
More Enforceable Security Policies

Lujo Bauer, Jarred Ligatti and David Walker
Department of Computer Science

Princeton University
Princeton, NJ 08544

Tech Report TR-649-02

June 2, 2002

Abstract

We analyze the space of security policies that can be enforced by mon-
itoring programs at runtime. Our program “monitors” are automata that
examine the sequence of program actions and transform the sequence
when it deviates from the specified policy. The simplest such automaton
truncates the action sequence by terminating a program. Such automata
are commonly known as “security automata,” and they enforce Schnei-
der’s EM class of security policies. We define automata with more power-
ful transformational abilities, including the ability to insert a sequence of
actions into the event stream and to suppress actions in the event stream
without terminating the program. We give a set-theoretic characteriza-
tion of the policies these new automata are able to enforce and show that
they are a superset of the EM policies.

1 Introduction

When designing a secure, extensible system such as an operating system that
allows applications to download code into the kernel or a database that allows
users to submit their own optimized queries, we must ask two important ques-
tions.

1. What sorts of security policies can and should we demand of our system?

2. What mechanisms should we implement to enforce these policies?

Neither of these questions can be answered effectively without understanding
the space of enforceable security policies and the power of various enforcement
mechanisms.

Recently, Schneider [Sch00] attacked this question by defining EM, a sub-
set of safety properties [Lam85, AS87] that has a general-purpose enforcement

1

mechanism. Erlingsson and Schneider [UES99] implemented the mechanism and
demonstrated its effectiveness on a range of security policies of different levels
of abstraction from the Software Fault Isolation policy for the Pentium IA32
architecture to the Java stack inspection policy for Sun’s JVM [UES00].

Erlingsson and Schneider’s enforcement mechanism is a security automaton
that interposes itself between the program and the machine on which the pro-
gram runs. It examines the sequence of security-relevant program actions one
at a time and if the automaton recognizes an action that will violate its policy,
it terminates the program. The mechanism is very general since decisions about
whether or not to terminate the program can depend upon the entire history of
the program execution. However, since the automaton is only able to recognize
bad sequences of actions and then terminate the program, it can only enforce
safety properties.

In this paper, we re-examine the question of which security policies can be
enforced at runtime by monitoring program actions. Following Schneider, we
use automata theory as the basis for our analysis of enforceable security policies.
However, we take the novel approach that these automata are transformers on
the program action stream, rather than simple recognizers. This viewpoint
leads us to define two new enforcement mechanisms: an insertion automaton
that is able to insert a sequence of actions into the program action stream, and
a suppression automaton that suppresses certain program actions, rather than
terminating the program outright. When joined, the insertion automaton and
suppression automaton become an edit automaton. We characterize the class
of security policies that can be enforced by each sort of automata and provide
examples of important security policies that lie in the new classes and outside
the class EM.

Erlingsson and Schneider are cognizant that the power of their automata is
limited by the fact that they can only terminate programs and may not modify
them. However, to the best of our knowledge, neither they nor anyone else
has formally investigated the power of a broader class of runtime enforcement
mechanisms that explicitly manipulate the program action stream. Evans and
Twyman [ET99] have implemented a very general enforcement mechanism for
Java that allows system designers to write arbitrary code to enforce security
policies. Such mechanisms may be more powerful than those that we propose
here; these mechanisms, however, have no formal semantics, and there has been
no analysis of the class of policies that they enforce. Other researchers have
investigated optimization techniques for security automata [CF00, Thi01], cer-
tification of programs instrumented with security checks [Wal00] and the use
of run-time monitoring and checking in distributed [SS98] and real-time sys-
tems [KVBA+99].

Overview The remainder of the paper begins with a review of Alpern and
Schneider’s framework for understanding the behavior of software systems [AS87,
Sch00] (Section 2) and an explanation of the EM class of security policies and
security automata (Section 2.3). In Section 3 we describe our new enforcement

2

mechanisms – insertion automata, suppression automata and edit automata.
For each mechanism, we analyze the class of security policies that the mecha-
nism is able to enforce and provide practical examples of policies that fall in that
class. In Section 4 we discuss some unanswered questions and our continuing
research. Section 5 concludes the paper with a taxonomy of security policies.

2 Security Policies and Enforcement Mechanisms

In this section, we explain our model of software systems and how they execute,
which is based on the work of Alpern and Schneider [AS87, Sch00]. We define
what it means to be a security policy and give definitions for safety, liveness
and EM policies. We give a new presentation of Schneider’s security automata
and their semantics that emphasizes our view of these machines as sequence
transformers rather than property recognizers. Finally, we provide definitions
of what it means for an automaton to enforce a property precisely and conserva-
tively, and also what it means for one automaton to be a more effective enforcer
than another automaton for a particular property.

2.1 Systems, Executions and Policies

We specify software systems at a high level of abstraction. A system S = (A,Σ)
is specified via a set of program actions A (also referred to as events or program
operations) and a set of possible executions Σ. An execution σ is simply a finite
sequence of actions a1, a2, . . . , an. Previous authors have considered infinite
executions as well as finite ones. We restrict ourselves to finite, but arbitrarily
long executions to simplify our analysis. We use the metavariables σ and τ to
range over finite sequences.

The symbol · denotes the empty sequence. We use the notation σ[i] to
denote the ith action in the sequence (beginning the count at 0). The notation
σ[..i] denotes the subsequence of σ involving the actions σ[0] through σ[i], and
σ[i + 1..] denotes the subsequence of σ involving all other actions. We use the
notation τ ;σ to denote the concatenation of two sequences. When τ is a prefix
of σ we write τ ≺ σ.

In this work, it will be important to distinguish between uniform systems
and nonuniform systems. (A,Σ) is a uniform system if Σ = A? where A?
is the set of all finite sequences of symbols from A. Conversely, (A,Σ) is a
nonuniform system if Σ ⊂ A?. Uniform systems arise naturally when a program
is completely unconstrained; unconstrained programs may execute operations
in any order. However, an effective security system will often combine static
program analysis and preprocessing with run-time security monitoring. Such
is the case in Java virtual machines, which combine type checking with stack
inspection. Program analysis and preprocessing can give rise to nonuniform
systems. In this paper, we are not concerned with how nonuniform systems may
be generated, be it by model checking programs, control or dataflow analysis,

3

program instrumentation, type checking, or proof-carrying code; we care only
that they exist.

A security policy is a predicate P on sets of executions. A set of executions
Σ satisfies a policy P if and only if P (Σ). Most common extensional program
properties fall under this definition of security policy, including the following.

• Access Control policies specify that no execution may operate on certain
resources such as files or sockets, or invoke certain system operations.

• Availability policies specify that if a program acquires a resource during
an execution, then it must release that resource at some (arbitrary) later
point in the execution.

• Bounded Availability policies specify that if a program acquires a resource
during an execution, then it must release that resource by some fixed point
later in the execution. For example, the resource must be released in at
most ten steps or after some system invariant holds. We call the condition
that demands release of the resource the bound for the policy.

• An Information Flow policy concerning inputs s1 and outputs s2 might
specify that if s2 = f(s1) in one execution (for some function f) then there
must exist another execution in which s2 6= f(s1).

2.2 Security Properties

Alpern and Schneider [AS87] distinguish between properties and more general
policies as follows. A security policy P is deemed to be a (computable) property
when the policy has the following form.

P (Σ) = ∀σ ∈ Σ.P̂ (σ) (Property)

where P̂ is a computable predicate on A?.
Hence, a property is defined exclusively in terms of individual executions.

A property may not specify a relationship between possible executions of the
program. Information flow, for example, which can only be specified as a con-
dition on a set of possible executions of a program, is not a property. The other
example policies provided in the previous section are all security properties.

We also implicitly assume that the empty sequence is contained in any prop-
erty. For all the properties we are interested in it will always okay not to run
the program in question. From a technical perspective, this decision allows us
to avoid repeatedly considering the empty sequence as a special case in future
definitions of enforceable properties.

Given some set of actions A, a predicate P̂ over A? induces the security
property P (Σ) = ∀σ ∈ Σ.P̂ (σ). We often use the symbol P̂ interchangeably as
a predicate over execution sequences and as the induced property. Normally,
the context will make clear which meaning we intend.

4

Safety Properties The safety properties are properties that specify that
“nothing bad happens.” We can make this definition precise as follows. P̂
is a safety property if and only if for all σ ∈ Σ,

¬P̂ (σ)⇒ ∀σ′ ∈ Σ.(σ ≺ σ′ ⇒ ¬P̂ (σ′)) (Safety)

Informally, this definition states that once a bad action has taken place (thereby
excluding the execution from the property) there is no extension of that exe-
cution that can remedy the situation. For example, access-control policies are
safety properties since once the restricted resource has been accessed the policy
is broken. There is no way to “un-access” the resource and fix up the situation
afterword.

Liveness Properties A liveness property, in contrast to a safety property, is
a property in which nothing exceptionally bad can happen in any finite amount
of time. Any finite sequence of actions can always be extended so that it lies
within the property. Formally, P̂ is a liveness property if and only if,

∀σ ∈ Σ.∃σ′ ∈ Σ.(σ ≺ σ′ ∧ P̂ (σ′)) (Liveness)

Availability is a liveness property. If the program has acquired a resource, we
can always extend its execution so that it releases the resource in the next step.

Other Properties Surprisingly, Alpern and Schneider [AS87] show that any
property can be decomposed into the conjunction of a safety property and a
liveness property. Bounded availability is a property that combines safety and
liveness. For example, suppose our bounded-availability policy states that every
resource that is acquired must be released and must be released at most ten
steps after it is acquired. This property contains an element of safety because
there is a bad thing that may occur (e.g., taking 11 steps without releasing the
resource). It is not purely a safety property because there are sequences σ such
that ¬P̂ (σ) (e.g., we have taken eight steps without releasing the resource) that
may be extended to sequences that are in the property (e.g., we release the
resource on the ninth step)

2.3 EM

Recently, Schneider [Sch00] defined a new class of security properties called EM.
Informally, EM is the class of properties that can be enforced by a monitor that
runs in parallel with a target program. Whenever the target program wishes
to execute a security-relevant operation, the monitor first checks its policy to
determine whether or not that operation is allowed. If the operation is allowed,
the target program continues operation, and the monitor does not change the
program’s behavior in any way. If the operation is not allowed, the monitor
terminates execution of the program. Schneider showed that every EM property

5

satisfies (Safety) and hence EM is a subset of the safety properties. In addition,
Schneider considered monitors for infinite sequences and he showed that such
monitors can only enforce policies that obey the following continuity property.

∀σ ∈ Σ.¬P̂ (σ)⇒ ∃i.¬P̂ (σ[..i]) (Continuity)

Continuity states that any (infinite) execution that is not in the EM policy
must have some finite prefix that is also not in the policy.

Security Automata Any EM policy can be enforced by a security automaton
A, which is a deterministic finite or infinite state machine (Q, q0, δ) that is
specified with respect to some system (A,Σ). Q specifies the possible automaton
states and q0 is the initial state. The partial function δ : A × Q→ Q specifies
the transition function for the automaton.

Our presentation of the operational semantics of security automata deviates
from the presentation given by Alpern and Schneider because we view these
machines as sequence transformers rather than simple sequence recognizers. We
specify the execution of a security automatonA on a sequence of program actions
σ using a labeled operational semantics.

The basic single-step judgment has the form (σ, q) τ−→A (σ′, q′) where σ and
q denote the input program action sequence and current automaton state; σ ′

and q′ denote the action sequence and state after the automaton processes a
single input symbol; and τ denotes the sequence of actions that the automaton
allows to occur (either the first action in the input sequence or, in the case that
this action is “bad,” no actions at all). We may also refer to the sequence τ as
the observable actions or the automaton output. The input sequence σ is not
considered observable to the outside world.

(σ, q) τ−→A (σ′, q′)

(σ, q) a−→A (σ′, q′) (A-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) ·−→A (·, q) (A-Stop)

otherwise

We extend the single-step semantics to a multi-step semantics through the fol-
lowing rules.

(σ, q) τ=⇒A (σ′, q′)

(σ, q) ·=⇒A (σ, q) (A-Reflex)

6

(σ, q) τ1−→A (σ′′, q′′) (σ′′, q′′) τ2=⇒A (σ′, q′)

(σ, q)
τ1;τ2=⇒A (σ′, q′) (A-Trans)

Enforceable Properties We say that an automaton A precisely enforces a
property P̂ on the system (A,Σ) if and only if ∀σ ∈ Σ,

1. If P̂ (σ) then ∀i.(σ, q0)
σ[..i]
=⇒A (σ[i+ 1..], q′) and,

2. If (σ, q0) σ′=⇒A (·, q′) then P̂ (σ′)

Informally, if the sequence belongs to the property P̂ then the automaton should
not modify it. In this case, we say the automaton accepts the sequence. If the
input sequence is not in the property, then the automaton may (and in fact
must) edit the sequence so that the output sequence satisfies the property.

Some properties are extremely difficult to enforce precisely, so, in practice,
we often enforce a stronger property that implies the weaker property in which
we are interested. For example, information flow is impossible to enforce pre-
cisely using run-time monitoring as it is not even a proper property. Instead of
enforcing information flow, an automaton might enforce a simpler policy such
as access control. Assuming access control implies the proper information-flow
policy, we say that this automaton conservatively enforces the information flow
policy. Formally, an automaton conservatively enforces a property P̂ if con-
dition 2 from above holds. Condition 1 need not hold for an automaton to
conservatively enforce a property. In other words, an automaton that conserva-
tively enforces a property may occasionally edit an action sequence that actually
obeys the policy, even though such editing is unnecessary (and potentially dis-
ruptive to the benign program’s execution). Of course, any such edits should
result in an action sequence that continues to obeys the policy. Henceforth,
when we use the term enforces without qualification (precisely, conservatively)
we mean enforces precisely.

We say that automaton A1 enforces a property P̂ more precisely or more
effectively than another automaton A2 when either

1. A1 accepts more sequences than A2, or

2. The two automata accept the same sequences, but the average edit dis-
tance1 between inputs and outputs for A1 is less than that for A2.

Limitations Erlingsson and Schneider [UES99, UES00] demonstrate that se-
curity automata can enforce important access-control policies including software
fault isolation and Java stack inspection. However, they cannot enforce any

1The edit distance between two sequences is the minimum number of insertions, deletions
or substitutions that must be applied to either of the sequences to make them equal [Gus97].

7

of our other example policies (availability, bounded availability or information
flow). Schneider [Sch00] also points out that security automata cannot enforce
safety properties on systems in which the automaton cannot exert sufficient
controls over the system. For example, if one of the actions in the system is
the passage of time, an automaton might not be able to enforce the property
because it cannot terminate an action sequence effectively — an automaton
cannot stop the passage of real time.

3 Beyond EM

Given our novel view of security automata as sequence transformers, it is a short
step to define new sorts of automata that have greater transformational capabil-
ities. In this section, we describe insertion automata, suppression automata and
their conjunction, edit automata. In each case, we characterize the properties
they can enforce.

3.1 Insertion Automata

An insertion automaton I is a finite or infinite state machine (Q, q0, δ, γ) that
is defined with respect to some system of executions S = (A,Σ). Q is the set
of all possible machine states and q0 is a distinguished starting state for the
machine. The partial function δ : A×Q→Q specifies the transition function as
before. The new element is a partial function γ that specifies the insertion of a
number of actions into the program’s action sequence. We call this the insertion
function and it has type A×Q→ ~A×Q. In order to maintain the determinacy of
the automaton, we require that the domain of the insertion function is disjoint
from the domain of the transition function.

We specify the execution of an insertion automaton as before. The single-
step relation is defined below.

(σ, q) τ−→I (σ′, q′)

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) τ−→I (σ, q′) (I-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

(σ, q) ·−→I (·, q) (I-Stop)

otherwise

We can extend this single-step semantics to a multi-step semantics as before.

8

Enforceable Properties We will examine the power of insertion automata
both on uniform systems and on nonuniform systems.

Theorem 1 (Uniform I-Enforcement)
If S is a uniform system and insertion automaton I precisely enforces P̂ on S
then P̂ obeys (Safety).

Proof:
Assume (anticipating a contradiction) that an insertion automaton I enforces

some property P̂ that does not satisfy (Safety). By the definition of safety,
there exists a sequence τ such that ¬P̂ (τ) and an extension σ such that P̂ (τ ;σ).
Without loss of generality, consider the action of I when it has seen an input
stream consisting of all but the last symbol in τ . Now, when I is confronted
with the last symbol of an input sequence with prefix τ , the automaton can do
one of three things (corresponding to each of the possible operational rules).

• Case (I-Step): I accepts this symbol and waits for the next. Unfortu-
nately, the input sequence that is being processed may be exactly τ . In
this case, the automaton fails to enforce P̂ since ¬P̂ (τ).

• Case (I-Ins): I inserts some sequence. By taking this action the au-
tomaton gives up on enforcing the property precisely. The input sequence
might be σ, an input that obeys the property, and hence the automaton
unnecessarily edited the program action stream.

• Case (I-Stop): As in case (I-Step), the automaton gives up on precise
enforcement.

Hence, no matter what the automaton might try to do, it cannot enforce P̂
precisely and we have our contradiction.

�

If we consider nonuniform systems then the insertion automaton can enforce
non-safety properties. For example, reconsider the scenario in the proof above,
but this time in a carefully chosen nonuniform system S ′. In S ′, the last action
of every sequence is the special stop symbol and stop appears nowhere else in S ′.
Now, assuming that the sequence τ does not end in stop (and ¬P̂ (τ ; stop)), our
insertion automaton has a safe course of action. After seeing τ , our automaton
waits for the next symbol (which must exist, since we asserted the last symbol of
τ is not stop). If the next symbol is stop, it inserts σ and stops, thereby enforcing
the policy. On the other hand, if the program itself continues to produce σ, the
automaton need do nothing.

It is normally a simple matter to instrument programs so that they conform
to the nonuniform system discussed above. The instrumentation process would
insert a stop event before the program exits. Moreover, to avoid the scenario
in which a non-terminating program sits in a tight loop and never commits any
further security-relevant actions, we could ensure that after some time period,
the automaton receives a timeout signal which also acts as a stop event.

9

Bounded-availability properties, which are not EM properties, have the same
form as the policy considered above, and as a result, an insertion automaton
can enforce many bounded-availability properties on non-uniform systems. In
general, the automaton monitors the program as it acquires and releases re-
sources. Upon detecting the bound, the automaton inserts actions that release
the resources in question. It also releases the resources in question if it detects
termination via a stop event or timeout.

We characterize the properties that can be enforced by an insertion automa-
ton as follows.

Theorem 2 (Nonuniform I-Enforcement)
A property P̂ on the system S = (A,Σ) can be enforced by some insertion
automaton if there exists a computable function γp such that for all executions
σ ∈ A?, if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ, σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

and we can decide which of 1. or 2. applies to any sequence σ.

Proof: We can construct an insertion automaton that precisely enforces any
of the properties P̂ stated above. The automaton definition follows.

• States: q ∈ A?∪{end} (the sequence of actions seen so far, or end if the
automaton will stop on the next input)

• Start state: q0 = · (the empty sequence)

• Transition function (δ):

Consider processing the action a.
If our current state q is end then stop (i.e. δ and γ are undefined and
hence the rule (I-Stop) applies).
Otherwise our current state q is σ and we proceed as follows.

– If P̂ (a;σ) then we emit the action a and continue in state a;σ

– If ¬P̂ (a;σ) and P̂ (σ) and ∀σ′ ∈ Σ.a;σ ≺ σ′ ⇒ ¬P̂ (σ′) then we
simply stop.

– If ¬P̂ (a;σ) and a;σ 6∈ Σ and P̂ (a;σ; γp(a;σ)) then continue in state
a;σ

• Insertion function (γ): Consider processing the action a in state q = σ.

– If ¬P̂ (a;σ) and ¬P̂ (σ) and ∀σ′ ∈ Σ.a;σ ≺ σ′ ⇒ ¬P̂ (σ′) then insert
γp(σ) and continue in state end.

If σ is the input so far, the automaton maintains the following invariant
(Invp).

10

• If q = end then the automaton has emitted σ; γp(σ) and P̂ (σ; γp(σ)) and
the next action is a and ∀σ′ ∈ Σ.a;σ ≺ σ′ ⇒ ¬P̂ (σ′).

• Otherwise, q = σ and either P̂ (σ), or (¬P̂ (σ) and σ 6∈ Σ and P̂ (σ; γp(σ))).

The automaton can establish (Invp) initially since our definition of a prop-
erty assumes P̂ (·) for all properties. A simple inductive argument on the length
of the input σ suffices to show that the invariant is maintained for all inputs.

Given this invariant, it is straightforward to show that the automaton pro-
cesses every input σ ∈ Σ properly and precisely enforces P̂ . There are two
cases.

• Case: P̂ (σ)
Consider any prefix σ[..i]. By induction on i, we show the automaton
accepts σ[..i] without stopping, inserting any actions or moving to the
state end.
If P̂ (σ[..i]) then the automaton accepts this prefix and continues.
If ¬P̂ (σ[..i]) then since σ[..i] ≺ σ (and P̂ (σ)), it must be the case that
σ[..i] 6∈ Σ and P̂ (σ[..i]; γp(σ[..i])). Hence, the automaton accepts this
prefix and continues.

• Case: ¬P̂ (σ)
(Invp) and the automaton definition imply that whenever the automaton
halts (because of lack of input or because it stops intentionally), P̂ (σo)
where σo is the sequence of symbols that have been output. Hence, the
automaton processes this input properly as well.

�

Limitations Like the security automaton, the insertion automaton is limited
by the fact that it may not be able to be able to exert sufficient controls over a
system. More precisely, it may not be possible for the automaton to synthesize
certain events and inject them into the action stream. For example, an automa-
ton may not have access to a principal’s private key. As a result, the automaton
may have difficulty enforcing a fair exchange policy that requires two computa-
tional agents to exchange cryptographically signed documents. Upon receiving
a signed document from one agent, the insertion automaton may not be able
to force the other agent to sign the second document and it cannot forge the
private key to perform the necessary cryptographic operations itself.

3.2 Suppression Automata

A suppression automaton S is a state machine (Q, q0, δ, ω) that is defined with
respect to some system of executions S = (A,Σ). As before, Q is the set of
all possible machine states, q0 is a distinguished starting state for the machine
and the partial function δ specifies the transition function. The partial function

11

ω : A×Q→{−,+} has the same domain as δ and indicates whether or not the
action in question is to be suppressed (−) or emitted (+).

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→S (σ′, q′) (S-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

(σ, q) ·−→S (·, q) (S-Stop)

otherwise

We extend the single-step relation to a multi-step relation using the reflex-
ivity and transitivity rules from above.

Enforceable Properties In a uniform system, suppression automata can
only enforce safety properties.

Theorem 3 (Uniform S-Enforcement)
If S is a uniform system and suppression automaton S precisely enforces P̂ on
S then P̂ obeys (Safety).

Proof (sketch): The argument is similar to the argument for insertion au-
tomata given in the previous section. If we are attempting to enforce a property
P̂ , we cannot allow any sequence τ such that ¬P̂ (τ), even though there may be
an extension σ such that P̂ (τ ;σ).

�

In a nonuniform system, suppression automata can once again enforce non-
EM properties. For example, consider the following system S.

A = {aq, use, rel}
Σ = {aq; rel,

aq; use; rel,
aq; use; use; rel}

The symbols aq, use, rel denote acquisition, use and release of a resource. The
set of executions includes zero, one, or two uses of the resource. Such a scenario
might arise were we to publish a policy that programs can use the resource at
most two times and to enforce this policy statically using proof-carrying code.

12

After publishing such a policy, we might find a bug in our implementation that
makes it impossible for us to handle the load we were predicting. Naturally we
would want to tighten the security policy as soon as possible, but we might not
be able to change the proof-carrying code policy we have published. Fortunately,
we can use a suppression automaton to suppress extra uses and dynamically
change the policy from a two-use policy to a one-use policy. Notice that an
ordinary security automaton is not sufficient to make this change because it can
only terminate execution.2 After terminating a two-use application, it would be
unable to insert the release necessary to satisfy the policy.

We can also compare the power of suppression automata with insertion au-
tomata. A suppression automaton cannot enforce the bounded-availability pol-
icy described in the previous section because it cannot insert release events that
are necessary if the program halts prematurely. Hence, insertion automata can
enforce some properties that suppression automata cannot.

For almost any suppression automaton, we can construct an insertion au-
tomaton that enforces the same property. The construction proceeds as follows.
While the suppression automaton acts as a simple security automaton, the in-
sertion automaton can clearly simulate it. When the suppression automaton
decides to suppress an action, it does so because there exists some extension σ
of the input processed so far (τ) such that P̂ (τ ;σ). Hence, when the suppression
automaton suppresses an action, the insertion automaton inserts σ and termi-
nates. Of course, we can only construct such an insertion automaton if σ is a
computable function of τ . When σ is uncomputable, or, in practice, intractable,
suppression automata are useful.

There are also many scenarios in which suppression automata are more pre-
cise enforcers than insertion automata. In particular, in situations such as the
one described above in which we publish one policy but later need to restrict
it due to changing system requirements or policy bugs, we can use suppression
automata to suppress resource requests that are no longer allowed. Each sup-
pression results in a new program action stream with an edit distance increased
by 1, whereas the insertion automaton may produce an output with an arbitrary
edit distance from the input.

Before we can characterize the properties that can be enforced by a sup-
pression automaton, we must generalize our suppression functions so they act
over sequences of symbols. Given a set of actions A, a computable function
ω? : A?→A? is a suppression function if it satisfies the following conditions.

1. ω?(·) = ·

2. ω?(a;σ) = a;ω?(σ), or
ω?(a;σ) = ω?(σ)

2Premature termination of these executions takes us outside the system S since the rel
symbol would be missing from the end of the sequence. To model the operation of a security
automaton in such a situation we would need to separate the set of possible input sequences
from the set of possible output sequences. For the sake of simplicity, we have not done so in
this paper.

13

3. If ω?(σ) = σ′ then ω?(σ′) = σ′

A suppression automaton can enforce the following properties.

Theorem 4 (Nonuniform S-Enforcement)
A property P̂ on the system S = (A,Σ) is enforceable by a suppression automa-
ton if there exists a suppression function ω? such that for all sequences σ ∈ A?,
if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and ω?(σ) = σ and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′))

Proof (sketch): As in the previous section, given one of the properties P̂
described above, we can construct a suppression automaton that enforces it.

• States: q ∈ A?×{+,−} (the sequence of actions seen so far paired with
+ (−) to indicate no actions (at least one action) have been suppressed
so far)

• Start state: q0 = 〈·,+〉

• Transition function (for simplicity, we combine δ and ω):

Consider processing the action a.
If the current state q is 〈σ,−〉 then

– If P̂ (ω(σ)) then stop.

– Otherwise

∗ if ω?(a;σ) = ω?(σ) then suppress a and continue in state 〈a;σ,−〉.
∗ and finally, if ω?(a;σ) = a;ω?(σ) then emit a and continue in

state 〈a;σ,−〉.

Otherwise our current state q is 〈σ,+〉.

– If P̂ (a;σ), then we emit the action a and continue in state 〈a;σ,+〉
– If ¬P̂ (a;σ) and ∀σ′ ∈ Σ.a;σ ≺ σ′ ⇒ ¬P̂ (σ′) then we simply halt.

– Otherwise,

∗ if ω?(a;σ) = ω?(σ) we suppress a and continue in state 〈a;σ,−〉.
∗ and finally, if ω?(a;σ) = a;ω?(σ) we emit a and continue in state
〈a;σ,+〉.

If σ is the input so far, the automaton maintains the following invariant
(Invp).

• If q = 〈σ,+〉 then
P̂ (σ), (or ¬P̂ (σ) and ω?(σ) = σ and σ 6∈ Σ and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒
P̂ (ω?(σ′))).

14

• If q = 〈σ,−〉 then
P̂ (ω?(σ)), or (¬P̂ (ω?(σ)) and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′)) and σ 6∈ Σ).

The automaton can establish (Invp) initially since our definition of a prop-
erty assumes P̂ (·) for all properties. A simple inductive argument on the length
of the input σ suffices to show that the invariant is maintained for all inputs.

Given this invariant, it is straightforward to show that the automaton pro-
cesses every input σ ∈ Σ properly and precisely enforces P̂ . There are two
cases.

• Case: P̂ (σ).
This case is similar to the analogous case for insertion automata. We
prove the automaton accepts the input by induction on the length of the
sequence.

• Case: ¬P̂ (σ).
As before, Invp implies the automaton always stops in the state in which
the automaton output σo satisfies the property. This implies we process
σ properly.

�

Limitations Similarly to its relatives, a suppression automaton is limited by
the fact that some events may not be suppressible. For example, the program
may have a direct connection to some output device and the automaton may be
unable to interpose itself between the device and the program. It might also be
the case that the program is unable to continue proper execution if an action is
suppressed. For instance, the action in question might be an input operation.

3.3 Edit Automata

We form an edit automaton E by combining the insertion automaton with the
suppression automaton. Our machine is now described by a 5-tuple with the
form (Q, q0, δ, γ, ω). The operational semantics are derived from the composition
of the operational rules from the two previous automata.

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→E (σ′, q′) (E-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

15

(σ, q) τ−→E (σ, q′) (E-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

(σ, q) ·−→E (·, q) (E-Stop)

otherwise

By combining insertion and suppression automata, we can enforce a very
wide variety of security policies. We describe a particularly important applica-
tion, the implementation of transactions policies, in the following section.

3.4 An Example: Transactions

To demonstrate the power of our edit automata, we show how to implement
transactions. The desired properties of atomic transactions [EN94], commonly
referred to as the ACID properties, are atomicity (either the entire transaction
is executed or no part of it is executed), consistency preservation (upon comple-
tion of the transaction the system must be in a consistent state), isolation (the
effects of a transaction should not be visible to other concurrently executing
transactions until the first transaction is committed), and durability or perma-
nence (the effects of a committed transaction cannot be undone by a future
failed transaction).

The first property, atomicity, can be modeled using an edit automaton by
suppressing input actions from the start of the transaction. If the transaction
completes successfully, the entire sequence of actions is emitted atomically to
the output stream; otherwise it is discarded. Consistency preservation can be
enforced by simply verifying that the sequence to be emitted leaves the system
in a consistent state. The durability or permanence of a committed transaction
is ensured by the fact that committing a transaction is modeled by outputting
the corresponding sequence of actions to the output stream. Once an action has
been written to the output stream it can no longer be touched by the automaton;
furthermore, failed transactions output nothing. We only model the actions of
a single agent in this example and therefore ignore issues of isolation.

To make our example more concrete, we will model a simple market system
with two main actions, take(n) and pay(n), which represent acquisition of n
apples and the corresponding payment. We let a range over other actions that
might occur in the system (such as windowshop or browse). Our policy is that
every time an agent takes n apples it must pay for those apples. Payments may
come before acquisition or vice versa. The automaton conservatively enforces
atomicity of this transaction by emitting take(n); pay(n) or pay(n); take(n) only
when the transaction completes. If payment is made first, the automaton allows
clients to perform other actions such as browse before paying (the pay-take
transaction appears atomically after all such intermediary actions). On the

16

���������
n)

a≠
���������

_) ∧
a≠pay(_)

a

-n

+n

pay(n)
���������

n) ; pay(n)

���������
n) ; pay(n)

pay(n)

���������
n)

¬pay(n)

warning

a≠
���	�����

_) ∧
a≠pay(_)

a

� ���������
k) ∧ k≠n) ∨ pay(_)

Figure 1: An edit automaton to enforce the market policy.

other hand, if apples are taken and not paid for immediately, we issue a warning
and abort the transaction. Consistency is ensured by remembering the number
of apples taken or the size of the prepayment in the state of the machine.
Once acquisition and payment occur, the sale is final and there are no refunds
(durability).

Figure 1 displays the edit automaton that conservatively enforces our market
policy. The nodes in the picture represent the automaton states and the arcs
represent the transitions. When a predicate above an arc is true, the transition
will be taken. The sequence below an arc represents the actions that are emitted.
Hence, an arc with no symbols below it is a suppression transition. An arc with
multiple symbols below it is an insertion transition.

4 Future Work

We are considering a number of directions for future research. Here are two.
Composing Schneider’s security automata is straightforward [Sch00], but

this is not the case for our edit automata. Since edit automata are sequence
transformers, we can easily define the composition of two automata E1 and
E2 to be the result of running E1 on the input sequence and then running E2
on the output of E1. Such a definition, however, does not always give us the
conjunction of the properties enforced by E1 and E2. For example, E2 might
insert a sequence of actions that violates E1.

When two automata operate on disjoint sets of actions, we can run one
automaton after another without fear that they will interfere with one other.
However, this is not generally the case. We are considering static analysis of
automaton definitions to determine when they can be safely composed.

In practice, benign applications must be able to react to the actions of edit
automata. When a program event is suppressed or inserted, the automaton

17

���������
	 �
������� 	 ��	 ���

����������	 �
����������������	 ���

 saf
���
�

���
����� liveness
���
�����

EMEMEM
���
�������� ����� editingediting

���
�����

saf
�����

-liven
���������
�����

Figure 2: A taxonomy of security policies.

must have a mechanism for signaling the program so that it may recover from
the anomaly and continue its job (whenever possible). It seems likely that
the automaton could signal an application with a security exception which the
application can then catch, but we need experience programming in this new
model.

5 Conclusions

In this paper we have defined three new classes of security policies that can be
enforced by monitoring programs at runtime. These new classes were discovered
by considering the effect of standard editing operations on a stream of program
actions. Figure 2 summarizes the relationship between the taxonomy of security
policies discovered by Alpern and Schneider [AS87, Sch00] and our new editing

18

properties.

References
[AS87] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Dis-

tributed Computing, 2:117–126, 1987.

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by
program transformation. In Twenty-Seventh ACM Symposium on Prin-
ciples of Programming Languages, pages 54–66, Boston, January 2000.
ACM Press.

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database
systems. The Benjamin/Cummings Publishing Company, Inc., 1994.

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In IEEE Security and Privacy, Oakland, CA, May 1999.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In European Conference on Real-time Systems,
York, UK, June 1999.

[Lam85] Leslie Lamport. Logical foundation. Lecture Notes in Computer Science,
190:119–130, 1985.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30–50, February 2000.

[SS98] Anders Sandholm and Michael Schwartzbach. Distributed safety con-
trollers for web services. In Fundamental Approaches to Software Engi-
neering, volume 1382 of Lecture Notes in Computer Science, pages 270–
284. Springer-Verlag, 1998.

[Thi01] Peter Thiemann. Enforcing security properties by type specialization. In
European Symposium on Programming, Genova, Italy, April 2001.

[UES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Canada, September 1999.

[UES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of java stack
inspection. In IEEE Symposium on Security and Privacy, pages 246–255,
Oakland, California, May 2000.

[Wal00] David Walker. A type system for expressive security policies. In Twenty-
Seventh ACM Symposium on Principles of Programming Languages,
pages 254–267, Boston, January 2000.

19

