crash if the register file contains
more values than necessary to satisty some typing precon-
dition

e In other words, a register file type with more components
is a subtype of a register file containing fewer components.

{rymy, . oricvTisn, e < {reTm, . ris1i Tl )

e Notice the similarity to record subtyping: a record with
more fields is a subtype of a record with fewer fields.

e On the other hand, label type subtyping works in the op-
posite direction. A label that only requires r; and ry to
contain integers may be used as a label that requires rq,
ro and r3 to contain integers.

e Label types, like ordinary function types, obey contravari-
ant subtyping rules in their argument types:

I"<T
TS {J< = ()

e Subtyping is also reflexive and transitive

e A subsumption rule allows a value to be used at a super-
type:

\If;rl_’UITl ’7'1§’7'2
U:I'Fov:n
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Typing Instructions

e The judgment for instructions looks like:
A Fl — F2

e I'; describes the registers on input to the instruction (a
typing precondition)

e ['s describes the registers on output (a typing postcondi-
tion)

e VU is invariant. The types of heap objects will not change
as the program executes (at least for now,...).



Typing Instructions

e Arithmetic operations:

U:I'Frgant U;I'Fo:int

U Eaoprg,rs,v: = [ry ;== int]

e (Conditional branches:

U:T'kErint U;I'Fov:T—{}
UEobpr,v:I'=>T

e Data movement:

U:I'Fo:r
Ukmovr,v: I — Dlrg := 7]

18
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Basic Block Typing

e All basic blocks end in the jump instruction:

U I'Fo:I'—={}
Uk jmpov:T'—{}

Since a jmp never returns/falls through to the following
instruction, we may choose the return context arbitrarily.
For simplicity, we choose {} and make that the return
context for all blocks.

e Instruction sequences:

\Pl—i:F1—>F2 \DFBFQ%{}
VFiB:Th—{}

e Subtyping is an admissible rule for basic blocks:

Lemma: Admissibility of Basic Block Subtyping If
UVEB:Ty—>{}and 'y <Tsthen VF B:T'; —{}.

Proof: By induction on the typing derivation for basic
blocks and instructions.
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Machine Typing
e Heap typing:

Dom(H) =Dom(V¥) VL € Dom(H).V+ H(L): V(L)
=H:W

e Register file typing:

vr € Dom(I').U; {} - R(r) : T'(r)
vER:T

e Machine typing:

~H:U U+R:T UFB:T—{}
- (H,R, B)
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Type Safety

We have designed the type system so that it satisfies the follow-
ing property:

e Theorem: Type Safety. If - ¥ and X ——* ¥/ then X
is not stuck.

Proof by induction on the length of the instruction sequence,
following Wright and Felleisen [26] and Harper [7].

e (Preservation) Each step in evaluation preserves typing.

e (Progress) If a state is well-typed then it is not stuck.
Corollaries:

e All jumps are to valid labels (control-flow safety)

e All arithmetic is done with integers (not labels)
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Proof: Canonical Forms

Before proving Progress and Preservation, we must be able to
characterize the shape and properties of a value based upon its

type.

Lemma: Canonical Forms. If HF H : ¥V and UV - R : T" and
U:I'- v : 7 then

e 7 = int implies R(v) = n.

o 7= {rym,...,ru:Tn} — { } implies R(v) = L.
Moreover, H(L) = Band Y + B : {ri:my, ...t} — { }

Proof: By induction on the value typing derivation. [Exercise:
fill in the details.]
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Proof: Progress

Lemma: Progress. If - >; then there exists a Y5 such that
21 — 22.

Proof: By cases on the form of the code block in ;.

Example case: 3, = (H, R, jmpv). We are given the derivation:

FH:U UFR:T Uk jmpv:T—{}
- (H, R, jmpv)

By inspection of the typing rules for blocks, the third premise
above must be a derivation that ends in the jump rule:

v:I'Fov: T
UtEjmpv: T —{}

By Canonical Forms, R(v) = L and L € Dom(H). Therefore, the
operational rule for jumps applies and X7 is not stuck:
(H, R, jmpv) — (H,R,H(L))



24
Proof: Preservation

Lemma: Preservation. If - }; and >; —— Y5 then F .
Proof: By cases on the form of ;.

Example case: 3, = (H, R, jmpv). We are given the derivation:

FH:U UFR:T Uk jmpv:T—{)
- (H, R, jmpv)

and the operational rule must be:

where R(v) = L and H(L) = B

Hence, we must prove that - (H, R, B). As in the proof of
Progress, we may deduce that the third premise of the typing
derivation ends in an application of the jump rule:

U:T'Fo:T—{}
Ut jmpv: ' —{}

Therefore, by Canonical Forms, we know

UVEB:T—={}

and hence

FH:V YVFR:T' vVFB:I'—>{}
- (H, R, B)
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Proof Summary

e The Type Safety theorem is relatively straightforward to
prove using Canonical Forms, Progress and Preservation
lemmas.

e Proofs almost always reveal flaws in initial design and
clearly specify the properties that the language enforces.

e As we scale the programming language up, these proof
techniques are remarkably robust. However, the proofs
quickly become very detailed and tedious.

e Open research problem: How can we automate genera-
tion of these proofs? Some initial results from Schiirmann
and Pfenning [17, 14].
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Scaling It up

The simple abstract machine and type system can be scaled up
in many directions:

e more primitive types and options (e.g., floats, jal, complex
instruction set operations, etc.) [20]

e a control stack for procedures [12]
e more polymorphism [13]
e a module system, link checker and dynamic linker [5]

e memory-allocated values (e.g., tuples and arrays) and ex-
plicit memory management [24, 19, 25, 23]

e objects for object-oriented programming [4]
e types for concurrency control

e dependent types for expressing more complex access con-
trol and security properties|[22, 27]

e intentional type analysis [3, 2]

Over the next few lectures we will work through many of these
topics.
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TAL-1: Polymorphism

e Changes to types:

— Add type variables to types: «

x Type variables are treated abstractly
x Allow code reuse
x As we’ll see they come in handy elsewhere...

— Label types can be polymorphic:

Vo, B.A{r ca,re : Byrz: {ri: B,recat—{ }}—{}

x Describes a function that swaps the values in reg-
isters r; and ro, for values of any two types.

* Register r3 contains the return address which ex-
pects the values to be swapped.

e Changes to operands:

— To jump to polymorphic functions, we explicitly in-
stantiate type variables, calling for a new form of
operand: v[r]

— We write v[r,...,7,] for v[m]---[m].
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Example Polymorphism

swap: VYa,BAr1ia,re: Byrsy i {ri: Byreiat—=>{}}}—={}
mov 73, T h{ri:a,ra: B3 {ri:B,re:at—{},r3:a}
mov7ry, 7o
movry,Ts

Jmp r3;

swap_ints: {ry :int,ro 1int,r3; : {ry sint,re tintt — { }} —{ }
jmp swaplint, int]

swap_int_and_label: {ry :int,ro : {rs :int} - {}} —>{}
mov r3q, L
jmp swaplint, {ry : int} — { }]

L: {7"1:{TQ:int}—>{},r2:int}—>{}
Jmp 7
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Callee-Saves Registers

e A common register-allocation strategy:

— When calling a function, save the contents of some
registers (caller-saves registers) onto the stack. When
the function returns, restore the contents of these reg-
isters from the stack.

— Allow the callee to save (and restore) the contents of
other designated registers (callee-saves registers).

— If the callee does not use all registers, the cost of

saving and restoring is not incurred.

e Correctness criterion: the callee must return to the caller
with the same values in the callee-saves registers
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Callee-saves Registers Example

callee: Ya.{ry :int,r5 : a,r31 : {ry rint,rs:at > { }} = {}

MoV 74, T's % save register r;
mov rs, 7 % use register r; for other work
addry,ry, 75
mov I's, T4 % restore register rj
Jmp 731
caller: movrs, 255 % will need 75 callee returns
IIIOV’I"1,5
mov r3q, L

jmp callee[int] % calleelint] :
ho Ariint,rsint,rsy c {ry cint,rs cintt — { }}

L: {ry vint,r5 int} —{ }
mul7"3,7'1,7"5
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Callee-saves Registers Bug

callee: Ya.{ry :int,r5 : a,r31 : {ry rint,rs:at > { }} = {}
movry,Ts
mov rs, 7
addry,ry, 75
jmp 31 % ERROR! 75 :int

caller: mov rs, 255
mov 7y, 5}
mov sy, L
jmp calleelint]

L: {ri :int,rs int} - { }
mu17"3,7°1,7‘5

e We can actually prove formally that callee preserves the
values of its callee-saves registers. This fact is a property
of callee’s polymorphic type! (See Reynolds [15] and Crary

[11)

e Moral: polymorphism can be used for more than just code
reuse. It can force a procedure to "behave well” in some
circumstances.
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Operational Semantics

e In order to prove our Type Preservation result, we must
make a couple of minor changes in our operational seman-
tics.

— Heaps H now map labels to type-labeled blocks:
H(L)=Vay,...,a,.I'—{ }.B

— Type variables aq,...,a, appear free both in I' and
B

— Control-flow operations substitute arguments types
for type variables:

(H,R, jmpv[1y,...,Ta]) — (H, R, Blmi/ay,...,Tn/ay))
where R(v) = L and H(L) =Vay,...,a,.I' > { }.B

(H,R,beqr,v[T1,...,Ta]; B) — (H, R, B'[11 /01, ..., Tn/])
where R(r) =0, R(v) = L, and H(L) =Vay,...,a, ' - { }.B
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Polymorphic Typing

e Since types may now contain variables, we must ensure
they only contain properly declared variables. The fol-
lowing judgment states that a type is well-formed (ie: it
makes sense):

FreeVars(t) C A
AFT

where A = aq,...,q,

e We also modify the operand and instruction typing judg-
ments to account for the type variables in scope:

U A:T'Fv:r

\D,AFZF1_>F2
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Polymorphic Typing

e We have a typing rule for our new sort of operand

VAT Fo:Vag,ag,...,0,. 1" —={} Ak
U AT Folr] s (VYag, ..., a, I — { P[7/a4]

e We change heap typing slightly in order to introduce the
bound type variables:

VL € Dom(H).V;aq,...,ap, - B: T —={}
H(L)=Vay,...,a,.I'B (for all L)
\II(L):\V/O{h...,Ozn.—){}

FH:U
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Type Safety

e The type safety proof follows the same Progress and Preser-
vation formula as before.

e We need one central addition to the proof: The Substitu-
tion Lemma.

If ¥;aq,...,a, W B: T = {} and F 7; for ¢ = 1..n then
U;- -+ Bln/ag,...,m/ay] :Ulm/aq, ..., /an] —{}

e Fixercise: Prove the Substitution Lemma and Preservation
for TAL-1.
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The Run-time Stack

e Almost every compiler uses a stack
— A consecutive sequence memory addresses with one
end designated the top
— Values are stored on the stack and later retrieved

— The compiler can grow the stack to store more values
and later shrink the stack, explicitly deallocating the
topmost values.

e Uses:

— To store temporary values/result of intermediate com-
putations when we run out of registers

— To store the return address and local variables of re-
cursive functions before a recursive function call.
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TAIL-2: Add a stack

e Machine states:
- M = (H,R,S,B)
e Stacks are modelled as a list of values:
— Su=nil|v:: S
e New instructions:
— ¢ :=sallocn | sfreen | sldry,n | sstrg,n
e Frror conditions:

— If we free too much or read/write locations too deep
in the stack, the machine will get stuck
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Remarks

e The stack operations have a 1-to-1 correspondence with
RISC instructions.

e A designated register sp points to the top of the stack.
— salloc corresponds to subtracting n from a stack-
pointer register (e.g. sub sp, sp,n)

— sfree corresponds to adding n to the stack pointer
(e.g. add sp, sp,n)

— sst corresponds to writing a value into offset n from
the stack pointer (e.g. st sp(n),r)

— s1d corresponds to reading a value from offset n rel-
ative to the stack pointer (e.g. 1dr, sp(n))

e CISC-like instructions (e.g. push/pop)can be synthesized.

— pushv = sallocl;ssto,1

— popr = sldr,1;sfreel
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Simple Stack-Based Program

e A recursive version of the factorial function:

factrec(n) =

if n <0 then

e

else

nxfactrec (n — 1)

factrec: %, r; holds argument n, rs; holds return address
% which expects the result in 71

L1:

RA:

bgtry, L1
mov rq, 1
Jmp 31

salloc?2
sstrs, 1
sstry, 2
subry,ry, 1
mov rsq, RA
jmp factrec

% result in 7
sldrsy, 2
Sld’l“gl,l
mu17“1,7'1,7“2

Jmp 31

/.

T

/.
/.
T
T
T
T

n >0, goto L1
n <0, return 1

allocate space for frame
save return address

save n
n.=n-—1
return address = RA

do recursive call, result in 1

restore n into 79
restore return address
result :=n* fact(n — 1)
return
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Semantics for Stack Operations

e As before, the operational semantics maps machine states
to machine states.

e After a sequence of new locations have been allocated
at the top of the stack, they will initially be filled with
garbage.

— The junk value ? models uninitialized /garbage stack
slots.

— It is introduced exclusively for the operational seman-
tics. Programmers will not manipulate junk.

n
A

(H, R, S,sallocn; B) — (H, R,7 -

Y

:: S, B)
(H,R,vy ::--- v, :: S,sfreen; B) — (H,R, S, B)

(H,R,S,sldr,n; B) — (H, R[r :== v,], S, B)
where S =0y 2 -+~ v, 1 9

(H7 Ra Sl,sstr,n;B) — (H7 R7 S2aB)
where S = vy -t v,_1 U, S

and Sy =wvy - v, R(r) 2 S
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Typing the Stack

e Stack types:
—ou=nil |10 |p
e The nil type represents the empty stack.

e The type 7 :: o represents a stack v :: .S where 7 is the
type of v and o is the type of S.

e The type p is a stack type variable that describes some
unknown ”tail” in the stack.

e Register file types contain a special register sp that is
mapped to the type of the current stack:

{sp:int :: p,ry int, ...}

e In addition, we’ll let label types be polymorphic over stack
types:

VoA{sp:int:: p,ry rint} — { }
e Type contexts may now contain stack variables:
A= |Aja|Ap

e Junk values have junk type: ?
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Stack Instruction Typing

As before, instruction typing judgments have the form
\I/, AFiq: Fl — PQ

e Stack allocation:

U; AFsallocn:Tsp:=0] = T[sp:=2:--- 117 0]

e Stack free:

U A b sfreen:Lspi=m - i1y 0] = Tsp := 0]

e Stack load:

L(sp)=m - uTpo
U:AFsldr,n: T —Tr =7,

e Stack store:

A TRo:r D(sp)=m im0
U:AkFssto,n: D= Dsp=m -7 0]
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Typing Factrec (Bug)

type 7, = {r1 :int,sp: p} —{ }

factrec:Vp.{sp D p, T nt, T3y Tp} — { }

L1:

RA:

bgt r1, L1[p]
mov 7y, 1

jmp r3;

Vp{sp:p,riint,rs; : 7, —{ }

salloc?2 hsp:T:7up
sstrs, 1 hspit,:?up
sstry, 2 h Sp:T,ant i p

subry,r, 1
mov 3y, RA[p] % r31:{sp:7,:mint:: p,r sint} — { }
jmp factrec|t, :: int :: p)

VpA{sp:7,int ::p,ry sint} —{ }
sldry, 2 % 7o :int

sldrs;, 1 h T31 1T,

mul'r‘l,rl,rg

jmp 31 %» ERROR! sp:7,:ant ::p



Typing Factrec Corrected

type 7, = {r1 :int,sp: p} —{ }

factrec:Vp.{sp D p,T1 i nt, T3y Tp} — { }

L1:

RA:

bgt ry, L1[p]
mov 7y, 1

jmp r3;

vp{Sp P, Ty ’L'I’Lt, 31 - Tp} — { }
salloc?2

sstrs, 1

sstry,2

subry,r, 1

mov 31, RA[p]

jmp factrec|t, :: int :: p)

Vp.{sp: T, iant @i p, Ty int} — 4}

sldry, 1 % 7o :int
sldrsy, 2 h T31 1T,
mul’r‘l,rl,rg

sfree? h Sp:p

Jmp r3;

46



Another Example

e The callee can’t mess with the caller’s stack frame:

caller: Vo' {sp : Teoge 2 P/} — { }
sallocl
mov ry, 17
sstry, 1
mov sy, RA[,O/]
jmp callee|Teoqe 22 p']
callee: Yp.{sp :int :: p,r3; : {sp:p,r1:int} —{}} —{}
sldrq, 1
addry,ry, 11
sstry, 2 % ERROR!
sfreel

jmp 31

RA: Yo' {sp: Teode :: p/y1m1 int} —{ }

e Polymorphism protects the stack.

47
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The Theorems Carry Over

e Typing ensures we don’t get stuck.

— e.g. try to write off the end of the stack
— But it doesn’t ensure the stack stays within some
quota

e With a bit more complication, we can deal with exceptions
(See Morrisett et al. [12])
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Things to Note

e We didn’t have to bake in a notion of procedure call /return.
Jumps were good enough.

— Side effect: tail calls are a non-issue.

e Polymorphism and polymorphic recursion are crucial for
encoding standard procedure call /return.

e When combined with the callee-saves trick, we can code
up calling conventions.
— Arguments on stack or in registers?
— Results on stack or in registers?
— Return address? Caller pops? Callee pops?
— Caller saves? Callee saves?

e [t’s the orthogonal combination of typing features that
makes things scale well.
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Values of Different Size

e In high-level languages such as ML, all values have uniform
size

— The natural native representations of high-level val-
ues may have different sizes (64-bit floats vs. 32-bit
integers).

— To handle the size mismatch, an ML compiler will
boz floating-point values (represent them as a 32-bit
pointer to a float).

e In low-level languages, we must handle values with non-
uniform size.

— There is no assembly language compiler to insert box-
ing coercions!

— We must know how much space a value takes up on
the stack so the type checker can verify that stack
access is done properly.

— We must know which values are small enough to fit
into (32-bit) registers.

— In summary, we need a function that computes the
size of an object with type 7:

size(int) = 1
size(float) = 2
size(Vay,...,a, ' =>{}) = 1
size(739) =1
size(764) = 2

— But how do we compute the size of an abstract type
a?
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Kinds and Types

e Solution: we classify all types according to the size of the
objects that inhabit them.

e Generally, when we need to establish properties of types,
we will use a system of kinds

e Kinds classify types just as types classify expressions.

e Here, a kind can specify the size of the values in a partic-
ular type:

k:=8z(i)|T
e Type contexts A map type variables to their kinds:

Ac=-]Aa:k
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Kinds and Types

e A judgment assigns each type a kind that reflects its size:

A Fint :: Sz(1) A F float :: Sz(2)

AF 7 ::8z(7) AF o ::8z(j)
A F nil :: Sz(0) Ab (1:0):8z(i+ 7)

Aa:kFa::k

AF 7 8z(1) AFT:T AFog:T
AFT:T AbFT:u0:T

e Modified stack load:

[(sp)=m - Tyt
AF (r - Typoq nil) i Sz(n — 1) At 1 2 8z(1)

U;AFsldr,n: T —=Tr:=7,]

— The load selects object m off the stack
— That object must fit inside a register (have kind Sz(1))

e x86 f1ld (load value onto floating point stack) will be sim-
ilar but require the object have kind Sz(2)
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Certified Code Systems

e A complete system for certified code contains three parts:

— A strongly-typed source programming language.
— A type-preserving compiler.
— A strongly-typed target language.

e TAL will serve as our target language

e In this lecture, we will

— Develop a very simple strongly-typed source language.

— Explore the compilation process.



Source language: Tiny

e A simply-typed functional language.

— Integer expressions

— Conditionals

— Recursive functions

— Function pointers (no closures)

— A strong type system

e An example program:

letrec
fun fact (nunt) :int =
if n =0 then 1 else n * fact(n — 1)
in

fact 6

99
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Tiny Syntax

e Types:
Tu=ant | 71— Ty
e Lixpressions:
e == x| f|n|e+e|eres|if e; =0 then ey else es |

letx = e€;1ney
e Function declarations:
d:=fun f(x:my):mm=c¢
e Programs:

P ::=1letrecd; --- d,ine
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A Tiny Type System

e Type checking occurs in a context ® which maps function
variables f and expression variables x to types

Expressions:

¢+ x:P(x)

O f:a(f)

OFn:int

OdrFe it PFes:int
dF e+ ey:int

Olei:mp—m Ple:n
DFe e

dre:int PlLey:7 Pleg:T
®F if ey =0 theney; elsees: T

dbe:m P,ambe:n
®Fletr =e;iney : 1
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Typing Tiny Programs
Declarations:

S rmte:n
® - fun f(x:ﬁ) Ty =€ (f:T1 — T2)

Programs:
b = f127'1’1 > T1,2y -+ fn:Tn,l — Tn,2
(I)|_dZ : (fi:Ti,1_>Ti,2) ®Fe:int
- letrecd; --- d,ine

e All Tiny programs return an integer as their final result

e Exercise: verify that the factorial program is well-typed
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Type-Preserving Compilation

e A compiler for a realistic language normally consists of a
series of type-preserving transformations

— After each transformation, we can type check the
code to help detect compilers.

e Every transformation in type-preserving compiler has two
parts:

— A type translation from source types to target types

— A term translation from source types and terms to

target terms

e The compiler described here is derived from the original
implementation of our Popcorn compiler [20, 11].
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The Type Translation

e The type translation (7[-]) maps Tiny types to TAL types

e Integers:
T [int] = int

e Function types:

— The translation of function types fixes the calling con-
vention that the compiler will use.

x The caller pushes the argument and then the re-
turn address onto the stack.

x The callee pops the argument and return address.
The result is placed in register .

Tl — 7] =Vo{sp: Klr,p] = Tln] = p} =1 }

where

Klr,o]l ={sp:0o,r. : T[r]} = {}
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Expression Translation

e To keep the translation simple, we will use the stack ex-
tensively:

— The values of all expression variables are kept on the
stack
x M maps expression variables to stack offsets
* I(M) increments the stack offset associated with
each variable in the domain of M

— To compute the value of an expression, we first com-
pute the values of its subexpressions and push them
on the stack.

— We return the value of an expression in the register
Ta

e In all, we use 3 registers and the stack

e The shape formal translation is £[e],,, = J where J is a
sequence of labels (and their types) and instructions.

e For each function f, we assume there is a TAL label L;
e T(e) is the source type of expression e

— Technically, we should thread the Tiny typing con-
text ® through the translation to make it possible to
construct the type of an expression e. For the sake of
brevity, we elide this detail.
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Expression Translation

e Expression variables:
Elz]y o = sldra, M(2)
e Function variables:
Elfly e = movry, Ly

e Integer constants:
Elnly, =movry,n

e Addition:

g[[el + 62: M,o =

g[[el: M,o
pushr,

& [[62: I(M),int::o
pop ¢
addry, ¢, 7q



Expression Translation

e Function Call:

Eler ea] o =

g[[el]]M,a

pushr,

g[l:e2:|]I(M),T|[T1—)T2]]::O'
pPop Tt
pushr,
push L, p]
jmp r¢o]
L, :Yp.K[rs, 0]

where T(Gl) =T1 — T9
and L, is fresh

e Conditional:

E[if e; = 0 then ey else e3],,, =

g[[el]]M,a

bneq 7y, Leise|p]

g[[62]]M,0

jmp Lend [p]
Leise : Vp{sp:o}

g[[e?)]]M,a

jmp Lend [p]
Lend : VIOK[[Tv 0]]

where T(ey) =7
and Lgse, Lepq are fresh

e Exercise: Translate the let-expression
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Program Translation

e Function translation:

Flfun f(x:m) : o =¢] =
Lf : T[[Tl — 7'2]]
g[[e]][x:=2],}C[[T2,p]]Z:T[[T1]]::p
pop T
sfreel
jmp ry

e Program translation:

Plletrecd; --- d,ine] =
Fldi]
Fldn]

Lmaz’n : Vp{Sp : K[[Z”t7 p]] - p}
g[[e]]-,lC[int,p]]::p

pop T
jmp 1y

— To run the program, jump to L,,qi» atter pushing the
return address on the stack.

— Expect the program result in register r,.



Example: Compiling Fact

e Recall the fact function in Tiny:

letrec
fun fact (n:int) :int =
if n = 0 then 1 else n * fact(n — 1)
in

fact 6
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Example: Compiling Fact

Lier: VpA{sp: Klint] :: int :: p}

sldr,, 2 % load argument
bneq 7y, Leise|p] % n=07
mov 7, 1 % return 1
ij Lend
Lese: Vp{sp: Klint] ::int :: p}
sldr,,2 % begin multiplication (load n)
pushr,
MoV 7, Lfaet % begin fact call sequence
pushr,
sldr,,4 % begin subtraction (load n)
pushr,
mov r,, 1
pop T
sub7r,, Tt Ta hn—1
pPop 7 % load Ly,
push L, |p]

jmp re[int =2 K[lint, p] :: int :: p]
L.:  VpAsp:int:: Klint,p] ::int 2 p,ry = int}

pop 1 % load n
mul r,, 7, Tq % n* fact(n — 1)
jmpLend[p]

Lena: VpAsp: Klint, p] == int =2 p, 7y :int}
Pop ¢ % pop return address
sfreel % throw away argument
jmp 7y % return
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Optimizations

e Almost any compiler will produce better code than ours!
— But how many compilers can you fit on three slides?

e Our type system makes it possible to generate much better
code and to implement many standard optimizations:
— Instruction selection optimizations
— Common subexpression elimination
— Register allocation
— Redundant load and store elimination
— Instruction scheduling optimizations
— Strength reduction
— Loop-invariant removal
— Tail-call optimizations
— And others.

e As demonstrated by the TIL/TILT compilers, types do
not interfere with most common optimizations [21]
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Instruction Selection

e Design principal: instruction sequences with the same op-
erational behavior should have the same static behavior.

— Unattainable in general, but something to strive for.

e We can synthesize the typing rule for push from a stack
allocation and store since pushv = salloc1;sstuw,1

— First, we write down the typing rules for the sequence,
specialized to specific operands:

U:AFsallocl:['sp:=0]|—=T[sp:=7:1:0] D

U; At sallocl;ssto,1:sp:=0] = lsp:=7:: 7]

U A;lsp:=T70|Fo:T
D=V;AFsstv,1:Tsp:="1:0]>Tsp:=1:0]

— Then we extract the premises at the leaves of the
derivation, removing the intermediate states:

U A:lsp:=T70|Fv:T
U: Ak pushv:T[sp:=0] > Tsp:=71:: 0]
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Instruction Selection

e Since pushwv is statically equivalent to salloc1;sstw,1,
a compiler writer can always replace one with the other

— To optimize instruction encoding size
— To optimize execution efliciency

— To enable other optimizations

e Example:

push 7
push 8
push9

Can be replaced by:

sallocl
sst7,1
sallocl
sst 8,1
sallocl
sst9,1

Which can be further reduced to:

salloc3
sst7,1
sst g, 1
sst9,1
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Tail-Call Optimizations

e A crucial optimization for functional languages

e Applies when the final operation in a function f is a func-
tion call to g

e Rather than have f push the return address and engage in
the normal calling sequence, f will pop all of its temporary
values and jump directly to g, never to return

e Example:

Without tail-call optimization:

Lfl

VoA{sp : K| Treturn, P 2 Tr—arg 2 PsTa : Tg—margt — { }
salloc?2

sst L, % push return address

sst g, 2 % push argument

ij Lg[dedr - Tf—arg -+ p]

Vp-{Sp s Traddr ++ Tf—arg ++ Py Tq - Tret} — { }

pop ¢ % pop return address
sfreel % throw away f’s argument
jmp 7y % return

With tail-call optimization:

Lf:

\V/p{Sp * Traddr ++ Tf—arg - PyTa - Tg—arg} —>{ }
sstry, 2
jmp L, |p] % g will return to f’s caller
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What optimizations can’t we handle?

The version of TAL discussed so far provides no mechanisms for
the following source of optimizations:

e Optimizations that alter the code stream: run-time code
generation, run-time code optimization

— Smith, Hornoff, Jim, and Morrisett have designed a

system for safe run-time code generation (see Smith’s
thesis [18])

e Various stack-allocation strategies
— Our type system can’t represent pointers deep into
the stack
— Morrisett et al. [12] extend the stack typing disci-

pline, but more work needs to be done here

e Optimizations that rely upon properties of values that are
not reflected in the type structure:

— Arithmetic properties of integers (eg: n = 17), which
are useful for reasoning about arrays and pointer arith-
metic (coming in a following section)

— Aliasing properties of pointers in heap-allocated data
structures (coming in a following section)
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Properties of the Compiler

e Our compiler is type-preserving:
If P is a well-typed Tiny program: - P then the compiled
program is also well-typed: - P[P] : ¥ for some V.

e The proof would proceed by induction on the structure of
the program P.

e Each optimization phase and compiler transformation re-
spects this property.

e To detect errors in our compiler’s implementation we can
run the compiler and type check the output.
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Practical Compiler Issues

e As you translate from a high-level language to a low-level
TAL-like language, the types must encode the structural
information lost in the translation

e Result: by the time we have compiled to assembly, the
types encode lots of data

e Careful engineering is required to enable efficient code size
and type checking time
— The Popcorn Compiler (PI1266):
— Object code: 0.55MB, 39 modules
— Naive encoding: 4.50MB, checking time: 750s
— Optimized encoding: 0.27MB, checking time: 22s
— Checking time scales linearly with code size

— Likely more optimization possible
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Popcorn Example

e Source Type:

int — bool
e TAL Type:

All a:T,b:T,c:T,r1:5,r2:5,el1:C,e2:C.

{ESP: {EAX:bool, M:el+e2, EBX:a, ESI:b, EDI:c,
ESP:int: :r10@{EAX:exn,ESP:r2,M:el+e2}::r2}::int::r10@
{EAX:exn,ESP:r2,M:el+e2}::r2,

EBP: sptr{EAX:exn,ESP:r2,M:el+e2}::r2,
EBX:a, ESI:b, EDI:c, M:el+e2}

e Types for higher-order functions can require pages to write
them down!
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Compressing Types

o Guzip:

— Effective for reducing binary size over the wire

— No help during verification
e Tailor types to the language being compiled/the compiler

— eg: fix the calling convention

— Restricts interoperability /language and compiler evo-
lution

e Higher-order type constructors

— Fairly effective, useful for compiler debugging/code
readability

e Hash-cons (ie: use graphs to represent types)

— Highly effective, fast type equality

— A significant engineering investment
e Type reconstruction/type inference

— Can be very efficient with respect to both space and
time

— Must take care to avoid increasing trusted computing
base

e See Grossman and Morrisett [6] for a survey of techniques
used in our implementation.
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Summary of Type-Directed Compilation

e Type-directed and type-preserving compilation provides
an automatic way to generate certifiable low-level code

e We can prove that the compiler produces well-typed as-
sembly code from any well-typed source language program

e Programmers can program as they normally do in their
favorite strongly typed high-level language

e Constructing a type-preserving compiler takes more work
initially but the result is more robust:

— Compiler writers must transform both types and terms

— Special care must be taken to compress type infor-
mation

— Type checking intermediate program representations
can detect compiler errors

e Most conventional compiler optimizations are naturally
type-preserving, so using a typed target language has little
impact (if any) on compiler performance
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Data Structures

e The register file and stack give us some local storage for
word-sized values

— Stack space can be recycled for values of different
types
— Critical trick: can’t create pointers to these values

— The trick prevents code from seeing two different views
of the stack (through different pointers/aliases). It is
simple to ensure that the single view of the stack is
accurate.

e What about aggregates?

— eg: tuples, records, arrays, objects, datatypes, etc.

— TAL puts these “large” values in the heap and refers
to them via pointers.

— This introduces aliasing and the potential for multiple
views/access pathes for the same data structure

— Recycling heap memory is not as easy
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TAL-3: Add Tuples

Let heap H map labels to either blocks of code or tuples
of values: (v1,...,v,)

e The values v; are either integers or labels
e The labels are abstract (no pointer arithmetic)
e Tuple instructions:

— Allocate tuple: mallocry,n
— Load from £ component of the tuple: 1dry, r,(k)

— Store into k' component of the tuple: st ry(k),r,

e Tuple types: (7’1, .. ,Tn>
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Tuple Operational Semantics

e Allocation:

(H,R,vy :: -+ v, = S;mallocrg,n; B) —>
(H[L: (v1,...,vn)], R[rq := L], S, B)
where L is a fresh label (ie: not in Dom(H))

e Load:

(H,R,S,1dry,7rs(k); B) — (H, R[rq := v, S, B)
where H(R(rs)) = (v1,...,vy) and 1 < k < n

e Store:

(HIL = (vi,...,un)], R, S,strq(k),rs; B) —>
(HIL = (vy,...,05_1, R(Ts), Vks1,---,n)], R, S, B)
where R(ry) = L
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Tuple Typing

e Allocation:

[(sp)=mumu--utyuo

U;AFmallocrg,n: I —=Tlsp:=0,75 := (11,72, .., Tn)]

e Load:

U AT Erg i {m,...,m) 1<k<n
U A ldrg,rs(k) : T — Ulrg := 7]

e Store:

VAT Erg:(r,....7n) V;A;TErg:m 1<k<n
U:AFstrg(k),rs : T =T
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Remarks

e The load and store operations correspond to conventional
RISC instructions.

e The malloc instruction does not.

— Typically, this would be implemented by a call into
the run-time to atomically allocate and initialize the
tuple.

— Atomic allocation and initialization interferes with
our ability to compile common C-style programming
idioms

— Interferes with instruction selection and scheduling

— The advantage is a simple design where we need not
reason about pointers and aliasing.

e There’s no way to explicitly deallocate heap memory

— TAL relies upon a garbage collector to reclaim all
heap storage.

— Remember, the garbage collector is another element
of our trusted computing base.

e The types of tuples are invariant.

— You can’t update a component in the tuple with a
value of a different type

— The same is true for code and other heap objects

e In summary, TAL has the memory model of a high-level
programming language
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Arrays

e Hard issues:
— Need to allocate and initialize storage of unknown
size.
— Each array subscript operation must be in bounds.
— In general, this implies we need size information at
run time.

e Simple solution: special operations:

— new_array 7Tg,'size; I'item
— asub Tjtem, ’I"a(’f’i)
- aupd Ta (,r?:)j Titem

— The disadvantage is that this fixes array representa-
tions and makes interoperation with other languages
difficult /costly. There is some overhead to perform-
ing the array-bounds checks.
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TAL-4: A Refined Memory Model

e Machine states now have the form (Hy; Hys; S; R; B) where
H,, is memory managed explicitly by the TAL program

e In order to check programs that explicitly manage memory
(as most C programs do) we will reason about the shape
of memory using a simple logic

o (::= {ﬁl—) <7'1,...,’7'n>} | 1 | 01®02 | €
e ¢ is a logic variable
e / is a label: either a label variable ¢ or a concrete label L

e We also introduce a new type of managed pointers: S(/)

— Only label L has type S(L)

— When two labels have type S(¢), we do not know
which labels they are, but we do know that they are
the same label (they are aliases)
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Well-formed Stores

e The judgment ¥ F H : C states that a heap H is well-
formed and is described by the formula C.

e We specify a nondeterministic merge of two stores H; and
H, using the notation H; >1 Hs. It requires that the do-
mains of the stores H; and H, be disjoint.

UE{}:1

\IJI—H1:01 \Ifl_HQICQ
\Ij'_H1[><]H2:01®02

U:-bkw,im forl1<e<n
UEA{Lw— (vi,...,o)0} AL (T1,...,T0)}

e Example:
Lll L2: Lgl

e
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Using Store Types

e New instructions:

— mmalloc ¢, r,n

— freer

e Our old load and store instructions will have overloaded
typing rules

e Code types are extended with an extra field to describe
the shape the store must have before we jump to the code:

—{hp:C,sp:o,r1:71,. .., Ty i T} —{ }



Examples

foo: Ve, p{hp:e€ sp:p,r:int,
rs1:{hp:e sp:p,ryintt —{}}—{}
mmalloc @, o, 0 hAp: e {p— (7,1}, 12 : S(¢)
mov 77, I’y h 7 S(d)
st r7[1], 71 h hp:e® {p+— (int,?)}
st re[2], 71 h hp:e®{p+— (int,int)}
free ry h hp:e€
Jmp 731

An error:

foo: Ve, p{hp:e€,sp:p,r:int,

rs1:{hp:e,sp:p,rint} > {}}—>{}
mmalloc ¢, ra,n % hp:e®@{p— (7,71}, re 1 S(d)

MoV '7, Ty h 7 S(P)
stry[1], 7 h hp:e®{p— (int,?7)}
st re[2], 71 h hp:e®{p— (int,int)}

jmp 731 %» ERROR! Memory leak.
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Heap Logic: Details

e To type check code, we must use the entailment relation
from our heap logic: C'+ ('

e More generally, entailment has the form L F C' where L is
a sequence of assumptions C'

e This logic is a tiny fragment of linear logic and the sequent
calculus rules follow.

F1
L.L'-C
L1.LFC

L,C,C L'+C"
LCC,L'-C"

L-C L'k
LxL'+FC®C

{op—= (11,...;7)E{d— (11,...,T0)}

€l €

e These rules are sound with respect to our heap model and
entailment is decidable. Prove these facts as an exercise.
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Subtyping

e We fold the logic into our type system by extending the
subtyping relation:

crC
[lhp := C|] < T|hp :=C"]
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New Judgments and Block Typing

e Extended instruction typing judgment:
U:AF:T— [AY

e may be read as “given a managed heap type ¥ and the type
variables A, instruction ¢ has register file precondition I
and there exist types A’ such that the postcondition I
will be satisfied upon execution of the instruction.

e The block typing judgment is as before:
UAFB:T'—{}

e But the rules for stringing together instructions change
slightly:

AR T = [AY U,AAEB: TV {}
VARG B:T'—{}

e The rule for typing jumps does not change, but remember
that register file typings now contain more information
(the type of the managed heap).

U T'Fo:T'—{}
Uk jmpo:T'—{}
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Instruction Typing Rules

n

——
P(hp) =C ' =T[hp = C & {6 T Dl = S(&)]
U: A Fmmalloc ¢, r,n: T — [¢]”

U AT Er:SY)
Chp) =CR{l— (T1,...,70)} I"=Tlhp :=C]
U; AFfreer: ' — []IY

U AT FEorg: S AT Erg T
T(hp) =C Rl — (T1,. .., Thye oy Tu) }
M=Thp:=CR{l— (T1,...,7y...,Tu)}]
U A strg(k),rs: T — [TV

U AT Frg s 7 U AT g S
Thp) =CR{l— (T1,. ., Thy -, Tn) }
U:AF1drg,rs(k) : T — [T

The store type may not match a given instruction precondition
syntactically, so we must introduce the following rule to prove
the store has the form required at different program points.

<1
U AT R — [TV
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Comments

e Singleton types allow us to identify pointers and their aliases.

e Label polymorphism allows us to abstract away from the
specific name of a label but retain the aliasing structure
of the heap

e Heap polymorphism allows us to abstract away from the
size and shape of a portion of the heap

e With recursive and existential types, we can encode linear
lists and trees. (See Walker and Morrisett [25])

e We can extend our type system to incorporate a Turing-
complete logic provided we annotate our programs with
explicit proofs of the entailment relation. (See Reynolds
[16] and Ishtiaq and O’Hearn [9])
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Arrays

e Often, using some simple arithmetic facts we can prove
that an array access is in bounds at compile time, elimi-
nating the need for a check at run time

e Following Xi, Pfenning and Harper ([28, 27]), we may ex-
tend the type checker with a (classical) logic for reasoning
about arithmetic, just as we used a (linear) logic for rea-
soning about the heap

e Arithmetic expressions:

a:=1i|n|a+sas|a; —32as|a; X3z as | a; xor as

— ¢ 1s a 32-bit number variable
— n 18 a 32-bit constant

— All expressions have machine semantics

e Logical connectives:
P:=p|true|false|a; <yas | PP D P | PAP,|-P|---

e New types:

— Singleton integers: S(a)
— Array types: 7 array(a)
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Refined Operand Typing

e New type contexts:

Au=-|Aa=rk|AP

e New operands: v[proof]

v must be code with a logical precondition: V[P, A’].I"

v[proof] has type V[A'].T" provided that proof is a
proof of P in the current context:

U AT Ho V[P AT = { } A+ proof : P true
U A; T F o[proof] : V[A'l.T — { }

For the sake of brevity, we will omit such proofs from
our examples (alternatively, we could assume that a
theorem prover is able to reconstruct the proof with-
out help)

we write instead

vl

e We give constant integers a more refined type:

U AT Enc:Sin)
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Refined Instruction Typing

e Instruction typing judgment:
U:AF:T— [AY

e Addition:

U AT Ery:S(az) ;AT 7y S(as)
U:AFaddry,re,rs : I'— T[ry := S(ag 432 as)]

e Array access:

U AT Fry 7 array(a) U AT Eors o S(as)
A F as <, a true

U AF1dry,re(rs) : T'— Try := 7]

— As with operands, we could annotate load instruc-
tions with a proof of the arithmetic inequality above:

1d 7y, ra(r3)[proof]
e Conditional branches

AT Fo: V[P —A{} U: AT Er:S(a)
A,a <0F P true
U:AFbler,v:I'—[a> 0]l
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Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References
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Separate Compilation and Linking

e TAL provides mechanisms that allow program parts to be
compiled separately, checked for compatibility and linked
together to form an executable

e Such functionality is important in almost any program-
ming environment but indispensable in a setting of mobile
code and extensible systems

e TAL provides facilities for static linking (all components
are assembled before executing the program)

— See Glew and Morrisett [5]

e TAL also provides facilities for dynamic linking (compo-
nents are loaded into a running program)

— See Hicks, Weirich and Crary [8]

e Here, we concentrate on static linking



Linking Diagram
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Example
fact_e.tali:

VAL factrec: Vp.{sp: p,r
sy - {Tl

fact.tal:

EXPORT fact e.tali

factrec: VopA{sp:p,m
sy - {Tl

subrsy,ry, 1
blers, L1[p]

jmp 31

L1: Vp{sp:p,m
st - {Tl

salloc?2

sstr3i, 0

int,
cant, Sp :

int,
cant, Sp :

cwnt, T
cwnt, sp :

pr—={ =17

pr—={1r—=11

int,

pr={ =17
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Example Continued

stdio_e.tali:

TYPE file
VAL fprintf. - - -

main_i.tali:

TYPE file
VAL fprintf. ---
VAL factrec: - - -

main e.tali:

VAL main: - - -

main.tal:

IMPORT main_i.tali
EXPORT main_e.tali

mawn: - - -

jmp factrec
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Comments

e At the assembly language level:

Each implementation file (.tal file) defines a collec-
tion of types and values.

Each implementation file also declares a collection of
imports and exports

FEach interface file (.tali file) declares a collection of
values with their types and types with their kinds.

Our convention is that foo_i.tal files contain the
imports needed by foo.tal and foo_e.tal files con-
tain the exports

e At the machine code level:

.tal files are replaced by .o files, which contain bi-
nary code and data and .to files, which contain a
compressed binary representation of the associated
typing annotations
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Link Checking

e Before linking, we check:

— If one file imports a value labeled foo and the other
file exports a value labeled foo, does foo have the type
expected by the importing file?

— Similarly, do import and export type declarations
with the same name have the same kind (in our simple
case: do stack types match stack types and ordinary
types match ordinary types)?

— Are there any import/export name clashes?

— Note that unexported labels will not clash with labels
from other files since they alpha-vary

e Before attempting execution, we check:

— Are there any remaining types or values to import?
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