An Introduction to Typed Assembly
Language
David Walker

Department of Computer Science
Princeton University

March 2, 2002

Acknowledgments

e These notes started as a lecture given by Greg Morrisett,
July 2001 [10] and have since been extended and edited.

e They give readers a simple introduction to many of the
core elements of the Cornell Typed Assembly Language
project.

— Contributors: G. Morrisett, K. Crary, N. Glew, D.
Grossman, T. Jim, C. Hawblitzel, M. Hicks, L. Hornof,
R. Samuels, F. Smith, D. Walker, S. Weirich, S. Zdancewic

— See http://www.cs.cornell.edu/talc

e Suggested Reading

— G. Morrisett, D. Walker, K. Crary, N. Glew. From
System-F to Typed Assembly Language. [13]

— G. Morrisett, K. Crary, N. Glew, D. Walker. Stack-
Based Typed Assembly Language. [12]

e A more complete bibliography appears at the end of these
notes.

Safety through Types

e An architecture for safe mobile code;:

— Download code and typing annotations from untrusted
code producer

— Verify untrusted code using trusted type checker

— Link verified code into extensible system & run with-
out error

e Security hinges on an understanding of programming lan-
guage structure

— We must be able to reason precisely about what pro-
grams do.

— We must be able to define the “good” and “bad”
behaviors.

— We must be able to identify and rule out (mechani-
cally) those programs that might exhibit “bad” be-
haviors.

e Typed Assembly Language (TAL) is the language technol-
ogy we will use to accomplish the goals.

Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

What Is TAL?

e In theory:

— An idealized RISC-style assembly language and for-
mal operational semantics for a simple abstract ma-
chine

— A formal type system (collection of type systems)
that captures properties of processor register state,
stack and memory

— Rigorous proofs demonstrate that TAL enforces im-
portant safety guarantees in assembly language pro-
grams

e In practice [20, 11]:

— A type checker for almost all of the Intel Pentium
IA32 architecture

— Tools for assembly, disassembly, and linking of TAL
binaries (a pair of machine code segment and types
segment)

— A prototype compiler for a safe imperative language
(Popcorn)

e These notes concentrate on the development of the theory
of TAL and type-directed compilation. This presentation
streamlines the formal work from past papers.

Example Assembly Language Program

High-level code:

fact(n,a) =
if (n < 0) then
a
else

fact(n—1,axn)

Assembly language code:

% r1 holds n, r, holds a, r3; holds return address
% which expects the result in 71

fact: blery, L2 % if n < 0 goto L2
mul 79, 7o, 7y % a:=a X n
subry,ry, 1 % n:=n—1
jmp fact % goto fact

L2: mov 1y, Ty % result := a

jmp 731 % jump to return address

TAL-0

Syntax of a simple RISC-like assembly language.
e Registers: r € {r1,r2,73,...}
e Labels: L € Identifier
e Integers: n € [—2F71.2F1)
e Blocks: B ::= jmpwv | i; B
o Instrs: ¢ := aopry,rs,v | bopr,v | movr, v
e Operands: v :=71|n| L
e Arithmetic Ops: aop ::= add | sub |mul | ---

e Branch Ops: bop ::=beq | bgt | ---

TAIL-0 Abstract Machine

e Model evaluation as a transition function mapping ma-
chine states to machine states: > —— X

e Machine: ¥ = (H, R, B)

e H is a partial map from labels to basic blocks B.

e R maps registers to values (ints n or labels L). Notation:
n

L

v ifR={...,r—uwv,...}

EEE:
SRS
|l

e B is a basic block (corresponding to the current program
counter.)

Operational Semantics
(H, R,movry,v; B) — (H, R[rq := R(v)], B)

(H,R,addry,r,,v; B) — (H, R[rq := n|, B)
where n = R(v) + R(rs

(H, R, jmpv) — (H, R, B)
where R(v) = L and H(L) = B

(H, R,beqr,v; B) — (H, R, B)
where R(r) # 0

(H, R,beqr,v; B) > (H, R, B
where R(r) =0, R(v) =L, and H(L) = B’

The other instructions (sub, bgt, etc.) follow a similar pattern.

10
Error Conditions

e The abstract machine is stuck if there is no transition from
the current state to some next state.

e The stuck states define the “bad” things that may happen.

e Our type system will ensure that the machine never gets
stuck.

e Example stuck states:

— (H, R,addry,rs,v; B) and 75 or v aren’t ints
— (H, R, jmpv) and v isn’t a label, or
— (H, R,beqr,v:B) and r isn’t an int or v isn’t a label

e To distinguish between integers and labels, we require a
type system.

11
Types

Basic types:

o Tu=int| [—>{}

o ' :={ry:m,r9:70,...}
Code types:

e Code labels have type {ri:11,7m2:72,...} = { }.

e The order that register names appear in a code type is
irrelevant

e To jump to code with this type, register r; must contain
a value of type 7y, register ro must contain ...

e Intuitively, code labels are functions that take a record of
arguments

e The function never returns — the code block always ends
with a jump to another label

Example Program with Types

% r1 holds n, r9 holds a, r3; holds return address
% which expects the result in 7y

fact: {rynt,roint, ry:{riint} > {}} = { }

blery, L2 % if n < 0 goto L2
mul 75, 79, T % a:=aXxXn
subry,ry, 1 % n:=n—1

jmp fact % goto fact

L2: {rozint,ra;:{rizint} > { }} = { }
mov ri, Ty % result := a
jmp 731 % jump to return address

13

Mis-typed Program

fact:

L2:

{riant, rsp:{ryintt - {}} = { }

ble 7“1,L2

mul 79,79, 71 % ERROR! ry doesn’t have a type
movry,rs

jmp L1 % ERROR! no such label

{7‘2:int, rglz{rlzint} — { }} — { }
movrsy, o
jmp 31 % ERROR! r3; is not a label

14
Type Checking Basics

e We need to keep track of:

— the types of the registers at each point in the code
(type-states)

— the types of the labels on the code
e Heap Types: ¥ will map labels to label types.

e Register Types: I' will map registers to types.

Typing Operands

e integer literals are ints:
U:I'Fn:int
e lookup register types in I':
U:TFr:T(r)
e lookup label types in W:

U:T'HL:W(L)

15

16
Subtyping

e Our program will never crash if the register file contains
more values than necessary to satisty some typing precon-
dition

e In other words, a register file type with more components
is a subtype of a register file containing fewer components.

{rymy, . oricvTisn, e < {reTm, . ris1i Tl)

e Notice the similarity to record subtyping: a record with
more fields is a subtype of a record with fewer fields.

e On the other hand, label type subtyping works in the op-
posite direction. A label that only requires r; and ry to
contain integers may be used as a label that requires rq,
ro and r3 to contain integers.

e Label types, like ordinary function types, obey contravari-
ant subtyping rules in their argument types:

I"<T
TS {J< = ()

e Subtyping is also reflexive and transitive

e A subsumption rule allows a value to be used at a super-
type:

\If;rl_’UITl ’7'1§’7'2
U:I'Fov:n

17
Typing Instructions

e The judgment for instructions looks like:
A Fl — F2

e I'; describes the registers on input to the instruction (a
typing precondition)

e ['s describes the registers on output (a typing postcondi-
tion)

e VU is invariant. The types of heap objects will not change
as the program executes (at least for now,...).

Typing Instructions

e Arithmetic operations:

U:I'Frgant U;I'Fo:int

U Eaoprg,rs,v: = [ry ;== int]

e (Conditional branches:

U:T'kErint U;I'Fov:T—{}
UEobpr,v:I'=>T

e Data movement:

U:I'Fo:r
Ukmovr,v: I — Dlrg := 7]

18

19
Basic Block Typing

e All basic blocks end in the jump instruction:

U I'Fo:I'—={}
Uk jmpov:T'—{}

Since a jmp never returns/falls through to the following
instruction, we may choose the return context arbitrarily.
For simplicity, we choose {} and make that the return
context for all blocks.

e Instruction sequences:

\Pl—i:F1—>F2 \DFBFQ%{}
VFiB:Th—{}

e Subtyping is an admissible rule for basic blocks:

Lemma: Admissibility of Basic Block Subtyping If
UVEB:Ty—>{}and 'y <Tsthen VF B:T'; —{}.

Proof: By induction on the typing derivation for basic
blocks and instructions.

20
Machine Typing
e Heap typing:

Dom(H) =Dom(V¥) VL € Dom(H).V+ H(L): V(L)
=H:W

e Register file typing:

vr € Dom(I').U; {} - R(r) : T'(r)
vER:T

e Machine typing:

~H:U U+R:T UFB:T—{}
- (H,R, B)

21
Type Safety

We have designed the type system so that it satisfies the follow-
ing property:

e Theorem: Type Safety. If - ¥ and X ——* ¥/ then X
is not stuck.

Proof by induction on the length of the instruction sequence,
following Wright and Felleisen [26] and Harper [7].

e (Preservation) Each step in evaluation preserves typing.

e (Progress) If a state is well-typed then it is not stuck.
Corollaries:

e All jumps are to valid labels (control-flow safety)

e All arithmetic is done with integers (not labels)

22
Proof: Canonical Forms

Before proving Progress and Preservation, we must be able to
characterize the shape and properties of a value based upon its

type.

Lemma: Canonical Forms. If HF H : ¥V and UV - R : T" and
U:I'- v : 7 then

e 7 = int implies R(v) = n.

o 7= {rym,...,ru:Tn} — { } implies R(v) = L.
Moreover, H(L) = Band Y + B : {ri:my, ...t} — { }

Proof: By induction on the value typing derivation. [Exercise:
fill in the details.]

23
Proof: Progress

Lemma: Progress. If - >; then there exists a Y5 such that
21 — 22.

Proof: By cases on the form of the code block in ;.

Example case: 3, = (H, R, jmpv). We are given the derivation:

FH:U UFR:T Uk jmpv:T—{}
- (H, R, jmpv)

By inspection of the typing rules for blocks, the third premise
above must be a derivation that ends in the jump rule:

v:I'Fov: T
UtEjmpv: T —{}

By Canonical Forms, R(v) = L and L € Dom(H). Therefore, the
operational rule for jumps applies and X7 is not stuck:
(H, R, jmpv) — (H,R,H(L))

24
Proof: Preservation

Lemma: Preservation. If - }; and >; —— Y5 then F .
Proof: By cases on the form of ;.

Example case: 3, = (H, R, jmpv). We are given the derivation:

FH:U UFR:T Uk jmpv:T—{)
- (H, R, jmpv)

and the operational rule must be:

where R(v) = L and H(L) = B

Hence, we must prove that - (H, R, B). As in the proof of
Progress, we may deduce that the third premise of the typing
derivation ends in an application of the jump rule:

U:T'Fo:T—{}
Ut jmpv: ' —{}

Therefore, by Canonical Forms, we know

UVEB:T—={}

and hence

FH:V YVFR:T' vVFB:I'—>{}
- (H, R, B)

25
Proof Summary

e The Type Safety theorem is relatively straightforward to
prove using Canonical Forms, Progress and Preservation
lemmas.

e Proofs almost always reveal flaws in initial design and
clearly specify the properties that the language enforces.

e As we scale the programming language up, these proof
techniques are remarkably robust. However, the proofs
quickly become very detailed and tedious.

e Open research problem: How can we automate genera-
tion of these proofs? Some initial results from Schiirmann
and Pfenning [17, 14].

26
Scaling It up

The simple abstract machine and type system can be scaled up
in many directions:

e more primitive types and options (e.g., floats, jal, complex
instruction set operations, etc.) [20]

e a control stack for procedures [12]
e more polymorphism [13]
e a module system, link checker and dynamic linker [5]

e memory-allocated values (e.g., tuples and arrays) and ex-
plicit memory management [24, 19, 25, 23]

e objects for object-oriented programming [4]
e types for concurrency control

e dependent types for expressing more complex access con-
trol and security properties|[22, 27]

e intentional type analysis [3, 2]

Over the next few lectures we will work through many of these
topics.

27
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

28
TAL-1: Polymorphism

e Changes to types:

— Add type variables to types: «

x Type variables are treated abstractly
x Allow code reuse
x As we’ll see they come in handy elsewhere...

— Label types can be polymorphic:

Vo, B.A{r ca,re : Byrz: {ri: B,recat—{ }}—{}

x Describes a function that swaps the values in reg-
isters r; and ro, for values of any two types.

* Register r3 contains the return address which ex-
pects the values to be swapped.

e Changes to operands:

— To jump to polymorphic functions, we explicitly in-
stantiate type variables, calling for a new form of
operand: v[r]

— We write v[r,...,7,] for v[m]---[m].

29
Example Polymorphism

swap: VYa,BAr1ia,re: Byrsy i {ri: Byreiat—=>{}}}—={}
mov 73, T h{ri:a,ra: B3 {ri:B,re:at—{},r3:a}
mov7ry, 7o
movry,Ts

Jmp r3;

swap_ints: {ry :int,ro 1int,r3; : {ry sint,re tintt — { }} —{ }
jmp swaplint, int]

swap_int_and_label: {ry :int,ro : {rs :int} - {}} —>{}
mov r3q, L
jmp swaplint, {ry : int} — { }]

L: {7"1:{TQ:int}—>{},r2:int}—>{}
Jmp 7

30
Callee-Saves Registers

e A common register-allocation strategy:

— When calling a function, save the contents of some
registers (caller-saves registers) onto the stack. When
the function returns, restore the contents of these reg-
isters from the stack.

— Allow the callee to save (and restore) the contents of
other designated registers (callee-saves registers).

— If the callee does not use all registers, the cost of

saving and restoring is not incurred.

e Correctness criterion: the callee must return to the caller
with the same values in the callee-saves registers

31
Callee-saves Registers Example

callee: Ya.{ry :int,r5 : a,r31 : {ry rint,rs:at > { }} = {}

MoV 74, T's % save register r;
mov rs, 7 % use register r; for other work
addry,ry, 75
mov I's, T4 % restore register rj
Jmp 731
caller: movrs, 255 % will need 75 callee returns
IIIOV’I"1,5
mov r3q, L

jmp callee[int] % calleelint] :
ho Ariint,rsint,rsy c {ry cint,rs cintt — { }}

L: {ry vint,r5 int} —{ }
mul7"3,7'1,7"5

32
Callee-saves Registers Bug

callee: Ya.{ry :int,r5 : a,r31 : {ry rint,rs:at > { }} = {}
movry,Ts
mov rs, 7
addry,ry, 75
jmp 31 % ERROR! 75 :int

caller: mov rs, 255
mov 7y, 5}
mov sy, L
jmp calleelint]

L: {ri :int,rs int} - { }
mu17"3,7°1,7‘5

e We can actually prove formally that callee preserves the
values of its callee-saves registers. This fact is a property
of callee’s polymorphic type! (See Reynolds [15] and Crary

[11)

e Moral: polymorphism can be used for more than just code
reuse. It can force a procedure to "behave well” in some
circumstances.

33
Operational Semantics

e In order to prove our Type Preservation result, we must
make a couple of minor changes in our operational seman-
tics.

— Heaps H now map labels to type-labeled blocks:
H(L)=Vay,...,a,.I'—{ }.B

— Type variables aq,...,a, appear free both in I' and
B

— Control-flow operations substitute arguments types
for type variables:

(H,R, jmpv[1y,...,Ta]) — (H, R, Blmi/ay,...,Tn/ay))
where R(v) = L and H(L) =Vay,...,a,.I' > { }.B

(H,R,beqr,v[T1,...,Ta]; B) — (H, R, B'[11 /01, ..., Tn/])
where R(r) =0, R(v) = L, and H(L) =Vay,...,a, ' - { }.B

34
Polymorphic Typing

e Since types may now contain variables, we must ensure
they only contain properly declared variables. The fol-
lowing judgment states that a type is well-formed (ie: it
makes sense):

FreeVars(t) C A
AFT

where A = aq,...,q,

e We also modify the operand and instruction typing judg-
ments to account for the type variables in scope:

U A:T'Fv:r

\D,AFZF1_>F2

35
Polymorphic Typing

e We have a typing rule for our new sort of operand

VAT Fo:Vag,ag,...,0,. 1" —={} Ak
U AT Folr] s (VYag, ..., a, I — { P[7/a4]

e We change heap typing slightly in order to introduce the
bound type variables:

VL € Dom(H).V;aq,...,ap, - B: T —={}
H(L)=Vay,...,a,.I'B (for all L)
\II(L):\V/O{h...,Ozn.—){}

FH:U

36
Type Safety

e The type safety proof follows the same Progress and Preser-
vation formula as before.

e We need one central addition to the proof: The Substitu-
tion Lemma.

If ¥;aq,...,a, W B: T = {} and F 7; for ¢ = 1..n then
U;- -+ Bln/ag,...,m/ay] :Ulm/aq, ..., /an] —{}

e Fixercise: Prove the Substitution Lemma and Preservation
for TAL-1.

37
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

38
The Run-time Stack

e Almost every compiler uses a stack
— A consecutive sequence memory addresses with one
end designated the top
— Values are stored on the stack and later retrieved

— The compiler can grow the stack to store more values
and later shrink the stack, explicitly deallocating the
topmost values.

e Uses:

— To store temporary values/result of intermediate com-
putations when we run out of registers

— To store the return address and local variables of re-
cursive functions before a recursive function call.

39
TAIL-2: Add a stack

e Machine states:
- M = (H,R,S,B)
e Stacks are modelled as a list of values:
— Su=nil|v:: S
e New instructions:
— ¢ :=sallocn | sfreen | sldry,n | sstrg,n
e Frror conditions:

— If we free too much or read/write locations too deep
in the stack, the machine will get stuck

40
Remarks

e The stack operations have a 1-to-1 correspondence with
RISC instructions.

e A designated register sp points to the top of the stack.
— salloc corresponds to subtracting n from a stack-
pointer register (e.g. sub sp, sp,n)

— sfree corresponds to adding n to the stack pointer
(e.g. add sp, sp,n)

— sst corresponds to writing a value into offset n from
the stack pointer (e.g. st sp(n),r)

— s1d corresponds to reading a value from offset n rel-
ative to the stack pointer (e.g. 1dr, sp(n))

e CISC-like instructions (e.g. push/pop)can be synthesized.

— pushv = sallocl;ssto,1

— popr = sldr,1;sfreel

41

Simple Stack-Based Program

e A recursive version of the factorial function:

factrec(n) =

if n <0 then

e

else

nxfactrec (n — 1)

factrec: %, r; holds argument n, rs; holds return address
% which expects the result in 71

L1:

RA:

bgtry, L1
mov rq, 1
Jmp 31

salloc?2
sstrs, 1
sstry, 2
subry,ry, 1
mov rsq, RA
jmp factrec

% result in 7
sldrsy, 2
Sld’l“gl,l
mu17“1,7'1,7“2

Jmp 31

/.

T

/.
/.
T
T
T
T

n >0, goto L1
n <0, return 1

allocate space for frame
save return address

save n
n.=n-—1
return address = RA

do recursive call, result in 1

restore n into 79
restore return address
result :=n* fact(n — 1)
return

42
Semantics for Stack Operations

e As before, the operational semantics maps machine states
to machine states.

e After a sequence of new locations have been allocated
at the top of the stack, they will initially be filled with
garbage.

— The junk value ? models uninitialized /garbage stack
slots.

— It is introduced exclusively for the operational seman-
tics. Programmers will not manipulate junk.

n
A

(H, R, S,sallocn; B) — (H, R,7 -

Y

:: S, B)
(H,R,vy ::--- v, :: S,sfreen; B) — (H,R, S, B)

(H,R,S,sldr,n; B) — (H, R[r :== v,], S, B)
where S =0y 2 -+~ v, 1 9

(H7 Ra Sl,sstr,n;B) — (H7 R7 S2aB)
where S = vy -t v,_1 U, S

and Sy =wvy - v, R(r) 2 S

43
Typing the Stack

e Stack types:
—ou=nil |10 |p
e The nil type represents the empty stack.

e The type 7 :: o represents a stack v :: .S where 7 is the
type of v and o is the type of S.

e The type p is a stack type variable that describes some
unknown ”tail” in the stack.

e Register file types contain a special register sp that is
mapped to the type of the current stack:

{sp:int :: p,ry int, ...}

e In addition, we’ll let label types be polymorphic over stack
types:

VoA{sp:int:: p,ry rint} — { }
e Type contexts may now contain stack variables:
A= |Aja|Ap

e Junk values have junk type: ?

44
Stack Instruction Typing

As before, instruction typing judgments have the form
\I/, AFiq: Fl — PQ

e Stack allocation:

U; AFsallocn:Tsp:=0] = T[sp:=2:--- 117 0]

e Stack free:

U A b sfreen:Lspi=m - i1y 0] = Tsp := 0]

e Stack load:

L(sp)=m - uTpo
U:AFsldr,n: T —Tr =7,

e Stack store:

A TRo:r D(sp)=m im0
U:AkFssto,n: D= Dsp=m -7 0]

45

Typing Factrec (Bug)

type 7, = {r1 :int,sp: p} —{ }

factrec:Vp.{sp D p, T nt, T3y Tp} — { }

L1:

RA:

bgt r1, L1[p]
mov 7y, 1

jmp r3;

Vp{sp:p,riint,rs; : 7, —{ }

salloc?2 hsp:T:7up
sstrs, 1 hspit,:?up
sstry, 2 h Sp:T,ant i p

subry,r, 1
mov 3y, RA[p] % r31:{sp:7,:mint:: p,r sint} — { }
jmp factrec|t, :: int :: p)

VpA{sp:7,int ::p,ry sint} —{ }
sldry, 2 % 7o :int

sldrs;, 1 h T31 1T,

mul'r‘l,rl,rg

jmp 31 %» ERROR! sp:7,:ant ::p

Typing Factrec Corrected

type 7, = {r1 :int,sp: p} —{ }

factrec:Vp.{sp D p,T1 i nt, T3y Tp} — { }

L1:

RA:

bgt ry, L1[p]
mov 7y, 1

jmp r3;

vp{Sp P, Ty ’L'I’Lt, 31 - Tp} — { }
salloc?2

sstrs, 1

sstry,2

subry,r, 1

mov 31, RA[p]

jmp factrec|t, :: int :: p)

Vp.{sp: T, iant @i p, Ty int} — 4}

sldry, 1 % 7o :int
sldrsy, 2 h T31 1T,
mul’r‘l,rl,rg

sfree? h Sp:p

Jmp r3;

46

Another Example

e The callee can’t mess with the caller’s stack frame:

caller: Vo' {sp : Teoge 2 P/} — { }
sallocl
mov ry, 17
sstry, 1
mov sy, RA[,O/]
jmp callee|Teoqe 22 p']
callee: Yp.{sp :int :: p,r3; : {sp:p,r1:int} —{}} —{}
sldrq, 1
addry,ry, 11
sstry, 2 % ERROR!
sfreel

jmp 31

RA: Yo' {sp: Teode :: p/y1m1 int} —{ }

e Polymorphism protects the stack.

47

48
The Theorems Carry Over

e Typing ensures we don’t get stuck.

— e.g. try to write off the end of the stack
— But it doesn’t ensure the stack stays within some
quota

e With a bit more complication, we can deal with exceptions
(See Morrisett et al. [12])

49
Things to Note

e We didn’t have to bake in a notion of procedure call /return.
Jumps were good enough.

— Side effect: tail calls are a non-issue.

e Polymorphism and polymorphic recursion are crucial for
encoding standard procedure call /return.

e When combined with the callee-saves trick, we can code
up calling conventions.
— Arguments on stack or in registers?
— Results on stack or in registers?
— Return address? Caller pops? Callee pops?
— Caller saves? Callee saves?

e [t’s the orthogonal combination of typing features that
makes things scale well.

50
Values of Different Size

e In high-level languages such as ML, all values have uniform
size

— The natural native representations of high-level val-
ues may have different sizes (64-bit floats vs. 32-bit
integers).

— To handle the size mismatch, an ML compiler will
boz floating-point values (represent them as a 32-bit
pointer to a float).

e In low-level languages, we must handle values with non-
uniform size.

— There is no assembly language compiler to insert box-
ing coercions!

— We must know how much space a value takes up on
the stack so the type checker can verify that stack
access is done properly.

— We must know which values are small enough to fit
into (32-bit) registers.

— In summary, we need a function that computes the
size of an object with type 7:

size(int) = 1
size(float) = 2
size(Vay,...,a, ' =>{}) = 1
size(739) =1
size(764) = 2

— But how do we compute the size of an abstract type
a?

o1
Kinds and Types

e Solution: we classify all types according to the size of the
objects that inhabit them.

e Generally, when we need to establish properties of types,
we will use a system of kinds

e Kinds classify types just as types classify expressions.

e Here, a kind can specify the size of the values in a partic-
ular type:

k:=8z(i)|T
e Type contexts A map type variables to their kinds:

Ac=-]Aa:k

52
Kinds and Types

e A judgment assigns each type a kind that reflects its size:

A Fint :: Sz(1) A F float :: Sz(2)

AF 7 ::8z(7) AF o ::8z(j)
A F nil :: Sz(0) Ab (1:0):8z(i+ 7)

Aa:kFa::k

AF 7 8z(1) AFT:T AFog:T
AFT:T AbFT:u0:T

e Modified stack load:

[(sp)=m - Tyt
AF (r - Typoq nil) i Sz(n — 1) At 1 2 8z(1)

U;AFsldr,n: T —=Tr:=7,]

— The load selects object m off the stack
— That object must fit inside a register (have kind Sz(1))

e x86 f1ld (load value onto floating point stack) will be sim-
ilar but require the object have kind Sz(2)

53
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

54
Certified Code Systems

e A complete system for certified code contains three parts:

— A strongly-typed source programming language.
— A type-preserving compiler.
— A strongly-typed target language.

e TAL will serve as our target language

e In this lecture, we will

— Develop a very simple strongly-typed source language.

— Explore the compilation process.

Source language: Tiny

e A simply-typed functional language.

— Integer expressions

— Conditionals

— Recursive functions

— Function pointers (no closures)

— A strong type system

e An example program:

letrec
fun fact (nunt) :int =
if n =0 then 1 else n * fact(n — 1)
in

fact 6

99

06
Tiny Syntax

e Types:
Tu=ant | 71— Ty
e Lixpressions:
e == x| f|n|e+e|eres|if e; =0 then ey else es |

letx = e€;1ney
e Function declarations:
d:=fun f(x:my):mm=c¢
e Programs:

P ::=1letrecd; --- d,ine

b7
A Tiny Type System

e Type checking occurs in a context ® which maps function
variables f and expression variables x to types

Expressions:

¢+ x:P(x)

O f:a(f)

OFn:int

OdrFe it PFes:int
dF e+ ey:int

Olei:mp—m Ple:n
DFe e

dre:int PlLey:7 Pleg:T
®F if ey =0 theney; elsees: T

dbe:m P,ambe:n
®Fletr =e;iney : 1

58
Typing Tiny Programs
Declarations:

S rmte:n
® - fun f(x:ﬁ) Ty =€ (f:T1 — T2)

Programs:
b = f127'1’1 > T1,2y -+ fn:Tn,l — Tn,2
(I)|_dZ : (fi:Ti,1_>Ti,2) ®Fe:int
- letrecd; --- d,ine

e All Tiny programs return an integer as their final result

e Exercise: verify that the factorial program is well-typed

59
Type-Preserving Compilation

e A compiler for a realistic language normally consists of a
series of type-preserving transformations

— After each transformation, we can type check the
code to help detect compilers.

e Every transformation in type-preserving compiler has two
parts:

— A type translation from source types to target types

— A term translation from source types and terms to

target terms

e The compiler described here is derived from the original
implementation of our Popcorn compiler [20, 11].

60
The Type Translation

e The type translation (7[-]) maps Tiny types to TAL types

e Integers:
T [int] = int

e Function types:

— The translation of function types fixes the calling con-
vention that the compiler will use.

x The caller pushes the argument and then the re-
turn address onto the stack.

x The callee pops the argument and return address.
The result is placed in register .

Tl — 7] =Vo{sp: Klr,p] = Tln] = p} =1 }

where

Klr,o]l ={sp:0o,r. : T[r]} = {}

61
Expression Translation

e To keep the translation simple, we will use the stack ex-
tensively:

— The values of all expression variables are kept on the
stack
x M maps expression variables to stack offsets
* I(M) increments the stack offset associated with
each variable in the domain of M

— To compute the value of an expression, we first com-
pute the values of its subexpressions and push them
on the stack.

— We return the value of an expression in the register
Ta

e In all, we use 3 registers and the stack

e The shape formal translation is £[e],,, = J where J is a
sequence of labels (and their types) and instructions.

e For each function f, we assume there is a TAL label L;
e T(e) is the source type of expression e

— Technically, we should thread the Tiny typing con-
text ® through the translation to make it possible to
construct the type of an expression e. For the sake of
brevity, we elide this detail.

62
Expression Translation

e Expression variables:
Elz]y o = sldra, M(2)
e Function variables:
Elfly e = movry, Ly

e Integer constants:
Elnly, =movry,n

e Addition:

g[[el + 62: M,o =

g[[el: M,o
pushr,

& [[62: I(M),int::o
pop ¢
addry, ¢, 7q

Expression Translation

e Function Call:

Eler ea] o =

g[[el]]M,a

pushr,

g[l:e2:|]I(M),T|[T1—)T2]]::O'
pPop Tt
pushr,
push L, p]
jmp r¢o]
L, :Yp.K[rs, 0]

where T(Gl) =T1 — T9
and L, is fresh

e Conditional:

E[if e; = 0 then ey else e3],,, =

g[[el]]M,a

bneq 7y, Leise|p]

g[[62]]M,0

jmp Lend [p]
Leise : Vp{sp:o}

g[[e?)]]M,a

jmp Lend [p]
Lend : VIOK[[Tv 0]]

where T(ey) =7
and Lgse, Lepq are fresh

e Exercise: Translate the let-expression

63

64
Program Translation

e Function translation:

Flfun f(x:m) : o =¢] =
Lf : T[[Tl — 7'2]]
g[[e]][x:=2],}C[[T2,p]]Z:T[[T1]]::p
pop T
sfreel
jmp ry

e Program translation:

Plletrecd; --- d,ine] =
Fldi]
Fldn]

Lmaz’n : Vp{Sp : K[[Z”t7 p]] - p}
g[[e]]-,lC[int,p]]::p

pop T
jmp 1y

— To run the program, jump to L,,qi» atter pushing the
return address on the stack.

— Expect the program result in register r,.

Example: Compiling Fact

e Recall the fact function in Tiny:

letrec
fun fact (n:int) :int =
if n = 0 then 1 else n * fact(n — 1)
in

fact 6

65

66
Example: Compiling Fact

Lier: VpA{sp: Klint] :: int :: p}

sldr,, 2 % load argument
bneq 7y, Leise|p] % n=07
mov 7, 1 % return 1
ij Lend
Lese: Vp{sp: Klint] ::int :: p}
sldr,,2 % begin multiplication (load n)
pushr,
MoV 7, Lfaet % begin fact call sequence
pushr,
sldr,,4 % begin subtraction (load n)
pushr,
mov r,, 1
pop T
sub7r,, Tt Ta hn—1
pPop 7 % load Ly,
push L, |p]

jmp re[int =2 K[lint, p] :: int :: p]
L.: VpAsp:int:: Klint,p] ::int 2 p,ry = int}

pop 1 % load n
mul r,, 7, Tq % n* fact(n — 1)
jmpLend[p]

Lena: VpAsp: Klint, p] == int =2 p, 7y :int}
Pop ¢ % pop return address
sfreel % throw away argument
jmp 7y % return

67
Optimizations

e Almost any compiler will produce better code than ours!
— But how many compilers can you fit on three slides?

e Our type system makes it possible to generate much better
code and to implement many standard optimizations:
— Instruction selection optimizations
— Common subexpression elimination
— Register allocation
— Redundant load and store elimination
— Instruction scheduling optimizations
— Strength reduction
— Loop-invariant removal
— Tail-call optimizations
— And others.

e As demonstrated by the TIL/TILT compilers, types do
not interfere with most common optimizations [21]

68
Instruction Selection

e Design principal: instruction sequences with the same op-
erational behavior should have the same static behavior.

— Unattainable in general, but something to strive for.

e We can synthesize the typing rule for push from a stack
allocation and store since pushv = salloc1;sstuw,1

— First, we write down the typing rules for the sequence,
specialized to specific operands:

U:AFsallocl:['sp:=0]|—=T[sp:=7:1:0] D

U; At sallocl;ssto,1:sp:=0] = lsp:=7:: 7]

U A;lsp:=T70|Fo:T
D=V;AFsstv,1:Tsp:="1:0]>Tsp:=1:0]

— Then we extract the premises at the leaves of the
derivation, removing the intermediate states:

U A:lsp:=T70|Fv:T
U: Ak pushv:T[sp:=0] > Tsp:=71:: 0]

69
Instruction Selection

e Since pushwv is statically equivalent to salloc1;sstw,1,
a compiler writer can always replace one with the other

— To optimize instruction encoding size
— To optimize execution efliciency

— To enable other optimizations

e Example:

push 7
push 8
push9

Can be replaced by:

sallocl
sst7,1
sallocl
sst 8,1
sallocl
sst9,1

Which can be further reduced to:

salloc3
sst7,1
sst g, 1
sst9,1

70

Tail-Call Optimizations

e A crucial optimization for functional languages

e Applies when the final operation in a function f is a func-
tion call to g

e Rather than have f push the return address and engage in
the normal calling sequence, f will pop all of its temporary
values and jump directly to g, never to return

e Example:

Without tail-call optimization:

Lfl

VoA{sp : K| Treturn, P 2 Tr—arg 2 PsTa : Tg—margt — { }
salloc?2

sst L, % push return address

sst g, 2 % push argument

ij Lg[dedr - Tf—arg -+ p]

Vp-{Sp s Traddr ++ Tf—arg ++ Py Tq - Tret} — { }

pop ¢ % pop return address
sfreel % throw away f’s argument
jmp 7y % return

With tail-call optimization:

Lf:

\V/p{Sp * Traddr ++ Tf—arg - PyTa - Tg—arg} —>{ }
sstry, 2
jmp L, |p] % g will return to f’s caller

71
What optimizations can’t we handle?

The version of TAL discussed so far provides no mechanisms for
the following source of optimizations:

e Optimizations that alter the code stream: run-time code
generation, run-time code optimization

— Smith, Hornoff, Jim, and Morrisett have designed a

system for safe run-time code generation (see Smith’s
thesis [18])

e Various stack-allocation strategies
— Our type system can’t represent pointers deep into
the stack
— Morrisett et al. [12] extend the stack typing disci-

pline, but more work needs to be done here

e Optimizations that rely upon properties of values that are
not reflected in the type structure:

— Arithmetic properties of integers (eg: n = 17), which
are useful for reasoning about arrays and pointer arith-
metic (coming in a following section)

— Aliasing properties of pointers in heap-allocated data
structures (coming in a following section)

72
Properties of the Compiler

e Our compiler is type-preserving:
If P is a well-typed Tiny program: - P then the compiled
program is also well-typed: - P[P] : ¥ for some V.

e The proof would proceed by induction on the structure of
the program P.

e Each optimization phase and compiler transformation re-
spects this property.

e To detect errors in our compiler’s implementation we can
run the compiler and type check the output.

73
Practical Compiler Issues

e As you translate from a high-level language to a low-level
TAL-like language, the types must encode the structural
information lost in the translation

e Result: by the time we have compiled to assembly, the
types encode lots of data

e Careful engineering is required to enable efficient code size
and type checking time
— The Popcorn Compiler (PI1266):
— Object code: 0.55MB, 39 modules
— Naive encoding: 4.50MB, checking time: 750s
— Optimized encoding: 0.27MB, checking time: 22s
— Checking time scales linearly with code size

— Likely more optimization possible

74
Popcorn Example

e Source Type:

int — bool
e TAL Type:

All a:T,b:T,c:T,r1:5,r2:5,el1:C,e2:C.

{ESP: {EAX:bool, M:el+e2, EBX:a, ESI:b, EDI:c,
ESP:int: :r10@{EAX:exn,ESP:r2,M:el+e2}::r2}::int::r10@
{EAX:exn,ESP:r2,M:el+e2}::r2,

EBP: sptr{EAX:exn,ESP:r2,M:el+e2}::r2,
EBX:a, ESI:b, EDI:c, M:el+e2}

e Types for higher-order functions can require pages to write
them down!

75
Compressing Types

o Guzip:

— Effective for reducing binary size over the wire

— No help during verification
e Tailor types to the language being compiled/the compiler

— eg: fix the calling convention

— Restricts interoperability /language and compiler evo-
lution

e Higher-order type constructors

— Fairly effective, useful for compiler debugging/code
readability

e Hash-cons (ie: use graphs to represent types)

— Highly effective, fast type equality

— A significant engineering investment
e Type reconstruction/type inference

— Can be very efficient with respect to both space and
time

— Must take care to avoid increasing trusted computing
base

e See Grossman and Morrisett [6] for a survey of techniques
used in our implementation.

76
Summary of Type-Directed Compilation

e Type-directed and type-preserving compilation provides
an automatic way to generate certifiable low-level code

e We can prove that the compiler produces well-typed as-
sembly code from any well-typed source language program

e Programmers can program as they normally do in their
favorite strongly typed high-level language

e Constructing a type-preserving compiler takes more work
initially but the result is more robust:

— Compiler writers must transform both types and terms

— Special care must be taken to compress type infor-
mation

— Type checking intermediate program representations
can detect compiler errors

e Most conventional compiler optimizations are naturally
type-preserving, so using a typed target language has little
impact (if any) on compiler performance

77
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

78
Data Structures

e The register file and stack give us some local storage for
word-sized values

— Stack space can be recycled for values of different
types
— Critical trick: can’t create pointers to these values

— The trick prevents code from seeing two different views
of the stack (through different pointers/aliases). It is
simple to ensure that the single view of the stack is
accurate.

e What about aggregates?

— eg: tuples, records, arrays, objects, datatypes, etc.

— TAL puts these “large” values in the heap and refers
to them via pointers.

— This introduces aliasing and the potential for multiple
views/access pathes for the same data structure

— Recycling heap memory is not as easy

79
TAL-3: Add Tuples

Let heap H map labels to either blocks of code or tuples
of values: (v1,...,v,)

e The values v; are either integers or labels
e The labels are abstract (no pointer arithmetic)
e Tuple instructions:

— Allocate tuple: mallocry,n
— Load from £ component of the tuple: 1dry, r,(k)

— Store into k' component of the tuple: st ry(k),r,

e Tuple types: (7’1, .. ,Tn>

80
Tuple Operational Semantics

e Allocation:

(H,R,vy :: -+ v, = S;mallocrg,n; B) —>
(H[L: (v1,...,vn)], R[rq := L], S, B)
where L is a fresh label (ie: not in Dom(H))

e Load:

(H,R,S,1dry,7rs(k); B) — (H, R[rq := v, S, B)
where H(R(rs)) = (v1,...,vy) and 1 < k < n

e Store:

(HIL = (vi,...,un)], R, S,strq(k),rs; B) —>
(HIL = (vy,...,05_1, R(Ts), Vks1,---,n)], R, S, B)
where R(ry) = L

81
Tuple Typing

e Allocation:

[(sp)=mumu--utyuo

U;AFmallocrg,n: I —=Tlsp:=0,75 := (11,72, .., Tn)]

e Load:

U AT Erg i {m,...,m) 1<k<n
U A ldrg,rs(k) : T — Ulrg := 7]

e Store:

VAT Erg:(r,....7n) V;A;TErg:m 1<k<n
U:AFstrg(k),rs : T =T

82
Remarks

e The load and store operations correspond to conventional
RISC instructions.

e The malloc instruction does not.

— Typically, this would be implemented by a call into
the run-time to atomically allocate and initialize the
tuple.

— Atomic allocation and initialization interferes with
our ability to compile common C-style programming
idioms

— Interferes with instruction selection and scheduling

— The advantage is a simple design where we need not
reason about pointers and aliasing.

e There’s no way to explicitly deallocate heap memory

— TAL relies upon a garbage collector to reclaim all
heap storage.

— Remember, the garbage collector is another element
of our trusted computing base.

e The types of tuples are invariant.

— You can’t update a component in the tuple with a
value of a different type

— The same is true for code and other heap objects

e In summary, TAL has the memory model of a high-level
programming language

83
Arrays

e Hard issues:
— Need to allocate and initialize storage of unknown
size.
— Each array subscript operation must be in bounds.
— In general, this implies we need size information at
run time.

e Simple solution: special operations:

— new_array 7Tg,'size; I'item
— asub Tjtem, ’I"a(’f’i)
- aupd Ta (,r?:)j Titem

— The disadvantage is that this fixes array representa-
tions and makes interoperation with other languages
difficult /costly. There is some overhead to perform-
ing the array-bounds checks.

84
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

85
TAL-4: A Refined Memory Model

e Machine states now have the form (Hy; Hys; S; R; B) where
H,, is memory managed explicitly by the TAL program

e In order to check programs that explicitly manage memory
(as most C programs do) we will reason about the shape
of memory using a simple logic

o (::= {ﬁl—) <7'1,...,’7'n>} | 1 | 01®02 | €
e ¢ is a logic variable
e / is a label: either a label variable ¢ or a concrete label L

e We also introduce a new type of managed pointers: S(/)

— Only label L has type S(L)

— When two labels have type S(¢), we do not know
which labels they are, but we do know that they are
the same label (they are aliases)

86
Well-formed Stores

e The judgment ¥ F H : C states that a heap H is well-
formed and is described by the formula C.

e We specify a nondeterministic merge of two stores H; and
H, using the notation H; >1 Hs. It requires that the do-
mains of the stores H; and H, be disjoint.

UE{}:1

\IJI—H1:01 \Ifl_HQICQ
\Ij'_H1[><]H2:01®02

U:-bkw,im forl1<e<n
UEA{Lw— (vi,...,o)0} AL (T1,...,T0)}

e Example:
Lll L2: Lgl

e

87
Using Store Types

e New instructions:

— mmalloc ¢, r,n

— freer

e Our old load and store instructions will have overloaded
typing rules

e Code types are extended with an extra field to describe
the shape the store must have before we jump to the code:

—{hp:C,sp:o,r1:71,. .., Ty i T} —{ }

Examples

foo: Ve, p{hp:e€ sp:p,r:int,
rs1:{hp:e sp:p,ryintt —{}}—{}
mmalloc @, o, 0 hAp: e {p— (7,1}, 12 : S(¢)
mov 77, I’y h 7 S(d)
st r7[1], 71 h hp:e® {p+— (int,?)}
st re[2], 71 h hp:e®{p+— (int,int)}
free ry h hp:e€
Jmp 731

An error:

foo: Ve, p{hp:e€,sp:p,r:int,

rs1:{hp:e,sp:p,rint} > {}}—>{}
mmalloc ¢, ra,n % hp:e®@{p— (7,71}, re 1 S(d)

MoV '7, Ty h 7 S(P)
stry[1], 7 h hp:e®{p— (int,?7)}
st re[2], 71 h hp:e®{p— (int,int)}

jmp 731 %» ERROR! Memory leak.

88

89
Heap Logic: Details

e To type check code, we must use the entailment relation
from our heap logic: C'+ ('

e More generally, entailment has the form L F C' where L is
a sequence of assumptions C'

e This logic is a tiny fragment of linear logic and the sequent
calculus rules follow.

F1
L.L'-C
L1.LFC

L,C,C L'+C"
LCC,L'-C"

L-C L'k
LxL'+FC®C

{op—= (11,...;7)E{d— (11,...,T0)}

€l €

e These rules are sound with respect to our heap model and
entailment is decidable. Prove these facts as an exercise.

90
Subtyping

e We fold the logic into our type system by extending the
subtyping relation:

crC
[lhp := C|] < T|hp :=C"]

91
New Judgments and Block Typing

e Extended instruction typing judgment:
U:AF:T— [AY

e may be read as “given a managed heap type ¥ and the type
variables A, instruction ¢ has register file precondition I
and there exist types A’ such that the postcondition I
will be satisfied upon execution of the instruction.

e The block typing judgment is as before:
UAFB:T'—{}

e But the rules for stringing together instructions change
slightly:

AR T = [AY U,AAEB: TV {}
VARG B:T'—{}

e The rule for typing jumps does not change, but remember
that register file typings now contain more information
(the type of the managed heap).

U T'Fo:T'—{}
Uk jmpo:T'—{}

92
Instruction Typing Rules

n

——
P(hp) =C ' =T[hp = C & {6 T Dl = S(&)]
U: A Fmmalloc ¢, r,n: T — [¢]”

U AT Er:SY)
Chp) =CR{l— (T1,...,70)} I"=Tlhp :=C]
U; AFfreer: ' — []IY

U AT FEorg: S AT Erg T
T(hp) =C Rl — (T1,. .., Thye oy Tu) }
M=Thp:=CR{l— (T1,...,7y...,Tu)}]
U A strg(k),rs: T — [TV

U AT Frg s 7 U AT g S
Thp) =CR{l— (T1,. ., Thy -, Tn) }
U:AF1drg,rs(k) : T — [T

The store type may not match a given instruction precondition
syntactically, so we must introduce the following rule to prove
the store has the form required at different program points.

<1
U AT R — [TV

93
Comments

e Singleton types allow us to identify pointers and their aliases.

e Label polymorphism allows us to abstract away from the
specific name of a label but retain the aliasing structure
of the heap

e Heap polymorphism allows us to abstract away from the
size and shape of a portion of the heap

e With recursive and existential types, we can encode linear
lists and trees. (See Walker and Morrisett [25])

e We can extend our type system to incorporate a Turing-
complete logic provided we annotate our programs with
explicit proofs of the entailment relation. (See Reynolds
[16] and Ishtiaq and O’Hearn [9])

94
Arrays

e Often, using some simple arithmetic facts we can prove
that an array access is in bounds at compile time, elimi-
nating the need for a check at run time

e Following Xi, Pfenning and Harper ([28, 27]), we may ex-
tend the type checker with a (classical) logic for reasoning
about arithmetic, just as we used a (linear) logic for rea-
soning about the heap

e Arithmetic expressions:

a:=1i|n|a+sas|a; —32as|a; X3z as | a; xor as

— ¢ 1s a 32-bit number variable
— n 18 a 32-bit constant

— All expressions have machine semantics

e Logical connectives:
P:=p|true|false|a; <yas | PP D P | PAP,|-P|---

e New types:

— Singleton integers: S(a)
— Array types: 7 array(a)

95

Refined Operand Typing

e New type contexts:

Au=-|Aa=rk|AP

e New operands: v[proof]

v must be code with a logical precondition: V[P, A’].I"

v[proof] has type V[A'].T" provided that proof is a
proof of P in the current context:

U AT Ho V[P AT = { } A+ proof : P true
U A; T F o[proof] : V[A'l.T — { }

For the sake of brevity, we will omit such proofs from
our examples (alternatively, we could assume that a
theorem prover is able to reconstruct the proof with-
out help)

we write instead

vl

e We give constant integers a more refined type:

U AT Enc:Sin)

96
Refined Instruction Typing

e Instruction typing judgment:
U:AF:T— [AY

e Addition:

U AT Ery:S(az) ;AT 7y S(as)
U:AFaddry,re,rs : I'— T[ry := S(ag 432 as)]

e Array access:

U AT Fry 7 array(a) U AT Eors o S(as)
A F as <, a true

U AF1dry,re(rs) : T'— Try := 7]

— As with operands, we could annotate load instruc-
tions with a proof of the arithmetic inequality above:

1d 7y, ra(r3)[proof]
e Conditional branches

AT Fo: V[P —A{} U: AT Er:S(a)
A,a <0F P true
U:AFbler,v:I'—[a> 0]l

97
Outline

e TAL-0: Assembly Language Control Flow and Basic Types
e TAL-1: Parametric Polymorphism

e TAL-2: Stack Types

e Type-Directed Compilation: From Tiny to TAL-2

e TAL-3: Data Structures

e TAL-4: Dependency

e TAL-5: Modularity and Linking

e References

98
Separate Compilation and Linking

e TAL provides mechanisms that allow program parts to be
compiled separately, checked for compatibility and linked
together to form an executable

e Such functionality is important in almost any program-
ming environment but indispensable in a setting of mobile
code and extensible systems

e TAL provides facilities for static linking (all components
are assembled before executing the program)

— See Glew and Morrisett [5]

e TAL also provides facilities for dynamic linking (compo-
nents are loaded into a running program)

— See Hicks, Weirich and Crary [8]

e Here, we concentrate on static linking

Linking Diagram

99

Example
fact_e.tali:

VAL factrec: Vp.{sp: p,r
sy - {Tl

fact.tal:

EXPORT fact e.tali

factrec: VopA{sp:p,m
sy - {Tl

subrsy,ry, 1
blers, L1[p]

jmp 31

L1: Vp{sp:p,m
st - {Tl

salloc?2

sstr3i, 0

int,
cant, Sp :

int,
cant, Sp :

cwnt, T
cwnt, sp :

pr—={ =17

pr—={1r—=11

int,

pr={ =17

100

Example Continued

stdio_e.tali:

TYPE file
VAL fprintf. - - -

main_i.tali:

TYPE file
VAL fprintf. ---
VAL factrec: - - -

main e.tali:

VAL main: - - -

main.tal:

IMPORT main_i.tali
EXPORT main_e.tali

mawn: - - -

jmp factrec

101

102

Comments

e At the assembly language level:

Each implementation file (.tal file) defines a collec-
tion of types and values.

Each implementation file also declares a collection of
imports and exports

FEach interface file (.tali file) declares a collection of
values with their types and types with their kinds.

Our convention is that foo_i.tal files contain the
imports needed by foo.tal and foo_e.tal files con-
tain the exports

e At the machine code level:

.tal files are replaced by .o files, which contain bi-
nary code and data and .to files, which contain a
compressed binary representation of the associated
typing annotations

103
Link Checking

e Before linking, we check:

— If one file imports a value labeled foo and the other
file exports a value labeled foo, does foo have the type
expected by the importing file?

— Similarly, do import and export type declarations
with the same name have the same kind (in our simple
case: do stack types match stack types and ordinary
types match ordinary types)?

— Are there any import/export name clashes?

— Note that unexported labels will not clash with labels
from other files since they alpha-vary

e Before attempting execution, we check:

— Are there any remaining types or values to import?

104

References

[1]

2]

4]

[5]

(6]

7]

Karl Crary. A simple proof technique for certain parametricity
results. In International Conference on Functional Program-
ming, pages 82—89, Paris, France, September 1999.

Karl Crary and Stephanie Weirich. Flexible type analysis.
In ACM International Conference on Functional Programminyg,
pages 233-248, Paris, September 1999.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional
polymorphism in type-erasure semantics. In ACM International
Conference on Functional Programming, pages 301-312, Balti-
more, September 1998.

Neal Glew. Low-level Type Systems For Modularity and Object-
oriented Constructs. PhD thesis, Cornell University, January
2000.

Neal Glew and Greg Morrisett. Type-safe linking and modular
assembly language. In Twenty-Sixth ACM Symposium on Prin-
ciples of Programming Languages, pages 250—261, San Antonio,
January 1999.

Dan Grossman and Greg Morrisett. Scalable certification of
native code: Experience from compiling to TALx86. Technical
Report TR2000-1783, Cornell University, February 2000.

Robert Harper. A simplified account of polymorphic references.
Information Processing Letters, 51(4):201-206, August 1994.

Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flex-
ible dynamic linking of native code. In Robert Harper, editor,
Third International Workshop on Types in Compilation, num-
ber 2071 in LNCS, pages 147-176, Montreal, Canada, March
2001.

9]

[12]

[13]

[14]

[15]

[16]

105

Samin Ishtiaq and Peter O’Hearn. BI as an assertion language
for mutable data structures. In Twenty-FEighth ACM Symposium
on Principles of Programming Languages, pages 14—26, London,
UK, January 2001.

Greg Morrisett. Lecture notes on language-based security, July
2001. Available at www.funtechs.org/Ibs.

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich,
and Steve Zdancewic. TALx86: A realistic typed assembly lan-
guage. In ACM Workshop on Compiler Support for System Soft-
ware, pages 25—35, Atlanta, GA, May 1999.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-based Typed Assembly Language. In Second Interna-
tional Workshop on Types in Compilation, pages 95-117, Ky-
oto, March 1998. Published in Xavier Leroy and Atsushi Ohori,
editors, Lecture Notes in Computer Science, volume 1473, pages
28-52. Springer-Verlag, 1998.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to Typed Assembly Language. ACM Transactions

on Programming Languages and Systems, 3(21):528-569, May
1999.

Frank Pfenning and Carsten Schiirmann. system description:
Twelf — a metalogical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International Con-
ference on Automated Deduction, number 1632 in LNAI, pages
202-206, Trento, Italy, July 1999. Springer-Verlag.

John C. Reynolds. Types, abstraction, and parametric poly-
morphism. Information processing, pages 513-523, 1983.

John C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In Mzillennial perspectives in computer sci-
ence, Palgrove, 2000.

[17]

23]

[24]

[25]

[26]

106
Carsten Schiirmann. Automating the Metatheory of Deductive
Systems. PhD thesis, Carnegie Mellon University, August 2000.
Published as CMU Technical Report CMU-CS-00-146.

Frederick Smith. Certified Run-time Code Generation. PhD
thesis, Cornell University, 2001.

Frederick Smith, David Walker, and Greg Morrisett. Alias
types. In FEuropean Symposium on Programming, pages 366
381, Berlin, March 2000.

TALx86. See http://www.cs.cornell.edu/talc for an implemen-
tation of Typed Assembly Language based on Intel’s TA32 ar-
chitecture.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In

ACM Conference on Programming Language Design and Imple-
mentation, pages 181-192, Philadelphia, May 1996.

David Walker. A type system for expressive security policies.
In Twenty-Seventh ACM Symposium on Principles of Program-
ming Languages, pages 254-267, Boston, January 2000.

David Walker. Typed Memory Management. PhD thesis, Cornell
University, January 2001.

David Walker, Karl Crary, and Greg Morrisett. Typed memory
management in a calculus of capabilities. ACM Transactions
on Programming Languages and Systems, 22(4):701-771, May
2000.

David Walker and Greg Morrisett. Alias types for recursive data,
structures. In Workshop on Types in Compilation, Montreal,
September 2000.

Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation, 115(1):38-94,
1994.

[27]

28]

107

Hongwei Xi and Robert Harper. A dependently typed assembly
language. In International conference on functional program-
ming, Florence, September 2001.

Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In Twenty-Sixth ACM Symposium on Principles
of Programming Languages, pages 214—227, San Antonio, TX,
January 1999.

