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Abstract. This paper presents work in progress on the
C4 toolkit, which is designed to bring AOSD techniques
to system software written in C and which we have used
for introducing aspects into the Linux 2.6 kernel. The
design of our toolkit focuses on addressing key concerns
raised by system software developers when handed a new
programming paradigm: readability, compatibility, per-
formance, and the preservation of existing development
workflows. By addressing these concerns, we believe our
toolkit can bring the benefits of AOSD techniques to any
large and complex program written in C.

1 Introduction

For system software, C has been the language of choice
for many years and will likely remain so for many more.
Many large systems, including operating systems (Linux,
Mac OS X, etc.), services (Apache, Mysql, etc.), and
even applications (FireFox, IE, etc), are written in C
and actively extended by its developers. Often these
extensions representcrosscutting concernsin that they
do not fit within a single program module and are scat-
tered throughout the system sources—easily affecting a
hundred files. Defining, maintaining, distributing, and
applying such extensions is time consuming and error
prone. Moreover, it is a significant challenge to ensure
the correctness when composing a base system with mul-
tiple extensions.

More specifically, crosscutting extensions to the
mainline code base are common for Linux. Embedded
systems use extensions that reduce the kernel’s memory
footprint (e.g., [16, 24]), desktop systems use extensions
supporting stronger security mechanisms that reduce the
impact of viruses and worms (e.g., [15]), web hosting
or time-shared systems use resource management exten-
sions to isolate users from each other (e.g., [17, 2]), and
super computer systems use special resource manage-
ment modifications that scale the OS to a large number
of processors and support NUMA technology (e.g., [4]).

Recognizing that crosscutting concerns are common
for Linux, our work seeks to make them part of the ker-
nel’s architecture by leveraging aspect-oriented software
development (AOSD) techniques. However, existing
AOSD techniques target different languages—notably,
Java and C++—and workflows—with aspects being de-
veloped in separation of the mainline program—while
system builders continue to use C and develop their ex-
tensions inline, then extract, distribute, and inject them

into different versions of the program. To reconcile this
gap between AOSD efforts and systems practice, we are
building theC4 toolkit, seeking to address the following
research questions:

1. How can C be extended with aspects while also pre-
serving readability, compatibility, performance and
existing workflows?

2. How can program analysis automate the identifica-
tion and resolution of composition conflicts?

Thiswork in progresspaper focuses on the first ques-
tion. Aside from the lack of production compilers sup-
porting aspects for C, we think there are two fundamental
concerns that, if left unaddressed, will inhibit adoption
of AOSD techniques: system software developers (1) are
loath to adopt/learn new programming paradigms and (2)
typically reject anything that introduces any space/time
overheads (see [19] for further details).

To address the first concern we introduce a simple
“dual-view” programming model for aspects. In one
view, programmers can define aspects the conventional
AOSD way by using a so-called “pointcut” language. We
adoptAspectC [3], whose pointcut syntax is analogous
to that used by AspectC++ [23] and AspectJ [14]. The
dual toAspectC is C4 for CrossCutting C Code, which
represents the code of an aspect directly inline with the
mainline code base.C4 is a minor extension to conven-
tional C (mainly consisting of what looks like syntac-
tic sugar), and thereby hopefully assuages the knee-jerk
rejection to new programming paradigms that systems
programmers are known for. One goal of our toolkit is
to seamlessly translate between theC4 and AspectC
views and back again, thereby easing the maintenance
task for crosscutting extensions.

To address the second concern, we have built a com-
piler for theC4 language that tightly integrates aspects
with the mainline source, enabling aggressive optimiza-
tions at compile time. We have used this compiler to add
before, after, andaroundadvice as well asintroductions
to a modern Linux 2.6 kernel. There is no difference
in terms of space/time overhead when the extension is
added via an aspect vs. manually inlined by a systems de-
veloper. Moreover, it was easy to make theC4 compiler
part of the existing Linux build system, which lets our
solution be completely backward compatible with the ex-
isting development practice.

We first touch upon the motivation for building theC4
toolkit in Section 2. We then provide an overview of



the C4 toolkit and our progress so far in Section 3. We
conclude in Section 4 with a discussion of pitfalls that
we need to avoid.

2 Motivation

As developers of extensions to mainstream system soft-
ware written in C, we have been frustrated by the lack
of appropriate tools to manage the complexity involved
with maintaining such extensions. Therefore, our goal
for theC4 toolkit is making fine-grained extensibility of
mainstream system software practical, focusing on the
Linux kernel.

Major variants to a mainstream kernel such as Linux
are typically created by adding kernelextensions. Cur-
rent best practice is to implement such an extension by
directly modifying the code base of a mainline Linux
kernel. Developers often start with a kernel fromwww.
kernel.org and then implement their extension by
changing the kernel’s source code in order to meet the
performance or functionality requirements of their target
application domain. Upon completing the development
of an extension, the developersextractthe extension with
tools such asdiff to create a “patch set.” They then
share the resulting patch set with others, who in turn will
integrate the extension into their version of the kernel
using tools such aspatch .

We have written a separate paper on whypatch
should be considered harmful for maintaining kernel ex-
tensions [8]. In a nutshell, because tools such aspatch
build on textual comparison, they have two major limita-
tions:

1. Patch sets are brittle. Even minor textual modifica-
tion to the mainline code can causepatch to fail,
forcing the person applying the patch set to (a) man-
ually integrate the extension and (b) maintain this
integration as the mainline code base evolves.

2. Patch sets are difficult to compose both textually and
semantically. At the textual level, patch sets are
generated against the baseline code and therefore
the integration of extensions will fail when multiple
patch sets modify the same code sequence(s). At
the semantic level, even if patch sets apply, the de-
veloper cannot determine whether they in fact result
in a correctly working kernel.

Of course, better solutions for operating system ex-
tensibility and composability have been studied ex-
tensively: Singularity [13], SPIN [1], Exokernel [6],
Kea [25], MMLite [12], KNIT [22] and the OSKIT [9]
are just a few examples. Moreover, Lohmann et al. [18]
provide a quantitative analysis of aspects in the eCos ker-
nel. However, these systems represent clean slate designs

focused on extensibility and composability. They require
fundamentally different programming models, APIs, and
development practices when compared to the status quo
set by mainstream operating systems such as Windows,
Linux, and Mac OS X.

In contrast, we seek to address the brittleness and
composition problems of patch sets, while also minimiz-
ing any changes on existing development practices. In
other words, we need to build on C and rely on inline
development, extraction, distribution, and integration,
while also maintaining backwards compatibility, source
code readability, and executable performance.

Our chosen approach is to express extensions, at
the source level, as aspects—thus providing a language-
supported mechanism for extracting and injecting cross-
cutting concerns from and into a program. By do-
ing so, we can directly address the limitations of patch
sets. First, aspects provide a well-defined specification
of domain-specific features that can be separated from
baseline functionality, but can also be automatically in-
tegrated again. Second, we believe that aspects enable
tools that perform automatic analysis of the interaction
between several crosscutting concerns and identify true
semantic conflicts as opposed to the line-by-line conflicts
identified bypatch .

3 TheC4 Compiler Toolkit

In this section, we discuss our aspect-oriented language
enhancements, theC4 toolchain overall, and code gener-
ation in particular. In other words, we describe how we
are addressing the research question of extending C with
aspects but without impacting readability, compatibility,
and performance.

3.1 AOSD Language Enhancements

Due to our dual-view approach to AOSD in C, we have
two languages:AspectC andC4.

The AspectC language.Since aspects encapsulate
concerns that crosscut many other concerns, usually in
many different places (files, functions), there is a need to
describe the collection of join points (points in the execu-
tion of a program affected by an aspect). This collection
of join points is called a “pointcut”. We useAspectC as
our pointcut language for C, building on an earlier ver-
sion defined by Coady [3]. The originalAspectC is
derived from the non-object-oriented mechanisms in As-
pectJ [14] for Java and represents the current state of the
art in AOSD, thus providing us with a solid basis to con-
tinue our research with.

The C4 language. This language represents an
AOSD-enhanced version of the C language and is de-
signed to aid developers with defining aspects inline the



mainline code. It departs from established AOSD prac-
tice in order to support current systems practice. Without
it, system builders would have to adopt a considerably
less familiar programming paradigm, thus increasing the
challenge to successfully adopting AOSD techniques.

BothAspectC andC4 languages supportbefore, af-
ter, andaroundadvice for execution join points. Both
languages also support aspect-orientedintroductionsof
global variables, functions, and types, as well as new
fields to structures and unions.

There currently is no support for dynamic join points
such ascflowandcall. It is challenging to support these
in a manner that is both efficient and correct. Forcflow,
we could adopt the implementation technique used by
AspectC++[23]; while it imposes little space/time over-
head, it does not work correctly in programs that use non-
local returns (e.g., setjmp/longjmp, signal handlers, etc.).
Supportingcall join points efficiently in C is difficult due
to the existence of function pointers, as it potentially re-
quires a runtime check at most (if not all) call points us-
ing function pointers. While we are investigating tech-
niques to support such dynamic join points, we believe
that support for just execution join points is sufficient to
alleviate a significant point of pain felt by systems pro-
grammers adding extensions to a mainline code base.

We do not present the formal definition of either lan-
guage. Furthermore, the equivalent of ourAspectC
language is already detailed by Coady [3]. For this rea-
son, we will focus on presenting theC4 language with a
set of simple examples.

Listing 1 showsbeforeandafteradvice defined in the
code using theC4 language.

1 int foo( char **c, size_t s) {
2 /* Before advice for aspect ‘‘bar’’ */
3 aspect_before(bar) {
4 printf("I am a before advice.\n");
5 ...
6 /* execution flow falls through */
7 }
8

9 ... /* Function body */
10 return 42;
11

12 /* after advice for aspect ‘‘bar’’ */
13 aspect_after(bar) {
14 printf("I am a after advice (%d).\n",
15 __returned__);
16 ...
17 }
18 }

Listing 1: Inline before and after advice

As shown, programmers simply encapsulate the
extension code they wish to add to the mainline
code with either an aspectbefore(identifier) or as-
pectafter(identifier) construct. Syntactically the before

and after advice are at the beginning and end of a func-
tion, respectively.

The before advice has access to the function’s formal
arguments. Any changes to these arguments will be vis-
ible when control falls through the bottom of the before
advice to the subsequent code, which in this case is the
main function body yet could also be nested before or
around advice.

When after advice is applied to a function, theC4
compiler changes the operational semantics of all re-
turn statements within that function to ensure that control
flows to the after advice block. Specifically, rather than
exiting from the function on line 10, the return value is
stored in a local variable, calledreturned , which is
accessible by the after advice (see line 15). The after
advice can optionally change this value, which will then
become the new return value of the function.

Listing 2 illustratesC4’s aroundadvice, which uses
an aspectaround() keyword to encapsulate the advice
block.

1 void func( int var, char *str) {
2 /* Around advice for Aspect ‘‘foobar’’

*/
3 aspect_around(foobar) {
4 printf("Inside around advice\n");
5 if (var == 20)
6 proceed(20,"Twenty");
7 else
8 proceed(0,"ZERO");
9 /* execution flow implicitly returns

from here */
10 };
11

12 ... /* Function body */
13 }

Listing 2: Inline around advice

Thearoundadvice appears before the function body.
To enter the main function body from around advice, the
programmer must explicitly useproceed([ args ])
statement(s) from the around advice.

Listing 3 shows examples of aspect-orientedintro-
ductions.

1 aspect_introduction(test) {
2 struct testFile{ char *name; int fd

; ...
3 };
4 typedef int myint;
5 };
6

7 struct system { int a,b,c; ...
8 aspect_introduction(memory) {
9 int new_a; /*only visible to aspect*/

10 };
11 };

Listing 3: Introductions
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Figure 1: The interaction between C4’s tools. TheASTECifierelevates common C preprocessor uses to the language
level, thus providing our tools with a more stable basis. Theunweavertakes an extended program as its input and
extracts the corresponding aspects. Theweaver, in turn, takes the mainline code and aspects as its inputs and produces
the inline version again. TheC4 compilergenerates executable code, deferring traditional optimizations and code
generation to gcc.

C4 allows the introduction of new fields to structures
and unions, as well as new functions, types, and global
variables to a program. Lines 1–5 of listing 3 show
the syntax for introducing a global type and a structure.
Also, lines 8–10 illustrate how new fields can be inserted
into an existing structure. Note that these introductions
areonlyvisible to the aspect that defines them. For exam-
ple, a variable introduced inaspect(foo) will not be
visible in aspect(bar) . Moreover, an aspect’s intro-
ductions will not be visible in the normal C scope. This
is necessary to avoid name clashes in the global name
space of a large system.

While we support nesting of different aspect advice,
we have yet to define support for composing aspects and
ordering the application of advice to functions. Explicit
composition support will let one aspect leverage intro-
ductions provided by another aspect. AspectC++ has
support for ordering the application of aspects and we
are investigating whether we can leverage their approach
within both ourC4 andAspectC languages.

3.2 Tool Support

Our goal is to fully explore the practicality of system
software extensibility using AOSD techniques. To do
this requires that we build the corresponding tools. Fig-
ure 1 illustrates our tools in the context of a development
work flow commonly used by system software develop-
ers — i.e., extend and test, extract tested extension, and
reinject extension into mainline source base. In support
of this work flow model, our tools include theunweaver,

which extracts aspects defined using theC4 language,
theweaver, which injects aspects, and theC4 compiler,
which translates C code withC4 language extensions to
executable code via a traditional compiler such as gcc
(which performs traditional optimizations and code gen-
eration). These three tools are being built on top of
xtc [10, 11], which provides a toolkit for building ex-
tensible source-to-source transformers.

While xtc will reduce the required engineering
effort—in fact, we have already implemented a proto-
type compiler forC4 on top of it (viz. Section 3.3)—we
are still facing two major challenges in realizing these
tools. First, the C preprocessor is based on textual sub-
stitution and thus represents a considerable obstacle to
provably correct unweaving and weaving as well as to
semantic analysis of aspects. To address this challenge,
we will not base theC4 language on C itself but rather
on ASTEC [20], which extends C with language-level
constructs for common uses of the C preprocessor [7]
and thus provides a more suitable basis for our work.
We expect to leverage the conversion tool created by
ASTEC’s designers, which (largely) automates the tran-
sition to ASTEC. However, to ensure thatC4’s users can
easily back out of both ASTEC andC4 we will also cre-
ate the tool to revert back to traditional C code.

Second, moving fromC4 to AspectC back toC4
view should result in exactly the same program sources
as the original sources. At a semantic level, this iso-
morphism captures the requirement that unweaver and
weaver must not modify a program’s code beyond ex-
tracting and injecting an extension. At a syntactic level,



it captures the requirement that the unweaver and weaver
must preserve a program’s formatting including com-
ments to minimize any developer disruption (who, for
example, would surely not appreciate if theC4 tools re-
formattedtheir code according toour coding conven-
tions). To address this challenge,xtc ’s modular parser
generator and code pretty printers need to be extended
with support for preserving formatting and comments.

3.3 Compiler for the C4 language

Referring back to figure 1, we have implemented a pro-
totypeC4 compiler that can transform theC4 language
into pure C code. The compiler implementation of the
inline aspect-oriented advice and introductions inC4 is
relatively straightforward. We built ourC4 compiler by
extending the modular C grammar provided withxtc .
The corresponding parser emits a full abstract syntax tree
(AST) representation of the sources and thereby enables
us to fully analyze the program. Specifically, we leverage
this functionality to understand the precise scope within
whichC4 code has been defined.

Aspect-orientedbefore and after advice is directly
inlined into the code and assigned a new scope within
the function. This prevents interference with the normal
function scope and, more importantly, meets the perfor-
mance criterion that is so important to system software
developers: the overhead of invoking advice is indistin-
guishable from any other inlined function. To ensure
compatibility with debugging tools such as gdb, we also
specify the corresponding #line statements in the gener-
ated code to correspond to theC4 statements versus the
pure C code generated by theC4 compiler.

As mentioned, theC4 compiler modifies the opera-
tional semantic ofreturn statements in functions to
which advice has been applied. This may be a source
of confusion to conventional C programmers, as the ex-
pected behavior is to exit the function. We are consider-
ing of havingC4 rewrite the return statement to an ex-
plicit goto statement at the source level. However, we
intend to defer this type of change until we receive the
corresponding user feedback, i.e., that changing the se-
mantics of return is confusing them.

Aspect-orientedaroundadvice is also directly inlined
with the function to which it applies. It falls naturally
from theC4 definition as simply being the inlined vari-
ant of before and after advice. The implementation of
proceed() boils down to a computed goto to the main
body of the function (or the nextinneradvice when mul-
tiple aspects are composed). As theC4 compiler gener-
ates C code rather than optimized assembly, we currently
leverage a gcc extension for computed gotos to imple-
mentproceed() efficiently. This was a design choice
we made to (a) simplify our task of making the code eas-
ily readable when debugging with gdb and (b) ensure that

we always used the most optimized approach for our tar-
get environment/audience (i.e., the Linux kernel).

Aspect-orientedintroductions of global variables,
new functions, and types are defined using a name man-
gling technique similar to C++ in order to avoid name
clashes. Similarly, introductions of fields is implemented
as a nested struct/union (also using name mangling),
which declares the new fields. Just as is the case for
C++, we will need to change gdb to properly resolve the
names of these newly introduced variables, fields, and
functions. While we have not done so yet, we expect
this to be a straight-forward adaption of the exiting C++
support in gdb.

We have incorporated theC4 compiler into the Linux
kernel(2.6.10-13) build process. It was able to cor-
rectly compile the kernel, which makes very heavy use
of gcc extensions. We introduced some before, after,
and around advice as well as introductions to the kernel
to validate the correctness and scrutinize their overhead
with respect to execution speed and space. This overhead
was as expected: the same as manually makeing these
modifications to the kernel. More importantly (at least to
us), the resulting kernel image booted on real hardware
and ran correctly.

Using theC4 compiler to build the kernel is currently
on the order of 4x slower than building the kernel straight
with gcc. Our goal is to reduce this overhead down to 2x.
While that is still quite high for a production setting, we
believe it suffices to demonstrate the general utility of the
overall toolkit.

4 Discussion
Our initial research goal is to support thesyntacticsep-
aration of crosscutting concerns through aspects. On
their own, syntactic separation and automatic weaving
of crosscutting concerns free developers from many low-
level, time-consuming, and error-prone details of main-
taining extensions to software written in C, especially as
the mainline code base evolves.

However, there remains at least one significant prob-
lem: in monolithic systems designed and implemented in
C the number of potential join-points might be too low
for aspects to be practical. Lohmann et al. [18] suggest
this to be the case for the Linux kernel, especially when
compared to an object-oriented kernel such as eCos. To
address this problem we may leverage new techniques
exposing finger-grain join points, e.g., at the statement-
level [21] and possibly even at the instruction-level [5].
Until such techniques are proven, we may need to rely on
refactoring the mainline code base to expose better join
points.

Another problem is that there are many case where
extensions to the baseline Linux kernel cannot cleanly be
captured as advice. While this is a significant problem,



we do not believe it is impossible to solve. Rather, when
automatic weaving/unweaving of the AOSD compliant
components of an extension works seamlessly, we hope
to see a groundswell of developers wanting to refactor
existing mainlined extensions to the Linux kernel (and
other system software written in C) intoC4-based as-
pects. Why? At least for Linux, for no other reason
but to contribute to the cause of decluttering the main-
line code base from the myriad of extensions that have
already been added in line. To prepare for this event, we
will work on defining new best practices for such aspect-
oriented refactoring without disrupting existing systems
practices. It is precisely for this reason that theC4 toolkit
retains the “look and feel” of C as well as the existing de-
velopment workflow.
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