
Modular SDN Programming with Pyretic

Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker

1. INTRODUCTION
Managing today’s computer networks is a complex

and error-prone task. These networks consist of a wide
variety of devices, from routers and switches, to fire-
walls, network-address translators, load balancers, and
intrusion-detection systems. Network administrators
must express policies through tedious box-by-box con-
figuration, while grappling with a multitude of protocols
and baroque, vendor-specific interfaces.

In contrast, Software-Defined Networking (SDN) is
redefining the way we manage networks. In SDN, a
controller application uses a standard, open messaging
interface like OpenFlow [1], to specify how network ele-
ments or switches should handle incoming packets. Pro-
grammers develop their own new controller applications
on top of a controller platform which provides a pro-
gramming API built on top of OpenFlow. Separating
the controller platform and applications from the net-
work elements allows anyone—not just the equipment
vendors—to program new network control software.

In just a few years, SDN has enabled a wealth of inno-
vation, including prominent commercial successes like
Nicira’s network virtualization platform and Google’s
wide-area traffic-engineering system. Most of the major
switch vendors support the OpenFlow API, and many
large information-technology companies are involved in
SDN consortia like the Open Networking Foundation
and the Open Daylight initiative.

SDN is creating exciting new opportunities for network-
savvy software developers and software-savvy network
practitioners alike. But how should programmers write
these controller applications? The first generation of
SDN controller platforms offer programmers a low-level
API closely resembling the interface to the switches.
This forces programmers to program in “assembly lan-
guage,” by manipulating bit patterns in packets and
carefully managing the shared rule-table space.

In the Frenetic project [2], we are designing simple,
reusable, high-level abstractions for programming SDNs,
and efficient runtime systems that automatically gen-
erate the low-level rules on switches [3, 4, 5, 6, 7].
Our abstractions cover the main facets of managing

Figure 1: Software Defined Network (SDN)

a network—specifying packet-forwarding policy, mon-
itoring network conditions, and dynamically updating
policy to respond to network events. In this article,
we describe Pyretic, our Python-based platform that
embodies many of these concepts, and enables systems
programmers to create sophisticated SDN applications.

Pyretic is open-source software that offers a BSD-
style license compatible with the needs of both com-
mercial and research developers. Both the source code
for, and a pre-packaged VM containing, Pyretic’s core
policy language, libraries, and runtime are available on
the Pyretic homepage [8], along with documentation,
video tutorials, links to our e-mail discussion list, and
more. Feel free to download and run any of the Pyretic
examples covered in the article.

2. OPENFLOW
Pyretic is both a response to the shortcomings of

OpenFlow as a programmer API, and a client of Open-
Flow in its role as an API to network switches. As such,
we begin with a brief review of OpenFlow.

OpenFlow switches: An OpenFlow switch has a
rule table, where each rule includes:

• a bit pattern (including wildcards) for matching header
fields (e.g., MAC and IP addresses, protocol, TCP/UDP
port numbers, physical input port, etc.);

• a priority to break ties between overlapping patterns;

• a list of actions (e.g., forward out a port, flood, drop,
send to controller, assign a new value to a header
field, etc.);

• optional hard and soft timeouts (to evict stale rules);

• byte and packet counters (that collect information
about how much traffic is flowing through each rule).

Upon receiving a packet, the switch finds the highest-
priority matching rule, applies each action, and updates
the counters. Newer versions of OpenFlow support ad-
ditional header fields and multiple stages of tables.

OpenFlow controllers: The OpenFlow protocol
defines how the controller and switches interact. The
controller maintains a connection to each switch over
which OpenFlow messages are sent. The controller uses
these OpenFlow messages to (un)install rules, query
the traffic counters, learn the network topology, and re-
ceive packets when the switch applies the “send to con-
troller” action. Most existing controller platforms offer
programmers an API that is a thin “wrapper” around
these operations. Applications are expressed as event
handlers that respond to events such as packet arrivals,
topology changes, and new traffic statistics.

Controller applications: OpenFlow has enabled a
wealth of controller applications, including flexible ac-
cess control, Web server load balancing, energy-efficient
networking, billing, intrusion detection, seamless mobil-
ity and virtual-machine migration, and network virtu-
alization. As an example, consider “MAC learning”—
an application designed to detect the arrival of new
hosts, discover their MAC addresses, and route packets
to them. To begin, the application starts by installing a
default rule in each edge switch that matches all pack-
ets and sends them to the controller. Upon receiving
a packet, the application learns the location (i.e., the
switch and input port) of the sender. If the receiver’s
location is already known, the application installs rules
that direct traffic in both directions over a shortest path
from one to the other; otherwise, the application in-
structs the switch to flood—broadcasting the packet to
all possible receivers. If a host moves to a new location,
the default rule at the new switch sends the next packet
to the controller, allowing the application to learn the
host’s new location and update the paths that carry
traffic to and from the host. Consequently, hosts can
continue communicating without disruption, even when
one or both hosts move.

3. PYRETIC LANGUAGE
Pyretic encourages programmers to focus on how to

specify a network policy at a high-level of abstraction,
rather than how to implement it using low-level Open-
Flow mechanisms. In particular, instead of implement-
ing a policy by incrementally installing physical rule af-
ter physical rule on switch after switch, a Pyretic policy

is specified for the entire network at once, via a func-
tion from an input located packet (i.e., a packet and its
location) to an output set of located packets. The out-
put packets can have modified fields and usually end up
at new locations—this is how packet forwarding occurs.
The programmer does not need to worry about which
OpenFlow rules are used to move packets from place to
place.

One of the primary advantages of Pyretic’s policies-
as-abstract-functions approach to SDN programming is
that it helps support modular programming. In tradi-
tional OpenFlow programming, the programmer can-
not write application modules independently, without
worrying that they might interfere with one another.
Rather than forcing programmers to carefully merge
multiple pieces of application logic by hand, a Pyretic
program can combine multiple policies together using
one of several policy composition operators, including
parallel composition and sequential composition.

On existing SDN controller platforms, monitoring is
merely a side-effect of installing rules that send packets
to the controller, or accumulate byte and packet coun-
ters. Programmers must painstakingly create rules that
simultaneously monitor network conditions and perform
the right forwarding actions. Instead, Pyretic integrates
monitoring into the policy function and supports a high-
level query API. The programmer can easily combine
monitoring and forwarding using parallel composition.
Since the policy a network programmer desires may
change over time, Pyretic also has facilities for creat-
ing a dynamic policy whose behavior will change over
time, as specified by the programmer. Composition op-
erators can be applied to these dynamic policies just as
easily as fixed static ones.

Finally, Pyretic offers a rich topology-abstraction fa-
cility that allow programmers to apply policy functions
to an abstract view of the underlying network. This
facility is particularly noteworthy in that it is actually
an application built on top of Pyretic using the other
abstractions of the language.

In this section, we illustrate the features of the lan-
guage using examples. Along the way, we build to-
wards a single-switch Pyretic application that dynam-
ically splits incoming traffic across several server in-
stances. We conclude by using topology abstraction to
distribute this single-switch application across a net-
work of many switches.

3.1 Network Policy as a Function
A controller application determines the policy for the

network at any moment in time. A conventional Open-
Flow program includes explicit logic that creates and
sends rule-installation messages to switches (logic that
includes defining the low-level bit-match patterns, pri-
orities, and actions for these rules), and that registers

2

call-backs that poll traffic counters and handle packets
sent to the controller.

In contrast, Pyretic hides these low-level details by
allowing programmers to express policies as compact,
abstract functions that take a packet (at a given lo-
cation) as input, and return a set of new packets (at
potentially different locations). Returning the empty
set corresponds to dropping the packet. Returning a
single packet corresponds to forwarding the packet to a
new location. Returning multiple packets corresponds
to multicast.

The simplest possible Pyretic policy is one where ev-
ery switch floods each packet out all ports on the net-
work spanning tree. In conventional OpenFlow pro-
gramming, the controller application would perform one
flow modification call for each switch in the network
to install the rule whose pattern is “don’t care” on all
bits, with a single action “flood” (if that action is even
supported by the switch). In contrast, in Pyretic, the
programmer simply writes one line:

flood()

where flood() is interpreted as a function that takes a
packet located at any port on any switch in the network
as an input and outputs zero, one, or more copies of the
same packet at the output ports of the switch it arrived
at—one packet for each port on the network’s spanning
tree. Hence, this simple policy will allow any collection
of hosts to broadcast information to one another over a
network. Moreover, the policy no longer depends upon
specific switch features. The switches used need not
implement a“flood”primitive themselves as the runtime
system can choose to implement flooding behavior using
other OpenFlow actions—a good thing since the “flood”
action is an optional feature in OpenFlow 1.0.

Of course, Pyretic programmers will typically write
much more sophisticated policies. Here’s a fragment of
a policy that uses several more Pyretic features to route
a packet with destination IP 10.0.0.1 across switches A
and B.

(match(switch=A) & match(dstip=’10.0.0.1’) >> fwd(6)) +
(match(switch=B) & match(dstip=’10.0.0.1’) >> fwd(7))

Here, we use predicate policies (including match and
conjunction) to disambiguate between packets based on
their location in the network as well as their contents;
we use modification policies (such as fwd) to process
packets and direct where they go; and we use composi-
tion operators (such as +, parallel composition and >>,
sequential composition) to put together policy compo-
nents. Each of these features, as well as others, will be
explained in the upcoming sections; Table 1 lists several
of the most common basic Pyretic policies.

In this slightly more elaborate policy, there are com-
ponents that look somewhat like OpenFlow rules—they
match different kinds of packets and perform different

Syntax Summary

identity returns original packet

none returns empty set

match(f=v) identity if field f matches v,
none otherwise

modify(f=v) returns packet with field f set to v

fwd(a) modify(port=a)

flood() returns one packet for each local port
on the network spanning tree

Table 1: Selected Policies

actions. However, as the simpler flood example shows,
these policies do not necessarily map to OpenFlow rules
in a one-to-one fashion. Consequently, Pyretic program-
mers must discard the rule-based mental programming
model and adopt the functional one. We believe do-
ing so encourages programmers to focus their minds
entirely on the hard problems: The fundamental, high-
level logic required to implement the application prop-
erly, not the low-level encoding of that logic in terms
of hardware abstractions and a series of controller-level
event handlers. This also leads to much more concise
code, avoids replicating related functionality, and re-
duces the risk of accidental inconsistencies between dif-
ferent parts of the application.

3.2 From Bit Patterns to Boolean Predicates
An OpenFlow rule matches packets based on a bit

pattern in the header fields, where each bit is a 0, 1,
or “don’t care.” However, expressing a policy in terms
of bit patterns is tedious. For example, matching all
packets except those with a destination IP address of
10.0.0.1 requires two rules. The first, higher-priority
rule matches all packets destined to 10.0.0.1, so that all
remaining packets “fall through” to the second, lower-
priority rule that has a wildcard in each bit position.
Similarly, matching either 10.0.0.3 or 10.0.0.4 requires
two rules, one for each IP address (as there is no single
bit-pattern that matches both).

Instead of bit patterns in packet-header fields, Pyretic
allows programmers to write basic predicates of the
form match(f=v), demanding that a field f match an
abstract value v (such as an IP address). They can
then construct more complicated predicates using stan-
dard Boolean operators such as and (&), or (|), and
not (~). Intuitively, all these predicates act as filters: If
the incoming packet satisfies the predicate, the packet
passes through the filter untouched, presumably to be
processed in some interesting way by some subsequent
part of the policy. If the incoming packet does not
satisfy the predicate, it is dropped (i.e., the empty set
of packets is generated as a result). For example, the
Pyretic programmer simply writes

~match(dstip=’10.0.0.1’)

3

or

match(switch=A) &
(match(dstip=’10.0.0.3’) | match(dstip=’10.0.0.4’))

and the runtime system ensures that packets are filtered
accordingly.

3.3 Virtual Packet Header Fields
A policy function in Pyretic can match on a packet-

header field (using match(f=v)), and can assign a new
value to a header field (using modify(f=v))). As we
have seen, the fields available to the programmer in-
clude the standard physical OpenFlow packet header
fields, such as source and destination IP. However, un-
like OpenFlow packets, Pyretic packets provide a single
unified abstraction for both the physical packet and its
associated metadata. To this end, Pyretic packets also
include standard virtual fields switch and port that
together specify a packet’s current physical location in
the network. In fact, the fwd policy we saw previously
is actually just a special case of mod! Reassigning the
value of port simply “moves” the packet from the port
on which it arrived to the port on which it will be sent.
The burden of managing all the details needed to ensure
that each packet is forwarded out the correct physical
port is left to the Pyretic runtime.

Finally, Pyretic programmers are free to define their
own, new virtual fields and use them however they choose,
treating each Pyretic packet as if it were a Python dic-
tionary. For example, a programmer may want to assign
a packet to one of several paths through a network. Tag-
ging the packet with the chosen path makes its easier to
direct the packet over each of the hops in the path. In
Pyretic, the programmer could create a new path field
and assign it a particular path identifier. Here again,
the burden of realizing this falls to the Pyretic runtime,
which might, under the hood, represent the appropriate
information using a conventional packet tagging mech-
anism such as VLANs or MPLS labels.

3.4 Parallel and Sequential Composition
A controller application often needs to perform mul-

tiple tasks (e.g., routing, server load balancing, moni-
toring, and access control) that affect handling of the
same traffic. Rather than writing one monolithic pro-
gram, programmers should be able to combine multiple
independently written modules together. In traditional
OpenFlow programming, different modules could easily
interfere with each other. One module might overwrite
the rules installed by another, or drop packets another
module expects to see at the controller. Instead, Pyretic
offers two simple composition operators that allow pro-
grammers to combine policies in series or in parallel.

3.4.1 Sequential Composition

Sequential composition (>>) treats the output of one
policy as the input to another. Consider a simple rout-
ing policy:

match(dstip=’2.2.2.8’) >> fwd(1)

In this policy, the match predicate filters out all packets
that do not have destination 2.2.2.8. The >> operator
places this filter in sequence with the forwarding policy
fwd(1). Hence any packets that get by the filter are
forwarded out port 1. Likewise, the programmer may
write

match(switch=1) >> match(dstip=’2.2.2.8’) >> fwd(1)

to specify that packets located at switch 1 and destined
to IP address 2.2.2.8 should be forwarded out port 1.
This code uses sequential composition to compose three
independent policies. The first two policies happen to
be filters (though they may be arbitrary policies). Of
course, filtering packets first by one condition and then
by a second condition is equivalent to filtering packets
by the conjunction (&) of the two conditions.

3.4.2 Parallel Composition
Parallel composition (+) applies two policy functions

on the same packet and combines the results. For ex-
ample, a routing policy R could be expressed as

R = (match(dstip=’2.2.2.8’) >> fwd(1)) +
(match(dstip=’2.2.2.9’) >> fwd(2))

Those packets destined to 2.2.2.8 will be forwarded out
port 1, while those destined to 2.2.2.9 will be forwarded
out port 2.

As another example, consider a server load-balancing
policy that splits request traffic directed to destina-
tion 1.2.3.4 over two backend servers (2.2.2.8 and
2.2.2.9), depending on the first bit of the source IP
address (packets with sources starting with 0 fall under
IP prefix 0.0.0.0/1 and are routed to 2.2.2.8). This
results in the policy:

L = match(dstip=’1.2.3.4’) >>
((match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.8’)) +
(~match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.9’)))

It happens that this policy adheres to a particularly
common pattern: a clause matching one predicate is
immediately followed by a clause matching its negation.
Of course, in conventional programming languages, such
patterns are just if statements. In Pyretic, if_ is an
abbreviation that makes policies easier to read:

L = match(dstip=’1.2.3.4’) >>
if_(match(srcip=’0.0.0.0/1’),

modify(dstip=’2.2.2.8’),
modify(dstip=’2.2.2.9’))

3.4.3 Code Reuse
One final example highlights the power of Pyretic’s

composition operators to enable modular programming.
In just one line, the programmer can write

4

Syntax Summary
packets(callback on every packet received
limit=n, for up to n packets identical
group_by=[f1,f2,...]) on fields f1,f2,...

count_packets(count every packet received
interval=t, callback every t seconds
group_by=[f1,f2,...]) providing count for each group

count_bytes(count bytes received
interval=t, callback every t seconds
group_by=[f1,f2,...]) providing count for each group

Table 2: Query Policies

L >> R

producing a new policy that that first selects a server
replica, and then forwards the traffic to that chosen
replica. As simple as it seems, this kind of composi-
tion is impossible to achieve when programming directly
against the OpenFlow API.

3.5 Traffic Monitoring
In traditional OpenFlow programs, collecting traf-

fic statistics involves installing rules (so that byte and
packet counters are available), issuing queries to poll
these counters, parsing the responses when they arrive,
and combining counter values across multiple rules.

In Pyretic, network monitors are just another simple
type of policy that may be conjoined to any of the other
policies seen so far. Table 2 shows several different kinds
of monitoring policies available in Pyretic, including
policies that monitor raw packets, packet counts, and
byte counts. The forwarding behavior of these policies
is the same as a policy that drops all packets.

For example, a programmer may create a new query
for the first packet arriving from each unique source IP

Q = packets(limit=1,group_by=[’srcip’])

and restrict it to web-traffic requests (i.e., packets des-
tined to TCP port 80):

match(dstport=80) >> Q

To print each packet that arrives at Q, the programmer
registers a callback routine to handle Q’s callback,

def printer(pkt):
print pkt

Q.register_callback(printer)

The runtime system handles all of the low-level de-
tails of supporting queries—installing rules, polling the
counters, receiving the responses, combining the results
as needed, and composing query implementation with
the implementation of other policies. For example, sup-
pose the programmer composes the example monitoring
query with a routing policy that forwards packets based
on the destination IP address. The runtime system en-
sures that the first TCP port-80 packet from each source

IP address reaches the application’s printer() routine,
while guaranteeing that this packet (and all subsequent
packets from this source) are forwarded to the output
port indicated by the routing policy.

3.6 Writing Dynamic Policies
Query policies are often used to drive changes to other

dynamic policies. These dynamic policies have behav-
ior (defined by self.policy) that changes over time,
according to the programmer’s specification.

For example, the routine round_robin() takes the
first packet from a new client (source IP address) and
updates the policy’s behavior (by assigning self.policy

to a new value) so all future packets from this source are
assigned to the next server in the sequence (by rewrit-
ing the destination IP address); packets from all other
clients are treated as before. After updating the policy,
round_robin() also moves the “currently up” server to
the next server in the list.

def round_robin(self,pkt):
self.policy = if_(match(srcip=pkt[’srcip’]),

modify(dstip=self.server),
self.policy)

self.client += 1
self.server = self.servers[self.client % m]

The programmer creates a new “round-robin load bal-
ancer”dynamic policy class rrlb by subclassing Dynam-

icPolicy and providing an initialization method that
registers round_robin as a callback routine:

class rrlb(DynamicPolicy):
def __init__(self,s,servers):
self.switch = s
self.servers = servers
...
Q.register_callback(self.round_robin)
self.policy = match(dstport=80) >> Q

def round_robin(self,pkt):
...

Note that here the query Q is defined as in the previous
subsection; the only difference is that the the program-
mer registers round_robin as the callback, instead of
printer. The programmer then creates a new instance
of rrlb (say one running on switch 3 and sending re-
quests to server replicas at 2.2.2.8 and 2.2.2.9) in the
standard way

servers = [’2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

producing a policy that can be used in exactly the same
ways as any other. For example, to compose server load
balancing with routing, we might write the following.

rrlb_on_switch3 >> route

3.7 Topology Abstraction
In traditional OpenFlow programming, a controller

application written for one switch cannot easily be ported

5

to run over a distributed collection of switches, or be
made to share switch hardware with other packet-processing
applications. In the case of our load balancer example,
we may well want to use it to balance load coming in
from many different hosts connected to many different
switches in a complex network. And yet, we would pre-
fer to avoid conflating the relatively simple functional-
ity of the load balancer with the logic needed to route
the traffic across the network. A good solution to this
problem is to use topology abstraction to partition the
application in to two pieces: one that does the load bal-
ancing as before, as if the balancer was implemented on
one big switch that could connect all hosts together, and
one that decides on the lower level routes that imple-
ment it. This also serves a secondary purpose: the load
balancer is reusable and can operate over any network
of switches.

To develop this kind of modular program, Pyretic of-
fers a library for topology abstraction that can represent
multiple underlying switches as a single derived virtual
switch, or, alternatively, one underlying switch as mul-
tiple derived virtual switches.

For example, to produce a policy that applies the
client policy rrlb_on_switch3() to a derived (i.e., vir-
tual) switch 3 that abstracts switches 1, 2, and 3 as
a single merged switch, the programmer simply uses
Pyretic’s virtualize function, inputting the desired
policy function and the topology transformation:

virtualize(rrlb_on_switch3,
merge(name=3,

from_switches=[1,2,3]))

Here, the merge topology transformation takes the name
of a single virtual switch and a list of underlying switches
that used to create it. Inside, the merge transforma-
tion applies shortest-path routing to direct packets from
one edge link to another over the underlying switches.
merge encodes this transformation in three auxiliary
policies—one that handles incoming traffic, one that
handles traffic passing through the derived switch, and
one that handles traffic leaving the switch.

The virtualize policy then implements a transfor-
mation of the written policies (the client policy and
three auxiliary policies) using virtual header fields and
sequential composition to produce a single new policy
written for the underlying network [6]. The resulting
policy is exactly the same as any other Pyretic policy,
and can be both composed with other policies, or used
as the basis for yet another layer of virtualization.

4. PYRETIC RUNTIME
Of course, high-level programming abstractions are

only useful if they can be implemented efficiently on
the switches. This section provides a brief overview of
the Pyretic runtime system, focusing on the backend

interface to the OpenFlow switches and policy evalua-
tion.

4.1 Backend Interface
Pyretic’s runtime is designed to be used atop a va-

riety of different OpenFlow controller backends. The
Pyretic runtime connects via a standard socket to a
simple OpenFlow client that could be written on top
of any OpenFlow controller platform. The runtime ma-
nipulates the network by sending messages to the client
(e.g., to inject packets, modify rules, and issue counter
reads). Likewise messages from the client keep Pyretic
updated regarding network events (e.g., packet ins, port
status events, counter values read). This design enables
Pyretic to take advantage of the best controller technol-
ogy available, and allows the system to be entirely self-
contained. The current Pyretic runtime comes packaged
with an OpenFlow client written on the popular POX
controller platform.

4.2 Policy Evaluation
The Pyretic runtime implements an interpreter that

evaluates an input packet against the current policy.
In its simplest mode of operation, all packets are ini-
tially evaluated by this interpreter. Concurrently, the
runtime keeps track of currently active queries, updates
to dynamic policies, and modifications to the network
topology. When it is safe to do so, the runtime reactively
installs rules on switches to handle future packets that
would undergo the same evaluation (e.g., packets from
the same TCP connection). In ongoing work, we are
adding support for proactive installation of rules, which
will install rules on switches before they are needed,
to avoid unnecessary switch-controller latency on flow
set-up. For more information on the current runtime
implementation please see the Pyretic homepage [8].

5. CONCLUSIONS
Pyretic lowers the barrier to creating sophisticated

SDN applications. Pyretic comes with several example
of common enterprise and data-center network applica-
tions (e.g., hub, MAC-learning switch, traffic monitor,
firewall, ARP server, network virtualization, and gate-
way router). Since the initial release of Pyretic in April
2013, the community of developers has grown quickly.
Some have built new applications from scratch, while
others have ported systems originally written on other
platforms.

In one case, the Resonance [9] system for event-driven
control was re-written in Pyretic—taking approximately
one programmer-day and resulting in a six-fold reduc-
tion in code size over an earlier version written on the
NOX controller platform. These savings were realized
thanks to Pyretic’s declarative design and powerful yet
concise policy language. Short expressions involving ba-

6

sic policies, such as match and fwd combined with com-
position operators, replaced complex and delicate code
specifying various packet handlers and the logic they
contained: packet matching, modification and injection,
as well as OpenFlow rule construction and installation.
In fact, Pyretic’s focus on modular design enabled the
Resonance team to encode more complex policies than
had been available in the NOX version.

Pyretic has also been featured in Georgia Tech’s SDN
Coursera course [10] where it was used as the platform
for one of the course’s three programming assignments.

In addition to enhancing our runtime system with
proactive compilation support, in our ongoing work we
are also making extensions to the language and run-
time system to support new features, such as quality-
of-service mechanisms and parsing of packet contents.
Additionally, We are creating more sophisticated ap-
plications, including RADIUS and DHCP services (to
authenticate end hosts and assign them IP addresses)
and wide-area traffic-management solutions for Internet
Service Providers at SDN-enabled Internet Exchange
Points.

We welcome newcomers to our community, whether
they are interested in using Pyretic or in contributing
to its development. Please visit our website, join our
discuss list, or email us.

6. ACKNOWLEDGEMENTS
Our work is supported in part by ONR grant N00014-

09-1-0770 and NSF grants 1111698, 1111520, 1016937,
1253165 and 0964409, a Sloan Research Fellowship, and
a NSF/CRA Computing Innovation Fellowship. Any
opinions, findings, and recommendations are those of
the authors and do not necessarily reflect the views of
the NSF, CRA, ONR, or the Sloan Foundation.

7. REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “Openflow: Enabling innovation in
campus networks,” SIGCOMM CCR, vol. 38,
no. 2, pp. 69–74, 2008.

[2] “The Frenetic project.”
http://www.frenetic-lang.org, 2013.

[3] N. Foster, R. Harrison, M. J. Freedman,
C. Monsanto, J. Rexford, A. Story, and
D. Walker, “Frenetic: A network programming
language,” in ACM ICFP, Sep 2011.

[4] C. Monsanto, N. Foster, R. Harrison, and
D. Walker, “A compiler and run-time system for
network programs,” in POPL, Jan 2012.

[5] M. Reitblatt, N. Foster, J. Rexford,
C. Schlesinger, and D. Walker, “Abstractions for
network update,” in ACM SIGCOMM, Aug 2012.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing software-defined
networks,” in USENIX NSDI, 2013.

[7] N. Foster, M. J. Freedman, A. Guha, R. Harrison,
N. P. Katta, C. Monsanto, J. Reich, M. Reitblatt,
J. Rexford, C. Schlesinger, A. Story, and
D. Walker, “Languages for software-defined
networks,” IEEE Communications, vol. 51,
pp. 128–134, Feb 2013.

[8] “Pyretic homepage.”
http://www.frenetic-lang.org/pyretic, 2013.

[9] “Resonance Project.”
http://resonance.noise.gatech.edu/, 2013.

[10] “Coursera course on SDN.”
https://www.coursera.org/course/sdn, 2013.

7

