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Abstract
Measuring the flow of traffic along network paths

is crucial for many management tasks, including traf-
fic engineering, diagnosing congestion, and mitigating
DDoS attacks. We introduce a declarative query lan-
guage for efficient path-based traffic monitoring. Path
queries are specified as regular expressions over predi-
cates on packet locations and header values, with SQL-
like “groupby” constructs for aggregating results any-
where along a path. A run-time system compiles queries
into a deterministic finite automaton. The automaton’s
transition function is then partitioned, compiled into
match-action rules, and distributed over the switches.
Switches stamp packets with automaton states to track
the progress towards fulfilling a query. Only when pack-
ets satisfy a query are the packets counted, sampled, or
sent to collectors for further analysis. By processing
queries in the data plane, users “pay as they go”, as data-
collection overhead is limited to exactly those packets
that satisfy the query. We implemented our system on top
of the Pyretic SDN controller and evaluated its perfor-
mance on a campus topology. Our experiments indicate
that the system can enable “interactive debugging”—
compiling multiple queries in a few seconds—while fit-
ting rules comfortably in modern switch TCAMs and the
automaton state into two bytes (e.g., a VLAN header).

1 Introduction

Effective traffic-monitoring tools are crucial for running
large networks—to track a network’s operational health,
debug performance problems when they inevitably oc-
cur, account and plan for resource use, and ensure that
the network is secure. Poor support for network moni-
toring and debugging can result in costly outages [5].

The network operator’s staple measurement toolkit is
well-suited to monitoring traffic at a single location (e.g.,
SNMP/RMON, NetFlow, and wireshark), or probing an

end-to-end path at a given time (e.g., ping and tracer-
oute). However, operators often need to ask questions
involving packets that traverse specific paths, over time:
for example, to measure the traffic matrix [19], to resolve
congestion or a DDoS attack by determining the ingress
locations directing traffic over a specific link [18, 55], to
localize a faulty device by tracking how far packets get
before being dropped, and to take corrective action when
packets evade a scrubbing device (even if transiently).

Answering such questions requires measurement tools
that can analyze packets based both on their location
and headers, attributes which may change as the packets
flow through the network. The key measurement chal-
lenge is that, in general, it is hard to determine a packet’s
upstream or downstream path or headers. Current ap-
proaches either require inferring flow statistics by “join-
ing” traffic data with snapshots of the forwarding policy,
or answer only a small set of predetermined questions, or
collect much more data than necessary (§2).

In contrast, when operators want to measure path-level
flows in an network, they should be able to specify con-
cise, network-wide declarative queries that are

1. independent of the forwarding policy,
2. independent of other concurrent measurements, and
3. independent of the specifics of network hardware.

The measurements themselves should be carried out by
a run-time system, that enables operators to

4. get accurate measurements directly, without having
to “infer” results by joining multiple datasets,

5. have direct control over measurement overhead, and
6. use standard match-action switch hardware [8, 34].

A Path Query Language. We have developed a query
language where users specify regular expressions over
boolean conditions on packet location and header con-
tents. To allow concise queries over disjoint subsets of
packets, the language includes an SQL-like “groupby”
construct that aggregates query results anywhere along
a path. Different actions can be taken on a packet when
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Figure 1: Path Query System.

it satisfies a query, such as incrementing counters, direct-
ing traffic to a mirroring port or controller, or sampling at
a given rate. These actions may be applied either before
or after the packets traverse the matching trajectory.

The Run-time System. To implement a path query, the
run-time system programs the switches to record path
information in each packet as it flows through the data
plane. While prior approaches have tracked packet paths
this way [28, 49, 55], a naive encoding of every detail of
the path—location and headers—would incur significant
overheads. For example, encoding a packet’s source and
destination MAC addresses, and connection 5-tuple (24
bytes) at each hop incurs more than a 10% space over-
head on a 1500-byte packet, if the packet takes six hops.

Instead, we customize packet path information to the
input queries. More specifically, the run-time system
compiles queries into a deterministic finite automaton
(DFA), whose implementation is then distributed across
the switches. The state of the DFA is stored in each
packet as updated as it traverses the network. Upon re-
ceiving a packet, the switch reads the current DFA state,
checks conditions implied by the query, writes a new
DFA state on to the packet, executes actions associated
with forwarding policy, and sends the packet on its way.
Further, if a packet reaches an accepting state of the DFA,
the actions associated with the accepting state are trig-
gered. Hence, if the action associated with an accepting
state is to send the packet to a collector, only packets ac-
tually matching a query are ever sent to a collector.

The mechanism we propose has an attractive “pay for
what you query” cost model. Intuitively, our technique
acts as an application-specific compression scheme for
packet content and paths: rather than coding every detail
of the packet trajectory, only the information necessary
to answer queries is represented in the automaton state.
When a packet hits an accepting state, all user-requested
information about the packet path can be reconstructed.

Prototype Implementation and Evaluation. We have
implemented a prototype of our query system on the
Pyretic SDN controller [36] with the NetKAT compiler
[58]. Our compilation algorithms generate rules both for
single and multi-stage match-action tables (e.g., Open-
Flow [34], [8]), and we implemented several compiler
optimizations that reduce rule-space overhead and query

compile time significantly with multi-stage tables. Our
system design satisfies requirements (1)-(6) outlined ear-
lier. On an emulated Stanford network topology, our pro-
totype can compile several queries we tested (together)
in under 10 seconds. We believe such compile times can
enable “interactive” network debugging by human oper-
ators. The amount of packet state is less than two bytes,
and fits in standard fields like VLAN or MPLS head-
ers. Further, the emitted data plane rules—numbering
a few hundreds—fit comfortably in the TCAM available
on modern switches [8, 14, 25].

Contributions. In summary, this paper contributes:
1. the design of a query language that allows users to

identify packets traversing a given set of paths (§3),
2. an evaluation of query expressiveness and the de-

bugging model through examples (§4),
3. a run-time system that compiles queries to data-

plane rules that emulate a distributed DFA (§5),
4. a set of optimizations that reduce query compile

time by several orders of magnitude (§6), and
5. a prototype implementation and evaluation with the

Pyretic SDN controller and Open vSwitch (§7).
We have open-sourced our prototype [65] and instruc-
tions to reproduce the results are available online [46].

Our preliminary workshop paper [38] on designing
a path query system was only partly implemented, and
the compilation strategy was prohibitively expensive for
even moderately-sized networks. In this paper, we imple-
ment and evaluate a full system, and develop optimiza-
tions essential to make the system work in practice.

2 Design of Path Measurement

How do we know which path a packet took through the
network? How do we collect or count all packets going
through a specific path? A number of prior approaches
[1,16,23,30,31,49,55,59,64,73,75] aim to answer these
questions, but fall short of our requirements.

2.1 Existing Approaches

Policy checking. Approaches like header space analy-
sis [30] and VeriFlow [31] can predict the packets that
could satisfy certain conditions (e.g., reachability) ac-
cording to the network’s control-plane policy. However,
actual data-plane behavior can be different due to con-
gestion, faults, and switch misconfigurations.

‘Out-of-band’ path measurement. These techniques
collect observations of packets from network devices,
and infer path properties of interest—for example, from
independent packet samples (NetFlow [1], [52]), trajec-
tory labels [16], postcards [23], or matched and mirrored
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Figure 2: Overheads are limited to traffic matching a query.

packets (wireshark [68], Gigascope [13], [69, 75]). Un-
fortunately, it is difficult to determine the full path of a
single packet through observations spread out in space
and time correctly and efficiently, for the reasons below.

(i) Dynamic forwarding policies: A simple way to
get path measurements is to capture traffic entering a
network (e.g., NetFlow [1]) and use the routing tables
to estimate the paths the traffic would take. How-
ever, packet forwarding changes often due to topology
changes, failover mechanisms (e.g., MPLS fast re-route),
and traffic engineering. Further, today’s devices do
not provide the timestamps at which the forwarding ta-
bles were updated, so it is difficult to reconcile packet-
forwarding state with collected traffic data.

(ii) Packets dropped in flight: It is tricky to estimate
actual packet trajectories even when packet forwarding is
static. Packets may be dropped downstream from where
they are observed, e.g., due to congestion or faulty equip-
ment, so it is difficult to know if a packet actually com-
pleted its inferred downstream trajectory.

(iii) Ambiguous upstream path: The alternative of ob-
serving traffic deeper in a network, on internal links of
interest, cannot always tell where the traffic entered. For
example, packets with identical header fields may arrive
at multiple ingress points, e.g., when packet headers are
spoofed as in a DDoS attack, or when two ISPs peer
at multiple points. Such packets would follow different
paths eventually merging on the same downstream inter-
face: disambiguating them at that point is impossible.

(iv) Packets modified in flight: Compounding the dif-
ficulty, network devices may modify the header fields of
packets in flight, e.g., NAT. “Inverting” packet modifi-
cations to compute the upstream trajectory is inherently
ambiguous, as the upstream packet could have contained
arbitrary values on the rewritten fields. Computing all
possibilities is computationally difficult [74]. Further,
packet modifications thwart schemes like trajectory sam-
pling [16] that hash on header fields to sample a packet
at each hop on its path.

(v) Opaque multi-path routing: Switch features like
equal cost multi-path (ECMP) routing are currently im-
plemented through hardware hash functions which are
closed source and vendor-specific. This confounds tech-
niques that attempt to infer downstream paths for pack-

ets. This is not a fundamental limitation (e.g., some ven-
dors may expose hash functions), but a pragmatic one.

(vi) High data collection overhead: Since both up-
stream and downstream trajectory inference is inaccu-
rate, we are left with the option of collecting packets
or digests at every hop [23, 59]. However, running taps
at every point in the network and collecting all traffic
is infeasible due to the bandwidth and data collection
overheads. Even targeted data collection using wire-
shark [68] or match-and-mirror solutions [69, 75] can-
not sustain the bandwidth overheads to collect all traf-
fic affected by a problem. Sampling the packets at low
rates [16] would make such overheads manageable, but
at the expense of losing visibility into the (majority) un-
sampled traffic. This lack of visibility hurts badly when
diagnosing problems for specific traffic (e.g., a specific
customer’s TCP connections) that the sampling missed.

‘In-band’ path measurement: These approaches tag
packets with metadata to enable switches to directly iden-
tify packet paths [28,32,38,55,64,73]. However, current
approaches have multiple drawbacks:

(vii) Limited expressiveness: IP record route [49],
traceback [55] and path tracing [64, 73] can identify the
network interfaces traversed by packets. However, oper-
ators also care about packet headers, including modifica-
tions to header fields in flight—e.g., to localize a switch
that violates a network slice isolation property [30]. Fur-
ther, the accuracy and overhead of these approaches can-
not be customized to requirement: traceback can only
accurately record a few waypoints, while path tracing al-
ways incurs tag space to record the entire path.

(viii) Strong assumptions: Current approaches require
strong assumptions: e.g., symmetric topology [64], no
loops [64, 73], stable paths to a destination [55], or re-
quiring that packets reach the end hosts [28, 32]. Un-
fortunately, an operator may be debugging the network
exactly when such conditions do not hold.

2.2 Our Approach
We design an accurate “in-band” path measurement sys-
tem without the limitations of the prior solutions. A run-
time system compiles modular, declarative path queries
along with the network’s forwarding policy (specified
and changing independently), generating the switch-
level rules that process exactly the packets matching the
queries, in operator-specified ways—e.g., counting, sam-
pling, and mirroring. Hence, our system satisfies require-
ments (1)-(6) laid out in §1. Further, since the emitted
data-plane rules process packets at every hop, our sys-
tem overcomes problems (i), (ii), (iii), and (v) in §2.1.
Identifying packet paths “in-band” with packet state un-
touched by regular forwarding actions removes ambigu-
ities from packet modification (iv), and avoids unneces-
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field ::= location | header
location ::= switch | inport | outport
header ::= srcmac | dstmac | srcip | dstip | ...
pred ::= true | false | field=value

| pred & pred | (pred | pred) | ∼pred
| ingress() | egress()

atom ::= in_atom(pred) | out_atom(pred)
| in_out_atom(pred, pred)
| in_group(pred, [header])
| out_group(pred, [header])
| in_out_group(pred, [header],

pred, [header])
path ::= atom | path ˆ path | (path | path)

| path* | path & path | ∼path

Figure 3: Syntax of path queries.

sary collection overheads (vi). Finally, our query lan-
guage and implementation allow waypoint and header-
based path specification (vii) and do not require strong
operational assumptions to hold (viii).

As a demonstration of our query system, Fig. 2 shows
that only those packets evading a firewall switch in the
network core are collected at the network egress, on an
emulated Stanford campus topology [2]. In comparison,
common alternatives like wireshark will need to collect
all network traffic to reliably catch such packets.

Our system must overcome the challenges below.
(i) Resource constraints: The space to carry packet

trajectory metadata is limited, as packets must fit within
the network’s MTU. Further, switch rule-table space is
limited [14], so the system should generate a compact
set of packet-processing rules. Finally, to be usable for
operator problem diagnosis, the system should compile
queries in an acceptable amount of time.

(ii) Interactions between multiple measurement and
forwarding rules: Switches must identify packets on all
operator-specified paths—with some packets possibly on
multiple queried paths simultaneously. The switch rules
that match and modify packet trajectory metadata should
not affect regular packet forwarding in the network, even
when operators specify that packets matching the queries
be handled differently than the regular traffic.

Practically, our query system is complementary to
other measurement tools which are “always on” at low
overheads [1, 52, 75]—as opposed to completely replac-
ing those tools. Instead, our query system enables op-
erators to focus their attention and the network’s limited
resources on clearly-articulated tasks during-the-fact.

3 Path Query Language

A path query identifies the set of packets with particular
header values and that traverse particular locations. Such
queries can identify packets with changing headers, as

happens during network address translation, for instance.
When the system recognizes that a packet has satisfied a
query, any user-specified action may be applied to that
packet. Fig. 3 shows the syntax of the language. In what
follows, we explain the details via examples.

Packet Predicates and Simple Atoms. One of the basic
building blocks in a path query is a boolean predicate
(pred) that matches a packet at a single location. Predi-
cates may match on standard header fields, such as:

srcip=10.0.0.1 & dstip=10.0.0.2

as well as the packet’s location (a switch and interface).
The predicates true and false match all packets, and
no packets, respectively. Conjunction (&), disjunction
(|), and negation (∼) are standard. The language also
provides syntactic sugar for predicates that depend on
topology, such as ingress(), which matches all pack-
ets that enter the network at some ingress interface, i.e.,
an interface attached to a host or a device in another ad-
ministrative domain. Similarly, egress() matches all
packets that exit the network at some egress interface.

Atoms further refine the meaning of predicates, and
form the “alphabet” for the language of path queries. The
simplest kind of atom is an in_atom that tests a packet
as it enters a switch (i.e., before forwarding actions).
Analogously, an out_atom tests a packet as it leaves the
switch (i.e., after forwarding actions). The set of packets
matching a given predicate at switch entry and exit may
be different from each other, since a switch may rewrite
packet headers, multicast through several ports, or drop
the packet entirely. For example, to capture all packets
that enter a device S1 with a destination IP address (say
192.168.1.10), we write:

in_atom(switch=S1 & dstip=192.168.1.10)

It is also possible to combine those ideas, testing
packet properties on both “sides” of a switch. More
specifically, the in_out_atom tests one predicate as a
packet enters a switch, and another as the packet ex-
its it. For example, to capture all packets that en-
ter a NAT switch with the virtual destination IP ad-
dress 192.168.1.10 and exit with a private IP address
10.0.1.10, we would write:

in_out_atom(switch=NAT & dstip=192.168.1.10,
dstip=10.0.1.10)

Partitioning and Indexing Sets of Packets. It is often
useful to specify groups of related packets concisely in
one query. We introduce group atoms—akin to SQL
groupby clauses—that aggregate results by packet lo-
cation or header field. These group atoms provide a con-
cise notation for partitioning a set of packets that match
a predicate in to subsets based on the value of a particu-
lar packet attribute. More specifically, in_group(pred,
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Example Query code Description
A simple path in_atom(switch=S1) ˆ in_atom(switch=S4) Packets going from switch S1 to S4 in the network.
Slice isolation true* ˆ (in_out_atom(slice1, slice2) | Packets going from network slice slice 1 to

in_out_atom(slice2, slice1)) slice2, or vice versa, when crossing a switch.
Firewall in_atom(ingress()) ˆ (in_atom(∼switch=FW))* Catch packets evading a firewall device FW when
evasion ˆ out_atom(egress()) moving from any network ingress to egress interface.
DDoS sources in_group(ingress(), [switch]) ˆ true* Determine traffic contribution by volume from all

ˆ out_atom(egress(), switch=vic) ingress switches reaching a DDoS victim switch vic.
Switch-level in_group(ingress(), [switch]) ˆ true* Count packets from any ingress to any egress switch,
traffic matrix ˆ out_group(egress(), [switch]) with results grouped by (ingress, egress) switch pair.
Congested link in_group(ingress(), [switch]) ˆ true* Determine flows (switch sources→ sinks) utilizing a
diagnosis ˆ out_atom(switch=sc) ˆ in_atom(switch=dc) congested link (from switch sc to switch dc), to help

ˆ true* ˆ out_group(egress(), [switch]) reroute traffic around the congested link.
Port-to-port in_out_group(switch=s, true, Count traffic flowing between any two ports of switch s,
traffic matrix [inport], [outport]) grouping the results by the ingress and egress interface.
Packet loss in_atom(srcip=H1) ˆ in_group(true, [switch]) ˆ Localize packet loss by measuring per-path traffic flow
localization in_group(true, [switch]) ˆ out_atom(dstip=H2) along each 4-hop path between hosts H1 and H2.

Table 1: Some example path query applications. Further examples can be found in an extended version [39].

[h1,h2,...,hn]) collects packets that match the pred-
icate pred at switch ingress, and then divides those
packets into separate sets, one for each combination
of the values of the headers h1, h2, ..., hn. The
out_group atom is similar. For example,

in_group(switch=10, [inport])

captures all packets that enter switch 10, and organizes
them into sets according to the value of the inport field.
Such a groupby query is equivalent to writing a series of
queries, one per inport. The path query system conve-
niently expands groupbys for the user and manages all
the results, returning a table indexed by inport.

The in_out_group atom generalizes both the
in_group and the out_group. For example,

in_out_group(switch=2, [inport], true, [outport])

captures all packets that enter switch=2, and exit it (i.e.,
not dropped), and groups the results by the combination
of input and output ports. This single query is short-
hand for an in_out_atom for each pair of ports i, j
on switch 2, e.g., to compute a port-level traffic matrix.

Querying Paths. Full paths through a network may be
described by combining atoms using the regular path
combinators: concatenation (ˆ), alternation (|), repeti-
tion (∗), intersection (&), and negation (∼). The most
interesting combinator is concatenation: Given two path
queries p1 and p2, the query p1 ˆ p2 specifies a path
that satisfies p1, takes a hop to the next switch, and then
satisfies p2 from that point on. The interpretation of
the other operators is natural: p1 | p2 specifies paths
that satisfy either p1 or p2; p1* specifies paths that are
zero or more repetitions of paths satisfying p1; p1 & p2
specifies paths that satisfy both p1 and p2, and∼p1 spec-
ifies paths that do not satisfy p1.

Table 1 presents several useful queries that illustrate
the utility of our system. Path queries enable novel ca-
pabilities (e.g., localizing packet loss using just a few
queries), significantly reduce operator labor (e.g., mea-
suring an accurate switch-level traffic matrix), and check
policy invariants (e.g., slice isolation) in the data plane.

Query Actions. An application can specify what to do
with packets that match a query. For example, packets
can be counted (e.g., on switch counters), be sent out a
specific port (e.g., towards a collector), sent to the SDN
controller, or extracted from sampling mechanisms (e.g.,
sFlow). Below, we show Pyretic sample code for var-
ious use cases. Suppose that p is a path query defined
according to the language (Fig. 3). Packets can be sent
to abstract locations that “store” packets, called buckets.
There are three types of buckets: count buckets, packet
buckets, and sampling buckets. A count bucket is an ab-
straction that allows the application to count the packets
going into it. Packets are not literally forwarded and held
in controller data structures. In fact, the information con-
tent is stored in counters on switches. Below we illustrate
the simplicity of the programming model.

cb = count_bucket() // create count bucket
cb.register(f) // process counts by callback f
p.set_bucket(cb) // direct packets matching p
... // into bucket cb
cb.pull_stats() // get counters from switches

Packets can be sent to the controller, using the packet
buckets and an equally straightforward programming id-
iom. Similarly, packets can also be sampled using tech-
nologies like NetFlow [1] or sFlow [3] on switches.

In general, an application can ask packets matching
path queries to be processed by an arbitrary NetKAT pol-
icy, i.e., any forwarding policy that is a mathematical
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function from a packet to a set of packets [4,36]. The out-
put packet set can be empty (e.g., for dropped packets),
or contain multiple packets (e.g., for multicasted pack-
ets). For instance, packets matching a path query p can
be forwarded out a specific mirroring port mp:

p.set_policy(fwd(mp)) // forward out mirror port

An arbitrarily complex Pyretic policy pol can be used
instead of fwd above by writing p.set_policy(pol).

Query Capture Locations. The operator can specify
where along a path to capture a packet that satisfies
a query: either downstream—after it has traversed a
queried trajectory, upstream—right as it enters the net-
work, or spliced—somewhere in the middle. The dif-
ference between these three scenarios is illustrated in
Fig. 4. The packets captured for the same query may
differ at the three locations, because the network’s for-
warding policy may change as packets are in flight, or
packets may be lost downstream due to congestion. For
query p, the operator writes p.down() to ask matching
packets to be captured downstream, p.up() to be cap-
tured upstream, p.updown() to be captured at both loca-
tions, and splice(p1,p2) to be captured between two
sub-paths p1, p2 such that p = p1 ˆ p2.

Sometimes, we wish to collect packets at many or
even all points on a path rather than just one or two.
The convenience function stitch(A,B,n) returns a set
of queries by concatenating its first argument (e.g., an
in_atom) with k copies of its second argument (e.g., an
in_group), returning one query for each k in 0...n. For
example, stitch(A,B,2) = {A, AˆB, AˆBˆB}.

The capabilities described above allow the implemen-
tation of a network-wide packet capture tool. Drawing on
wireshark terminology, an operator is now able to write
global, path-based capture filters to collect exactly the
packets matching a query.

4 Interactive Debugging with Path Queries

Consider a scenario shown in Fig. 5 where an operator
is tasked with diagnosing a tenant’s performance prob-
lem in a large compute cluster, where the connections
between two groups of tenant virtual machines A and B
suffer from poor performance with low throughput. The
A→ B traffic is routed along the four paths shown.

Such performance problems do occur in practice [75],
yet are very challenging to diagnose, as none of the con-
ventional techniques really help. Getting information

A B

C
D100 70

25
0

Figure 5: An example debugging scenario (§4).

from the end hosts’ networking stack [62, 70] is difficult
in virtualized environments. Coarse-grained packet sam-
pling (NetFlow [1], [16]) may miss collecting the traf-
fic relevant to diagnosis, i.e., A and B traffic. Interface-
level counters from the device may mask the problem en-
tirely, as the issue occurs with just one portion of the traf-
fic. It is possible to run wireshark [68] on switch CPUs;
however this can easily impact switch performance and
is very restrictive in its application [12]. Network op-
erators may instead mirror a problematic subset of the
traffic in the data plane through ACLs, i.e., “match and
mirror” [75]. However, this process is tedious and error-
prone. The new monitoring rules must incorporate the
results of packet modification in flight (e.g., NATs and
load balancers [45]), and touch several devices because
of multi-path forwarding. The new rules must also be
reconciled with overlapping existing rules to avoid dis-
ruption of regular packet forwarding. Ultimately, mirror-
ing will incur large bandwidth and data collection over-
heads, corresponding to all mirrored traffic.

In contrast, we show the ease with which a declarative
query language and run-time system allow an operator to
determine the root cause of the performance problem. In
fact, the operator can perform efficient diagnosis using
just switch counters—without mirroring any packets.

As a first step, the operator determines whether the end
host or the network is problematic, by issuing a query
counting all traffic that enters the network from A des-
tined to B. She writes the query p1 below:

p1 = in_atom(srcip=vm_a, switch=s_a) ˆ true*
ˆ out_atom(dstip=vm_b, switch=s_b)

p1.updown()

The run-time then provides statistics for A → B traf-
fic, measured at network ingress (upstream) and egress
(downstream) points. By comparing these two statistics,
the operator can determine whether packets never left the
host NIC, or were lost in the network.

Suppose the operator discovers a large loss rate in the
network, as query p1 returns values 100 and 70 as shown
in Fig. 5. Her next step is to localize the interface where
most drops happen, using a downstream query p2:

probe_pred = switch=s_a & srcip=vm_a & dstip=vm_b
p2 = stitch(in_atom(probe_pred),

in_group(true, [’switch’]), 4)

These queries count A→ B traffic on each switch-level
path (and its prefix) from A to B. Suppose the run-
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time returns, among statistics for other paths, the packet
counts 25 and 0 shown in red in Fig. 5. The operator
concludes that link C→ D along the first path has a high
packet drop rate (all 25 packets dropped). Such packet
drops may be due to persistent congestion or a faulty
interface, affecting all traffic on the interface, or faulty
rules in the switch (e.g., a “silent blackhole” [75]) which
affect just A→ B traffic. To distinguish the two cases,
the operator writes two queries measured midstream and
downstream (each). Here are the midstream queries:

probe_pred = switch=s_a & srcip=vm_a & dstip=vm_b
p3 = splice((in_atom(probe_pred) ˆ true*

ˆ in_atom(switch=s_c)),
in_atom(switch=s_d))

p4 = splice(true* ˆ in_atom(switch=s_c),
in_atom(switch=s_d))

These queries determine the traffic loss rate on the C→D
link, for all traffic traversing the link, as well as specif-
ically the A→ B traffic. By comparing these two loss
rates, the operator can rule out certain root causes in fa-
vor of others. For example, if the loss rate for A→ B traf-
fic is particularly high relative to the overall loss rate, it
means that that just the A→ B traffic is silently dropped.

5 Path Query Compilation

Query compilation translates a collection of indepen-
dently specified queries, along with the forwarding pol-
icy, into data-plane rules that recognize all packets
traversing a path satisfying a query. These rules can
be installed either on switches with single-stage [34] or
multi-stage [8] match-action tables.1 We describe down-
stream query compilation in §5.1-§5.3, and upstream
compilation in §5.4. Downstream query compilation
consists of three main stages:

1. We convert the regular expressions corresponding
to the path queries into a DFA (§5.1).

2. Using the DFA as an intermediate representation,
we generate state-transitioning (i.e., tagging) and
accepting (i.e., capture) data-plane rules. These al-
low switches to match packets based on the state
value, rewrite state, and capture packets which sat-
isfy one or more queries (§5.2).

3. Finally, the run-time combines the query-related
packet-processing actions with the regular forward-
ing actions specified by other controller applica-
tions. This is necessary because the state match and
rewrite actions happen on the same packets that are
forwarded by the switches (§5.3).

The run-time expands group atoms into the corre-
sponding basic atoms by a pre-processing pass over the
queries (we elide the details here). The resulting queries

1The compiler performs significantly better with multi-stage tables.

only contain in, out, and in_out atoms. We describe
query compilation through the following simple queries:

p1 = in_atom(srcip=H1 & switch=1) ^
out_atom(switch=2 & dstip=H2)

p2 = in_atom(switch=1) ^ in_out_atom(true, switch=2)

5.1 From Path Queries to DFAs
We first compile the regular path queries into an equiva-
lent DFA,2 in three steps as follows.

Rewriting atoms to in-out-atoms. The first step is quite
straightforward. For instance, the path query p1 is rewrit-
ten to the following:

in_out_atom(srcip=H1 & switch=1, true) ^
in_out_atom(true, switch=2 & dstip=H2)

Converting queries to regular expressions. In the sec-
ond step, we convert the path queries into string regular
expressions, by replacing each predicate by a character
literal. However, this step is tricky: a key constraint is
that different characters of the regular expressions can-
not represent overlapping predicates (i.e., predicates that
can match the same packet). If they do, we may inadver-
tently generate an NFA (i.e., a single packet might match
two or more outgoing edges in the automaton). To ensure
that characters represent non-overlapping predicates, we
devise an algorithm that takes an input set of predicates
P, and produces the smallest orthogonal set of predicates
S that matches all packets matching P. The key intuition
is as follows. For each new predicate new_pred in P, the
algorithm iterates over the current predicates pred in S,
teasing out new disjoint predicates and adding them to S:

int_pred = pred & new_pred
new_pred = new_pred & ∼int_pred
pred = pred & ∼int_pred

Finally, the predicates in S are each assigned a unique
character. The full algorithm is described in Appendix B.

For the running example, Fig. 6 shows the emitted
characters (for the partitioned predicates) and regular ex-
pressions (for input predicates not in the partitioned set).
Notice in particular that the true predicate coming in to
a switch is represented not as a single character but as an
alternation of three characters. Likewise with switch=1,
switch=2, and true (out). The final regular expressions
for the queries p1 and p2 are:

p1: a^(c|e|g)^(a|d|f)^c
p2: (a|d)^(c|e|g)^(a|d|f)^(c|e)

2We could conceivably use an NFA instead of a DFA, to produce
fewer states. However, using an NFA would require each packet to
store all the possible states that it might inhabit at a given time, and
require switches to have a rule for each subset of states—leading to a
large number of rules. Hence, we compile our path queries to a DFA.
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Predicate Regex Predicate Regex
switch=1 & srcip=H1 a ∼switch=1 f
switch=1 & ∼srcip=H1 d ∼switch=2 g
switch=2 & dstip=H2 c switch=1 a|d
switch=2 & ∼dstip=H2 e switch=2 c|e
true (in) a|d|f true (out) c|e|g

Figure 6: Strings emitted for the running example (§5.1).

Q0	  
a Q5	  Q1	  

[ceg]	  
Q2	   Q3	   c

Q8	  
[ce]	  

Q6	   Q7	   Q4	  
[ceg]	  

d

[adf]	  

[adf]	  
e

Figure 7: Automaton for p1 and p2 together. State Q4 accepts
p2, while Q5 accepts both p1 and p2.

Constructing the query DFA. Finally, we construct the
DFA for p1 and p2 together using standard techniques.
The DFA is shown in Fig. 7. For clarity, state transitions
that reject packets from both queries are not shown.

5.2 From DFA to Tagging/Capture Rules
The next step is to emit policies that implement the DFA.
Conceptually, we have two goals. First, for each packet,
a switch must read the DFA state, identify the appropriate
transition, and rewrite the DFA state. This action must
be done once at switch ingress and egress. Second, if
the packet’s new DFA state satisfies one or more queries,
we must perform the corresponding query actions, e.g.,
increment packet or byte counts.

State transitioning policies. The high-level idea here is
to construct a “test” corresponding to each DFA transi-
tion, and rewrite the packet DFA state to the destination
of the transition if the packet passes the test. This is
akin to a string-matching automaton checking if an in-
put symbol matches an outgoing edge from a given state.
To make this concrete, we show the intermediate steps of
constructing the transitioning policy in Pyretic code.

We briefly introduce the notions of parallel and se-
quential composition of network policies, which we use
to construct the transitioning policy. We treat each net-
work policy as a mathematical function from a packet to
a set of packets, similar to NetKAT and Pyretic [4, 36].
For example, a match srcip=10.0.0.1 is a function
that returns the singleton set of its input packet if the
packet’s source IP address is 10.0.0.1, and an empty
set otherwise. Similarly, a modification port←2 is a
function that changes the “port” field of its input packet
to 2. Given two policies f and g—two functions on pack-
ets to sets of packets—the parallel composition of these
two policies is defined as:

(f + g)(pkt) = f(pkt) ∪ g(pkt)

The sequential composition of policies is defined as:

Concept Example Description
Modification port←2 Rewrites a packet field
Match switch=2 Filters packets
Parallel monitor + route The union of results
composition from two policies.
Sequential balance >> route Pipe the output from
composition the first in to the second
Edge predicate pred_of(c) Get predicate of symbol
Path policy p.policy() Policy to process packets

accepted by query p.

Figure 8: Syntactic Constructs in Query Compilation.

(f >> g)(pkt) = ∪pkt ′∈ f (pkt)g(pkt’)

For example, the policy

(srcip=10.0.0.1 + dstip=10.0.0.2) >> (port←2)

selects packets with either srcip 10.0.0.1 or dstip
10.0.0.2 and forwards them out of port 2 of a switch.

Now we produce a policy fragment for each edge of
the DFA. Suppose the helper function pred_of takes in
a character input c and produces the corresponding pred-
icate. For each edge from state s to state t that reads
character c, we construct the fragment

state=s & pred_of(c) >> state←t

We combine these fragments through parallel composi-
tion, which joins the tests and actions of multiple edges:

tagging = frag_1 + frag_2 + ... + frag_n

We produce two state transitioning policies, one each for
ingress and egress actions. Each edge fragment belongs
to exactly one of the two policies, and it is possible to
know which one since we generate disjoint characters for
these two sets of predicates. For example, here is part of
the ingress transitioning policy for the DFA in Fig. 7:

in_tagging =
state=Q0 & switch=1 & srcip=H1 >> state←Q2 +
state=Q0 & switch=1 & ∼srcip=H1 >> state←Q6 +
... +
state=Q7 & ∼switch=1 >> state←Q8

Accepting policies. The accepting policy is akin to the
accepting action of a DFA: a packet that “reaches” an
accepting state has traversed a path that satisfies some
query; hence the packet must be processed by the actions
requested by applications. We construct the accepting
policy by combining edge fragments which move pack-
ets to accepting states. We construct the fragment

state=s & pred_of(c) >> p.policy()

for each DFA edge from state s to t through character c,
where t is a state accepting query p. Here p.policy()
produces the action that is applied to packets matching
query p. Next we construct the accepting policy by a
parallel composition of each such fragment:
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capture = frag_1 + frag_2 + ... + frag_n

Similar to the transitioning policies, we construct two
accepting policies corresponding to switch ingress and
egress predicates. For example, for the DFA in Fig. 7,
part of the accepting policy looks as follows:

out_capture =
state=Q3 & switch=2 & dstip=H2 >> p1.policy()
+ ... +
state=Q8 & switch=2 & dstip=H2 >> p2.policy()

Ingress tagging and Egress un-tagging. The run-time
ensures that packets entering a network are tagged with
the initial DFA state Q0. Symmetrically, packets leaving
the network are stripped of their tags. We use the VLAN
header to tag packets, but other mechanisms are possible.

5.3 Composing Queries and Forwarding
The run-time system needs to combine the packet-
processing actions from the transitioning and accepting
policies with the forwarding policy. However, this re-
quires some thought, as all of these actions affect the
same packets. Concretely, we require that:

1. packets are forwarded through the network nor-
mally, independent of the existence of queries,

2. packet tags are manipulated according to the DFA,
3. packets matching path queries are processed cor-

rectly by the application-programmed actions, and
4. no unnecessary duplicate packets are generated.
To achieve these goals, the run-time system combines

the constituent policies as follows:

(in_tagging >> forwarding >> out_tagging)
+ (in_capture)
+ (in_tagging >> forwarding >> out_capture)

The first sequential composition (involving the two
tagging policies and the forwarding) ensures both
that forwarding continues normally (goal 1) as well as
that DFA actions are carried out (goal 2). This works
because tagging policies do not drop packets, and the
forwarding does not modify the DFA state.3 The re-
maining two parts of the top-level parallel composition
(involving the two capture policies) ensure that pack-
ets reaching accepting states are processed by the cor-
responding query actions (goal 3). Finally, since each
parallelly-composed fragment either forwards packets
normally or captures it for the accepted query, no un-
necessary extra packets are produced (goal 4).

Translating to match-action rules in switches. The run-
time system hands off the composed policy above to
Pyretic, which by default compiles it down to a single

3The run-time ensures this by constructing tagging policies with a
virtual header field [36] that regular forwarding policies do not use.

match-action table [20,36]. We also leverage multi-stage
tables on modern switches [8, 42] to significantly im-
prove compilation performance (§6). We can rewrite the
joint policy above as follows:

(in_tagging + in_capture)
>> forwarding
>> (out_tagging + out_capture)

This construction preserves the semantics of the origi-
nal policy provided in_capture policies do not forward
packets onward through the data plane. This new rep-
resentation decomposes the complex compositional pol-
icy into a sequential pipeline of three smaller policies—
which can be independently compiled and installed to
separate stages of match-action tables. Further, this en-
ables decoupling updates to the query and forwarding
rules on the data plane, allowing them to evolve inde-
pendently at their own time scales.

5.4 Upstream Path Query Compilation
Upstream query compilation finds those packets at net-
work ingress that would match a path, based on the cur-
rent forwarding policy—assuming that packets are not
dropped (due to congestion) or diverted (due to updates
to the forwarding policy while the packets are in flight).
We compile upstream queries in three steps, as follows.

Compiling using downstream algorithms. The first step
is straightforward. We use algorithms described in sec-
tions §5.1-§5.3 to compile the set of upstream queries
using downstream compilation. The output of this step is
the effective forwarding policy of the network incorpo-
rating the behavior both of forwarding and queries. Note
that we do not install the resulting rules on the switches.

Reachability testing for accepted packets. In the second
step, we cast the upstream query compilation problem as
a standard network reachability test [30, 31], which asks
which of all possible packet headers at a source can reach
a destination port with a specific set of headers. Such
questions can be efficiently answered using header space
analysis [30]: we simply ask which packets at network
ingress, when forwarded by the effective policy above,
reach header spaces corresponding to accepting states for
query p. We call this packet match upstream(p).

Capturing upstream. The final step is to process the
resulting packet headers from reachability testing with
application-specified actions for each query. We generate
an upstream capture policy for queries p1, ..., pn:

(upstream(p1) >> p1.policy()) + ...
+ (upstream(pn) >> pn.policy())

We can implement complex applications of header
space analysis like loop and slice leakage detection [30,
§5] simply by compiling the corresponding upstream
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path query [39]. Spliced queries can be compiled in a
manner very similar to upstream queries.

In general, reachability testing does not restrict the
paths taken to reach the destination—however, we are
able to use the packet DFA state to do exactly that.

6 Optimizations

We implemented several key optimizations in our proto-
type to reduce query compile time and data-plane rule
space. Later we show the quantitative impact of these
optimizations (§7, Table 2). We briefly discuss the key
ideas here; full details are in an extended version [39].

Cross-product explosion. We first describe the “cross-
product explosion” problem that results in large compi-
lation times and rule-sets when compiling the policies
resulting from algorithms in §5. The output of NetKAT
policy compilation is simply a prioritized list of match-
action rules, which we call a classifier. When two classi-
fiers C1 and C2 are composed—using parallel or sequen-
tial composition (§5.2, Fig. 8)—the compiler must con-
sider the effect of every rule in C1 on every rule in C2. If
the classifiers have N1 and N2 rules (resp.), this results in
a Θ(N1×N2) operations. A similar problem arises when
predicates are partitioned during DFA generation (§5.1).
In the worst case, the number of orthogonal predicates
may grow exponentially on the input predicate set, since
every pair of predicates may possibly overlap.

Prior works have observed similar problems [15, 22,
58,72]. Our optimizations reduce large compile time and
rule sets through the domain-specific techniques below.

(A) Optimizing Conditional Policies. The policy gen-
erated from the state machine (§5.2) has a very special
structure, namely one that looks like a conditional state-
ment: if state=s1 then ... else if state=s2 then ... else if ....
A natural way to compile this down is through the par-
allel composition of policies that look like state=s_i
>> state_policy_i. This composition is expensive,
because the classifiers of state_policy_i for all i,
{Ci}i, must be composed parallelly. We avoid comput-
ing these cross-product rule compositions as follows: If
we ensure that each rule of Ci is specialized to match
on packets disjoint from those of C j—by matching on
state s_i—then it is enough to simply append the classi-
fiers Ci and C j. This brings down the running time from
Θ(Ni×N j) to Θ(Ni+N j). We further compact each clas-
sifier Ci: we only add transitions to non-dead DFA states
into state_policy_i, and instead add a default dead-
state transition wherever a Ci rule drops the packets.

(B) Integrating tagging and capture policies. Tagging
and capture policies have similar conditional structure:

tagging = capture =

(cond1 >> a1) + (cond1 >> b1) +
(cond2 >> a2) + (cond2 >> b2) +
... ...

Rather than supplying Pyretic with the policy tagging
+ capture, which will generate a large cross-product,
we construct a simpler equivalent policy:

combined =
(cond1 >> (a1 + b1)) +
(cond2 >> (a2 + b2)) +
...

(C) Flow-space based pre-partitioning of predicates. In
many queries, we observe that most input predicates
are disjoint with each other, but predicate partitioning
(§5.1) checks overlaps between them anyway. We avoid
these checks by pre-partitioning the input predicates into
disjoint flow spaces, and only running the partition-
ing within each flow space. For example, suppose in
a network with n switches, we define n disjoint flow
spaces switch=1, ..., switch=n. When a new pred-
icate pred is added, we check if pred & switch=i is
nonempty, and then only check overlaps with predicates
intersecting the switch=i flow space.

(D) Caching predicate overlap decisions. We avoid re-
dundant checks for predicate overlaps by caching the lat-
est overlap results for all input predicates4, and executing
the remainder of the partitioning algorithm only when
the cache is missed. Caching also enables introducing
new queries incrementally into the network without re-
computing all previous predicate overlaps.

(E) Decomposing query-matching into multiple stages.
Often the input query predicates may have significant
overlaps: for instance, one query may count on M source
IP addresses, while another counts packets on N desti-
nation IP addresses. By installing these predicates on
a single table stage, it is impossible to avoid using up
M×N rules. However, modern switches [8, 43] support
several match-action stages, which can be used to reduce
rule space overheads. In our example, by installing the M
source IP matches in one table and N destination matches
in another, we can reduce the rule count to M+N. These
smaller logical table stages may then be mapped to phys-
ical table stages on hardware [29, 56].

We devise an optimization problem to divide queries
into groups that will be installed on different table stages.
The key intuition is to spread queries matching on dis-
similar header fields into multiple table stages to reduce
rule count. We specify a cost function that estimates the
worst-case rule space when combining predicates (Ap-
pendix A). The resulting optimization problem is NP-
hard; however, we design a first-fit heuristic to group

4We index this cache by a hash on the string representation of the
predicate’s abstract syntax tree.
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queries into table stages, given a limit on the number of
stages and rule space per stage. The compilations of dif-
ferent stages are parallelizable.

(F) Detecting overlaps using Forwarding Decision Dia-
grams (FDDs). To make intersection between predicates
efficient, we implement a recently introduced data struc-
ture called Forwarding Decision Diagram (FDD) [58].
An FDD is a binary decision tree in which each non-leaf
node is a test on a packet header field, with two outgoing
edges corresponding to true and false. Each path from
the root to a leaf corresponds to a unique predicate which
is the intersection of all tests along the path. Inserting a
new predicate into the FDD only requires checking over-
laps along the FDD paths which the new predicate inter-
sects, speeding up predicate overlap detection.

7 Performance Evaluation

We evaluated the expressiveness of the query language
and the debugging model in Table 1 and §4. Now, we
evaluate the prototype performance quantitatively.

Implementation. We implemented the query language
and compilation algorithms (§3, §5) on the Pyretic con-
troller [36] and NetKAT compiler [58]. We extended
the Hassel-C [48] implementation of header space anal-
ysis with inverse transfer function application for up-
stream compilation. NetFlow samples are processed
with nfdump [41]. The query language is embedded
in Python, and the run-time system is a library on top
of Pyretic. The run-time sends switch rules to Open
vSwitch [43] through OpenFlow 1.0 and the Nicira ex-
tensions [44]. We use Ragel [11] to compile string reg-
ular expressions. We evaluate our system using the PyPy
compiler [50]. Our prototype is open-source [65].

Metrics. A path-query system should be efficient along
the following dimensions:

1. Query compile time: Can a new query be processed
at a “human debugging” time scale?

2. Rule set size: Can the emitted match-action rules fit
into modern switches?

3. Tag set size: Can the number of distinct DFA states
be encoded into existing tag fields?

There are other performance metrics which we do not
report. Additional query rules that fit in the switch hard-
ware tables do not adversely impact packet processing
throughput or latency, because hardware is typically de-
signed for deterministic forwarding performance.5 The
same principle applies to packet mirroring [47]. The time
to install data plane rules varies widely depending on the
switch used—prior literature reports between 1-20 mil-

5Navindra Yadav. Personal communication, January 2016.

liseconds per flow setup [24]. Our compiler produces
small rule sets that can be installed in a few seconds.

Experiment Setup. We pick a combination of queries
from Table 1, including switch-to-switch traffic matrix,
congested link diagnosis, DDoS source detection, count-
ing packet loss per-hop per-path6, slice isolation between
two IP prefix slices, and firewall evasion. These queries
involve broad scenarios such as resource accounting, net-
work debugging, and enforcing security policy. We run
our single-threaded prototype on an Intel Xeon E3 server
with 3.70 GHz CPU (8 cores) and 32GB memory.

Compiling to a multi-stage table is much more effi-
cient than single-stage table, since the former is not sus-
ceptible to cross-product explosion (§6). For example,
the traffic matrix query incurs three orders of magnitude
smaller rule space with the basic multi-stage setup (§5.3),
relative to single-stage. Hence, we report multi-stage
statistics throughout. Further, since optimization (E) de-
composes queries into multiple stages (§6), and the stage
compilations are parallelizable, we report the maximum
compile time across stages whenever (E) is enabled.

(I) Benefit of Optimizations. We evaluate our system on
an emulated Stanford campus topology [2], which con-
tains 16 backbone routers, and over 100 network ingress
interfaces. We measure the benefit of the optimizations
when compiling all of the queries listed above together—
collecting over 550 statistics from the network.7

The results are summarized in Table 2. Some tri-
als did not finish8, labeled “DNF.” Each finished trial
shown is an average of five runs. The rows are keyed
by optimizations—whose letter labels (A)-(F) are listed
in paragraph headings in §6. We enable the optimiza-
tions one by one, and show the cumulative impact of all
enabled optimizations in each row. The columns show
statistics of interest—compile time (absolute value and
factor reduction from the unoptimized case), maximum
number of table rules (ingress and egress separately) on
any network switch, and required packet DFA bits.

The cumulative compile-time reduction with all
optimizations (last row) constitutes three orders of
magnitude—reducing the compile time to about 5 sec-
onds, suitable for interactive debugging by a human op-
erator.910 Further, the maximum number of rules re-
quired on any one switch fits comfortably in modern
switch memory capacities [8, 14, 25]; and the DFA state

6We use the version of this query from §4, see p2 there.
7By injecting traffic into the network, we tested that our system

collects the right packets (Fig. 2), extracts the right switch counters,
and produces no duplicate packets.

8The reason is that they run out of memory.
9Interactive response times within about 15 seconds retain a human

in the “problem-solving frame of mind” [35, topic 11].
10We enable (F) only for larger networks, where the time to set up

the data structure is offset by fast predicate intersection.
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Enabled
Opts.

Compile Time Max # Rules # State
BitsAbs. (s) Rel. (X) In Out

None > 4920 baseline DNF DNF DNF
(A) only > 4080 1.206 DNF DNF DNF
(A)-(B) 2991 1.646 2596 1722 10
(A)-(C) 56.19 87.48 1846 1711 10
(A)-(D) 35.13 139.5 1846 1711 10
(A)-(E) 5.467 894.7 260 389 16

Table 2: Benefit of optimizations on queries running on the
Stanford campus topology. “DNF” means “Did Not Finish.”

Network # Nodes Compile
Time (s)

Max # Rules # State
BitsIn Out

Berkeley 25 10.7 58 160 6.0
Purdue 98 14.9 148 236 22.5
RF1755 87 6.6 150 194 16.8
RF3257 161 44.1 590 675 32.3
RF6461 138 21.4 343 419 29.2

Table 3: Performance on enterprise and ISP (L3) network
topologies when all optimizations are enabled.

bits (2 bytes at most) fit within tag fields like VLANs. Fi-
nally, multi-stage query decomposition (E) reduces rule
space usage significantly with more state bits.

(II) Performance on enterprise and ISP networks. We
evaluate our prototype on real enterprise and inferred
ISP networks, namely: UC Berkeley [6], Purdue Univer-
sity [63], and Rocketfuel (RF) topologies for ASes 1755,
3257 and 6461 [54, 61]. All optimizations are enabled.
For each network, we report averages from 30 runs (five
runs each of six queries). The results are summarized in
Table 3. The average compile time is under 20 seconds
in all cases but one; rule counts are within modern switch
TCAM capacities; and DFA bits fit in an MPLS header.

(III) Scalability trends. We evaluate how performance
scales with network size, on a mix of five synthetic
ISP topologies generated from Waxman graphs [67] and
IGen, a heuristic ISP topology generator [51]. We dis-
cuss the parameters used to generate the topologies in an
extended version of this paper [39]. We report average
metrics from 30 runs, i.e., six queries compiled to five
networks of each size. The trends are shown in Fig. 9.
The average compile time (see red curve) is under ≈ 25
seconds until a network size of 140 nodes. In the same
size range, the ingress table rule counts (see black curve)
as well as the egress (not shown) are each under 700—
which together can fit in modern switch TCAM memo-
ries. DFA packet bits (see numeric labels on black curve)
fit in an MPLS header until 120 nodes.

For networks of about 140 nodes or smaller, our query
system supports interactive debugging—continuing to
provide useful results beyond for non-interactive tasks.
We believe that these query compile times are a signifi-
cant step forward for “human time scale” network debug-
ging, which requires operators to be involved typically
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Figure 9: Scalability trends on synthetic ISP topologies. Nu-
meric labels on the curve correspond to # DFA packet bits.

for hours [21, 75]. Among large ISP topologies mapped
out in literature [61], each ISP can be supported in the
“interactive” regime for PoP-level queries. We leave fur-
ther scaling efforts, e.g., to data centers, to future work.

8 Related Work

We already discussed the most relevant prior works in
§2; this section lays out other related work.

Data-plane query systems. Several query languages
have been proposed for performing analytics over
streams of packet data [7,13,20,66]. Unlike these works,
we address the collection of path-level traffic flows, i.e.,
observations of the same packets across space and time,
which cannot be expressed concisely or achieved by
(merely) asking for single-point packet observations.

Control-plane query systems. NetQuery [57] and other
prior systems [9, 10, 26] allow operators to query infor-
mation (e.g., next hop for forwarding, attack fingerprints,
etc.) from tuples stored on network nodes. As such,
these works do not query the data plane. SIMON [40]
and ndb [33] share our vision of interactive debugging,
but focus on isolating control plane bugs.

Summary statistics monitoring systems. DREAM [37],
ProgME [72] and OpenSketch [71] answer a different set
of monitoring questions than our work, e.g., detecting
heavy hitters and changes in traffic patterns.

Programming traffic flow along paths. Several prior
works [17, 27, 53, 60] aim to forward packets along
policy-compliant paths. However, our work measures
traffic along operator-specified paths, while the usual for-
warding policy continues to handle traffic.

9 Conclusion

We have shown how to take a declarative specification
for path-level measurements, and implement it in the data
plane with accurate results at low overhead. We believe
that this capability will be useful for network operators
for better real-time problem diagnosis, security policy
enforcement, and capacity planning.
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A Multi-stage rule-packing problem

Below we write down the integer optimization problem
that minimizes the number of table stages subject to con-
straints on the number of stages and rule space available
per stage. Typically, predicate partitioning time is pro-
portional to the size of the output set of predicates, so
this also reduces the compile time significantly:

minimize: S = ∑ j y j

variables: qi j ∈ {0,1},y j ∈ {0,1}
subject to:
∀ j : cost({qi j : qi j = 1})≤ rulelimit∗ y j
∀i : ∑ j qi j = 1
S≤ stagelimit

Here the variable qi j is assigned a value 1 if query i is
assigned to stage j, and 0 otherwise. The variable y j is 1
if stage j is used by at least one query and 0 otherwise.
The constraints ensure, respectively, that (i) queries in a

given stage respect the rule space limits for that stage, (ii)
every query is assigned exactly one table stage, and that
(iii) the total number of stages is within the number of
maximum stages supported by the switch. The optimiza-
tion problem minimizes the number of used table stages,
which is a measure of the latency and complexity of the
packet-processing pipeline.

We now write down the cost function that deter-
mines the rule space usage of a bunch of queries
together. First, we define the type and count for
each query as the set of header fields the query
matches on, and the number of total matches re-
spectively. In the example in §6, the query types
and counts would be q1: ([’srcip’], 100), q2:
([’dstip’], 200), q3: ([’srcip’], 300). We
estimate the worst-case rule space cost11 of putting two
queries together into one stage as follows:

cost ((type1, count1), (type2, count2)) :=
case type1 == ϕ:
count2 + 1

case type1 == type2:
count1 + count2

case type1 ⊂ type2:
count1 + count2

case type1 ∩ type2 == ϕ:
(count1 + 1) * (count2 + 1) - 1

case default:
(count1 + 1) * (count2 + 1) - 1

The type of the resulting query is type1 ∪ type2, as
the predicate partitioning (Alg. 1) creates matches with
headers involving the union of the match fields in the
two queries. Hence, we can construct a function which
produces a new query type and count, given two existing
query types and counts. It is easy to generalize this func-
tion to more than two arguments by iteratively applying
it to the result of the previous function application and
the next query12. Hence, we can compute the worst-case
rule space cost of putting a bunch of queries together into
one stage.

Our cost function and formulation are different from
prior works that map logical to physical switch tables
[29, 56] for two reasons. First, query predicates can be
installed on any table: there is no ordering or dependency
between them, so there are more possibilities to explore
in our formulation. Second, our rule space cost func-
tion explicitly favors predicates with similar headers in
one table, while penalizing predicates with very different
header matches.

Reduction of bin-packing to rule-packing. It is
straightforward to show that the problem of minimizing

11It is in general difficult to compute the exact rule space cost of
installing two queries together in one stage without actually doing the
entire overlap computation in Alg. 1.

12We believe, but are yet to show formally, that this cost function is
associative.
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Algorithm 1 Predicate partitioning (§5.1).
1: P = set_o f _predicates
2: S = /0
3: for new_pred ∈ P do
4: for pred ∈ S do
5: if pred is equal to new_pred then
6: continue the outer loop
7: else if pred is a superset of new_pred then
8: di f f erence = pred &∼ new_pred
9: S← S∪{di f f erence,new_pred}

10: S← S\{pred}
11: continue the outer loop
12: else if pred is a subset of new_pred then
13: new_pred← new_pred &∼ pred
14: else if intersect then
15: inter1 = pred &∼ new_pred
16: inter2 = ∼ pred & new_pred
17: inter3 = pred & new_pred
18: S← S∪{inter1, inter2, inter3}
19: S← S\{pred}
20: new_pred← new_pred &∼ pred
21: end if
22: end for
23: S← S∪{new_pred}
24: end for

the number of bins B of capacity V while packing n items
of sizes a1,a2, · · · ,an can be solved through a specific in-
stance of the rule packing problem above. We construct
n queries of the same type, with rule counts a1, · · · ,an re-
spectively. We set the rulelimit to the size of the bins
V , and stagelimit to the number of maximum bins al-
lowed in the bin packing problem (typically n). Since all
queries are of the same type, the rule space cost function
is just the sum of the rule counts of the queries at a given
stage. It is then easy to see that the original bin-packing
problem is solved by this instance of the rule-packing
problem.

First-fit Heuristic. The first-fit heuristic we use is di-
rectly derived from the corresponding heuristic for bin-

packing. We fit a query into the first stage that allows
the worst-case rule space blowup to stay within the pre-
specified per-stage rulelimit. The cost function above
is used to compute the final rule-space after including a
new query in a stage. We use a maximum of 10 logi-
cal stages in our experiments, with a 2000 rule limit per
stage in the worst-case.

The logical stages match and modify completely dis-
joint parts of the packet state. We believe that a packet
program compiler, e.g., [29], can efficiently lay out the
query rules on a physical switch table, since there are no
dependencies between these table stages.

B Predicate Partitioning

To ensure that characters represent non-overlapping
predicates, we apply Alg. 1 to partition the input pred-
icates. The algorithm takes an input set of predicates P,
and produces an orthogonal set of predicates S.

The partitioned set S is initialized to a null set (line 2).
We iterate over the predicates in P, teasing out overlaps
with existing predicates in S. If the current input pred-
icate new_pred already exists in S, we move on to the
next input (lines 5-6). If a predicate pred in S is a su-
perset of new_pred, we split pred into two parts, cor-
responding to the parts that do and don’t overlap with
new_pred (lines 7-11). Then we move to the next in-
put predicate. The procedure is symmetrically applied
when pred is a subset of new_pred (lines 12-13), ex-
cept that we continue looking for more predicates in S
that may overlap with new_pred. Finally, if pred and
new_pred merely intersect (but neither is a superset of
the other), we create three different predicates in S ac-
cording to three different combinations of overlap be-
tween the two predicates (lines 14-20). Finally, any re-
maining pieces of new_pred are added to the partitioned
set S. Under each case above and for each predicate in P,
we also keep track of the predicates in the partitioned set
S with which it overlaps (details elided).
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