
Analyzing polymorphic advice

Daniel S. Dantas1, David Walker1, Geoffrey Washburn2, and Stephanie
Weirich2

1 Princeton University {ddantas, dpw}@cs.princeton.edu (1 609 258 1771)
2 University of Pennsylvania {geoffw, sweirich}@cis.upenn.edu (1 215 898 0587)

Abstract. We take one of the first steps towards developing a practical,
statically-typed, functional, aspect-oriented programming language by
showing how to integrate polymorphism and type analysis with aspect-
oriented programming features. In particular, we demonstrate how to de-
fine type-safe polymorphic advice using pointcuts that unify a collection
of polymorphic join points. We also introduce a new mechanism for speci-
fying context-sensitive advice that involves pattern matching against the
current stack of activation records, and meshes well with functional pro-
gramming idioms. We give our language meaning via a type-directed
translation into an expressive, but fairly simple, type-safe intermediate
language. Many complexities of the source language are eliminated in
this translation, leading to a modular specification of its semantics. One
of the novelties of the intermediate language is the definition of polymor-
phic labels for marking control-flow points. These labels are organized in
a tree structure such that a parent in the tree serves as a representative
for the collection of all its children. Type safety requires that the type
of each child is a generic instance of the type of the polymorphic parent.
Similarly, when a set of labels is assembled as a pointcut, the type of
each label is an instance of the type of the pointcut.

1 Introduction

Aspect-Oriented Programming Languages (AOPL) allow programmers to in-
dependently specify what computations to perform as well as when to perform
them. For example, AspectJ [1] makes it easy to implement a profiler that records
statistics concerning the number of calls to each method. The what in this ex-
ample is the computation that does the recording and the when is the instant of
time just prior to execution of each method body. In aspect-oriented terminol-
ogy, the specification of what to do is called advice and the specification of when
to do it is called a point cut. A collection of point cuts and advice organized to
perform a coherent task is called an aspect.

The profiler described above could be implemented without aspects by plac-
ing the profiling code into directly into the body of each method. However, at
least four problems arise when the programmer does the insertion manually.
First, it is no longer easy to adjust when the advice should execute, as the pro-
grammer must explicitly extract and relocate calls to profiling functions. Second,



there may be some specific convention concerning how to call the profiling func-
tions, and when calls to these functions are spread throughout the code base, it
may be difficult to maintain these conventions correctly. For example, IBM ex-
perimented with aspects in their middleware product line, finding that aspects
aided in the consistent application of cross-cutting features such as profiling
among others [2]. Third, the profiled code becomes “tangled” with the rest of
the code involved in the main computation, potentially obscuring the central
algorithm. This problem gets much worse when code for several different tasks
such as profiling, debugging, distribution, access control and others are mixed
together. Fourth, in some situations, one does not have access to the source code
or does not have the right to modify it and consequently manual insertion of
function calls is out of the question.

Although aspects are increasingly popular in object-oriented languages, aside
from a couple of toy projects, they have not yet been incorporated into any
statically-typed functional language. One of the challenges along the way lies
in developing a typing discipline appropriate for functional languages that is
safe, yet sufficiently flexible to fit aspect-oriented programming idioms. In some
situations, typing is straightforward. For instance, when a piece of advice advises
a single monomorphic function, the type of the argument to and result of the
advice is directly connected to the type of the function being advised. However,
many aspect-oriented programming tasks, including the profiling task mentioned
above, are best handled by a single piece of advice that executes before (or after)
any function call, regardless of the type of the function’s argument (or result).
In this case, the type of the advice is not directly connected with the type of a
single function, but with a whole collection of functions. In order to type check
advice in such situations, one must first determine the type for the collection
and then link the type of the collection to the type of the advice. Normally, the
type of the collection will be highly polymorphic and the type of each element
will be a generic instance of the collection’s type.

In addition to finding polymorphic types for advice, we wish to allow ad-
vice to change its behavior depending upon the type of the advised function.
For instance, our otherwise generic profiling advice might be specialized so that
on any call to a function with an integer argument, it keeps track of the dis-
tribution of calls with particular arguments. This and other similar examples
require that the advice be able to determine the type of the function argument.
In AspectJ, where object-orientation is the underlying programming paradigm,
downcasts are used to determine types, but in a functional language, we believe
that intentional type analysis is the appropriate mechanism.and

Finally, in order to emulate the context-sensitive advice found in languages
such as AspectJ, we propose a simple yet general mechanism for analyzing the
contents of a stack of polymorphic activation records. Once again, following
the spirit of functional programming, the stack is treated as a functional data
structure and the programmer may use recursive functions and pattern matching
to determine its contents.



(polytypes) s ::= forall a.t

(monotypes) t ::= a | unit | string | stack | t1 -> t2

(terms) e ::= x | () | f[t] | e1e2 | ds e

| stkcase e1 (p=>e |_=> e2)

| typecase a (t=>e |_=> e)

(patterns) p ::= nil | x | _::p | pt(x:t,n)::p

(declarations) ds ::= . | let f (x:t1):t2 = e in ds

| time pt(x:t,s,n) = e in ds

(point cut designators) pt ::= {f} | any

(trigger time) time ::= before | after

(programs) prog ::= ds e

Fig. 1. Syntax of PolyAML

In this paper, we analyze these programming features and develop a sim-
ple language that contains the essential elements of a polymorphic functional
programming language with before and after advice. In order to specify the se-
mantics of our language, we give a type-directed translation from the source into
a type-safe intermediate language, following previous work by Walker, Zdancewic
and Ligatti (WZL) [3], who define the semantics of a monomorphic language in
this way. This translation helps to modularize the semantics for the source and
could be used as the first step in a compilation strategy.

The core language, though it builds directly on WZL, is itself an important
contribution of our work. One of the novelties of the core language are its first-
class, polymorphic labels, which can be used to mark any control-flow point in
a program. Unlike in WZL, where the labels are monomorphic, polymorphism
allows us to structure the labels in a tree-shaped hierarchy. Intuitively, each in-
ternal node in the tree represents a group of control-flow points whereas the
leaves represent single control-flow points. Depending upon how these labels are
used, there could be groups for all points just before execution of the function or
just after; groups for getting or setting references; groups for raising or catching
exceptions, etc. Polymorphism is crucial for defining these groups as the type of
each member of a group (i.e., child of an internal tree node) is a polymorphic
instance of the type of the parent. In addition, polymorphism is used in conjunc-
tion with many other features of the language: point cuts, which assemble sets
of labels, advice, and functions. Overall, we have worked hard to gives a clean
semantics to each feature in this language, and to separate unrelated concerns.
We believe this will faciltate further exploration and extension of language.

2 Programming with aspects in PolyAML

The language PolyAML (Figure 1) contains the essential features of a polymor-
phic aspect-oriented functional language. For clarity in the examples below, we
add language features, such as recursion and I/O, and elide some type informa-
tion. Although PolyAML is explicitly typed, we restrict polymorphism to be
predicative, merely to simplify type inference.



An aspect in PolyAML is composed of several pieces of advice. Advice in
PolyAML is second-class and includes two parts: the body which specifies what
to do, and a point-cut designation, which specifies when to do it. A point-cut
designation may either be a set of function names, which triggers the advice
before or after any of the functions in the set are called, or it may be any,
which is triggers the advice when any function is called. For uniformity, all
functions in PolyAML must be named.

When before advice is triggered, the body of the advice receives the argu-
ment of the function, the name of the function that was called as a string, and
a reification of the execution stack. (The call that triggers the advice is at the
top of the stack.) Likewise, when after advice is triggered by the return of a
function, the body receives the result of the function, as well as the name of the
function that triggered the advice and the current stack.

One of the simplest uses of aspect-oriented programming is to add tracing
information to functions—statements that are executed whenever a function is
called or returns. For example, we can advise the program below to display
messages before any function is called and after the functions f and g return.

let f (x:int) = x + 1 in
let g (x:bool) = if x then f 1 else f 0 in
let h (x:a) = (x,x) in
before any (x:a, s:stack, n:string) =

print "entering"; println n; x
after { f,g }(x:a, s:stack, n:string) =

print "leaving"; println n; x
h (g true)

Even though some of the functions in this example are monomorphic, polymor-
phism is essential. Because the advice can be triggered by any of the these func-
tions and they have different types, the advice must be polymorphic. Moreover,
since the result type of functions f and g have no type structure in common,
the argument x of the after advice must be completely abstract.3 If, on the
other hand, the result types of both functions were pairs, say (int*bool) and
(bool*bool), the type of the after advice argument x could be the more specific
type (a*bool). In general, the type of the advice argument may be the most
specific type τ such that all functions referenced in the point cut are instances
of τ.4

We might also want the tracing routine to print not only the name of the
function that is called, but also its argument. Therefore, PolyAML allows the
programmer to specify many different pieces of advice that are triggered based
on the specific type of the argument. (For simplicity, all advice that is applicable
to a program point is triggered in the order in which it is declared.)

3 We indicate this by annotating x with type variable a, which is implicitly quantified.
4 Unless the programmer intends to define type-analyzing advice as explained in the

next paragraph. In this case, the type annotating the argument may be more specific.



before any (x:a, s:stack, n:string) =
print "entering "; print n; x

before any (x:int, s:stack, n:string) =
print " with arg "; println (itos x); x

before any (x:bool, s:stack, n:string) =
print " with arg "; println (if b then "true" else "false"); x

This ability to conditionally trigger advice based on the type of the argument
means that polymorphism is not parametric in PolyAML—programmers can
analyze the types of values at run-time. However, without this ability we cannot
implement this tracing aspect. Because of this example and many others, a
polymorphic aspect-oriented programming language is of limited use without
type analysis. For further flexibility, PolyAML also includes a typecase construct
to analyze type variables directly.

When advice is triggered, often not only is the argument to the function
important, but also the context in which it was called. This context is provided
to all advice, and PolyAML includes constructs for analyzing this context. For
example, below we augment the tracing aspect so that it displays debugging
information for the function f when it is called directly from the context of g
and g’s argument is the boolean true.

before { f } (x:a, s:stack, n:string) =
(stkcase s of
_ :: { g }(y:bool, m:string) :: s’ =>

if y then print "entering f from g" else ()
| _ => ()); x

A more sophisticated example of context analysis is to use an aspect to im-
plement a stack-inspection-like security monitor for the program. If the pro-
gram tries to call an operation that has not been enabled by the current con-
text, the security monitor terminates the program. Below, assume the function
enables:string -> string -> bool determines whether the first argument (a
function name) provides the capability for the second argument (another func-
tion name) to execute.

before any (x:a, s:stack, n:string) =
let rec walk s =

stkcase s of
nil => abort ()

| any (y:a, nf:string) :: s’ =>
if enables nf n then () else walk s’

in walk s; x

As mentioned in the introduction, the semantics of PolyAML is given the
translation into an expressive polymorphic core language. In the next two sec-
tions, we describe the semantics of FA in detail. In Section 5, we describe the
translation from PolyAML into the core.



3 The core language and polymorphism

The core language FA is an extension of the core language from WZL with poly-
morphic labels, polymorphic advice, and run-time type analysis. It also improves
upon the semantics of context analysis. One of the features of the language is
the fact that all constructs are defined orthogonally to one another. One advan-
tage of this design is that we can easily experiment with the language, adding
new features to scale the language up or removing features to improve reasoning
power. For instance, by removing the single type analysis construct, we recover
a language with parametric polymorphism. Due to lack of space, the complete
semantics FA appears in Appendix A.

3.1 The semantics of explicit join points

For exposition, to describe the semantics of FA we start here with a simple
version similar to WZL and extend it in the following sections. The syntax of
this language is summarized below.

τ ::= 1 | string | τ1 → τ2 | τ1 × . . .× τn | α | ∀α.τ | τ label | τ pc | advice
e ::= 〈〉 | s | x | λx:τ.e | e1e2 | 〈e〉 | let 〈x〉 = e1 in e2

| Λα.e | e[τ] | ` | new τ ≤ e | e1[][[e2]] | ⇑ e | {e1.x:τ → e2}

For simplicity, the base language is chosen to be the λ-calculus with unit,
strings and n-tuples. If e is a vector of expressions e1, e2, . . . en for n ≥ 2,
then 〈e〉 creates a tuple. The expression let 〈x〉 = e1 in e2 binds the contents
of a tuple to a vector of variables x in the scope of e2. Unlike WZL, we add
impredicative polymorphism to the core language, including type abstraction
(Λα.e) and type application (e[τ]). We write 〈〉 for the unit value and s for
string constants.

As in WZL, Labeled join points `[][[e]] are the essential mechanism of FA.
The labels, drawn from some infinite set of identifiers, serve two purposes: They
mark program points where advice may be triggered and they provide markers
for contextual analysis. For example, in the expression v1 + `[][[e2]], after e2 has
been evaluated to a value v2, evaluation of the resulting subterm `[][[v2]] causes
any advice associated with ` to be triggered. to New labels may be generated
at run time, with the expression new τ ≤ e. (We describe the role of e in
Section 4.1.) In this way, scoping may be used to reason about what advice may
be triggered at a particular location, when the label is unknown.

Advice is a computation that exchanges data with a particular join point,
and so is similar to a function. The advice {`.x:int → e} is triggered when control
flow reaches a join point labeled with `. The variable x is bound to the the data
at that point and evaluation proceeds into the body of the advice. For example, if
this advice has been installed in the program’s dynamic environment, v1+`[][[v2]]
evaluates to v1 + e[v2/x].

Advice is installed into the run-time environment with the expression ⇑ e.
Multiple pieces of advice may apply to the same control flow point, so the order



advice is installed in the run-time environment is important. WZL included
mechanisms for installing advice both before or after currently installed advice,
for simplicity FA only allows advice to be installed after.

Operational Semantics. The operational semantics must keep track of both the
labels that have been generated and the advice that has been installed. An
allocation-style semantics keeps track of a set Σ of labels (and their associated
types) and A, an ordered list of installed advice. The abstract machine states of
the operational semantics are triples Σ;A; e.

We use evaluation contexts, E, to give the core aspect calculus a call-by-value,
left-to-right evaluation order, but that choice is orthogonal to the design of the
language. Auxiliary rules give the primitive β-reductions for this calculus that
describe how terms evaluate in context.

Σ; A; e 7→β Σ
′; A ′; e ′

Σ; A; E[e] 7→ Σ
′; A ′; E[e ′]

ev:beta

The β-reductions for functions, type abstractions and pairs are standard. We
discuss the rules for label creation and point cuts in the next section.

Type system. The type system of FA maintains the connection between labels,
join points and advice. Because it is necessary to pass information back and
forth between the join point of interest and the advice, the advice and control
flow points must agree about type of data that will be exchanged.

The judgement ∆; Γ ` e : τ indicates that the term e can be given the type
τ, where free type variables appear in ∆ and the types of term variables and
labels appear in Γ . Unit, string, tuple, function and polymorphic term typing
are standard.

The type system assigns the type τ label to labels, which describes the type
of expressions they may label at join points. As point cuts are merely labels in
this simple calculus, any expression of type τ label may be considered to have
type τ pc. In Section 4 we will generalize the definition of point cuts.

Advice associated with a point cut of type τ pc is constructed from code that
expects a variable of type τ. The body of advice must produce a result suitable
for returning to the point from which the advice was triggered. Thus, the body
of the advice must itself be of type τ. The expression ⇑ e, which installs advice
in the run-time environment has type 1 when e has type advice.

We have shown that FA (including extensions discussed below) is type sound
through the usual Progress and Preservation theorems.

Theorem 1 (Progress). If ` (Σ;A; e) ok then either the configuration is fin-
ished, or there exists another configuration Σ ′;A ′; e ′ such that Σ;A; e 7→ Σ ′;A ′; e ′.

Theorem 2 (Preservation). If ` (Σ;A; e) ok and Σ;A; e 7→ Σ ′;A ′; e ′, then
Σ ′ and A ′ extend Σ and A such that ` (Σ ′;A ′; e ′) ok.



3.2 Polymorphic labels and advice

Although we have based our core language on a polymorphic λ-calculus, the
language discussed above is not flexible enough to encode the examples in Sec-
tion 2. Advice can only apply to program points with the same type. We make
advice more flexible by generalizing the type of point cuts, as shown in the syn-
tax below, to include a vector of type variables, bound within the type of point
cut.

τ ::= ... | (α.τ) label | (α.τ) pc
e ::= ... | {e1.αx:τ → e2} | new α.τ ≤ e | e1[τ][[e2]]

Advice that is triggered by such a point cut must abstract those type variables
in its argument and return type.

∆; Γ ` e1 : (α.τ) pc ∆, α; Γ, x:τ ` e2 : τ

∆; Γ ` {e1.αx:τ → e2} : advice
wft:advice

Likewise, because point cuts are just labels, we similarly generalize the label
type. When labels are attached to program points, these type arguments must
be instantiated.

∆; Γ ` e1 : (α.τ) label ∆ ` τi ∆; Γ ` e2 : τ[τ/α]

∆; Γ ` e1[τ][[e2]] : τ[τ/α]
wft:cut

Intuitively, when the join point `[τ][[v]] triggers the advice {`.αx:τ → e}, τ will
replace α and v will replace x in the body of the advice. (In section 4.1, where
we generalize point cuts this process becomes more complicated.)

This modification to the point cut type provides flexibility in the use of
advice. For example, the following code creates a new label, installs advice for
this label (that is an identity function) and then uses this label to mark three
join points in the program, one of which is located in a polymorphic function.

let l = new α.α ≤ U in

let = ⇑ {l.αx:α → x} in

〈Λβ.λx:β.l[β][[x]], l[int][[3]], l[bool][[true]]〉

There are several issues that arose leading to this design. The first is in seeing
why standard polymorphism is not enough for the above code. For example, it is
not immediately clear why we cannot use types such as (∀α.α) label, ∀α.(α label),
or even (in calculus with existential types) (∃α.α) label instead.

However, the type (∀α.α) label does not allow α to be bound in the body of
advice that is triggered by this label. This label can only mark point cuts of type
∀α.α. The type ∀α.(α label) must create a new label whenever it is instantiated,
because the type of label to use is not known until then. It also does not allow
advice to be polymorphic. Finally, the existential type (∃α.α) label requires that
the labeled expression evaluate to an existential package. If all join points must
have an abstract types, it will significantly restrict the locations of a program
that may be labeled.



Another issue that arose in our design was keeping run-time type analysis
orthogonal from join points and advice. We wanted the only mechanism that
could analyze run-time type information to be the typecase term, described
below. However, this means that we could not allow advice to be conditionally
triggered by the type of the join point. More subtly, we had to ensure that
polymorphic point cuts were instantiated only at join points, so that we could
rule out the following type-analyzing code:

let l = new α.α ≤ U in

let = ⇑ {(l[string]).x:string → print x; x} in

Λβ.λx:β.l[β][[x]]

Therefore, typecase is the only mechanism in FA that allows for dynamic
pattern matching against types. The semantics of this operator is fairly standard.
The typing rule for typecase is below.

∆, α ` τ1 ∆ ` τ2

∆
′ = FTV(τ3) ∆, ∆

′; Γ ` e1[τ3/α] : τ1[τ3/α] ∆, α; Γ ` e2 : τ1

∆; Γ ` typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) : τ1[τ2/α]
wft:tcase

A typecase expression consists of a type τ2 to match against a type pattern
τ3. The type matches a pattern if there is some substitution for the free variables
in the pattern that makes it equal to τ2. In the case of a match, e1 is executed,
otherwise execution continues with e2. The α.τ1 annotation is used for type
checking and describes the type of the branches. In the branch e1 we know that
τ2 is equal to τ3, so we can let the result type of this branch mention τ3 instead
of τ2.

4 Extensions

WZL investigated two generalizations of the basic aspect framework. First, they
allowed advice to be triggered by multiple labels, using label sets as point cuts.
Second, they permitted run-time inspection of the labels appearing in the call
stack. Both of these extensions are necessary to support the PolyAML as de-
scribed in Section 2, so we describe how these extensions interact with polymor-
phism. In doing so, we make two new contributions to these extensions.

4.1 Generalizing point cuts

In PolyAML, advice may be triggered by a set of function names. To support
this mechanism in FA we must generalize point cuts from single labels to sets
of labels. Advice may then be triggered by any label in the set. To do so, we
extend the syntax of the language with expressions to create a set of labels and
a union operation for sets.

e ::= . . . | {e} | e1 ∪ e2



In WZL, labels grouped together must have the same type, because any of the
labels could trigger the advice. With polymorphic advice we can be more flexible
in label set formation. Label sets may be composed of labels with different types if
we can find some type that is more polymorphic than the types of the constituent
labels. In the typing rule below, we use the instance relation ∆ ` τ1 ≺ τ2 to
mean that τ2 is more specific than τ1. This instance relation (defined below) is
similar to that used in Hindley-Damas-Milner type inference [4].

∆; Γ ` ei : (αi.τi) label ∆ ` β.τ ≺ αi.τi

∆; Γ ` {e} : (β.τ) pc
wft:pc

∆, α ` τ1 ∆, β ` τ2 ∆ ` τi ∃τ.τ1[τ/α] = τ2

∆ ` α.τ1 ≺ β.τ2

gen

For example, given labels `1 of type (1×1) label and `2 of type (1×bool) label,
a label set containing them can be given the type (α.1×α) pc because this type
can be instantiated to that of either of the labels. The formation rule for the
union operation, e1 ∪ e2, also employs this instance relation.

Polymorphic advice enables another generalization of point cuts, not consid-
ered by WZL; we can arrange all labels into single hierarchy, or tree structure.
With such a hierarchy, a join point `[τ][[e]] triggers advice {` ′.αx:τ ′ → e} if the
label ` is lower in the hierarchy than the label ` ′.

With this extension, we can use a point cut to refer to all labels lower in the
tree, without specifying each such label individually. This mechanism is essential
to support PolyAML advice that should be triggered on entry to any function.
The advice cannot create this set—not all labels that mark the beginnings func-
tions may be in scope where the advice is specified. With a label hierarchy, we
can refer to all such labels if they all descend from a single label, Ubefore.

The label hierarchy is extended when labels are created with new α.τ ≤ e.
The argument e becomes the parent of the new label. For soundness, there must
be a connection between the type of the new label and the type of the parent
label. As above, the new label must have a more specific type than its parent.

∆; Γ ` e : (β.τ2) label ∆ ` β.τ2 ≺ α.τ1

∆; Γ ` new (α.τ1) ≤ e : (α.τ1) label
wft:new

For completeness, FA includes a start label U that is the ancestor of all labels
and has the most polymorphic label type, α.α label.

Now that we have described label sets and the label hierarchy we can precisely
specify the operational semantics for when advice is triggered. When a join point
is reached in β-reduction, an auxiliary judgement, Σ;A; `; τ ⇒ v ′, examines the
installed advice to create a function v ′ to apply to the value of the join point.

`:α.τ ≤ `
′ ∈ Σ Σ; A; `; τ[τ/α] ⇒ v

′

Σ; A; `[τ][[v]] 7→β Σ; A; v ′
v

evb:cut



This judgment (advice composition) is described by three rules. The first
rule returns the identity function when no advice is available. The other rules
examine the advice at the head of the advice heap. If the label ` descends from
one of the labels in the label set, then that advice is triggered. The head advice
is composed with the function produced from examining the rest of the advice in
the list. Not only does advice composition determine if ` is lower in the hierarchy
than some label in the label set, but it also determines the substitution for the
abstract types α in the body of the advice. The typing rules ensure that if the
advice is triggered, this substitution will always exist, so the execution of this
rule does not require run-time type information.

Σ; ·; `; τ ⇒ λx:τ.x
adv:empty

Σ; A; `; τ2 ⇒ v2 Σ ` ` ≤ `i for some i ∃τ.τ2 = τ1[τ/α]

Σ; A, {{`}.αx:τ1 → e}; `; τ2 ⇒ λx:τ.v2(e[τ/α])
adv:cons1

Σ; A; `; τ2 ⇒ v2 Σ ` ` 6≤ `i

Σ; A, {{`}.αx:τ1 → e}; `; τ2 ⇒ v2

adv:cons2

4.2 Context analysis

Languages such as AspectJ include pointcut operators such cflow to enable ad-
vice to be triggered in a context-sensitive fashion. In our language, we provide
direct access to the run-time stack as a functional data structure and we allow
programmers to pattern match against this data structure, in much the same
way that one pattern matches against a list. WZL’s monomorphic core language
also contained the ability to query the stack, but the stack was not first-class and
the queries had to be formulated as regular expressions. Our pattern matching
facilities are simpler and therefore easier to use and describe. Moreover, they fit
perfectly within the functional programming idiom, and overall are a substan-
tial improvement over previous work. Below are the necessary new additions to
the syntax of the language for storing type and value information on the stack,
capturing and representing the current stack as a data structure, and analyzing
a reified stack.

τ ::= . . . | stack
e ::= . . . | stack | • | `[τ][[v1]]::v2 | store e1[τ][[e2]] in e3

| stkcase e1 (ρ ⇒ e2, x ⇒ e3)
ρ ::= • | e[α][[y]]:τ::ρ | x | ::ρ

The operation store e1[τ][[e2]] in e3 allows the programmer to store data e2

marked by the label e1 in the evaluation context of the expression e3. Because
this label may be polymorphic, it must be instantiated with type arguments τ.
In the operational semantics, the term stack captures this data stored in the
execution context as a first-class data structure.



data(E) = v

Σ; A; E[stack] 7→ Σ; A; E[v]
ev:stk

This context is converted, using the auxiliary function data(·), into an or-
dered list represented by the stack nil • and stack cons :: terms. The type of the
returned value is stack. A list of stored stack information may be analyzed with
the pattern matching term stkcase e1 (ρ ⇒ e2, x ⇒ e3). This term attempts
to match the pattern ρ against e1, a reified stack. Note that stack patterns, ρ,
include first-class point cuts so they must be evaluated to pattern values, ϕ, to
resolve these point cuts before matching.

If, after evaluation, the pattern value successfully matches the stack, then the
expression e2 evaluates, with its pattern variables replaced with the correspond-
ing part of the stack. Otherwise execution continues with e3. The following two
β-rules encode this operation. These rules rely on the stack matching relation
Σ ` v ' ϕ � Θ that compares a stack pattern value ϕ with a reified stack v to
produce a substitution Θ.

Σ ` v ' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; Θ(e1)
evb:scase1

Σ ` v 6' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; e2[v/x]
evb:scase2

The typing rule for stack analysis requires that e1 be a first-class stack. It also
determines the free variables in the pattern ρ, with the relation ∆; Γ ` ρ a ∆ ′; Γ ′,
and binds them in the branch e2.

∆; Γ ` e1 : stack ∆; Γ ` ρ a ∆
′; Γ ′

Γ
′
, ∆

′ linear ∆, ∆
′; Γ, Γ ′ ` e2 : τ ∆; Γ, x:stack ` e3 : τ

∆; Γ ` stkcase e1 (ρ ⇒ e2, x ⇒ e3) : τ
wft:scase

5 Translation

We give a semantics to well-typed PolyAML programs by defining a type-
directed translation into the FA language. This translation is defined by the
following mutually recursive judgments for over terms, types, patterns, declara-
tions and point cut designators.

∆ ` t
type
=⇒ τ Injection of source types into target types

∆; Γ ` pt
time
=⇒ e; a.t Translation of point cut designators to target

point cuts and their types
∆; Γ ` p

pat
=⇒ ρ a ∆ ′; Γ ′;Φ Translation of stack patterns, producing a

mapping between source and target variables
∆; Γ ` e : t

exp
=⇒ e Translation of terms

∆; Γ ` ds; e : t
decs
=⇒ e Translation of declarations

∆; Γ ` ds e : t
prog
=⇒ e Translation of programs



a = FTV(t1, t2) − ∆ ∆, a ` t1
type
=⇒ τ

′
1 ∆, a ` t2

type
=⇒ τ

′
2

∆; Γ, f:forall a.t1 -> t2 ` ds; e2 : t
decs
=⇒ e

′
2 ∆, a; Γ, x:t1 ` e1 : t2

exp
=⇒ e

′
1

∆; Γ ` let f (x:t1):t2 = e1 in ds; e2 : t
ds

=⇒
let fbefore : (α.τ

′
1 × stack× string) label =

new (α.τ
′
1 × stack× string) ≤ Ubefore in

let fafter : (α.τ
′
2 × stack× string) label =

new (α.τ
′
2 × stack× string) ≤ Uafter in

let fstk : (α.τ
′
1 × string) label =

new (α.τ
′
1 × string) ≤ Ustk in

let f : ∀α.τ
′
1 → τ

′
2 =

Λα.λx:τ1.store fstk[α][[〈x, “f”〉]] in

let 〈x, , 〉 = fbefore[α][[〈x, stack, “f”〉]] in

let 〈x, , 〉 = fafter[α][[〈e ′
1, stack, “f”〉]] in x

in e
′
2

tds:let

∆; Γ ` ds; e2 : t2
decs
=⇒ e

′
2 ∆; Γ ` pt

time
=⇒ e

′; a.t3

∃t.t3[t/a] = t1 ∆
′ = FTV(t1) ∆, ∆

′ ` t1
type
=⇒ τ

′
1

∆, a ` t3
type
=⇒ τ

′
3 ∆, ∆

′; Γ, x:t1, s:stack, n:string ` e1 : t1
exp
=⇒ e

′
1

∆; Γ ` time pt(x:t1,s,n) = e1 in ds; e2 : t2
ds

=⇒
let : 1 =⇑ {e

′
.αx:τ ′

3 → let 〈x, s, n〉 = x in

(typecase[γ.γ → γ] τ
′
3 (τ ′

1 ⇒ λx:τ ′
1.e

′
1, γ ⇒ λx:γ.x))x}

in e
′
2

tds:ad

Fig. 2. Translation of function and advice declarations

The translation was significantly inspired by those in found in WZL [3] and
Dantas and Walker [5]. Much of the translation is straightforward so we only
sketch it here. The complete translation appears in Appendix B.

The basic idea of the translation is that join points must be made explicit in
the source language. Therefore, we translate functions so that that they include
explicitly labeled join points at their entry and exit and so that they store
information on the stack as they execute. More specifically, for each function we
create three labels fbefore, fafter and fstk for these join points. So that source
language programs can refer to the entry point of any function all labels fbefore
are derived from a distinguished label Ubefore. Likewise, Uafter and Ustk are the
parents of fafter and fstk.

The most interesting part of the encoding is the translation of function and
advice declarations, shown in Figure 2. The translation of functions first proceeds
recursively on the various pieces of the declaration. Then the labels, fbefore,
fafter, and fstk are created. Inside the body of the translated function, a store

statement marks the function’s stack frame. Labeled join points are wrapped
around the function’s input and body respectively to implement for before and
after advice. Because PolyAML advice expects the current stack and a string



of the function name, we also insert stacks and string constants into the join
points.

The biggest difference between advice in PolyAML and FA is that PolyAML

advice may pattern match on the type of its argument to decide whether to
execute, but FA advice may not. In the translation, a typecase expression
in the body of the advice determines if the type matches and defaults to an
identity function if it does not. The translation also splits the input into the
three arguments that PolyAML expects and immediately installs the advice.

We have proved that the translation always produces well-formed FA pro-
grams.

Theorem 3 (Program translation type soundness). If ·; · ` ds e : t
prog
=⇒ e

then ·; · ` e : τ where · ` t
type
=⇒ τ.

Furthermore, because we know that FA is a type safe language, PolyAML in-
herits safety as a consequence.

Theorem 4 (PolyAML safety). Suppose ·; · ` ds e : t
prog
=⇒ e then either e

fails to terminate or there exists a sequence of reductions ·; ·; e 7→∗ Σ;A; e ′ to a
finished configuration.

6 Related work

Over the last several years, researchers have begun to build semantic founda-
tions for aspect-oriented programming paradigms [6–11, 3, 12, 13]. As mentioned
earlier, our work builds upon the framework proposed by Walker et al. [3], but
extends it with polymorphic versions of functions, labels, label sets, stacks, pat-
tern matching, advice and the auxiliary mechanisms to define the meaning of
each of these constructs.

To our knowledge, the only previous study of the interaction between poly-
morphism and aspect-oriented programming features has occurred in the context
of Lieberherr, Lorenz and Ovlinger’s Aspectual Collaborations [14, 15]. They ex-
tend a variant of AspectJ with a form of module that allows programmers to
choose the join points (i.e., control-flow points) that are exposed to external
aspects. Aspectual Collaborations has parameterized aspects that resemble the
parameterized classes of Generic Java. When a parameterized aspect is linked
into a module, concrete class names replace the parameters. Since types are
merely names, the sort of polymorphism necessary is much simpler (at least in
certain ways) than required by a functional programming language. For instance,
there is no need to develop a generalization relation and type analysis may be
replaced by conventional object-oriented down-casts. Overall, the differences be-
tween functional and object-oriented language structure have caused our two
groups to find quite different solutions to the problem of constructing generic
advice.

Closely related to Aspectual Collaborations is Aldrich’s notion of Open Mod-
ules [16]. The central novelty of this proposal is a special module sealing oper-
ator that hides internal control-flow points from external advice. Aldrich used



logical relations to show that sealed modules have a powerful implementation-
independence property [17]. In earlier work [18], we suggested augmenting these
proposals with access-control specifications in the module interfaces that allow
programmers to specify whether or not data at join points may be read or writ-
ten. Neither of these proposals consider polymorphic types or modules that can
hide type definitions. Building on concurrent work by Washburn and Weirich [19]
and Dantas and Walker [5], we are working on extending the language defined
in this paper to include abstract types and protection mechanisms that ensure
abstractions are respected, even in the presence of type analyzing advice.

Tucker and Krishnamurthi [20] developed a variant of Scheme with aspect-
oriented features. They demonstrate the pleasures of programming with point-
cuts and advice as first-class objects. For simplicity’s sake, PolyAML only has
second-class point cuts and advice. We believe it is straightforward to make these
features first-class since they are first-class in our core language.

7 Conclusion

This paper demonstrates the synergy between polymorphism and aspect-oriented
programming—the combination is clearly more expressive than the sum of its
parts. At the simplest level, this extension permit join points to be located in
polymorphic code. More importantly, because polymorphic aspects may be trig-
gered by join points in many more contexts than monomorphic aspects, we have
been able to significantly increase the flexibility of point-cut designation. For
example, our label hierarchy, which allows us to form groups of related control
flow points, wouldn’t be definable with only monomorphic labels. Also, explicit
label sets may refer to join points of many different types.

Furthermore, we make an additional contribution with respect to stack pat-
tern matching. Our version is more flexible, simpler semantically and easier for
programmers to use than the initial proposition by WZL. Moreover, it is a perfect
fit with standard data-driven functional programming idioms.
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[This appendix is for the pleasure of the reviewers and will not appear in a final
version of the paper. There is no need for the reviewers to read it if they choose
not to.]

A The FA language

A.1 Grammar

(types)
τ ::= 1 | string | α | τ1 → τ2 | ∀α.τ | (α.τ) label | (α.τ) pc

| advice | stack | τ1 × . . .× τn

(terms)
e ::= 〈〉 | s | x | λx:τ.e | e1e2 | Λα.e | e[τ] | 〈e〉 | let 〈x〉 = e1 in e2 | `

| e1[τ][[e2]] | new α.τ ≤ e | ⇑ e | {e1.αx:τ → e2}

| typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) | {e} | e1 ∪ e2 | stack | •
| `[τ][[v1]]::v2 | store e1[τ][[e2]] in e3 | stkcase e1 (ρ ⇒ e2, x ⇒ e3)

(values)
v ::= 〈〉 | s | λx:τ.e | Λα.e | 〈v〉 | ` | {v.αx:τ → e} | {v} | • | `[τ][[v]]::v
(patterns)
ρ ::= • | e[α][[y]]:τ::ρ | x | ::ρ
(pattern values)
ϕ ::= • | v[α][[y]]τ::ϕ | x | ::ϕ
(evaluation contexts)
E ::= [] | Ee | vE | E[τ] | 〈E, . . . , e〉 | 〈v, . . . , E〉 | let 〈x〉 = E in e | E[τ][[e]]

| v[τ][[E]] | ⇑ E | {E.αx:τ → e} | new a.τ ≤ E | store E[τ][[e1]] in e2

| store v[τ][[E]] in e | store v1[τ][[v2]] in E | {E, . . . , e} | {v, . . . , E}

| E ∪ e | v ∪ E | stkcase E (ρ ⇒ e1, x ⇒ e2)
| stkcase v (P ⇒ e1, x ⇒ e2)

(pattern evaluation contexts)
P ::= E[α][[y]]:τ::ϕ | e[α][[y]]:τ::P | ::P
(type variable contexts)
∆ ::= · | ∆, α

(term variable and label contexts)
Γ ::= U:α.α | Γ, x:τ | Γ, `:α.τ

(label heap)
Σ ::= U:α.α ≤ U | Σ, `:α.τ ≤ ` ′

(advice heap)
A ::= · | A, {v.αx:τ → e}

(substitutions)
Θ ::= · | Θ, τ/α | Θ, e/x



A.2 Static Semantics

Types

α ∈ ∆

∆ ` α
wftp:var

∆ ` 1
wftp:unit

∆ ` string
wftp:str

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

wftp:arr
∆, α ` τ

∆ ` ∀α.τ
wftp:all

∆ ` τi

∆ ` τ1 × . . .× τn

wftp:prod
∆, α ` τ

∆ ` (α.τ) label
wftp:lab

∆, α ` τ

∆ ` (α.τ) pc
wftp:pc

∆ ` advice
wftp:advice

∆ ` stack
wftp:stk

Generalization

∆, α ` τ1 ∆, β ` τ2 ∆ ` τi ∃τ.τ1[τ/α] = τ2

∆ ` α.τ1 ≺ β.τ2

gen

Label subsumption

`:α.τ ≤ `
′ ∈ Σ

Σ ` ` ≤ `
labsb:refl

Σ ` `1 ≤ `2 Σ ` `2 ≤ `3

Σ ` `1 ≤ `3

labsb:trans

`1:α.τ ≤ `2 ∈ Σ

Σ ` `1 ≤ `2

labsb:def

Term variable and Label Contexts

∆ ` U:α.α
wfc:base

∆ ` τ ∆ ` Γ

∆ ` Γ, x:τ
wfc:cons-var

∆, α ` τ ∆ ` Γ

∆ ` Γ, `:α.τ
wfc:cons-lab

Label heaps

` (U:α.α ≤ U) : (U:α.α)
wflh:base

`2:β.τ2 ≤ `3 ∈ Σ · ` β.τ2 ≺ α.τ1 ` Σ : Γ

` (Σ, `1:α.τ1 ≤ `2) : (Γ, `1:α.τ1)
wflh:cons



Advice heaps

Γ ` · ok
wfah:base

·; Γ ` v : advice Γ ` A ok

Γ ` A, v ok
wfah:cons

Terms

x:τ ∈ Γ

∆; Γ ` x : τ
wft:var

∆; Γ ` 〈〉 : 1
wft:unit

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx:τ1.e : τ1 → τ2

wft:abs

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1e2 : τ2

wft:app
∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
wft:tabs

∆; Γ ` e : ∀α.τ ∆ ` τ
′

∆; Γ ` e[τ ′] : τ[τ ′
/α]

wft:tapp
∆; Γ ` ei : τi

∆; Γ ` 〈e〉 : τ1 × . . .× τn

wft:tuple

∆; Γ ` e1 : τ1 × . . .× τn ∆; Γ, x:τ ` e2 : τ

∆; Γ ` let 〈x〉 = e1 in e2 : τ
wft:let

`:α.τ ∈ Γ

∆; Γ ` ` : (α.τ) label
wft:lab

∆; Γ ` ei : (αi.τi) label ∆ ` β.τ ≺ αi.τi

∆; Γ ` {e} : (β.τ) pc
wft:pc

∆; Γ ` ei : (α.τi) pc ∆ ` β.τ ≺ α.τi

∆; Γ ` e1 ∪ e2 : (β.τ) pc
wft:union

∆; Γ ` e : (β.τ2) label ∆ ` β.τ2 ≺ α.τ1

∆; Γ ` new (α.τ1) ≤ e : (α.τ1) label
wft:new

∆; Γ ` e1 : (α.τ) label ∆ ` τi ∆; Γ ` e2 : τ[τ/α]

∆; Γ ` e1[τ][[e2]] : τ[τ/α]
wft:cut

∆; Γ ` e : advice

∆; Γ `⇑ e : 1
wft:adv-inst

∆; Γ ` e1 : (α.τ) pc ∆, α; Γ, x:τ ` e2 : τ

∆; Γ ` {e1.αx:τ → e2} : advice
wft:advice



∆, α ` τ1 ∆ ` τ2

∆
′ = FTV(τ3) ∆, ∆

′; Γ ` e1[τ3/α] : τ1[τ3/α] ∆, α; Γ ` e2 : τ1

∆; Γ ` typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) : τ1[τ2/α]
wft:tcase

∆; Γ ` e1 : (α.τ) label ∆ ` τi ∆; Γ ` e2 : τ[τ/α] ∆; Γ ` e3 : τ
′

∆; Γ ` store e1[τ][[e2]] in e3 : τ
′ wft:store

∆; Γ ` stack : stack
wft:stk

∆; Γ ` • : stack
wft:stk-nil

`:α.τ ∈ Γ ∆ ` τi ∆; Γ ` v1 : τ[τ/α] ∆; Γ ` v2 : stack

∆; Γ ` `[τ][[v1]]::v2 : stack
wft:stk-cons

∆; Γ ` e1 : stack ∆; Γ ` ρ a ∆
′; Γ ′

Γ
′
, ∆

′ linear ∆, ∆
′; Γ, Γ ′ ` e2 : τ ∆; Γ, x:stack ` e3 : τ

∆; Γ ` stkcase e1 (ρ ⇒ e2, x ⇒ e3) : τ
wft:scase

Patterns

∆; Γ ` • a ·; ·
wfpt:nil

∆; Γ ` x a ·; ·, x:stack
wfpt:var

∆; Γ ` ρ a ∆
′; Γ ′

∆; Γ ` ::ρ a ∆
′; Γ ′ wfpt:wild

∆; Γ ` e : (α.τ) pc ∆; Γ ` ρ a ∆
′; Γ ′

∆; Γ ` e[α][[x]]:τ::ρ a ∆
′
, α; Γ ′

, x : τ
wfpt:store

Machine configurations

` Σ : Γ Γ ` A ok ·; Γ ` e : τ

` (Σ; A; e) ok
wfcfg

A.3 Dynamic Semantics

Stack Data

data([]) = •
data(store `[τ][[v]] in E) = data(E)++ `[τ][[v]]

data(E[E ′]) = data(E ′) otherwise



β-reductions

Σ; A; (λx:τ.e)v 7→β Σ; A; e[v/x]
evb:app

Σ; A; (Λα.e)[τ] 7→β Σ; A; e[τ/α]
evb:tapp

Σ; A; let 〈x〉 = 〈v〉 in e 7→β Σ; A; e[v/x]
evb:let

Σ; A; {`1} ∪ {`2} 7→β Σ; A; {`1`2}
evb:union

`
′ 6∈ dom(Σ)

Σ; A; new α.τ ≤ ` 7→β Σ, `
′:α.τ ≤ `; A; ` ′ evb:new

Σ; A; ⇑ v 7→β Σ; A, v; 〈〉
evb:adv-comp

Σ ` v ' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; Θ(e1)
evb:scase1

Σ ` v 6' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; e2[v/x]
evb:scase2

∃Θ.cod(Θ) closed ∧ Θ(τ3) = τ2

Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) 7→β Σ; A; Θ(e1)[τ2/α]
evb:tcase1

¬∃Θ.cod(Θ) closed ∧ Θ(τ3) = τ2

Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) 7→β Σ; A; e2[τ2/α]
evb:tcase2

Σ; A; store `[τ][[v1]] in v2 7→β Σ; A; v2

evb:store

`:α.τ ≤ `
′ ∈ Σ Σ; A; `; τ[τ/α] ⇒ v

′

Σ; A; `[τ][[v]] 7→β Σ; A; v ′
v

evb:cut

Context reductions

data(E) = v

Σ; A; E[stack] 7→ Σ; A; E[v]
ev:stk

Σ; A; e 7→β Σ
′; A ′; e ′

Σ; A; E[e] 7→ Σ
′; A ′; E[e ′]

ev:beta



Stack matching

Σ ` • ' •� ·
sm:nil

Σ ` v2 ' ϕ � Θ

`:β.τ2 ≤ `
′ ∈ Σ Σ ` ` ≤ `i for some i ∃σ.τ2[τ/β] = τ1[σ/α]

Σ ` `[τ][[v1]]::v2 ' {`}[α][[x]]:τ1::ϕ � Θ, σ/α, v1/x
sm:cons

Σ ` v
′ ' ϕ � Θ

Σ ` `[τ][[v]]::v ′ ' ::ϕ � Θ
sm:wild

Σ ` v ' x � Θ, v/x
sm:var

Advice composition

Σ; ·; `; τ ⇒ λx:τ.x
adv:empty

Σ; A; `; τ2 ⇒ v2 Σ ` ` ≤ `i for some i ∃τ.τ2 = τ1[τ/α]

Σ; A, {{`}.αx:τ1 → e}; `; τ2 ⇒ λx:τ.v2(e[τ/α])
adv:cons1

Σ; A; `; τ2 ⇒ v2 Σ ` ` 6≤ `i

Σ; A, {{`}.αx:τ1 → e}; `; τ2 ⇒ v2

adv:cons2

B Translation

B.1 Polytypes

∆, a ` t
type
=⇒ τ

′

∆ ` forall a.t
type
=⇒ ∀α.τ

′
tpy:all

B.2 Monotypes

a ∈ ∆

∆ ` a
type
=⇒ α

ttp:var
∆ ` unit

type
=⇒ 1

ttp:unit

∆ ` string
type
=⇒ string

ttp:str
∆ ` stack

type
=⇒ stack

ttp:stk

∆ ` t1
type
=⇒ τ

′
1 ∆ ` t2

type
=⇒ τ

′
1

∆ ` t1 -> t2
type
=⇒ τ

′
1 → τ

′
2

ttp:fun

B.3 Pattern splitting helper

split(·, e) = e

split(Φ, x 7→ (y, z), e) = split(Φ, let 〈y, z〉 = x in e)



B.4 Terms

x:t ∈ Γ

∆; Γ ` x : t
exp
=⇒ x

ttm:var
∆; Γ ` () : unit

exp
=⇒ 〈〉

ttm:unit

f:forall a.t ∈ Γ ∆ ` ti
type
=⇒ τ

′
i

∆; Γ ` f[t] : t[t/a]
exp
=⇒ f[τ ′]

ttm:inst

∆; Γ ` e1 : t1 -> t2
exp
=⇒ e

′
1 ∆; Γ ` e2 : t1

exp
=⇒ e

′
2

∆; Γ ` e1e2 : t2
exp
=⇒ e

′
1e

′
2

ttm:app

∆; Γ ` e1 : stack
exp
=⇒ e

′
1 ∆; Γ ` pi

pat
=⇒ ρ

′
i a ∆i; Γi; Φi

∆i, Γi linear ∆, ∆i; Γ, Γi ` ei : t
exp
=⇒ e

′
i ∆; Γ ` e2 : t

exp
=⇒ e

′
2

∆; Γ ` stkcase e1 (p=>e |_=> e2) : t
e

=⇒
stkcase e

′
1 (ρ ′ ⇒ split(Φ, e ′), x ⇒ e

′
2)

ttm:scase

a ∈ ∆ ∆ ` t
type
=⇒ τ

′
∆ ` ti

type
=⇒ τ

′
i

∆i = FTV(t) ∆, ∆i; Γ ` ei[ti/a] : t[ti/a]
exp
=⇒ e

′
i ∆; Γ ` e : t

exp
=⇒ e

′

∆; Γ ` typecase a (t=>e |_=> e) : t
e

=⇒
typecase[α.τ

′] α (τ ′ ⇒ e ′, α ⇒ e
′)

ttm:tcase

∆; Γ ` ds; e : t
decs
=⇒ e

′

∆; Γ ` ds e : t
exp
=⇒ e

′ ttm:ds

B.5 Point cut designators

time ∈ {before, stk}

fi:forall ai.t1,i -> t2,i ∈ Γ ∆ ` b.t ≺ ai.t1,i

∆; Γ ` {f} time
=⇒ {ftime}; b.t

tpt:set-befstk

fi:forall ai.t1,i -> t2,i ∈ Γ ∆ ` b.t ≺ ai.t2,i

∆; Γ ` {f} after
=⇒ {fafter}; b.t

tpt:set-aft

∆; Γ ` any
time
=⇒ {Utime}; a.a

tpt:any



B.6 Patterns

∆; Γ ` nil
pat
=⇒ • a ·; ·; ·

tpat:nil
∆; Γ ` x

pat
=⇒ x a ·; ·, x:stack; ·

tpat:var

∆; Γ ` p
pat
=⇒ ρ

′ a ∆
′; Γ ′; Φ

∆; Γ ` _::p
pat
=⇒ ::ρ ′ a ∆; Γ ′; Φ

tpat:wild

∆; Γ ` pt
stk
=⇒ e

′; a.t ∆; Γ ` p
pat
=⇒ ρ

′ a ∆
′; Γ ′; Φ y fresh

∆; Γ ` pt(x:t,n)::p
p

=⇒
e

′[α][[y]]::ρ ′ a ∆
′
, a; Γ ′

, x:t, n:string; Φ, y 7→ (x, n)

tpat:cons

B.7 Declarations

∆; Γ ` e : t
exp
=⇒ e

′

∆; Γ ` .; e : t
decs
=⇒ e

′
tds:tm

a = FTV(t1, t2) − ∆ ∆, a ` t1
type
=⇒ τ

′
1 ∆, a ` t2

type
=⇒ τ

′
2

∆; Γ, f:forall a.t1 -> t2 ` ds; e2 : t
decs
=⇒ e

′
2 ∆, a; Γ, x:t1 ` e1 : t2

exp
=⇒ e

′
1

∆; Γ ` let f (x:t1):t2 = e1 in ds; e2 : t
ds

=⇒
let fbefore : (α.τ

′
1 × stack× string) label =

new (α.τ
′
1 × stack× string) ≤ Ubefore in

let fafter : (α.τ
′
2 × stack× string) label =

new (α.τ
′
2 × stack× string) ≤ Uafter in

let fstk : (α.τ
′
1 × string) label =

new (α.τ
′
1 × string) ≤ Ustk in

let f : ∀α.τ
′
1 → τ

′
2 =

Λα.λx:τ1.store fstk[α][[〈x, “f”〉]] in

let 〈x, , 〉 = fbefore[α][[〈x, stack, “f”〉]] in

let 〈x, , 〉 = fafter[α][[〈e ′
1, stack, “f”〉]] in x

in e
′
2

tds:let

∆; Γ ` ds; e2 : t2
decs
=⇒ e

′
2 ∆; Γ ` pt

time
=⇒ e

′; a.t3

∃t.t3[t/a] = t1 ∆
′ = FTV(t1) ∆, ∆

′ ` t1
type
=⇒ τ

′
1

∆, a ` t3
type
=⇒ τ

′
3 ∆, ∆

′; Γ, x:t1, s:stack, n:string ` e1 : t1
exp
=⇒ e

′
1

∆; Γ ` time pt(x:t1,s,n) = e1 in ds; e2 : t2
ds

=⇒
let : 1 =⇑ {e

′
.αx:τ ′

3 → let 〈x, s, n〉 = x in

(typecase[γ.γ → γ] τ
′
3 (τ ′

1 ⇒ λx:τ ′
1.e

′
1, γ ⇒ λx:γ.x))x}

in e
′
2

tds:ad



B.8 Programs

∆; Γ ` ds; e : t
decs
=⇒ e

′

∆; Γ ` ds e : t
prog
=⇒

let Ubefore : (α.α× stack× string) label =

new (α.α× stack× string) ≤ U in

let Uafter : (α.α× stack× string) label =

new (α.α× stack× string) ≤ U in

let Ustk : (α.α× string) label =

new (α.α× string) ≤ U in e
′

tprog
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