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Abstract. A transient fault is a temporary, one-time event that causes
a change in state or erroneous signal transfer in a digital circuit. These
faults do not cause permanent damage, but when they strike conven-
tional processors, they may result in incorrect program execution. While
detecting and correcting faults in first-order data may be accomplished
relatively easily by adding redundancy, protecting against faults during
control flow transfers is substantially more difficult. This paper analyzes
the problem of maintaining the control-flow integrity of a program in
the face of transient faults from a formal theoretical perspective. More
specifically, we augment the operational semantics of an idealized as-
sembly language with additional rules that model erroneous control-flow
transfers. Next, we explain a strategy for detecting control-flow errors
based on previous work by Oh [10] and Reis [16]. In order to reason
about the correctness of the strategy relative to our fault model, we de-
velop a new assembly-level type system designed to guarantee that any
control flow transfer to an incorrect block will be caught before control
leaves that block. The key technical result of the paper is a rigorous proof
of this fundamental control-flow property for well-typed programs.

1 Introduction

In recent decades, microprocessor performance has been increasing exponentially,
due in large part to smaller and faster transistors. While such transistors yield
performance enhancements, their lower threshold voltages and tighter noise mar-
gins make them less reliable [3, 19, 9], rendering processors that use them more
susceptible to transient faults. These faults do not cause permanent damage, but
may result in incorrect program execution by altering signal transfers or stored
values. While transient faults are currently rare, they have caused significant
failures in server farms at companies including AOL and eBay [4] and in su-
percomputers such as those at Los Alamos Labs [8]. More importantly, current
hardware manufacturing trends suggest the problem of transient faults will grow
substantially in the future [6].

In order to counter the threat of transient faults, researchers from industry
and academia have been searching for solutions to the reliability problem in both
hardware and software. Broadly speaking, with sufficient hardware resources,
hardware-only solutions are more efficient for a single, fixed reliability policy, but



software-only solutions are more flexible and less costly. In terms of flexibility,
software-only solutions may be deployed immediately on current hardware that
already exists in the field, simply by recompiling the application in question. In
terms of cost-effectiveness, recent studies have shown that software techniques for
fault tolerance often add approximately 35% overhead [16] to the computation
with no additional hardware cost, whereas a standard double- or triple- modular
redundancy technique will add 100% or 200% to the hardware cost, with some
additional performance overhead for communication between replicas. Hence,
depending upon where a given application sits in the cost-performance-reliability
trade-off space, software, hardware or some mix of the two may be the preferred
solution.

Unfortunately, devising software solutions to the problem of transient faults,
and making sure they are correct, is an extremely difficult task. Just as the many
possible interleavings of threads make it difficult to reason about the properties
of concurrent programs, the many possible scenarios in which transient faults
can arise make it difficult to reason about the properties of faulty programs.
Moreover, just as conventional testing is often an ineffective way to uncover
bugs in concurrent programs, testing is likely to be an ineffective way to uncover
reliability errors in possibly faulty programs.

Faced with these challenges, we and other researchers at Princeton have re-
cently begun to develop type-theoretic techniques for reasoning about software
in the presence of transient faults. In our first effort [21], we devised a lambda
calculus called λzap to serve as a highly idealized model for unreliable compu-
tations. The operational semantics of the calculus specify that any value may
suddenly be corrupted during execution. However, programs are able to repli-
cate computations and use atomic voting operations to check replicas against
one another to detect and recover from transient faults. A type system for λzap

guarantees that any well-typed program is fault tolerant. In our second piece
of work [12], we studied fault tolerance in the more realistic setting of assem-
bly language with specialized hardware instructions to aid detection of faults.
Once again we devised a type system (this time called TALFT) and rigorously
proved that it guarantees a strong fault tolerance property for all well-typed
programs. From a theoretical perspective, these type systems codify formal rea-
soning techniques that allow programmers to prove strong reliability properties
of their programs. Equally importantly, from a practical perspective, these type
systems can be implemented and used to check the correctness of compiler out-
puts. Using a type checker to verify these reliability properties, where possible, is
vastly superior to conventional testing as the type checker gives perfect coverage

relative to the fault model whereas any test suite will be highly incomplete.

Despite the progress made to date, this prior work skirts the issue of how to
reason about code that not only incurs faults to first-order data, but also may
go wrong during a control flow transfer. The faulty lambda calculus λzap avoids
the issue altogether by assuming the existence of high-level atomic operations to
simultaneously check for errors, recover and jump to a new control flow point.
The fault-tolerant typed assembly language TALFT admits the possibility of



faults to the program counter, but requires a highly specialized instruction set
and additional hardware state to detect those faults.

Surprisingly, however, researchers [10, 16] have developed techniques for de-
tecting certain classes of control-flow errors entirely in software. These techniques
do not catch all control-flow errors, but empirical evidence suggests they can im-
prove system reliability substantially [10]. However, many theoretical questions
remain. In particular, is it possible to characterize the effectiveness of these tech-
niques analytically as opposed empirically? In other words, can we prove that
such techniques are sound with respect to an interesting and non-trivial, though
incomplete, fault model? One of the key benefits of such an analysis is that
it would guarantee an important fragment of the problem has been thoroughly
solved and thereby free researchers to study auxiliary instrumentation techniques
that address the remaining incompleteness. Perhaps more importantly, the for-
mal fault model would define an important hardware/software interface: The
software has been proven to handle faults that lie within the model; future
hardware designers need only provide mechanisms to catch those faults that lie
outside the model. While this latter point may appear of little importance since
TALFT already demonstrates how to design a sound hybrid hardware-software
protection system, the key difference is that such results would show how to
shift a substantial portion of the control-flow checking burden from the hard-
ware to software. This may lead to much simpler hardware designs as well as
the opportunity to trade performance for reliability at compile time as opposed
to hardware design time.

In this paper we attack these theoretical questions following a similar strat-
egy to our earlier work. First, we define an incomplete, yet simple, elegant and
non-trivial control-flow fault model — one in which faults can cause jump in-
structions and conditional branches to transfer control to the beginning of any
program block. Next, we develop a type system that guarantees a strong fault
tolerance property relative to this fault model. We have proven our type system
is sound and also have demonstrated that it is sufficiently expressive that we can
compile classic while programs into well-typed programs in the language. Due to
space limitations, this extended abstract only describes selected elements of our
assembly language and its type system. Moreover, all proofs have been omitted
as has our formal translation of while programs to assembly language. Further
details may be found in an accompanying technical report [13] and in our online
proofs [14]. Selected details from the technical report appear in the temporary
appendix to aid the reviewers.

2 Informal Overview

When a transient fault causes the actual sequence of control flow blocks visited
by a program to deviate from the expected sequence, we say a control-flow
error has occurred. In this paper, control-flow errors arise when a fault effects
either (1) the target address of a jump instruction, (2) the target address of a
conditional jump instruction, or (3) the boolean condition of a conditional jump



instruction. Such faults may occur immediately prior to attempting the control-
flow transfer or at any other time during the computation. However, whenever a
control-flow operation is executed, we assume execution is either transferred to
the beginning of some valid block, or to some invalid block or illegal instruction.
In the latter case, we assume the hardware immediately catches an attempt to
execute the illegal instruction. We currently do not consider the possibility that
a fault causes a control flow transfer to a legal instruction in the middle of some
valid block. (For a discussion on alleviating this restriction, see Section 6.) In
addition, we adhere to the standard Single Event Upset model [15, 17], which
states that only one fault may occur during an execution. However, even though
just one fault occurs, faulty values may be copied, propagated and used in any
way an ordinary value may be used.

In this context, in order to ensure that control flow transfers, in particular,
do not go wrong, compiled code computes a replica of the intended control-flow
destination prior to the control-flow transfer and moves the intended destination
into a designated register. We refer to this register as the intentions register ri.
This intentions register is part of the global “calling convention” for fault-tolerant
control flow transfers. We fix the register so that all jump targets know where
to find the intended destination, even when there has been a control-flow fault.

As an example, to jump to address L2, one might use the following code
sequence. In this code, we leave ellipsis in between instructions to emphasize our
system allows flexible scheduling of instructions — ordinary instructions may be
interleaved with the instructions used to guarantee fault tolerance.

L1: ...; movi ri, L2; ...; movi r2, L2; ...; jmp r2

Since the intentions register ri plays a special role in the protocol for detecting
control-flow errors, we will need to type check the move instruction that loads
this register in a special way. To designate the move as special, we henceforth
write it intend L2 rather than movi ri, L2 as in the following example code.

L1: ...; intend L2; ...; movi r2, L2; ...; jmp r2

If the intentions register has been set properly prior to all jump instructions,
the jump targets are able to catch control flow errors. To be specific, all jump
targets should be instrumented with the following code.

Lk: movi r2, Lk; ...; sub r2, r2, ri; ...; brnz r2, Lrecover; ...

Here, the current block address Lk is loaded into register r2 and then compared
with the contents of ri and if there is any difference, control is transferred to
Lrecover, an address containing recovery code.1 Once again, since the branch
to the recovery code plays a special role in the fault-tolerance protocol, we give
it the special syntax recovernz r2. Thus, our detection code will henceforth be
written as follows.

1 Since recovery is a secondary issue to detection, we do not consider it in this paper.



L2: movi r2, L2; ...; sub r2, r2, ri; ...; recovernz r2; ...

As an example of how a transient fault might be caught using our protocol,
suppose register r2 is corrupted just prior to attempting to execute the jump to
L2 in block L1. If the corrupted value is not a valid code address, then a hardware
fault will be triggered. Otherwise, upon arrival at some erroneous control flow
block, say L3, the intended destination L2 remains safely untouched in register
ri, though, unnervingly, all other program invariants may be disrupted. The
target code compares the contents of ri (i.e., L2) with L3, which it loaded into
r2 after arriving at the current block. It detects a difference and jumps to the
recovery code.

One must also consider what happens if faults strike at different times or
in different places. If ri is corrupted, it appears as though there was a fault
because ri differs from the current block label (assuming the fault occurs prior
to the subtraction). Unable to tell the difference between a fault in the inten-
tions register and a fault in the control-flow transfer itself, we jump to recovery
code. A number of other scenarios must also be analyzed — in order to have
confidence in the solution, one must do so in a principled, disciplined fashion. It
is important to observe that similar, but subtly different code sequences do not
adequately protect against faults. In particular, optimizations like copy propaga-
tion, common subexpression elimination and some code motion transformations,
are no longer semantics-preserving in the context of transient faults.

For example, the code motion transformation illustrated below shifts the
move from a target block into the jumping block and creates a vulnerability.

L1: ...; movi r2, L2; intend L2; movi r3, L2; jmp r2

Lk: sub r3, r3, ri; recovernz r3; ...

Above, a fault to r2 causes a control-flow error, but testing r3 against ri at the
recovernz instruction will not help detect the fault.

The protocol for handling conditional branches is slightly more involved than
the case for jumps, but follows a similar pattern. We begin by assuming that the
the jump target is held in registers r3 and r3’ and the condition for the jump is
held in registers r4 and r4’. These register pairs must be independent replicas

of one another. In other words, in the absence of faults, they should contain the
same value, and moreover, a fault to one should have no impact on the value of
the other. Given this assumption (which will be verified by our type system), the
following code sequence sets up a conditional branch, which may fall through to
L2 or may jump to the target in r3. It also uses a conditional move cmovz r4’,

ri, r3’, which moves the contents of r3’ into ri if r4’ is zero, and otherwise
does nothing.2

L1: ...; intend L2; cmovz r4’, ri, r3’; brz r4, r3

2 Many architectures including the IA-32 following the Pentium Pro, the Sparc V-9 and
the IA-64 have conditional moves. If the architecture does not have a a conditional
move, a conditional branch and a move instruction can be used instead, but this
branch will not be protected against faults.



colors c ::= G | B | O
colored values v ::= c n

code memory C ::= · | C, ℓ → b

registers r ::= ri | r1 | . . . | rn

register file R ::= · | R, r → v

history h ::= ℓ1, . . . , ℓn

instructions i ::= movi rd v
| sub rd rs rs

| intend rt

| intendz rz rt

| recovernz rz

blocks b ::= i; b | jmp rt | brz rz rt

states Σ ::= (C, h, R, b)
final states F ::= Σ | recover(h) | hwerror(h)

Fig. 1. Machine State Syntax.

Again, to notate the special role of ri and simplify the presentation, we will
henceforth write the conditional move cmovz r4’, ri, r3’ as intendz r4’,

r3’. Intuitively, the intend instruction unconditionally sets the intentions reg-
ister, whereas the intendz instruction conditionally sets the intentions register.

Summary. By creating duplicate copies of intended control flow targets, it is
possible to check that control has arrived at the proper location. In the fol-
lowing sections, we make the machine’s operational semantics and fault model
precise and develop a sound type system strong enough to verify that the “good”
instruction sequences we have discussed in this section are indeed fault tolerant.

3 The Control-Flow Machine

For clarity and elegance, we will work with a minimal assembly instruction set
involving move (movi), subtraction (sub), jump (jmp) and conditional branch
if zero (brz) instructions as well as the special macros intend, intendz and
recovernz. Instruction operands include constant values v and registers r. In
the previous section, values were unannotated, but from this point forward we
annotate every value with a color c where c is either G (green), B (blue) or O

(orange). These colors have no operational significance, but they play a special
role in the type system and proof of correctness. The only kind of value is
an integer. In general, meta-variable n ranges over integers, but we use meta-
variable ℓ to emphasize that an integer will be used as an address.

Instructions are grouped together in code blocks b that are always terminated
by either a jump or a conditional branch instruction. Code memory C is a
partial map from addresses to valid code blocks b. Addresses are ordered, and
the notation ℓ + 1 refers to the address of the block following the block at ℓ. If a
block at ℓ ends with a conditional branch, ℓ + 1 must inhabit the domain of C.

The register file R is a mapping from registers to the colored values they
contain. The registers include the intentions register ri and a number of general-
purpose registers r1 through rn. We use the notation R(r) to denote the contents
of r in R. We use the notation R[r 7→ v] to denote a new register file R′ created



by updating R so it maps r to v. When we wish to refer to the unannotated
integer n as opposed to the colored value c n in a register r in R, we use the
notation Rval(r). Similarly, Rcol(r) refers to the color annotating the value in r.

An ordinary abstract machine state Σ is a tuple containing code C, history
h, register file R and code block to be executed b. The history h is a sequence
of labels. It records the code blocks visited during the current execution. In
addition to ordinary abstract machine states, “final states” F include two special
states. The state recover(h) represents a state in which a transient fault has
occurred and has been caught. The labels in history h were visited during the
execution. The state hwerror(h) represents a state in which a transient fault
causes transition to an invalid address. Figure 1 summarizes the syntax of the
assembly language and machine states.

3.1 Dynamic Semantics

We model the dynamic semantics of the assembly language using a small step
operational semantics. In general, the single step operational judgments have
the form Σ −→k F where k, which is either zero or one, records the number of
faults that occur during the step.

The most interesting rules in the system are the rules modeling faults. The
primary rule (zap-reg) arbitrarily corrupts the value in a single register, though
the color tag (which has no operational significance) remains unchanged.

R(r) = c n

(C, h,R, b) −→1 (C, h,R[r 7→ c n′], b)
(zap-reg)

For uniformity in our fault model, we also consider errors in execution of
the recovernz rz instruction. Recall, this instruction is merely a macro for the
conditional branch brnz rz ℓrecover. However, since ℓrecover is a constant, it is
unaffected by faults in registers modeled by the zap-reg rule (our other branching
instructions take arguments in registers). To simulate a fault that causes control
to jump somewhere other than the ℓrecover label when the rz register contains a
non-zero value, we add the following rules.

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 (C, h,R,C(ℓ))
(zap-recovernz1)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 hwerror(h)
(zap-recovernz2)

The zap-recovernz1 rule expresses the possibility that a fault causes execution
to jump to some random block labeled ℓ rather than the recovery code block.
The zap-recovernz2 rule expresses the possibility that a fault causes control to
jump to an illegal address. Attempted execution of code at this address results
in immediate transition to the final state hwerror(h), where h represents the
sequence of blocks visited not including the illegal address.



Static Expressions
exp kinds κ ::= κint | κhist

exp contexts ∆ ::= · | ∆, x : κ
exps e ::= x | n | e − e

| e?e : e
substitutions S ::= · | S, e/x

Context Typing
heap typing Ψ ::= · | Ψ, ℓ → τ
reg file types Γ ::= · | Γ, r → t
history typing σ ::= ǫ | x | σ ◦ e

Types
stage description ρ ::= check | ok

| go | goz
basic types τ ::= int | ρ | ∀[∆](Γ, σ)
value types t ::= 〈c, τ, e〉
type option τ opt ::= τ | undef

ZapTags
zap tag Z ::= · | c | CF

Fig. 2. Typing Syntax.

The complete operational rules are shown in Appendix A.1. The majority of
these rules are quite unsurprising. The rules for brz rz rt and jmp rt also do
some bookkeeping: extending the current history with the destination address
and recoloring the value in register ri to be orange. This latter effect facilitates
the proof of correctness and will be explained in further detail in Section 4.

4 Typing

The overall design of the type system is based on two nonstandard concepts: (1)
Classifying the reliability properties of values, and (2) Using abstract types to
make sure that the fault tolerance protocol proceeds in the correct order, with no
steps omitted or inappropriate steps inserted. The following paragraphs explain
the main intuitions behind each concept.

Classifying the Reliability Properties of Values. Since faults occur completely
unpredictably and at run time, it is not possible for the type system to know
which values have incurred faults or to track the propagation of presumed faulty
values precisely. Consequently, as is usual, the type system will have to approx-
imate these properties somehow. It does so by assigning each value a color and
ensuring that values with the same color have related reliability properties.

Most values either belong to the green group or to the blue group. These
two groups have the property that they are independent and redundant. In other
words, a fault in a green value can never percolate to a blue value and vice
versa. Consequently, when corresponding green and blue values are compared,
at least one of them must be correct, even when a fault has occurred. This
mutual independence property is ensured by a series of simple checks in the type
system that guarantee that green values are not used to construct blue values
and vice versa.

But what if a control-flow fault has occurred? In that case, almost all pro-
gram invariants are invalidated, including any properties of either blue or green



values. However, orange values are manipulated in such a way as to preserve
their properties in just this situation.

There are two general mechanisms by which one can guarantee orange values
maintain their expected properties in the face of a control-flow fault. The first
mechanism is to ensure that the orange value in question is not live across the
control-flow transfer: If the value has been constructed in the current block
and does not depend upon values in previous blocks, a control-flow error will
not influence its properties. The second mechanism involves ensuring that every
possible control-flow transfer maintains the invariant in question. If the invariant
is true across every control-flow transfer, then it is true no matter where control
winds up. This second mechanism is used to classify the contents of ri as orange
across every control-flow transfer. Just as the type system isolates green values
from blue and blue from green, orange is also isolated from the other two. Again,
the purpose is to avoid having a fault in one color influence the others.

While values are classified using colors, entire machine states are classified
using a related concept called zap tags. Intuitively, each zap tag specifies which
colors may no longer be trusted. For example, if zap tag Z is empty (written
“·”), then there have been no faults during the computation, and all values, no
matter what their color, satisfy the standard invariants associated with their
compile-time type. On the other hand, if Z is a color c, then values with color
c may have been corrupted, but other values will be correct. The final zap tag
CF classifies machine states after a control-flow error has occurred. In this case,
we know nothing about green or blue values, but the properties of orange values
remain valid. The table below summarizes the properties that hold under each
zap tag while in block ℓ. A value is trusted if it satisfies standard canonical forms
properties (e.g., a value with code type is actually a pointer to valid code). The
table says a value is untrusted when the standard canonical forms properties do
not necessarily hold.

Zap Tag G values B values O values ℓ is the intended destination

· trusted trusted trusted yes
G untrusted trusted trusted yes
B trusted untrusted trusted yes
O trusted trusted untrusted yes
CF untrusted untrusted trusted no

A zap tag Z is a subtype of another Z ′, written Z ≤ Z ′, when the values
in machine states classified by Z are more trusted than the values in machine
states classified by Z ′. Hence the empty zap tag is a subtype of all other zap
tags, and both B and G zap tags are a subtype of CF .

Typing Protocol Stages. The instructions in each block can be thought of as
being divided into three distinct stages – the checking code, the block body, and
the exit code. Each of these stages has its own distinct invariants. The type of
intentions register ri encodes the current stage and ensures that the stages occur
in the correct order. It also guarantees no part of the protocol can be omitted
or any inappropriate instruction added. These stages may be summarized as
follows.



1. The checking code compares the intended target with the current location
to determine if there has been a control flow fault. In this region, ri must be
colored orange and have basic type check.

2. In the block body, we already know the control flow correctly transferred
to this block. At the end of this sequence, there is some green register that
holds the target label for the next control flow transfer and some blue register
that holds the duplicate copy of this label. In the absence of faults, these
two values are equal. In this region, ri has basic type ok.

3. The exit code sequence sets the intended target and transfers control to the
new block. In the exit code sequence, ri is colored blue and has type go

when an intention has been set, and type goz when a conditional intention
has been set. As mentioned in Section 3.1, ri is recolored orange during the
execution of the control flow transfer.

The following subsections elucidate some of the technical ideas behind these
intuitions. The complete definitions are presented in Appendices A.2 - A.5 and
described more thoroughly in our technical report [13].

4.1 Value Typing

The type of a value is a triple 〈c, τ, e〉. The color c is assigned according to the
intuitions expressed in the previous subsection. The basic type τ is either an
integer type (int), a code type (∀[∆](Γ, σ)), or a special type ρ that indicates
the state of the fault tolerance protocol. The static expression e describes the
value in more detail. These static expressions are used by expression typing
rules to require that blue and green computations compute identical results in
the absence of faults. The expressions include variables x, integers n, subtraction
e1 −e2 and conditional expressions e1?e2 : e3 which equal e2 when e1 is non-zero
and e3 when e1 is zero. The judgment ∆ ⊢ e : κ holds when all free variables in
e are contained in the context ∆. The judgments ∆ ⊢ e1 = e2 and ∆ ⊢ e1 6= e2

hold when the relation holds for all substitutions of the variables in ∆. The
judgment ∆ ⊢ S : ∆′ holds when S provides substitutions for all variables in ∆′,
and the substituted expressions are well-formed in ∆.

The value typing judgment has the form ∆;Ψ ⊢Z v : t. Here, ∆ contains
expression variables free in t and the heap type Ψ maps integer addresses to
basic types. The zap tag Z characterizes the current state of the machine as
explained earlier. Z is always the empty tag when a user checks a program at
compile time. It only takes on other values at run time for the purposes of the
proof of preservation.

The central rule expresses the fact that if a value n has basic type τ , is equal
to e and annotated with color c then it can always be given the type 〈c, τ, e〉.
However, if the zap tag Z is a color c, then all values c n can also be typed using
any basic type and any well-formed expression. Another key rule expresses the
fact that when the zap tag is CF , green and blue values can be given any type.
In particular green values may be given blue types and vice versa.



∆; Ψ ; Γ ⊢ i : Γ ′

rd 6= ri

∆; Ψ ; Γ ⊢ movi rd c n : Γ [rd 7→ 〈c, int, n〉]
(movi-t)

rd 6= ri Γ (ra) = 〈c, int , ea〉 Γ (rb) = 〈c, int , eb〉

∆; Ψ ; Γ ⊢ sub rd ra rb : Γ [rd 7→ 〈c, int, ea − eb〉]
(sub-t)

Γ (ri) = 〈ci, ok, ei〉 Γ (rt) = 〈B , ∀[∆t](Γt, σt), et〉

∆; Ψ ; Γ ⊢ intend rt : Γ [ri 7→ 〈B, go, et〉]
(intend-t)

Γ (ri) = 〈B , go, ei〉 Γ (rt) = 〈B , ∀[∆t](Γt, σt), et〉
Γ (rz) = 〈B , int , ez〉 t′ = 〈B , goz, ez?ei : et〉

∆; Ψ ; Γ ; ⊢ intendz rz rt : Γ [ri 7→ t′]
(intendz-t)

∆; Ψ ; Γ ; σ; ei; τ opt ⊢ b

∆; Ψ ; Γ ⊢ i : Γ ′ ∆; Ψ ; Γ ′; σ; ei; τ opt ⊢ b

∆; Ψ ; Γ ; σ; ei; τ opt ⊢ i; b
(sequence-t)

Γ (ri) = 〈O , check, xi〉 Γ (rz) = 〈O , int , ez〉 ∆, x : κint ⊢ ez = eℓ − xi

∆ ⊢ Γ/ri/rz wf ∆ ⊢ σ wf ∆ ⊢ eℓ : κint

Γ ′ = Γ [rz 7→ 〈O , int , 0〉][ri 7→ 〈B , ok, eℓ〉] ∆; Ψ ; Γ ′; σ ◦ eℓ; eℓ; τ opt ⊢ b

(∆, x : κint); Ψ ; Γ ; σ ◦ eℓ; xi; τ opt ⊢ recovernz rz; b
(recovernz-t)

Γ (ri) = 〈B , go, e′

t〉 Γ (rt) = 〈G, ∀[∆t](Γt, σt), et〉 ∆ ⊢ et = e′

t

∃St . ∆ ⊢ St : ∆t ∆ ⊢ Γ [ri 7→ 〈O , check, e′

t〉] ≤ St(Γt) ∆ ⊢ σ ◦ eℓ ◦ et = St(σt)

∆; Ψ ; Γ ; σ ◦ eℓ; ei; t ⊢ jmp rt

(jmp-t)

Fig. 3. Instruction Typing Rules and Selected Block Typing Rules.

The type system also uses a subtyping judgment with the form ∆ ⊢ t ≤ t′.
As an example, this judgment allows type 〈c, τ, e〉 to be a subtype of 〈c, int , e′〉
whenever ∆ ⊢ e = e′.

4.2 Instruction and Block Typing

Figure 3 presents several rules from the key judgments for checking program
code. The first judgment has the form ∆;Ψ ;Γ ⊢ i : Γ ′. As before, ∆ contains
free expression variables and Ψ types heap addresses. Γ acts as the precondition
for the instruction, mapping registers to types required prior to execution of the
instruction. Γ ′ acts as the postcondition for the instruction, mapping registers
to types guaranteed after execution of the instruction.



The simplest instruction to type check is the movi rd c n instruction. It
updates the type of the destination register rd to be 〈c, int , n〉. The subtraction
instruction sub rd ra rb requires that the values being subtracted are integers.
Notice it also requires the integers arguments have the same color as the result
– this restriction prevents faults in values with one color to influence another.
Neither rule places any restrictions on the type of ri, so they can occur during
any stage of a block.

Though intend rt is operationally the same as movi ri rt, its typing rule
requires that the intentions register ri has basic type ok. This restriction guar-
antees any new intend will occur after the checking code has been completed.
Notice also that the intention register is marked blue – in contrast, the address
used as the real jump target will be marked green. Finally, the type of ri is up-
dated to reflect the new static expression and the new stage go. The conditional
intention instruction intendz rz rt is similar, although it must occur after an un-
conditional intention. In other words, to set intentions for a conditional branch,
first use intend to set ri to contain the address of the fall through block, and
then conditionally set it to contain the branch target. The resulting type of ri

has basic type goz and a conditional expression guarded by the expression de-
scribing rz. If rz is nonzero, then ri will be described by ei, which describes the
fall through branch. Otherwise, it is described by et, which describes the branch
target.

A sequence of instructions is typed using the block typing judgment, which
has the form ∆;Ψ ;Γ ;σ; ei; τ opt ⊢ b. In addition to ∆, Ψ , and Γ , the block typing
judgment is parameterized by a sequence σ, an expression ei, and a type option
τ opt. The sequence σ contains a list of expressions that describe the locations
in the current history h. The expression ei describes the intended target when
the transfer occurred to the current label ℓ. If control flow correctly transfered
to ℓ, then ∆ ⊢ ei = ℓ. The option type τ opt contains the type of the label ℓ + 1
if such a label exists. It is used when a branch falls through to the subsequent
block to determine the type of that block. Three example rules are shown in
Figure 3.

The first rule, sequence-t, is used when the first instruction in a block is one of
the basic instructions described previously. The second rule for checking blocks
illustrates how to check the recovernz instruction. At run time, control only
proceeds past this point in the block if xi (describing ri) is equal to the expression
eℓ (describing the current location), so the remainder of the block is typed by
substituting eℓ for xi. The types of ri and rz are updated to reflect the deletion
of xi. Judgment ∆ ⊢ Γ/ri/rz wf and ∆ ⊢ σ wf hold when all expression variables
used in the types of registers other than ri and rz, as well as in the expressions
in σ, are all contained in ∆. Since none of these pieces of state contain xi, they
do not need to be modified.

The rule jmp-t requires that ri has type 〈B , go, e′

t〉 specifying that the inten-
tion must already have been set before the jump. Also, the actual jump target in
rt has a code type and is described by an expression et that is equal to e′

t. This
enforces that in the absence of faults, the duplicate target is equal to the target.



The target label precondition contains a set of expression variables ∆t and re-
quires a register file described by Γt and a history described by σt. There is some
substitution St for the variables in ∆t so that the current register file type and
sequence are subtypes of those required by the target. The jmp rt instruction
recolors the blue intention register to be orange when control is transfered to a
new block. At first, this seems to contradict the rule that faults to a value of one
color should never corrupt values of other colors. However, because the target
block doesn’t place any restrictions on the expression describing ri, the variable
xi that describes the value can be instantiated with the value itself. Because of
this, a blue value that is not trusted can become a trusted orange value during
a control flow transfer, continuing to leave only the blue values untrusted.

5 Formal Properties

We have proven a number of properties of our type system including variants
of the standard Progress, Preservation and Type Safety theorems. Our most
important result is a Fault Tolerance theorem, which we sketch briefly below.

In order to explain the theorem, we require a couple of additional concepts
which are fully defined in Appendices A.6 - A.9. First, we say a machine state Σ
is well-formed (written ⊢Z Σ) when all code and state are well-typed relative
to the zap tag Z. Second, we say a faulty machine state Σf simulates a fault-free

state Σ under color c (written Σf
c
∼ Σ) whenever the two states are identical

modulo values colored c. In other words, values colored c may be completely
different from one another, but otherwise the two states are identical.

The judgment Σ =⇒h
k F states that machine state Σ executes through a

sequence of blocks h to reach state F while incurring k faulty transitions. In other
words, if Σ = (C, h1, R, b), then F is either (C, (h1, h), R′, b′), hwerror(h1, h),
or recover(h1, h).

We say a program is fault-tolerant if any execution of the program with a
single fault behaves in one of four possible ways with regards to the original,
non-faulty computation: (1) The faulty computation visits the same sequence of
blocks as the original, and the final faulty state simulates the original result state
under some color c. (2) The faulty computation attempts to transfer control to
an invalid address outside the domain of code memory and triggers a hardware
fault. Prior to the occurrence of the hardware fault, the faulty computation
visited the same blocks as the original computation. (3) The faulty computation
detects a fault in software and jumps to recovery code even though no incorrect
blocks have been visited (caused by a fault affecting the intentions register or the
checking code). (4) The faulty computation veers off course to a block that does
not match the corresponding block in the original computation. In this case, the
checking code in the invalid block catches the error and transfers control to the
recovery code. The full proof appears in the online appendix [14].

Theorem 1 (Fault Tolerance). If ⊢ Σ and Σ =⇒h
0 Σ′ then at least one of

the following cases applies and all derivations Σ =⇒
hf

1 F where length(hf ) ≤
length(h) fit one of these cases:



1. Σ =⇒h
1 Σ′

f and ∃c . Σ′

f

c
∼ Σ′

2. Σ =⇒
hf

1 hwerror(h′, hf ) and hf is a prefix of h

3. Σ =⇒
hf

1 recover(h′, hf ) and hf is a prefix of h

4. Σ =⇒
hf

1 recover(h′, hf ) and hf = (h1, l
′) and h = (h1, l, h2)

6 Related Work, Future Work, and Conclusions

Related Work. As mentioned in the introduction, this research follows previous
work on λzap [21] and TALFT [12]. However, neither λzap nor TALFT provided
software mechanisms for guaranteeing control-flow integrity. Recently, Elsman [7]
has shown how to extend λzap so that the atomic voting operations can be
broken down into a series of conditional statements. However, again, there is no
treatment of control-flow.

Perhaps the most closely related work to the current paper is CFI, a provably-
sound technique for enforcing control-flow integrity in a security context [1, 2].
The goal of CFI is to guarantee that machine code obeys a predefined “control-
flow policy” that constrains the sequence of blocks control can move through.
The key distinction between CFI and our own work is the threat model. CFI
attackers can modify arbitrary amounts of machine state in arbitrary ways. but
CFI attackers cannot touch three reserved registers during the execution of cer-
tain code sequences. Protecting against transient faults is, on the one hand,
easier, because the attacker can only modify a single value as opposed to ar-
bitrary amounts of state arbitrarily many times, but, on the other hand, more
difficult, because no single bit of state can be a priori guaranteed to be protected.

Our work builds upon many past research efforts in fault tolerance, partic-
ularly those that deal with control-flow checking. For example, Oh et al. [10]
developed a pure software control-flow checking scheme (CFCSS) wherein each
control transfer generates a run-time signature that is validated by error checking
code generated by the compiler for every block. The SWIFT system [16], another
software-only fault tolerance system, also uses signature checking very much like
that in the current paper. Venkatasubramanian, Hayes and Murray [20] proposed
a technique called Assertions for Control Flow Checking (ACFC) that assigns
an execution parity to each basic block and detects faults based on parity errors.
Schuette and Shen [18] explored control-flow monitoring (ARC) to detect tran-
sient faults affecting the program flow on a Multiflow TRACE 12/300 machine
with little extra overhead. Ohlsson and Rimen [11] developed a technique to
monitor software control flow signatures by using a second processor to perform
the verification. The distinguishing feature of our research is not the control-flow
checking procedure itself, but the type system we designed to verify the code
and our proof that well-typed programs are indeed fault tolerant. These previous
efforts did not rigorously specify the properties they intended to enforce nor did
they prove their techniques actually enforce them.



Future Work. We acknowledge that the fault model used in this paper is sim-
plistic. By assuming hardware support to catch control transfers into the middle
of blocks, we avoid dealing with many interesting and likely situations. This
assumption is required because stating intentions involves resetting ri, so an in-
correct transfer into a block before the intend rt instruction may not be caught.

A sequence of existing work on software-only solutions [10, 16, 5] handles
increasing classes of erroneous transfers. By ensuring that the intentions register
is a function of the entire control-flow path, not just the current block, they can
detect most jumps into the middle of blocks. For example, SWIFT [16] keeps an
”approximate program counter” which contains the current block. Before each
control-flow transfer, the current block and the intended target block are xored
together and put in a designated ”transition register”. At the beginning of each
block, the transition register is xored with the approximate program counter to
give the new approximation. (A correct transfer from block A to block B will
result in a new approximate program counter of A ⊗ (A ⊗ B), which is equal to
B.) Though these solutions are an improvement, there are still situations (such
as jumping back two instructions within a block) that they cannot handle.

The classification scheme of values and reliability properties from this paper
does not transfer directly to these more complex solutions, but we believe we
can develop a similar classification to capture the necessary invariants. In doing
so, the Fault Tolerance Theorem becomes more difficult to state and prove due
to the increase of possible scenarios a single fault may cause. (For example, a
fault may cause control to transfer from the middle of one block to the middle
of a second block. This second block may transfer control to a third block before
the error is finally detected.) In essence, the current work and proof strategy are
an important building block for reasoning about more complex solutions.

Conclusions. Future processors will become more susceptible to transient faults,
and reasoning about the correctness of software running on faulty hardware is
an extremely difficult task, particularly when faults may affect program control
flow. In this paper, we defined a simple abstract machine that exhibits control-
flow faults and we analyzed the correctness of a software protocol for detecting
them. Our analysis proceeded through the definition of a type system that guar-
antees programs are reliable relative to a simple fault model. We have rigorously
proven strong reliability properties for our type system and believe this is the
first successful attempt at reasoning rigorously about software mechanisms for
controlling control flow faults.
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A Appendix

This appendix contains the full definitions for all judgments used in the paper.
These definitions, along with detailed proof sketches, appear in the compan-
ion technical report [13]. The complete proofs are available in the online proof
appendix [14].

A.1 Complete Operational Semantics

Non-faulty Steps. The judgment Σ −→0 F describes a single, non-faulty step in
execution.

Σ −→0 F

(C, h,R, movi rd v; b) −→0 (C, h,R[rd 7→ v], b)
(movi)

v′ = Rcol(ra) (Rval(ra) − Rval(rb))

(C, h,R, sub rd ra rb; b) −→0 (C, h,R[rd 7→ v′], b)
(sub)

(C, h,R, intend rt; b) −→0 (C, h,R[ri 7→ R(rt)], b)
(intend)

Rval(rz) = 0

(C, h,R, intendz rz rt; b) −→0 (C, h,R[ri 7→ R(rt)], b)
(intendz-set)

Rval(rz) 6= 0

(C, h,R, intendz rz rt; b) −→0 (C, h,R, b)
(intendz-unset)



Rval(rz) = 0

(C, h,R, recovernz rz; b) −→0 (C, h,R, b)
(recovernz-ok)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→0 recover(h)
(recovernz-halt)

Rval(rz) = 0 Rval(rt) ∈ Dom(C)

(C, h,R, brz rz rt) −→0 (C, (h,Rval(rt)), R[ri 7→ O Rval(ri)], C(Rval(rt)))
(brz-taken)

Rval(rz) 6= 0 ℓ+1 ∈ Dom(C)

(C, h,R, brz rz rt) −→0 (C, (h, ℓ+1), R[ri 7→ O Rval(ri)], C(ℓ+1))
(brz-untaken)

Rval(rt) ∈ Dom(C)

(C, h,R, jmp rt) −→0 (C, (h,Rval(rt)), R[ri 7→ O Rval(ri)], C(Rval(rt)))
(jmp)

Rval(rz) = 0 Rval(rt) 6∈ Dom(C)

(C, h,R, brz rz rt) −→0 hwerror(h)
(brz-hw-error)

Rval(rt) 6∈ Dom(C)

(C, h,R, jmp rt) −→0 hwerror(h)
(jmp-hw-error)

Fault Steps. The judgment Σ −→1 F describes a single, faulty step in execution.

Σ −→1 F

R(r) = c n

(C, h,R, b) −→1 (C, h,R[r 7→ c n′], b
(zap-reg)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 (C, h,R,C(ℓ))
(zap-recovernz1)

Rval(rz) 6= 0

(C, h,R, recovernz rz; b) −→1 hwerror(h)
(zap-recovernz2)

A.2 Static Expression Judgments

Kinding. The kinding judgment ∆ ⊢ e : κ holds when all the free variables in
e are contained in ∆. Expression e has kind κint when it describes an integer
and kind κhist when it describes a history typing. Expression variables x are the
only expressions that can have type κhist.

∆ ⊢ e : κ



x ∈ Dom(∆)

∆ ⊢ x : ∆(x)
(wf-var)

∆ ⊢ n : κint
(wf-int)

∆ ⊢ e1 : κint ∆ ⊢ e2 : κint

∆ ⊢ e1 − e2 : κint
(wf-sub)

∆ ⊢ e1 : κint ∆ ⊢ e2 : κ ∆ ⊢ e3 : κ

∆ ⊢ e1 ? e2 : e3 : κ
(wf-ifexp)

Well-formed Expressions. Judgments ∆ ⊢ σ wf, ∆ ⊢ Γ wf, and ∆ ⊢ τ wf hold
when all expressions used in these constructs are well-kinded.

∆ ⊢ σ wf

∆ ⊢ ǫ wf
(wf-σ-ǫ) ∆ ⊢ e : κ

∆ ⊢ σ ◦ e wf
(wf-σ)

∆ ⊢ Γ wf

∀r. Γ (r) = 〈c, τ, e〉 ∧ ∆ ⊢ e : κ

∆ ⊢ Γ wf
(wf-R)

∆ ⊢ τ wf

∆ ⊢ int wf
(wf-int)

∆ ⊢ ρ wf
(wf-ρ)

(∆ ∪ ∆′) ⊢ Γ ′ wf (∆ ∪ ∆′) ⊢ σ′ wf

∆ ⊢ ∀[∆′](Γ ′, σ′) wf
(wf-∀[∆′](Γ ′, σ′))

Substitution. The judgment ∆ ⊢ S : ∆′ holds when S provides substitutions for
all variables in ∆′, and the substituted expressions are well-formed in ∆.

∆ ⊢ S : ∆′

∆ ⊢ · : ·
(subst-emp-t)

∆ ⊢ S : ∆′ ∆ ⊢ e : κ x /∈ (∆ ∪ ∆′)

∆ ⊢ S, e/x : (∆′, x : κ)
(subst-t)



Expression Denotation. The function [[e]] supplies the denotation of the closed
static expression e as an integer.

[[e]]

[[n]] = n
[[e1 − e2]] = [[e1]] − [[e2]]
[[eb ? et : ef ]] = if [[eb]] then [[et]] else [[ef ]]

Expression Equality. The judgments ∆ ⊢ e1 = e2 and ∆ ⊢ e1 6= e2 hold when
the relation holds for all substitutions of the variables in ∆. ∆ ⊢ σ1 = σ2 simply
extends this relationship to all expressions in the two sequences.

∆ ⊢ e = e

∆ ⊢ e1 : κint ∆ ⊢ e2 : κint ∀S. · ⊢ S : ∆ =⇒ [[S(e1)]] = [[S(e2)]]

∆ ⊢ e1 = e2
(e-eq)

∆ ⊢ e1 : κint ∆ ⊢ e2 : κint ∀S. · ⊢ S : ∆ =⇒ [[S(e1)]] 6= [[S(e2)]]

∆ ⊢ e1 6= e2
(e-neq)

∆ ⊢ σ = σ

∆ ⊢ ǫ = ǫ
(ǫ-eq)

∆ ⊢ e1 = e2 ∆ ⊢ σ1 = σ2

∆ ⊢ σ1 ◦ e1 = σ2 ◦ e2
(σ-eq)

A.3 Value Typing

Integer Typing. The judgment Ψ ⊢ n : τ allows integer n to be given either a
basic int type, a stage description type ρ, or a code type Ψ(n).

Ψ ⊢ n : τ

Ψ ⊢ n : int
(int-t)

Ψ ⊢ n : Ψ(n)
(address-t)

Ψ ⊢ n : ρ
(ρ-t)

Value Typing. In the value typing judgment ∆;Ψ ⊢Z v : t, the context ∆ contains
free expression variables, and the heap type Ψ maps integer addresses to basic
types. The zap tag Z characterizes the current state of the machine. Z is always
the empty tag when a user checks a program at compile time. It only takes on
other values at run time for the purposes of the proof of preservation. If e is equal
to n and Ψ ⊢ n : τ , then c n can always be given the type 〈c, τ, e〉. However, if



the zap tag Z is a color c, then all values c n can also be typed using any basic
type and any well-formed expression — such a general rule reflects the fact that
we can make no guarantees about such values. When the zap tag is CF , then
any green and blue value can be given any type, including giving green values
blue types and vice versa. In other words, when there has been a control-flow
fault, all bets are off for green and blue values.

∆;Ψ ⊢Z v : t

Ψ ⊢ n : τ ∆ ⊢ e = n

∆;Ψ ⊢Z c n : 〈c, τ, e〉
(val-t)

∆ ⊢ e : κint

∆;Ψ ⊢c c n : 〈c, τ, e〉
(val-zap-c-t)

∆ ⊢ e : κint c′ = B or c′ = G

∆;Ψ ⊢CF c n : 〈c′, τ, e〉
(val-zap-CF-t)

Value Subtyping. The subtyping relationship ∆ ⊢ t ≤ t′ allows type 〈c, τ, e〉 to
be subtype of 〈c, int , e′〉 whenever ∆ ⊢ e = e′.

∆ ⊢ t ≤ t′

∆ ⊢ e1 = e2

∆ ⊢ 〈c, τ, e1〉 ≤ 〈c, τ, e2〉
(subtp-reflex)

∆ ⊢ e1 = e2

∆ ⊢ 〈c, τ, e1〉 ≤ 〈c, int, e2〉
(subtp-int)

Register File Subtyping. Register file subtyping is a basic extension of value
subtyping that requires every register in the first register file type to be a subtype
of the corresponding register in the second. The subtyping judgment is used to
type check control flow transfers.

∆ ⊢ Γ ≤ Γ ′

∀r. Γ1(r) ≤ Γ2(r)

∆ ⊢ Γ1 ≤ Γ2
(Γ -subtp)

A.4 Complete Instruction Typing Rules

The rules in the instruction typing judgment ∆;Ψ ;Γ ⊢ i : Γ ′ are described in
Section 4.2.

∆;Ψ ;Γ ⊢ i : Γ ′

rd 6= ri

∆;Ψ ;Γ ⊢ movi rd c n : Γ [rd 7→ 〈c, int, n〉]
(movi-t)



rd 6= ri Γ (ra) = 〈c, int , ea〉 Γ (rb) = 〈c, int , eb〉

∆;Ψ ;Γ ⊢ sub rd ra rb : Γ [rd 7→ 〈c, int, ea − eb〉]
(sub-t)

Γ (ri) = 〈ci, ok, ei〉
Γ (rt) = 〈B ,∀[∆t](Γt, σt), et〉

∆;Ψ ;Γ ⊢ intend rt : Γ [ri 7→ 〈B, go, et〉]
(intend-t)

Γ (ri) = 〈B , go, ei〉
Γ (rt) = 〈B ,∀[∆t](Γt, σt), et〉
Γ (rz) = 〈B , int , ez〉
t′ = 〈B , goz, ez?ei : et〉

∆;Ψ ;Γ ;⊢ intendz rz rt : Γ [ri 7→ t′]
(intendz-t)

A.5 Complete Block Typing Rules

The block typing judgment ∆;Ψ ;Γ ;σ; ei; τ opt ⊢ b describes well-typed blocks.
The first rule, sequence-t, is used when the first instruction in a block is one of
the basic instructions in Appendix A.4.

In addition to rule recovernz-t described in Section 4.2, two additional rules
recovernz-eq-t and recovernz-neq-t are needed to carry out the proof of type
preservation (particularly the substitution lemma), but would never be used to
type check programs prior to execution. In these situations, xi has already been
replaced with a closed expression ei that describes the intentions register at block
entry. Here, it is evident that either · ⊢ ei = eℓ or not, so there is one typing rule
for each situation. The rule recovernz-neq-t does not place any requirements on
the remainder of the block since control does not proceed past this point.

Rule jmp-t is described in Section 4.2. The rule brz-t is similar to jmp-t, but
adds in the conditional register rz and specifies both the fall through and the
branch cases.

∆;Ψ ;Γ ;σ; ei; τ opt ⊢ b

∆;Ψ ;Γ ⊢ i : Γ ′ ∆;Ψ ;Γ ′;σ; ei; τ opt ⊢ b

∆;Ψ ;Γ ;σ; ei; τ opt ⊢ i; b
(sequence-t)

Γ (ri) = 〈O , check, xi〉
Γ (rz) = 〈O , int , ez〉
∆,x : κint ⊢ ez = eℓ − xi

∆ ⊢ Γ/ri/rz wf ∆ ⊢ σ wf ∆ ⊢ eℓ : κint

Γ ′ = Γ [rz 7→ 〈O , int , 0〉][ri 7→ 〈B , ok, eℓ〉]
∆;Ψ ;Γ ′;σ ◦ eℓ; eℓ; τ opt ⊢ b

(∆,x : κint);Ψ ;Γ ;σ ◦ eℓ;xi; τ opt ⊢ recovernz rz; b
(recovernz-t)



Γ (rz) = 〈O , int , ez〉 · ⊢ ez = ei − eℓ

Γ (ri) = 〈O , check, ei〉 · ⊢ ei = eℓ

·;Ψ ;Γ [ri 7→ 〈O , ok, ei〉];σ ◦ eℓ; ei; τ opt ⊢ b

.;Ψ ;Γ ;σ ◦ eℓ; ei; τ opt ⊢ recovernz rz; b
(recovernz-eq-t)

Γ (rz) = 〈O , int , ez〉 · ⊢ ez = ei − eℓ

Γ (ri) = 〈O , check, ei〉 · ⊢ ei 6= eℓ

.;Ψ ;Γ ;σ ◦ eℓ; ei; τ opt ⊢ recovernz rz; b
(recovernz-neq-t)

Γ (ri) = 〈B , go, e′

t〉
Γ (rt) = 〈G ,∀[∆t](Γt, σt), et〉
∆ ⊢ et = e′

t

∃St . ∆ ⊢ St : ∆t

∆ ⊢ Γ [ri 7→ 〈O , check, e′

t〉] ≤ St(Γt)
∆ ⊢ σ ◦ eℓ ◦ et = St(σt)

∆;Ψ ;Γ ;σ ◦ eℓ; ei; t ⊢ jmp rt
(jmp-t)

Γ (ri) = 〈B , goz, e′

z?e
′

f : e′

t〉

∆ ⊢ e′

f = eℓ + 1

Γ (rz) = 〈G , int , ez〉
∆ ⊢ ez = e′

z

Γ (rt) = 〈G ,∀[∆t](Γt, σt), et〉
∆ ⊢ et = e′

t

∃St . ∆ ⊢ St : ∆t

∆ ⊢ Γ [ri 7→ 〈O , check, e′

t〉] ≤ St(Γt)
∆ ⊢ σ ◦ eℓ ◦ e′

t = St(σt)
∃Sf . ∆ ⊢ Sf : ∆f

∆ ⊢ Γ [ri 7→ 〈O , check, e′

f 〉] ≤ Sf (Γf )

∆ ⊢ σ ◦ eℓ ◦ e′

f = Sf (σf )

∆;Ψ ;Γ ;σ ◦ eℓ; ei;∀[∆f ](Γf , σf ) ⊢ brz rz rt

(brz-t)

A.6 Machine State Typing

Code Memory Typing. The judgment ⊢ C : Ψ describes the invariants for code
memory. As described previously, all blocks must have the same basic precondi-
tion. The register ri is described by the type 〈O , check, xi〉. The other registers
are colored either blue or green, and their static expressions do not contain the
variable xi. If a label ℓ has type ∀[∆](Γ, xh ◦ ℓ), then code at that label must be
well-typed given Ψ , ∆, Γ , xh ◦ℓ, the intention expression xi, and the fall through
label type Ψ(ℓ + 1).

⊢ C : Ψ



∀ℓ ∈ Dom(C) ∪ Dom(Ψ) .
Ψ(ℓ) = ∀[∆](Γ, xh ◦ ℓ)
∆ = ∆′, xi : κint, xh : κhist

Γ = Γ ′, ri 7→ 〈O , check, xi〉
∀r′ ∈ Dom(Γ ′) . Γ (r′) 6= 〈O , τ ′, e′〉
∆′ ⊢ Ψ(ℓ + 1) wf ∆′ ⊢ Γ ′ wf
∆;Ψ ;Γ ;xh ◦ ℓ;xi;Ψ(ℓ + 1) ⊢ C(ℓ)

⊢ C : Ψ
(C-t)

Register File Typing. The judgment Ψ ⊢Z R : Γ states that register file R has
type Γ under zap tag Z given heap typing Ψ . It holds when each register in R
has the corresponding type in Γ under Z. And again, values with colors that are
affected by Z are not trusted to have their given types.

Ψ ⊢ R : Γ

∀r. .;Ψ ⊢Z R(r) : Γ (r)

Ψ ⊢Z R : Γ
(R-t)

History Typing. A history h is described by sequence σ when each location is
equal to the corresponding expression.

⊢ h : σ

⊢ () : ǫ
(h-empty-t) · ⊢ e = n ⊢ h : σ

⊢ (h, n) : σ ◦ e
(h-app-t)

Machine State Typing. A machine state Σ is well-typed under zap tag Z when
each of its elements is well-typed, and two additional invariants hold. (1) If
Z is CF then the current location ℓ is not equal to the intended location ei.
Otherwise, if Z is not CF , then these two are equal. (2) If the current block b
has proceeded past the checking stage, then it must be the case that ℓ is equal
to ei. These two invariants together imply it is not possible for code past the
checking stage of a block to be well-typed under the CF zap tag. Consequently,
a proof of type preservation will imply that any control-flow error will be caught
in the checking stage of the next block.

⊢Z (C, h,R, b)

⊢ C : Ψ
Ψ ⊢Z R : Γ
⊢ (h, ℓ) : σ
(Z = CF ) ? (· ⊢ ei 6= ℓ) : (· ⊢ ei = ℓ)
Γ (ri) 6= 〈O , check, ei〉 =⇒ . ⊢ ei = ℓ
.;Ψ ;Γ ;σ; ei;Ψ(ℓ + 1) ⊢ b

⊢Z (C, (h, ℓ), R, b)
(Σ-t)



A.7 Type Safety

Progress asserts that machine states well-typed under the empty zap tag can take
a step to another ordinary machine state. States that are well-typed under any
zap can also take a step, but this step may reach any state, including recover(h)
or hwerror(h).

Theorem 2 (Progress).

1. If ⊢ Σ then Σ −→0 Σ′.

2. If ⊢Z Σ then Σ −→0 F .

Preservation states that execution preserves typing. States well-typed under
the empty zap tag continue to be so after taking a non-faulty step. States typed
under any zap also remain well-typed after a non-faulty step, but the zap tag
may escalate to a supertype. If a state is well-typed under the empty zap tag
and takes a faulty step, then the resulting state is well-typed under some color
c.

Theorem 3 (Preservation).

1. If ⊢ Σ and Σ −→0 Σ′ then ⊢ Σ′

2. If ⊢Z Σ and Σ −→0 Σ′ then ∃Z ′ . ⊢Z′

Σ′ and Z ≤ Z ′.

3. If ⊢ Σ and Σ −→1 Σ′ then ∃c . ⊢c Σ′

A.8 Machine State Simulation

Value Simulation. We say that a faulty value simulates a fault-free value under
color c if the values are equal when they are not colored by c.

v
c
∼ v′

c′ n
c
∼ c′ n

(sim-val)
c n

c
∼ c n′

(sim-val-zap)

Machine State Simulation. A faulty machine state Σf simulates a fault-free state
Σ if they are identical modulo the values in registers colored c.

Σ
c
∼ Σ′

∀r.Rf (r)
c
∼ R(r)

(C, h,Rf , b)
c
∼ (C, h,R, b)

(sim-Σ)



A.9 Program Execution

Block Execution In order to reason about block execution, we extend the sin-
gle step relation Σ −→k Σ′ from Section 3 to create the judgment Σ ;k F
which states that F is the result of executing the current block of Σ while in-
curring k faulty transitions. Execution proceeds up to the control-flow trans-
fer statement at the end of the current block or the recover state if the block
terminates prematurely by transitioning to recovery code. For example, if Σ =
(C, h,R, i1; ...; in; jmp rt), then either F = (C, h,R′, recover(h)) or F = (C, h,R′, jmp rt).

Σ ;k F

(C, h,R, b) −→0 recover(h)

(C, h,R, b) ;0 recover(h)
(blk-eval-recover)

(C, h,R, jmp rt) ;0 (C, h,R, jmp rt)
(blk-eval-jmp)

(C, h,R, brz rz rt) ;0 (C, h,R, brz rz rt)
(blk-eval-brz)

(C, h,R, b) −→k1
(C, h,R′, b′) (C, h,R′, b′) ;k2

F

(C, h,R, b) ;(k1+k2) F
(blk-eval-sequence)

Block Transitions In order to reason about transitions between blocks, we define
the judgment Σ =⇒ℓ Σ′ whenever
(C, h,R, b) −→0 (C, (h, ℓ), R′, b′). In other words, control transfers from the end
of one block to the beginning of another block ℓ in a single step.

Σ =⇒ℓ Σ′

(C, h,R, b) −→0 (C, (h, ℓ), R′, b′)

(C, h,R, b) =⇒ℓ (C, (h, ℓ), R′, b′)
(trans-eval)

Program Execution The judgment Σ =⇒h
k F states that machine state Σ exe-

cutes through a sequence of blocks h to reach state F while incurring k faulty
transitions. In other words, if Σ = (C, h1, R, b), then F is either (C, (h1, h), R′, jmp rt),
(C, (h1, h), R′, brz rz rt), hwerror(h1, h), or recover(h1, h).

Σ =⇒h
k Σ′

Σ ;k F

Σ =⇒
()
k F

(prog-exec-blk)



Σ =⇒h
k Σ′ Σ′ −→0 hwerror(h′, h)

Σ =⇒h
k hwerror(h′, h)

(prog-exec-seq-hwerror)

Σ =⇒h
k1

Σ′ Σ′ =⇒ℓ Σ′′ Σ′′
;k2

F

Σ =⇒
(h,ℓ)
(k1+k2)

F
(prog-exec-seq-trans-blk)


