
PADS/ML: A Functional Data Description Language

Yitzhak Mandelbaum∗, Kathleen Fisher†, David Walker∗, Mary Fernandez†, Artem Gleyzer∗

∗Princeton University †AT&T Labs Research
yitzhakm,dpw,agleyzer@CS.Princeton.EDU kfisher,mff@research.att.com

Abstract
Massive amounts of useful data are stored and processed inad hoc
formats for which common tools like parsers, printers, query en-
gines and format converters are not readily available. In this paper,
we explain thedesign, implementationand theoryof PADS/ML , a
new language and system that facilitates generation of data process-
ing tools for ad hoc formats. ThePADS/ML design includes features
such as dependent, polymorphic and recursive datatypes, which al-
low programmers to describe the syntax and semantics of ad hoc
data in a concise, easy-to-read notation. ThePADS/ML implemen-
tation compiles these descriptions intoML structures and functors
that include types for parsed data, functions for parsing and print-
ing, and auxiliary support for user-specified, format-dependent and
format-independent tool generation. Finally, thePADS/ML theory
gives a precise formal meaning to the descriptions in terms of the
semantics of parsing, the semantics of printing, and the types of
data structures that represent parsed data.

1. Introduction
An ad hocdata format is any semi-structured data format for which
parsing, querying, analysis, or transformation tools are not read-
ily available. Despite the existence of standard formats likeXML ,
ad hoc data sources are ubiquitous, arising in industries as diverse
as finance, health care, transportation, and telecommunications as
well as in scientific domains, such as computational biology and
physics. Figure 1 summarizes a variety of such formats, including
ASCII, binary, and Cobol encodings, with both fixed and variable-
width records arranged in linear sequences and in tree-shaped hi-
erarchies. Snippets of some of these data formats appear in Fig-
ure 2. Note that even a single format can exhibit a great deal of
syntactic variability. For example, Figure 2(c) contains two records
from a network-monitoring application. Each record has a differ-
ent number of fields (delimited by ‘|’) and individual fields contain
structured values (e.g., attribute-value pairs separated by ‘=’ and
delimited by ‘;’).

Common characteristics of ad hoc data make it difficult to per-
form even basic data-processing tasks. To start, data analysts typ-
ically have little control over the format of the data; it arrives “as
is,” and the analysts can only thank the supplier, not request a more
convenient format. The documentation accompanying ad hoc data
is often incomplete, inaccurate, or missing entirely, which makes
understanding the data format more difficult. Managing the er-
rors that frequently occur poses another challenge. Common er-
rors include undocumented fields, corrupted or missing data, and
multiple representations for missing values. Sources of errors in-
clude malfunctioning equipment, race conditions on log entry, the
presence of non-standard values to indicate “no data available,”
and human error when entering data. How to respond to errors is
highly application-specific: some need to halt processing and alert
a human operator, others can repair errors by consulting auxiliary
sources, while still others simply filter out erroneous values. In

Name: Use Representation

Gene Ontology (GO) [6]: Variable-width
Gene Product Information ASCII records
SDSS/Reglens Data [22]: Floating point numbers,
Weak gravitational lensing analysis among others
Web server logs (CLF): Fixed-column
Measuring web workloads ASCII records
AT&T Call detail data: Fixed-width
Phone call fraud detection binary records
AT&T billing data: Cobol
Monitoring billing process
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
OPRA: Mixed binary & ASCII records
Options-market transactions with data-dependent unions
Palm PDA: Mixed binary & character
Device synchronization with data-dependent constraints

Figure 1. Selected ad hoc data sources.

some cases, erroneous data is more important than error-free data;
for example, it may signal where two systems are failing to com-
municate. Unfortunately, writing code that reliably handles both
error-free and erroneous data is difficult and tedious.

1.1 PADS/ML

PADS/ML is a domain-specific language designed to improve the
productivity of data analysts, be they computational biologists,
physicists, network administrators, healthcare providers, financial
analysts,etc.To use the system, analysts describe their data in the
PADS/ML language, capturing both the physical format of the data
and any expected semantic constraints. In return for this invest-
ment, analysts reap substantial rewards. First of all, the description
serves as clear, compact, and formally-specified documentation of
the data’s structure and properties. In addition, thePADS/ML com-
piler can convert the description into a suite of robust, end-to-end
data processing tools and libraries specialized to the format. As the
analysts’ data sources evolve over time, they can simply update the
high-level descriptions and recompile to produce updated tools.

The type structure of modern functional programming lan-
guages inspired the design of thePADS/ML language. Specifically,
PADS/ML provides dependent, polymorphic recursive datatypes,
layered on top of a rich collection of base types, to specify the
syntactic structure and semantic properties of data formats. To-
gether, these features enable analysts to write concise, complete,
and reusable descriptions of their data. We describe thePADS/ML
language using examples from several domains in Section 2.

We have implementedPADS/ML by compiling descriptions into
O’ CAML code. We use a “types as modules” implementation strat-
egy in which eachPADS/ML type becomes a module and each
PADS/ML type constructor becomes a functor. We choseML as the
host language because we believe that functional languages lend
themselves to data processing tasks more readily than imperative

2:3004092508||5001|dns1=abc.com;dns2=xyz.com|c=slow link;w=lost packets|INTERNATIONAL
3:|3004097201|5074|dns1=bob.com;dns2=alice.com|src_addr=192.168.0.10; \
dst_addr=192.168.23.10;start_time=1234567890;end_time=1234568000;cycle_time=17412|SPECIAL

(a) Simplified Regulus network-monitoring data.

0|1005022800
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|1001649601
9152|9151|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|1000295291

(b) Sirius data used to monitor billing in telecommunications industry.

(((erHomoC:0.28006,erCaelC:0.22089):0.40998, (erHomoA:0.32304,(erpCaelC:0.58815,((erHomoB: \
0.5807,erCaelB:0.23569):0.03586,erCaelA: 0.38272):0.06516):0.03492):0.14265):0.63594, \
(TRXHomo:0.65866,TRXSacch:0.38791):0.32147, TRXEcoli:0.57336)

(c) Newick data used to study immune system responses.

Figure 2. Snippets of a variety of ad hoc data formats. Each ‘\’ denotes a newline we inserted to improve readability.

languages such asC or JAVA. In particular, constructs such as pat-
tern matching and higher-order functions make expressing data
transformations particularly convenient. Section 3 describes our
“types as modules” strategy and shows howPADS/ML -generated
modules together with functionalO’ CAML code can concisely ex-
press common data-processing tasks such as filtering errors and for-
mat transformation.

A key benefit of our approach is the high return-on-investment
that analysts can derive from describing their data inPADS/ML . In
particular,PADS/ML makes it possible to produce automatically a
collection of data analysis and processing tools from each descrip-
tion. As a start, thePADS/ML compiler generates from each descrip-
tion a parser and a printer for the associated data source. The parser
maps raw data into two data structures: a canonicalrepresentation
of the parsed data and aparse descriptor, a meta-data object detail-
ing properties of the corresponding data representation. Parse de-
scriptors provide applications with programmatic access to errors
detected during parsing. The printer inverts the process, mapping
internal data structures and their corresponding parse descriptors
back into into raw data.

In addition to generating parsers and printers, our framework
permits developers to addformat-independenttools without modi-
fying the PADS/ML compiler by specifyingtool generators. Such
generators need only match a generic interface, specified as an
ML signature. Correspondingly, for eachPADS/ML description, the
PADS/ML compiler generates a meta-tool (a functor) that takes a
tool generator and specializes it for use with the particular descrip-
tion. Section 4 describes the tool framework and gives examples of
three format-independent tools that we have implemented: a data
printer useful for description debugging, an accumulator that keeps
track of error information for each type in a data source, and a for-
matter that maps data into XML.

To define the semantics ofPADS/ML , we extended our earlier
work on the Data Description Calculus (DDC) [12] to account for
PADS/ML ’s polymorphic types. In the process, we simplified the
original presentation of the parser semantics substantially, partic-
ularly for recursive types. In addition, we extended the theory to
give a printing semantics. We used this new semantics to guide the
PADS/ML implementation of printing. Section 5 presents the ex-
tendedDDCα calculus, focusing on the semantics of polymorphic
types for parsing and the key elements of the printing semantics.

PADS/ML has evolved from previous work onPADS/C 1 [11],
but PADS/ML differs from PADS/C in three significant ways. First,
it is targeted at theML family of languages. UsingML as the host

1 We refer to the originalPADS language asPADS/C to distinguish it from
PADS/ML .

language simplifies many data processing tasks, such as filtering
and normalization, which benefit fromML ’s pattern matching con-
structs and high level of abstraction. Second, unlikePADS/C types,
PADS/ML types may be parameterized by other types, resulting
in more concise and elegant descriptions though code reuse.ML -
style datatypes and anonymous nested tuples also help improve
readability by making descriptions more compact. Third,PADS/ML
provides significantly better support for the development of new
tool generators. In particular,PADS/ML provides a generic inter-
face against which tool generators can be written. InPADS/C, the
compiler itself generates all tools, and, therefore, developing a new
tool generator requires understanding and modifying the compiler.

In summary, this work makes the following key contributions:

• We have designed and implementedPADS/ML , a novel data-
description language that includes dependent polymorphic re-
cursive datatypes. This design allows data analysts to express
the syntactic structure and semantic properties of data formats
from numerous application domains in a concise, elegant, and
easy-to-read notation.

• OurPADS/ML implementation employs an effective and general
“types as modules” compilation strategy that produces robust
parser and printer functions as well as auxiliary support for
user-specified tool generation.

• We have defined the formal semantics of bothPADS/ML parsers
and printers and proven our generated code is type safe and
well-behaved as defined by a canonical forms theorem.

2. Describing Data in PADS/ML
A PADS/ML description specifies the physical layout and semantic
properties of an ad hoc data source. These descriptions are com-
posed of types: base types describe atomic data, while structured
types describe compound data built from simpler pieces. Exam-
ples of base types include ASCII-encoded, 8-bit unsigned integers
(Puint8) and 32-bit signed integers (Pint32), binary 32-bit in-
tegers (Pbint32), dates (Pdate), strings (Pstring), zip codes
(Pzip), phone numbers (Pphone), and IP addresses (Pip). Se-
mantic conditions for such base types include checking that the re-
sulting number fits in the indicated space,i.e., 16-bits forPint16 .

Base types may be parameterized byML values. This mecha-
nism reduces the number of built-in base types and permits base
types to depend on values in the parsed data. For example, the
base typePuint16_FW(3) specifies an unsigned two byte in-
teger physically represented by exactly three characters, and the
base typePstring takes an argument indicating theterminator
character, i.e., the character in the source that follows the string.

ptype Summary_header = "0|" * Ptimestamp * ’\n’

pdatatype Dib_ramp =
Ramp of Pint

| GenRamp of "no_ii" * Pint

ptype Order_header = {
order_num : Pint;

’|’; att_order_num : [i:Pint | i < order_num];
’|’; ord_version : Pint;
’|’; service_tn : Pphone Popt;
’|’; billing_tn : Pphone Popt;
’|’; nlp_service_tn : Pphone Popt;
’|’; nlp_billing_tn : Pphone Popt;
’|’; zip_code : Pzip Popt;
’|’; ramp : Dib_ramp;
’|’; order_sort : Pstring(’|’);
’|’; order_details : Pint;
’|’; unused : Pstring(’|’);
’|’; stream : Pstring(’|’);
’|’
}

ptype Event = Pstring(’|’) * ’|’ * Ptimestamp
ptype Events = Event Plist(’|’, ’\n’)

ptype Order = Order_header * Events
ptype Orders = Order Plist(’\n’, peof)

ptype Source = Summary_header * Orders

Figure 3. PADS/ML description for Sirius provisioning data.

To describe more complex data,PADS/ML provides a collection
of type constructors derived from the type structure of functional
programming languages like Haskell and ML. We explain these
structured types in the following subsections using examples drawn
from data sources we have encountered in practice.

2.1 Simple Structured Types

The bread and butter of aPADS/ML description are the simple struc-
tured types: tuples and records for specifying ordered data, lists for
specifying homogeneous sequences of data, sum types for speci-
fying alternatives, and singletons for specifying the occurrence of
literal characters in the data. We describe each of these constructs
as applied to the Sirius data presented in Figure 2(b).

Sirius data summarizes orders for phone service placed with
AT&T. Each Sirius data file starts with a timestamp followed by
one record per phone service order. Each order consists of a header
and a sequence of events. The header has 13 pipe separated fields:
the order number, AT&T’s internal order number, the order version,
four different telephone numbers associated with the order, the zip
code of the order, a billing identifier, the order type, a measure
of the complexity of the order, an unused field, and the source of
the order data. Many of these fields are optional, in which case
nothing appears between the pipe characters. The billing identifier
may not be available at the time of processing, in which case the
system generates a unique identifier, and prefixes this value with
the string “noii” to indicate that the number was generated. The
event sequence represents the various states a service order goes
through; it is represented as a new-line terminated, pipe separated
list of state, timestamp pairs. There are over 400 distinct states
that an order may go through during provisioning. The sequence
is sorted in order of increasing timestamps. Clearly English is a
poor language for describing data formats!

Figure 3 contains thePADS/ML description for the Sirius data
format. The description is a sequence of type definitions. Type

definitions precede uses, therefore the description should be read
bottom up. The typeSource describes a complete Sirius data
file and denotes an ordered tuple containing aSummary_header
value followed by anOrders value.

The type Orders uses the list type constructorPlist to
describe a homogenous sequence of values in a data source. The
Plist constructor takes three parameters: on the left, the type of
elements in the list; on the right, a literalseparatorthat separates
elements in the list and a literalterminatorthat marks the end of the
list. In this example, the typeOrders is a list ofOrder elements,
separated by a newline, and terminated bypeof , a special literal
that describes theend-of-file marker. Similarly, theEvents type
denotes a sequence ofEvent values separated by vertical bars and
terminated by a newline.

Literal characters in type expressions denote singleton types.
For example, theEvent type is a string terminated by a verti-
cal bar, followed by a vertical bar, followed by a timestamp. The
singleton type’|’ means that the data source must contain the
character’|’ at this point in the input stream. String, character,
and integer literals can be embedded in a description and are in-
terpreted as singleton types,e.g., the singleton type"0|" in the
Summary_header type denotes the string literal"0|" .

The typeOrder_header is a record type,i.e., a tuple type
in which each field may have an associated name. The named
field att_order_num illustrates two other features ofPADS/ML :
dependencies and constraints. Here,att_order_num depends
on the previous fieldorder_num and is constrained to be less
than that value. In practice, constraints may be complex, have
multiple dependencies, and can specify, for example, the sorted
order of records in a sequence. Constrained types have the form
[x:T | e] wheree is an arbitrary pure boolean expression. Data
satisfies this description if it satisfiesT and booleane evaluates to
true when the parsed representation of the data is substituted for
x . If the boolean expression evaluates to false, the data contains a
semanticerror.

The datatypeDib_ramp specifies two alternatives for a data
fragment, either one integer or the fixed string"no_ii" followed
by one integer. The order of alternatives is significant, that is, the
parser attempts to parse the first alternative and only if it fails, it at-
tempts to parse the second alternative. This semantics differs from
similar constructs in regular expressions and context-free gram-
mars, which non-deterministically choose between alternatives.

2.2 Recursive Types

PADS/ML can describe data sources with recursive structure. An
example of such data is the Newick format, a flat representation of
trees used by biologists [25]. Example Newick data provided by
Steven Kleinstein appears in Figure 2(c). The format uses properly
nested parentheses to specify a tree hierarchy. A leaf node is a string
label followed by a colon and a number. An interior node contains a
sequence of children nodes, delimited by parentheses, followed by
a colon and a number. The numbers represent the “distance” that
separates a child node from its parent. In this example, the string
labels are gene names and the distances denotes the number of mu-
tations that occur in the antibody receptor genes of B lymphocytes.
The followingPADS/ML code describes this format:

ptype Entry = {name: Pstring(’:’); ’:’; dist: Pfloat32}

pdatatype Tree =
Interior of ’(’ * Tree Plist(’;’,’)’) * ’)’

| Leaf of Entry

2.3 Polymorphic Types and Advanced Datatypes

Polymorphic types enable more concise descriptions and allow pro-
grammers to define convenient libraries of reusable descriptions.

(* Pstring terminated by ’;’ or ’|’. *)
ptype SVString = Pstring_SE("/;|\\|/")

(* Generic name value pair. Accepts predicate
to validate name as argument. *)

ptype (Alpha) Pnvp(p : string -> bool) =
{ name : [name : Pstring(’=’) | p name];

’=’;
value : Alpha }

(* Name value pair with name specified. *)
ptype (Alpha) Nvp(name:string) =

Alpha Pnvp(fun s -> s = name)

(* Name value pair with any name. *)
ptype Nvp_a = SVString Pnvp(fun _ -> true)

ptype Details = {
source : Pip Nvp("src_addr");

’;’; dest : Pip Nvp("dest_addr");
’;’; start_time : Ptimestamp Nvp("start_time");
’;’; end_time : Ptimestamp Nvp("end_time");
’;’; cycle_time : Puint32 Nvp("cycle_time")
}

pdatatype Info(alarm_code : int) =
match alarm_code with

5074 -> Details of Details
| _ -> Generic of Nvp_a Plist(’;’,’|’)

pdatatype Service =
DOMESTIC of omit "DOMESTIC"

| INTERNATIONAL of omit "INTERNATIONAL"
| SPECIAL of omit "SPECIAL"

ptype Alarm = {
alarm : [i : Puint32 | i = 2 or i = 3];

’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code : Puint32;
’|’; src_dns : SVString Nvp("dns1");
’;’; dest_dns : SVString Nvp("dns2");
’|’; info : Info(code);
’|’; service : Service

}

ptype Source = Alarm Plist(’\n’, peof)

Figure 4. Description of Regulus data.

The description in Figure 4 illustrates types parameterized by both
types and values. It specifies the format of alarm data recorded by
a network-link monitor used in the Regulus project at AT&T. Fig-
ure 2(a) contains corresponding example data. We describe the for-
mat in tandem with describing itsPADS/ML description.

This data format has several variants of name-value pairs. The
PADS/C description of this format (shown in Appendix A) must
define a different type for each variant. In contrast, the polymorphic
types ofPADS/ML allow us to define the typePnvp , which takes
both type and value parameters to encode all the variants. As is
customary inML , type parameters appear to the left of the type
name, while value parameters and theirML types appear to the
right. The typePnvp has one type parameter namedAlpha and
one value parameter namedp. Informally, Alpha Pnvp(p) is a
name-value pair where the value is described byAlpha and the
name must satisfy the predicatep.

TheNvp type reuses thePnvp type to define a name-value pair
whose name must match the argument stringnamebut whose value
can have any type. TheNvp_a also uses the typePnvp . It defines
a name-value pair that permits any name, but requires the value
to have typeSVString (a string terminated by a semicolon or
vertical bar). Later in the description, the type parameter toNvp is
instantiated with IP addresses, timestamps, and integers.

The Regulus description also illustrates the use ofswitched
datatypes. A switched datatype selects a variant based on the
value of a user-specifiedO’ CAML expression, which typically ref-
erences parsed data from earlier in the data source. For example,
the switched datatypeInfo chooses a variant based on the value of
its alarm_code parameter. More specifically, if the alarm code is
5074 , the format specification given by theDetails constructor
will be used to parse the current data. Otherwise, the format given
by theGeneric constructor will be used.

The last construct in the Regulus description is the type qualifier
omit . In theService datatype,omit specifies that the parsed
string literal should be omitted in the internal data representation
because the literal can be determined by the datatype constructor.

3. From PADS/ML to O’CAML
The PADS/ML compiler takes descriptions and generatesO’ CAML
modules that can be used by anyO’ CAML program. In this section,
we describe the generated modules and illustrate their use.

3.1 Types as Modules

We use theO’ CAML module system to structure the libraries
generated by thePADS/ML compiler. EachPADS/ML base type
is implemented as anO’ CAML module. For eachPADS/ML type
in a description, thePADS/ML compiler generates anO’ CAML
module containing the generatedO’ CAML types, functions, and
nested modules that implement thePADS/ML type. All the gen-
erated modules are grouped into one module that implements the
complete description. For example, aPADS/ML description named
sirius.pml containing three named types results in theO’ CAML
file sirius.ml defining the moduleSirius , which contains
three submodules, each corresponding to one named type.

Namespace management alone is sufficient motivation to em-
ploy a “types as modules” approach, but the power of theML mod-
ule system provides substantially more. We implement polymor-
phicPADS/ML types as functors from (type) modules to (type) mod-
ules. Ideally, we would like to map recursivePADS/ML types into
recursive modules. Unfortunately, this approach currently is not
possible, becauseO’ CAML prohibits the use of functors within re-
cursive modules, and the output of thePADS/ML compiler includes
a functor for each type. Instead, we implement recursive types as
modules containing recursive datatypes and functions. As there is
no theoretical reason to prevent recursive modules from containing
functors [8], we pose our system as a challenge to implementers of
module systems.

The module generated for any monomorphicPADS/ML type
matches the signatureS:

module type S = sig
type rep
type pd_body
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
(* Functor for tool generator ... *)
module Traverse ...

end

Therepresentation(rep) type describes the in-memory representa-
tion of parsed data, while theparse-descriptor(PD) type describes
meta-data collected during parsing. The parsing function converts
the raw data into an in-memory representation and parse descrip-
tor for the representation. The printing function performs the re-
verse operation. The module also contains a generic tool genera-
tor implemented as a functor; we defer a description of this func-
tor to Section 4. The modulePads contains the built-in types
and functions that occur in base-type and generated modules. The
typePads.pd_header is the type of all parse-descriptor head-

ers andPads.handle is an abstract type containing the private
data structuresPADS/ML uses to manage data sources.

The structure of the representation and parse-descriptor types
resembles the structure of the correspondingPADS/ML type, mak-
ing it easy to see the correspondence between parsed data, its inter-
nal representation, and the corresponding meta-data. For example,
given thePADS/ML type Pair describing a character and integer
separated by a vertical bar:

ptype Pair = Pchar * ’|’ * Pint

the compiler generates a module with the signature:

module type Pair_sig = sig
type rep = Pchar.rep * Pint.rep
type pd_body = Pchar.pd * Pint.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

The parse-descriptor header reports on the parsing process that pro-
duced the corresponding representation. It includes the location of
the data in the source, an error code describing the first error en-
countered, and the number of subcomponents with errors. The body
contains the parse descriptors for subcomponents. Parse descriptors
for base types have a body of typeunit .

The signature for a polymorphicPADS/ML type uses the signa-
tureS for monomorphic types, defined above. Given the polymor-
phic PADS/ML typeABPair :

ptype (Alpha,Beta) ABPair = Alpha * ’|’ * Beta

the compiler generates a module with the signature:

module type ABPair_sig (Alpha : S) (Beta : S) =
sig

type rep = Alpha.rep * Beta.rep
type pd_body = (Pads.pd_header * Alpha.pd_body) *

(Pads.pd_header * Beta.pd_body)
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

3.2 Using the Generated Libraries

Common data management tasks like filtering and normalization
are easy to express inO’ CAML . In the remainder of this section,
we illustrate this point by givingO’ CAML programs to compute
properties of ad hoc data, to filter it, and to transform it.

3.2.1 Example: Computing Properties

Given thePADS/ML type:

ptype IntTriple = Pint * ’|’ * Pint * ’|’ * Pint

the following O’ CAML expression computes the average of the
three integers in the fileinput.data :

let ((i1,i2,i3), (pd_hdr, pd_body)) =
Pads.parse_source IntTriple.parse "input.data" in

match pd_hdr with
{error_code = Pads.Good} -> (i1 + i2 + i3)/3

| _ -> raise Pads.Bad_file

Theparse_source function takes a parsing function and a file
name, applies the parsing function to the data in the specified file,
and returns the resulting representation and parse descriptor. To
ensure the data is valid, the program examines the error code in
the parse-descriptor header. The error codeGood indicates that the
data is syntactically and semantically valid. Other error codes in-
cludeNest , indicating an error in a subcomponent,Syn, indicat-
ing that a syntactic error occurred during parsing, andSem, indi-

open Pads

let classify_order order (pd_hdr, pd_body) (good, bad)=
match pd_hdr with

{error_code = Good} -> (order::good, bad)
| _ -> (good, order::bad)

let split_orders orders (orders_pd_hdr,order_pds) =
List.fold_right2 classify_order orders order_pds []

let ((header, orders),(header_pd, orders_pd)) =
parse_source Sirius.parse "input.txt"

let _ = split_orders orders orders_pd

Figure 5. Error filtering of Sirius data

...
ptype Header = {

alarm : [a : Puint32 | a = 2 or a = 3];
’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code : Puint32;
’|’; src_dns : Nvp("dns1");
’;’; dest_dns : Nvp("dns2");
’|’; service : Service

}

ptype D_alarm = {
header : Header;

’|’; info : Details
}

ptype G_alarm = {
header : Header;

’|’; info : Nvp_a Plist(’;’,’|’)
}

Figure 6. Listing of RegulusNormal.pml , a normalized for-
mat for Regulus data. All named types not explicitly included in
this figure are unchanged from the original Regulus description.

cating that the data violates a semantic constraint. The expression
above raises an exception if it encounters any of these error codes.

Checking the top-level parse descriptor for errors is sufficient
to guarantee that there are no errors in any of the subcomponents.
This property holds for all representations and corresponding parse
descriptors. This design supports a “pay-as-you-go” approach to
error handling. The parse descriptor for valid data need only be
consulted once, no matter the size of the corresponding data, and
user code only needs to traverse nested parse descriptors if more
precise information about the error is required.

3.2.2 Example: Filtering

Data analysts often need to “clean” their data,i.e., remove or repair
data containing errors, before loading the data into a database or
other application.O’ CAML ’s pattern matching and higher-order
functions can simplify these tasks. For example, the expression in
Figure 5 partitions Sirius data into valid orders and invalid orders.

3.2.3 Example: Transformation

Once a data source has been parsed and cleaned, a common task
is to transform the data into formats required by other tools, like
a relational database or a statistical analysis package. Transfor-
mations include removing extraneous literals, inserting delimiters,
dropping or reordering fields, and normalizing the values of fields,
e.g., converting all times into a specified time zone. Because rela-
tional databases typically cannot store unions directly, one common
transformation is to convert data with variants (i.e., datatypes) into
a form that such systems can handle. One option is to partition or

open Regulus
open RegulusNormal
module A = Alarm
module DA = D_alarm
module GA = G_alarm
module Header = H

type (’a,’b) Sum = Left of ’a | Right of ’b

let split_alarm ra =
let h =

{H.alarm=ra.A.alarm; H.start=ra.A.start;
H.clear=ra.A.clear; H.code=ra.A.code;
H.src_dns=ra.A.src_dns; H.dest_dns=ra.A.dest_dns;
H.service=ra.A.service}

in match ra with
{info=Details(d)} ->
Left {DA.header = h; DA.info = d}

| {info=Generic(g)} ->
Right {GA.header = h; GA.info = g}

let process_alarm pads [pads_D; pads_G] =
let a,a_pd = Alarm.parse pads in

match (split_alarm a, split_alarm_pd a_pd) with
(Left da, Left da_p) -> DA.print da da_p pads_D

|(Right ga, Right ga_p) -> GA.print ga ga_p pads_G
| _ -> ... (* Bug! *)

let _ = process_source process_alarm
"input.data" ["d_out.data";"g_out.data"]

Figure 7. Shredding Regulus data based on theinfo field.

“shred” the data into several relational tables, one for each variant.
A second option is to create an universal table, with one column
for each field in any variant. If a given field does not occur in a
particular variant, its value is marked as missing.

Figure 6 shows a partial listing ofRegulusNormal.pml ,
a normalized version of the Regulus description from Section 2.
In this shredded version,Alarm has been split into two top-level
typesD_alarm andG_alarm . The typeD_alarm contains all
the information concerning alarms with the detailed payload, while
G_alarm contains the information for generic payloads. In the
original description, theinfo field identified the type of its pay-
load. In the shredded version, the two different types of records ap-
pear in two different data files. Since neither of these formats con-
tains a union, they can be easily loaded into a relational database.

The code fragment in Figure 7 shreds Regulus data in the for-
mat described byRegulus.pml into the formats described in
RegulusNormal.pml . It uses theinfo field of Alarm records
to partition the data. Notice the code invokes theprint func-
tions generated for theG_alarm andD_alarm types to output
the shredded data.

4. The Generic Tool Framework
An essential benefit ofPADS/ML is that it can provide users with
a high return-on-investment for describing their data. While the
generated parser and printer alone are enough to justify the user’s
effort, we aim to increase the return by enabling users to easily
construct data analysis tools. However, there is a limit, both in re-
sources and expertise, to the range of tool generators that we can
develop. Indeed, new and interesting data analysis tools are con-
stantly being developed, and we have no hope of integrating even a
fraction of them into thePADS/ML system ourselves. Therefore, it is
essential that we provide a simple framework for others to develop
tool generators.

The techniques of type-directed programming, known variously
asgeneric[16] or polytypic [19] programming, provide a conve-
nient conceptual starting point in designing a tool framework. In
essence, any tool generator is a function from a description to the

module type S = sig
type state
...
module Record : sig

type partial_state
val init : (string * state) list -> state
val start : state -> Pads.pd_header

-> partial_state
val project : state -> string -> state
val process_field : partial_state -> string

-> state -> partial_state
val finish : partial_state -> state

end

module Datatype : sig
type partial_state
val init : unit -> state
val start : state -> Pads.pd_header

-> partial_state
val project : state -> string -> state option
val process_variant : partial_state -> string

-> state -> partial_state
val finish : partial_state -> state

end
...

end

Figure 8. Excerpt of generic-tool interfaceGeneric tool.S .

corresponding tool. AsPADS/ML descriptions are types, a tool gen-
erator is a type-directed program.

Support for some form of generic programming over data repre-
sentations and parse descriptors is an essential first step in support-
ing the development of tool generators. While a full-blown generic
programming system like Generic Haskell [17] would be useful
in this context,O’ CAML lacks a generic programming facility. All
is not lost, however, as a number of useful data processing tools
share a common computational paradigm, and we can support that
paradigm without full generic programming support.

In particular, many of the tools we have encountered perform
their computations in a single pass over the representation and cor-
responding parse descriptor, visiting each value in the data with a
pre-, post-, or in-order traversal. This paradigm arises naturally as it
scales to very large data sets. It can be abstracted in a manner sim-
ilar to the generic functions of Lammel and Peyton-Jones [20]. For
each format description, we generate a format-dependent traversal
mechanism that implements a generalized fold over the representa-
tion and parse descriptor corresponding to that format. Then, tool
developers can write a format-independent,generic toolby speci-
fying the behaviour of the tool for eachPADS/ML type constructor.
The traversal mechanism interacts with generic tools through a sig-
nature that every generic tool must match.

The generic tool architecture ofPADS/ML delivers a number
of benefits over the fixed architecture ofPADS/C. In PADS/C, all
tools are generated from within the compiler. Therefore, develop-
ing a new tool generator requires understanding and modifying the
compiler. Furthermore, the user selects the set of tools to generate
when compiling the description. InPADS/ML , tool generators can
be developed independent of the compiler and they can be devel-
oped more rapidly because the “boilerplate” code to traverse data
need not be replicated for each tool generator. In addition, the user
controls which tools to “generate” for a given data format, and the
choice can differ on a program-by-program basis.

4.1 The Generic-Tool Interface

The interface between format-specific traversals and generic tools
is specified as anO’ CAML signature. For every type constructor in
PADS/ML , the signature describes a sub-module that implements
the generic tool for that type constructor. In addition, it specifies an
(abstract) type for auxiliary state that is threaded through the traver-

<Order_header size="13" status="GOOD">
<order_num><val>9153</val></order_num>
<att_order_num><val>9153</val></att_order_num>
<ord_version><val>1</val></ord_version>
<service_tn>

<Something><val>0</val></Something>
</service_tn>
<billing_tn>

<Something><val>0</val></Something>
</billing_tn>
<nlp_service_tn>

<Something><val>0</val></Something>
</nlp_service_tn>
<nlp_billing_tn>

<Something><val>0</val></Something>
</nlp_billing_tn>
<zip_code><Nothing><val></val></Nothing></zip_code>
<ramp><Ramp><val>152268</val></Ramp></ramp>
<order_sort><val>LOC_6</val></order_sort>
<order_details><val>0</val></order_details>
<unused><val>FRDW1</val></unused>
<stream><val>DUO</val></stream>

</Order_header>

Figure 9. A fragment of theXML output for Sirius.

sal. Figure 8 contains an excerpt of the signature that includes the
signatures of theRecord and Datatype modules. The signa-
tures of other modules are quite similar.

The Record module includes a typepartial_state that
allows tools to represent intermediate state in a different form
than the general state. Theinit function forms the state of the
record from the state of its fields. Thestart function receives
the PD header for the data element being traversed and begins
processing the element. Functionproject takes a record’s state
and the name of a field and returns that field’s state. Function
process_field updates the intermediate state of the record
based on the name and state of a field, andfinish converts the
finished intermediate state into general tool state. Note that any of
these functions could have side effects.

Although theDatatype module is similar to theRecord
module, there are some important differences. TheDatatypeinit
function does not start with the state of all the variants. Instead, a
variant’s state is added during processing so that only variants that
have been encountered will have corresponding state. For this rea-
son,project returns astate option , rather than astate .
This design is essential for supporting recursive datatypes as trying
to initialize the state for all possible variants of the datatype would
cause theinit function to loop infinitely.

The following code snippet gives the signature of the traversal
functor as it would appear in the signatureS from Section 3.

module Traverse (Tool : Generic_tool.S) :
sig

val init : unit -> Tool.state
val traverse : rep -> pd -> Tool.state -> Tool.state

end

The functor takes a generic tool generator and produces a format-
specific tool with two functions:init , to create the initial state
for the tool, andtraverse , which traverses the representation
and parse descriptor for the type and updates the given tool state.

4.2 Example Tools

We have used this framework to implement a variety of tools
useful for processing ad hoc data, including anXML formatter, an
accumulator tool for generating statistical overviews of the data,
and a data printer for debugging. We briefly describe these tools to
illustrate the flexibility of the framework.

The XML formatter converts any data with aPADS/ML descrip-
tion into a canonicalXML format. This conversion is useful because

Kinds κ ::= T | T → κ | σ → κ
Types τ ::= C(e) | λx.τ | τ e | Σ x:τ.τ | τ + τ

| {x:τ | e} | α | µα.τ | λα.τ | τ τ | ...

Figure 10. DDCα syntax, selected constructs

it allows analysts to exploit the many useful tools that exist for ma-
nipulating data inXML . Figure 9 shows a sample portion of the
output of this tool when run on the Sirius data in Figure 2(b).

The accumulator tool provides a statistical summary of data.
Such summaries are useful for developing a quick understanding of
data quality. In particular, after receiving a new batch of data, an-
alysts might want to know the frequency of errors, or which fields
are the most corrupted. The accumulator tool tracks the distribu-
tion of the topn distinct legal values and the percentage of errors.
It operates over data sources whose basic structure is a series of
records of the same type, providing a summary based on viewing
many records in the data source. More complex accumulator pro-
grams and a number of other statistical algorithms can easily be
implemented using the tool generation infrastructure.

Finally, as an aid in debuggingPADS/ML descriptions, we have
implemented a simple printing tool. In contrast to the printer gener-
ated by thePADS/ML compiler, the output of this tool corresponds
to the in-memory representation of the data rather than its origi-
nal format, which may have delimitersetc. that are not present in
the representation. This format is often more readable than the raw
data.

5. The Semantics of PADS/ML
In this section, we introduceDDCα, a calculus of simple, orthogo-
nal type constructors, which serves to give a semantics to the main
features ofPADS/ML . DDCα is an extension and revision of our
previous work onDDC [12]. The main new feature is the ability to
define functions from types to types, which are needed to model
PADS/ML ’s polymorphic data types. In the process of adding these
new functions, which we calltype abstractions(as opposed tovalue
abstractions, which are functions from values to types), we simpli-
fied our overall semantics by making a couple of subtle technical
changes. For example, we were able to eliminate the complicated
“contractiveness” constraint from our earlier work. We have also
added a new interpretation ofDDCα types as printers.

The main practical benefit of the calculus has been as a guide for
our implementation. Before working through the formal semantics,
we struggled to disentangle the invariants related to polymorphism.
After we had defined the calculus, we were able to implement
type abstractions asO’ CAML functors in approximately a week.
Our new printing semantics was also very important for helping
us define and check the correctness of our printer implementation.
We hope the calculus will serve as a guide for implementations of
PADS in other host languages. In the remainder of this section, we
give an overview of the calculus. Appendix B contains a complete
formal specification.

5.1 DDCα Syntax

Figure 10 summarizes the syntax of theDDCα. The interpretation
of a type with kindT is a parser that maps data from an external
form into an internal one. A type with kindT → κ is a function
mapping a parser to the interpretation of a type with kindκ. Finally,
types with kindσ → κ map values with host language typeσ to
the interpretation of types with kindκ. For concreteness, we adopt
Fω as our host language.

The simplest description is a base typeC(e). The base type’s
parametere is drawn from the host language. ThePADS/ML type
Pstring is an example of such a base type. Structured types

include value abstractionλx.τ and applicationτ e, which allow
us to parameterize types by host language values. The dependent
sum type,Σ x:τ.τ , describes a pair of values, where the value of
the first element of the pair can be referenced when describing the
second element. Variation in a data source can be described with
the sum typeτ +τ , which deterministically describes a data source
that either matches the first type, or fails to match the first branch
but does match the second one. We specify semantic constraints
over a data source with type{x:τ | e}, which describes any valuex
that satisfies the descriptionτ and the predicatee. Type variablesα
are abstract descriptions; they are introduced by recursive types and
type abstractions. Recursive typesµα.τ describe recursive formats,
like lists and trees. Type abstractionλα.τ and applicationτ τ allow
us to parameterize types by other types. Type variablesα always
have kindT.

To specify the well-formedness of types, we use a kinding
judgment of the form∆;Γ ` τ : κ, where∆ maps type variables
to kinds andΓ maps host language value variables to host language
types. In our original work [12], these kinding rules were somewhat
unorthodox, but we have since simplifed them. Details appear in
Appendix B.

5.2 Host Language

The host language ofDDCα is a straightforward extension ofFω

with recursion and a variety of useful constants and operators.
For reference, the grammar appears in Appendix C. The constants
include bitstringsB; offsetsω, representing locations in bitstrings;
and error codesok, err, and fail, indicating success, success
with errors, and failure, respectively. We use the constantnone to
indicate a failed parse. Because of its specific meaning, we forbid
its use in user-specified expressions appearing inDDCα types. We
use the notationbs1 @ bs2 to append bit stringbs1 to bs2. Our
base types include the typenone, the singleton type of the constant
none, and typeserrcode andoffset, which classify error codes
and bit string offsets, respectively.

We extend the formal syntax with some syntactic sugar for use
in the rest of this section: anonymous functionsλx.e for fun f x =
e, with f 6∈ FV(e); span for offset ∗ offset. We often use
pattern-matching syntax for pairs in place of explicit projections, as
in λ(B, ω).e andlet (ω, r, p) = e in e′. Although we have no for-
mal records with named fields, we use a dot notation for commonly
occuring projections. For example, for a pairx of rep and PD, we
usex.rep andx.pd for the left and right projections ofx, respec-
tively. Also, sums and products are right-associative. Finally, we
only specify type abstraction over terms and application when we
feel it will clarify the presentation. Otherwise, the polymorphism
is implicit. We also omit the usual type and kind annotations onλ,
with the expectation the reader can construct them from context.

The static semantics (∆;Γ ` e : σ), operational semantics
(e → e′), and type equality (σ ≡ σ′) are those ofFω extended with
recursive functions and recursive types and are entirely standard.
See Pierce’s text [28] for details.

5.3 DDCα Semantics

The primitives ofDDCα each have four interpretations: two types
in the host language, one for the data representation itself and one
for its parse descriptor, and two functions, one for parsing and one
for printing. We therefore specify the semantics ofDDCα types
using four semantic functions, each of which precisely conveys a
particular facet of the meaning of a type. The functions[[·]]rep and
[[·]]PD describe the type of the data’s in-memory representation
and parse descriptor, respectively. The semantic functions[[·]]P
and[[·]]PP define the parsing and printing functions generated from
DDCα descriptions.

[[τ]]rep = σ

[[C(e)]]rep = Btype(C) + none
[[λx.τ]]rep = [[τ]]rep
[[τ e]]rep = [[τ]]rep
[[Σ x:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep
[[{x:τ | e}]]rep = [[τ]]rep + [[τ]]rep
[[α]]rep = αrep

[[µα.τ]]rep = µαrep.[[τ]]rep
[[λα.τ]]rep = λαrep.[[τ]]rep
[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep

Figure 11. Representation type translation, selected constructs

[[τ]]PD = σ

[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ]]PD = [[τ]]PD
[[τ e]]PD = [[τ]]PD
[[Σ x:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)
[[{x:τ | e}]]PD = pd hdr ∗ [[τ]]PD
[[α]]PD = pd hdr ∗ αPDb

[[µα.τ]]PD = pd hdr ∗ µαPDb.[[τ]]PD
[[λα.τ]]PD = λαPDb.[[τ]]PD
[[τ1τ2]]PD = [[τ1]]PD[[τ2]]PDb

[[τ]]PDb = σ

[[τ]]PDb = σ where[[τ]]PD ≡ pd hdr ∗ σ

Figure 12. Parse-descriptor type translation, selected constructs

DDCα representation types. In Figure 11, we present the repre-
sentation type of selectedDDCα primitives. While the primitives
are dependent types, the mapping to the host language erases the
dependency because the host language does not have dependent
types. This involves erasing all host language expressions that ap-
pear in types as well as value abstractions and applications. A type
variableα in DDCα is mapped to a corresponding type variableαrep

in Fω. Recursive types generate recursive representation types with
the type variable named appropriately. Polymorphic types and their
application becomeFω type constructors and type application, re-
spectively.

DDCα parse descriptor types.Figure 12 gives the types of the
parse descriptors corresponding to selectedDDCα types. The trans-
lation reveals that all parse descriptors share a common structure,
consisting of two components, a header and a body. The header re-
ports on the corresponding representation as a whole. It stores the
number of errors encountered during parsing, an error code indicat-
ing the degree of success of the parse—success, success with errors,
or failure—and the span of data (location in the source) described
by the descriptor. To be precise, the type of the header (pd hdr) is
int ∗ errcode ∗ span. The body contains parse descriptors for the
subcomponents of the representation. For types without subcom-
ponents, we useunit as the body type. As with the representation
types, dependency is uniformaly erased.

Like other types,DDCα type variablesα are translated into
a pair of header and a body. The body has abstract typeαPDb.
This translation makes it possible for polymorphic parsing code

[[τ :κ]]PT = σ

[[τ :T]]PT = bits ∗ offset → offset ∗ [[τ]]rep ∗ [[τ]]PD

[[τ :σ → κ]]PT = σ → [[τ e:κ]]PT, for any e.

[[τ :T → κ]]PT = ∀αrep.∀αPDb.[[α:T]]PT → [[τα:κ]]PT

(αrep, αPDb 6∈ FTV(κ) ∪ FTV(τ))

Figure 13. Host language types for parsing functions

[[τ]]P = e

[[C(e)]]P = λ(B, ω).Bimp(C) (e) (B, ω)
[[λx.τ]]P = λx.[[τ]]P
[[τ e]]P = [[τ]]P e

[[Σ x:τ.τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
if isOk(p) then (ω′, R+left(r), P+left(p))
else let (ω′, r, p) = [[τ ′]]P (B, ω) in
(ω′, R+right(r), P+right(p))

[[{x:τ | e}]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
let x = (r, p) in
let c = e in
(ω′, Rcon(c, r), Pcon(c, p))

[[α]]P = parseα

[[µα.τ]]P =
fun parseα (B:bits, ω:offset) : offset ∗ [[µα.τ]]rep ∗ [[µα.τ]]PD =
let (ω′, r, p) = [[τ]]P[[[µα.τ]]rep/αrep][[[µα.τ]]PDb/αPDb] (B, ω) in

(ω′, fold[[[µα.τ]]rep] r, (p.h, fold[[[µα.τ]]PDb] p))
[[λα.τ]]P = Λαrep.ΛαPDb.λparseα.[[τ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P

Figure 14. DDCα parsing semantics, selected constructs

to examine the header of a PD, even though it does not know the
DDCα type it is parsing.DDCα abstractions are translated intoFω

type constructors that abstract the body of the PD (as opposed to
the entire PD) andDDCα applications are translated intoFω type
applications where the argument type is the PD body type.

DDCα parsing semantics. The parsing semantics of a typeτ with
kind T is a function that transforms some amount of input into a
pair of a representation and a parse descriptor, the types of which
are determined byτ . The parsing semantics for types with higher
kind are functions that construct parsers, or functions that construct
functions that construct parsers,etc.Figure 13 specifies the host-
language types of the functions generated from well-kindedDDCα

types.
For each (unparameterized) type, the input to the corresponding

parser is a bit string to parse and an offset at which to begin parsing.
The output is a new offset, a representation of the parsed data, and
a parse descriptor.

For any type, there are three steps to parsing: parse the subcom-
ponents of the type (if any), assemble the resultant representation,
and tabulate meta-data based on subcomponent meta-data (if any).

[[τ :κ]]PPT = σ

[[τ :T]]PPT = [[τ]]rep ∗ [[τ]]PD → bits

[[τ :σ → κ]]PPT = σ → [[τ e:κ]]PPT, for any e.

[[τ :T → κ]]PPT = ∀αrep.∀αPDb.[[α:T]]PPT → [[τα:κ]]PPT

(αrep, αPDb 6∈ FTV(κ) ∪ FTV(τ))

Figure 15. Host language types for printing functions

For the sake of clarity, we have factored the latter two steps into
separate representation and PD constructor functions which we de-
fine for each type. For example, the representation and PD con-
structors for the dependent sums areRΣ andPΣ, respectively. We
have also factored out some commonly occuring code into auxiliary
functions. These constructors and functions appear in Appendix D.

The PD constructors determine the error code and calculate the
error count. There are three possible error codes:ok, err, and
fail, corresponding to the three possible results of a parse: it
can succeed, parsing the data without errors; it can succeed, but
discover errors in the process; or, it can find an unrecoverable error
and fail. The error count is determined by subcomponent error
counts and any errors associated directly with the type itself.

Figure 14 specifies the parsing semantics of a selected portion
of DDCα. We explain the interpretations of select types, from which
the interpretation of the remaining types may be understood. The
full semantics appears in Appendix B. A dependent sum parses the
data according to the first type, binding the resulting representation
and PD tox before parsing the remaining data according to the
second type. It then bundles the results using the dependent sum
constructor functions.

A type variable translates to an expression variable whose name
corresponds directly to the name of the type variable. These expres-
sion variables are bound in the interpretations of recursive types
and type abstractions. We interpret each recursive type as a recur-
sive function whose name corresponds to the name of the recursive
type variable. For clarity, we annotate the recursive function with
its type.

We interpret type abstraction as a function over other pars-
ing functions. Because those parsing functions can have arbitrary
DDCα types (of kindT), the interpretation must be a polymorphic
function, parameterized by the representation and PD-body type of
the DDCα type parameter. For clarity, we present this type param-
eterization explicitly. Type applicationτ1 τ2 simply becomes the
application of the interpretation ofτ1 to the representation-type,
PD-type, and parsing interpretations ofτ2.

DDCα printing semantics The definition of the printing seman-
tics for a DDCα description uses a similar set of concepts as the
parsing semantics. To begin, the semantic function[[τ :κ]]PPT = σ
gives the host language typeσ for the printer generated from type
τ with kind κ. As shown in Figure 15, the printing semantics for
descriptions with higher kind are functions that construct printers,
while the printing semantics for descriptions with base kind are
simple first-order functions that map a representation and a parse
descriptor into a string of bits.

Figure 16 presents the printing semantics of selectedDDCα con-
structs. Base typesC(e) are printed in various ways according to
the definitionBpp, which is a parameter to the semantics. The base
type printerBpp accepts the parse descriptor as a parameter, and
in the case of an error, prints nothing. Dependent sums print one
component and then the next in order. An ordinary sum prints the
underlying tagged value. Notice that the structure of the parse de-
scriptor and the representation should be isomorphic – both should

[[τ]]PP = e

[[C(e)]]PP = λ(r, pd).Bpp(C) (e) (r, pd)
[[λx.τ]]PP = λx.[[τ]]PP

[[τ e]]PP = [[τ]]PP e

[[Σ x:τ1.τ2]]PP =
λ(r, pd).
let x = (r.1, pd.2.1) in
let bs1 = [[τ1]]PP x in
let bs2 = [[τ2]]PP (r.2, pd.2.2) in
bs1 @ bs2

[[τ1 + τ2]]PP =
λ(r, pd).
case (r, pd.2) of
| (inl r1, inl p1) ⇒ [[τ1]]PP (r1, p1)
| (inr r2, inr p2) ⇒ [[τ2]]PP (r2, p2)
| ⇒ badInput()

[[{x:τ | e}]]PP =
λ(r, pd).
case (r, pd.2) of
| (inl r1, p1) ⇒ [[τ]]PP (r1, p1)
| (inr r2, p2) ⇒ [[τ]]PP (r2, p2)

[[α]]PP = printα

[[µα.τ]]PP =
fun printα (r : [[µα.τ]]rep, pd : [[µα.τ]]PD) : bits =

[[τ]]PP[[[µα.τ]]rep/αrep][[[µα.τ]]PDb/αPDb]
(unfold[[[µα.τ]]rep] r, unfold[[[µα.τ]]PDb] pd.2)

[[λα.τ]]PP = Λαrep.ΛαPDb.λprintα.[[τ]]PP
[[τ1τ2]]PP = [[τ1]]PP [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]PP

Figure 16. DDCα printing semantics, selected constructs

be left injections or both should be right injections. Any pair of
structures generated by the parser are guaranteed to satisfy this in-
variant. If the pair do not match, then the programmer is using the
printer incorrectly. In this case, the printer calls an unspecified error
routine namedbadInput().

The semantics of printing recursive and parameterized types fol-
lows similar lines to the semantics of parsing these constructs. In
particular, whenever a type parameter is introduced in the syntax of
a description, a corresponding value parameter with printer func-
tion type is introduced in the generated printer code. We give the
value parameter the nameprintα. Both type abstractions and re-
cursive functions introduce such parameters. Notice that whereas
the parsing semantics uses a fold to build a recursive data structure
when interpreting a recursive type, the printing semantics uses an
unfold to deconstruct a recursive data structure for printing.

5.4 Meta-theory

To validate our semantic definitions, we have proven two key
metatheoretic results. First, we show that parsers and printers are
type-correct, always returning representations and parse descrip-
tors of the appropriate type. Second, we give a precise characteri-
zation of the results of parsers (and input requirements of printers)
by defining thecanonical formsof representation-parse descriptor
pairs associated with a dependentDDCα type.

Type Correctness. Demonstrating that generated parsers and
printers are well formed and have the expected types is nontriv-
ial primarily because the generated code expects parse descriptors
to have a particular shape, and it is not completely obvious they do
in the presence of polymorphism. Hence, to prove type correctness,
we first need to characterize the shape of parse descriptors for ar-
bitrary DDCα types. Unfortunately, the most straightforward char-
acterization is too weak to prove directly, and hence Definition 1
specifies a much stronger property as a logical relation. Lemma 2

establishes that the logical relation holds of all well-formedDDCα

types by induction on kinding derivations, and the desired charac-
terization follows as a corollary.

Definition 1
• H(τ : T) iff ∃ σ s.t. [[τ]]PD ≡ pd hdr ∗ σ.
• H(τ : T → κ) iff ∃ σ s.t. [[τ]]PD ≡ σ and whenever H(τ ′ : T),

we have H(τ τ ′ : κ).
• H(τ : σ → κ) iff ∃ σ′ s.t. [[τ]]PD ≡ σ′ and H(τ e : κ) for any

expression e.

Lemma 2
If ∆;Γ ` τ : κ then H(τ : κ).

Lemma 3
• If ∆;Γ ` τ : κ then ∃σ.[[τ]]PD = σ.
• If ∆;Γ ` τ : T then ∃σ.[[τ]]PD ≡ pd hdr ∗ σ.

With this lemma, we can establish the type correctness of the
generated parsers and printers. We prove the theorem using a more
general induction hypothesis that applies to open types. This hy-
pothesis must account for the fact that any free type variables in a
DDCα type τ will become free function variables in[[τ]]P. To that
end, we define the functions[[∆]]PT and [[∆]]PPT which map type-
variable contexts∆ in the DDCα to value-variable contextsΓ in
Fω. In addition, the function‖∆‖ generates the appropriateFω

type-variable context from theDDCα context∆.

‖·‖ = · ‖∆, α:T‖ = ‖∆‖, αrep:T, αPDb:T
[[·]]PT = · [[∆, α:T]]PT = [[∆]]PT, parseα:[[α:T]]PT
[[·]]PPT = · [[∆, α:T]]PPT = [[∆]]PPT, printα:[[α:T]]PPT

Lemma 4 (Type Correctness Lemma)
• If ∆;Γ ` τ : κ then ‖∆‖, Γ, [[∆]]PT ` [[τ]]P : [[τ :κ]]PT
• If ∆;Γ ` τ : κ then ‖∆‖, Γ, [[∆]]PPT ` [[τ]]PP : [[τ :κ]]PPT.

PROOF. By induction on the height of the kinding derivation.

Theorem 5 (Type Correctness of Closed Types)
• If ` τ : κ then ` [[τ]]P : [[τ :κ]]PT.
• If ` τ : κ then ` [[τ]]PP : [[τ :κ]]PPT.

A practical implication of this theorem is that it is sufficient
to check data descriptions (i.e. DDCα types) for well-formedness
to ensure that the generated types and functions are well formed.
This property is sorely lacking in many common implementations
of Lex and YACC, for which users must examine generated code to
debug compile-time errors in specifications.

Canonical Forms for Parsed Data. DDCα parsers generate pairs
of representations and parse descriptors designed to satisfy a num-
ber of invariants. Of greatest importance is the fact that when the
parse descriptor says there are no errors in a particular substruc-
ture, the programmer can count on the representation satisfying all
of the syntactic and semantic constraints expressed by theDDCα

type description. When a parse descriptor and representation satisfy
these invariants, we say the pair of data structures is incanonical
form. While generated parsers produce canonical outputs, gener-
ated printers expect canonical inputs.

For eachDDCα type, its canonical forms are defined via two
(mutually recursive) relations. The first relation,Canonν(r, p), de-
fines the canonical form of a representationr and a parse descrip-
tor p at normal typeν. Normal typesare those closed types with
base kindT that are defined in Figure 17. Types with higher kind

Normal Types ν ::= C(e) | λx.τ | Σ x:τ.τ | τ + τ
| {x:τ | e} | µα.τ | λα.τ

Types τ ::= ν | τ e | τ τ | α

Normalization:

τ → τ ′

τ e → τ ′ e

e → e′

ν e → ν e′ (λx.τ) v → τ [v/x]

τ1 → τ ′
1

τ1 τ2 → τ ′
1 τ2

τ → τ ′

ν τ → ν τ ′ (λα.τ) ν → τ [ν/α]

Figure 17. DDCα Normal Types, selected constructs

such as abstractions are not described by this relation as they can-
not directly produce representations and PDs. The second defini-
tion, Canon∗

τ (r, p), normalizesτ , thereby eliminating outermost
type and value applications. The result is a normal typeν and the
requirements onν are subsequently given byCanonν(r, p). For
brevity in these definitions, we writep.h.nerr asp.nerr and use
pos to denote the function that returns zero when passed zero and
one when passed another natural number. The following definition
gives the notion ofFω expression equivalence we use.

Definition 6 (Canonical Forms (selected constructs))
(1) Canonν(r, p) iff exactly one of the following is true:

• ν = C(e) and r = inl c and p.nerr = 0.
• ν = C(e) and r = inr none and p.nerr = 1.
• ν = Σ x:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and

h.nerr = pos(p1.nerr) + pos(p2.nerr), Canon∗
τ1(r1, p1)

and Canon∗
τ2[(r,p)/x](r2, p2).

• ν = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and
h.nerr = pos(p′.nerr) and Canon∗

τ1(r
′, p′).

• ν = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and
h.nerr = pos(p′.nerr) and Canon∗

τ2(r
′, p′).

• ν = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr =
pos(p′.nerr), Canon∗

τ ′(r′, p′) and e[(r′, p′)/x] →∗ true.
• ν = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1+
pos(p′.nerr), Canon∗

τ ′(r′, p′) and e[(r′, p′)/x] →∗ false.
• ν = µα.τ ′, r = fold[[[µα.τ ′]]rep] r

′, p = (h, fold[[[µα.τ ′]]PD] p′),
p.nerr = p′.nerr and Canon∗

τ ′[µα.τ ′/α](r′, p′).

(2) Canon∗
τ (r, p) iff τ →∗ ν and Canonν(r, p).

The first part of Lemma 7 states that parsers for well-formed
types (of base kind) produce a canonical pair of representation and
parse descriptor if they produce anything at all. Conversely, the
second part states that, given a canonical representation and parse
descriptor, the printer for well-formed types (of base kind) will not
“go wrong” by calling thebadInput() function.

Theorem 7 (Parsing to/Printing from Canonical Forms)
• If ` τ : T and [[τ]]P (B, ω) →∗ (ω′, r, p) then Canon∗

τ (r, p).
• If ` τ : T , Canon∗

τ (r, p) and [[τ]]PP (r, p) →∗ e then
e 6= badInput().

PROOF. Both items are proven by induction on the length of the re-
spectiveFω evaluation relations. Within the induction they proceed
by a case analysis on the structure of the typeτ .

6. Related Work
Many useful tools exist to help programmers generate parsers. Ex-
amples include compiler technology such as the many variants of

LEX and YACC as well as interpreter technology such the parser
combinator libraries found in functional programming languages
(Haskell [18], for example). Likewise, there are tools to help pro-
grammers generate printers. Each of these technologies is very use-
ful in its own domain, butPADS/ML is broader in its scope than each
of them: a singlePADS/ML description is sufficient to generateboth
a parser and a printer. And a statistical error analysis, a format de-
bugger, anXML translator, and in the future, a query engine [10], a
content-based search engine [21, 26], more statistical analyses,etc.
Neither combinator libraries nor tools such as LEX and YACC are
designed to generate such a range of artifacts from a single specifi-
cation. Indeed, the proper way to think about combinator libraries
in relation toPADS/ML is that they might serve as an alternative
implementation strategy for some of the generated tools.

Generic programming [19, 16, 20] and design patterns such
as the visitor pattern can facilitate the implementation of type-
directed data structure traversals. Lammel and Peyton Jones’ orig-
inal “scrap your boilerplate” article [20] provides a detailed sum-
mary of the trade-offs between different techniques. We investi-
gated using these techniques in our system; however, we found
that most of them required language features such as type classes
that are available only in Haskell. The generatedPADS/ML traver-
sal functors are less flexible than those possible in Haskell, but they
suffice for many tools useful in practice.

The networking community has developed a number of domain-
specific languages, including DataScript [2], PacketTypes [23], and
Bro’s packet processing language [27] for parsing and printing bi-
nary data. LikePADS/ML , these languages use a type-directed ap-
proach to describe ad hoc data and permit the user to define se-
mantic constraints. In contrast to our work, these systems handle
only binary data and assume the data is error-free. DFDL is a spec-
ification of a data format description language with anXML -based
syntax and type structure [7, 3]. DFDL is still under development. It
does not have a formal semantics, or a tool generation architecture.
We believe that DFDL is similar in its expressiveness toPADS/C.
However, because the specification is evolving, we cannot give a
more detailed comparison.

There are a number of tools designed to convert ad hoc data for-
mats intoXML , including XSugar [5] and the Binary Format De-
scription language (BFD) [24]. The scope of both of these projects
is limited to conversion to-and-fromXML ; neither is of any use for
analysts who do not wish to convert their data toXML (and there are
compelling reasons why an analyst might not wish to make such a
conversion).PADS/ML is thus broader in scope: itcanconvert data
into XML , but it can do many other tasks as well.

Similarly, commercial database products provide some support
for parsing data in external formats so the data can be imported into
their systems, but they typically support only a limited number of
formats and have fixed methods for coping with erroneous data. As
with theXML systems, these tools are of no help in any task besides
loading data into a database.

A complementary class of languages includes ASN.1 [9] and
ASDL [1]. Both of these systems specify thelogical in-memory
representation of data and then automatically generate aphysical
on-disk representation. While very useful, this technology does not
help with data that arrives in predetermined, ad hoc formats.

On the theoretical front, the scientific community’s understand-
ing of type-based languages for data description is much less ma-
ture. To the best of our knowledge, our previous work on the
DDC [12] was the first to provide a formal interpretation of depen-
dent types as parsers and to study the properties of these parsers
including error correctness and type safety. The current paper ex-
tends and improves our earlier work by simplifying the basic theory
in a number of subtle but important ways, by adding polymorphic

types for the purpose of code reuse, and by specifying the semantics
of printing.

Regular expressions and context-free grammars, the basis for
LEX and YACC, have been well-studied, but they do not have de-
pendency, a key feature necessary for expressing constraints and
parsing ad hoc data.Parsing Expression Grammars(PEGs), stud-
ied in the early seventies [4], revitalized by Ford [14], and im-
plemented using “packrat parsing” techniques [13, 15], are more
closely related toPADS/ML ’s recursive descent parsers. However,
the multiple interpretations of types in theDDCα makes our theory
substantially different from the theory of PEGs.

7. Conclusions
Vast quantities of important information exist only in ad hoc for-
mats. Data analysts desperately need reliable, high-level tools to
help them document, parse, analyze, transform, query, and visu-
alize such data.PADS/ML is a high-level domain-specific language
and system designed for this purpose. Inspired by the type structure
of functional programming languages,PADS/ML uses dependent
polymorphic recursive data types to describe the syntax and the se-
mantic properties of ad hoc data sources. The language is compact
and expressive, capable of describing data from diverse domains
including networking, computational biology, finance, and cosmol-
ogy. ThePADS/ML compiler uses a “types as modules” compila-
tion strategy in which everyPADS/ML type definition is compiled
into anO’ CAML module containing types for data representations
and functions for data processing. Functional programmers can use
the generated modules to write clear and conciseformat-dependent
data processing programs. Furthermore, our system design allows
external tool developers to write newformat-independenttools sim-
ply by supplying a module that matches the appropriate generic
signature. To givePADS/ML a precise semantics, we have simpli-
fied and extended the Data Description Calculus (DDCα) [12] to
account for parametric polymorphism and to provide a semantics
for printing.

Acknowledgments
We would like to thank Derek Dreyer for discussions and advice on
advanced module systems.

References
[1] Abstract syntax description language.http://sourceforge.

net/projects/asdl .
[2] G. Back. DataScript - A specification and scripting language

for binary data. InGenerative Programming and Component
Engineering, volume 2487, pages 66–77. Lecture Notes in Computer
Science, 2002.

[3] M. Beckerle and M. Westhead. GGF DFDL primer.http:
//www.ggf.org/Meetings/GGF11/Documents/DFDL_
Primer_v2.pdf , May 2004. Global Grid Forum.

[4] A. Birman and J. D. Ullman. Parsing algorithms with backtrack.
Information and Control, 23(1), Aug. 1973.

[5] C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for
XML languages. InTenth International Symposium on Database
Programming Languages, volume 3774 ofLecture Notes in Computer
Science, pages 27–41. Springer-Verlag, August 2005.

[6] G. O. Consortium. Gene ontology project. http://www.geneontology.org.
[7] Data format description language (DFDL) a Proposal, Working

Draft, Global Grid Forum.https://forge.gridforum.org/
projects/dfdl-wg/document/DFDL_Proposal/en/%2 ,
Aug 2005. Global Grid Forum.

[8] D. Dreyer.Understanding and Evolving the ML Module System. PhD
thesis, CMU, May 2005.

[9] O. Dubuisson. ASN.1: Communication between heterogeneous
systems. Morgan Kaufmann, 2001.

[10] M. F. Ferńandez, K. Fisher, R. Gruber, and Y. Mandelbaum. PADX:
Querying large-scale ad hoc data with xquery. InProgramming
Language Technologies for XML, Jan. 2006.

[11] K. Fisher and R. Gruber. PADS: A domain specific language for
processing ad hoc data. InACM Conference on Programming
Language Design and Implementation, pages 295–304. ACM Press,
June 2005.

[12] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. InACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 2 – 15, Jan. 2006.

[13] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. InACM
International Conference on Functional Programming, pages 36–47.
ACM Press, Oct. 2002.

[14] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. InACM Symposium on Principles of Programming
Languages, pages 111–122. ACM Press, Jan. 2004.

[15] R. Grimm. Practical packrat parsing. Technical Report TR2004-854,
New York University, Mar. 2004.

[16] R. Hinze. A new approach to generic functional programming. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 119–132, Jan. 2000.

[17] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory.
Technical Report UU-CS-2003-015, Institute of Information and
Computing Sciences, Utrecht University, 2003.

[18] G. Hutton and E. Meijer. Monadic parsing in Haskell.Journal of
Functional Programming, 8(4):437–444, July 1998.

[19] J. Jeuring and P. Jansson. Polytypic programming. InSecond
International School on Advanced Functional Programming, volume
1129 ofLecture Notes in Computer Science, pages 68–114, Aug.
1996.

[20] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming.ACM SIGPLAN Notices,
38(3):26–37, Mar. 2003. Proceedings of the ACM SIGPLAN
Workshop on Types in Language Design and Implementation
(TLDI 2003).

[21] Q. Lv, W. Josephson, Z. Wang, M. Chrikar, and K. Li. Ferret: A
toolkit for content-based similarity search of feature-rich data. In
EuroSys2006, Apr. 2006.

[22] R. Mandelbaum, C. M. Hirata, U. Seljak, J. Guzik, N. Padmanabhan,
C. Blake, M. R. Blanton, R. Lupton, and J. Brinkmann. Systematic
errors in weak lensing: application to SDSS galaxy-galaxy weak
lensing.Mon. Not. R. Astron. Soc., 361:1287–1322, Aug. 2005.

[23] P. McCann and S. Chandra. PacketTypes: Abstract specificationa of
network protocol messages. InACM Conference of Special Interest
Group on Data Communications, pages 321–333. ACM Press, August
2000.

[24] J. Myers and A. Chappell. Binary format definition (BFD).http:
//collaboratory.emsl.pnl.gov/sam/bfd/ , 2000.

[25] Tree formats. Workshop on molecular evolution.http:
//workshop.molecularevolution.org/resources/
fileformats/tree_forma%ts.php .

[26] J. Oh. PADS and CASS utilization for beta coefficient estimation
with the single-index model. Princeton University Undergraduate
Senior Independent Work, May 2006.

[27] V. Paxson. A system for detecting network intruders in real-time. In
Computer Networks, Dec. 1999.

[28] B. C. Pierce.Types and Programming Languages. The MIT Press,
Feb. 2002.

A. Regulus Data Description in PADS/C
/* Pstring terminated by ’;’ or ’|’ */
Ptypedef Pstring_SE(:"/;|\\|/":) SVString;

Pstruct Nvp_string(: char * s:){
s; "="; SVString val;

};

Pstruct Nvp_ip(: char * s:){
s; "="; Pip val;

};

Pstruct Nvp_timestamp(: char * s:){
s; "="; Ptstamp val;

};

Pstruct Nvp_Puint32(: char * s:){
s; "="; Puint32 val;

};

Pstruct Nvp_a{
Pstring(:’=’:) name;

’=’; SVString val;
};

Pstruct Details{
Nvp_ip(:"src_addr":) source;

’;’; Nvp_ip(:"dst_addr":) dest;
’;’; Nvp_timestamp(:"start_time":) start_time;
’;’; Nvp_timestamp(:"end_time":) end_time;
’;’; Nvp_Puint32(:"cycle_time":) cycle_time;
};

Parray Nvp_seq{
Nvp_a [] : Psep (’;’) && Pterm (’|’);

};

Punion Info(: int alarm_code:){
Pswitch (alarm_code){

Pcase 5074: Details details;
Pdefault : Nvp_seq generic;

}
};

Penum Service {
DOMESTIC,
INTERNATIONAL,
SPECIAL

};

Pstruct Raw_alarm {
Puint32 alarm : alarm == 2 || alarm == 3;

’:’; Popt Ptstamp start;
’|’; Popt Ptstamp clear;
’|’; Puint32 code;
’|’; Nvp_string(:"dns1":) src_dns;
’;’; Nvp_string(:"dns2":) dest_dns;
’|’; Info(:code:) info;
’|’; Service service;

};

int chkCorr(Raw_alarm ra) { ...};

Precord Ptypedef Raw_alarm Alarm :
Alarm a => {chkCorr(a)};

Psource Parray Source {
Alarm[];

};

B. Complete Syntax and Semantics ofDDCα

We first define the syntax ofDDCα terms:

Kinds κ ::= T | σ → κ | T → κ
Types τ ::= unit | bottom | C(e) | λx.τ | τ e

| Σ x:τ.τ | τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| α | µα.τ | λα.τ | τ τ
| compute(e:σ) | absorb(τ) | scan(τ)

Figure 18 gives the complete kinding rules for the system.
The representation for eachDDCα typeτ are defined as follows:

[[τ]]rep = σ

[[unit]]rep = unit
[[bottom]]rep = none
[[C(e)]]rep = Btype(C) + none
[[λx.τ]]rep = [[τ]]rep
[[τ e]]rep = [[τ]]rep
[[Σ x:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep
[[τ1 & τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[{x:τ | e}]]rep = [[τ]]rep + [[τ]]rep
[[τ seq(τsep, e, τterm)]]rep = int ∗ ([[τ]]repseq)
[[α]]rep = αrep

[[µα.τ]]rep = µαrep.[[τ]]rep
[[λα.τ]]rep = λαrep.[[τ]]rep
[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep
[[compute(e:σ)]]rep = σ
[[absorb(τ)]]rep = unit + none
[[scan(τ)]]rep = [[τ]]rep + none

The parse descriptor for eachDDCα typeτ are defined as follows:

[[τ]]PD = σ

[[unit]]PD = pd hdr ∗ unit
[[bottom]]PD = pd hdr ∗ unit
[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ]]PD = [[τ]]PD
[[τ e]]PD = [[τ]]PD
[[Σ x:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)
[[τ1 & τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[{x:τ | e}]]PD = pd hdr ∗ [[τ]]PD
[[τ seq(τsep, e, τterm)]]PD = pd hdr ∗ ([[τ]]PD arr pd)
[[α]]PD = pd hdr ∗ αPDb

[[µα.τ]]PD = pd hdr ∗ µαPDb.[[τ]]PD
[[λα.τ]]PD = λαPDb.[[τ]]PD
[[τ1τ2]]PD = [[τ1]]PD[[τ2]]PDb
[[compute(e:σ)]]PD = pd hdr ∗ unit
[[absorb(τ)]]PD = pd hdr ∗ unit
[[scan(τ)]]PD = pd hdr ∗ ((int ∗ bits ∗ [[τ]]PD) + unit)

[[τ]]PDb = σ

[[τ]]PDb = σ where[[τ]]PD ≡ pd hdr ∗ σ

Figure 19 gives the parsing semantics forDDCα typeτ .

The type correctness theorem relies on base type parsers behav-
ing properly. The following conditions make explicit the properties
that base type semantic functions must satisfy.

Condition 8 (Conditions on Base-type Interfaces)
1. dom(Bkind) = dom(Bimp).

‖∆‖ = ∆

‖·‖ = · ‖∆, α:T‖ = ‖∆‖, αrep:T, αPDb:T

∆; Γ ` τ : κ

` ‖∆‖, Γ ok

∆; Γ ` unit : T
Unit

` ‖∆‖, Γ ok

∆; Γ ` bottom : T
Bottom

` ‖∆‖, Γ ok ‖∆‖, Γ ` e : σ
Bkind(C) = σ → T

∆; Γ ` C(e) : T
Const

∆; Γ, x:σ ` τ : κ

∆; Γ ` λx.τ : σ → κ
Abs

∆; Γ ` τ : σ → κ ‖∆‖, Γ ` e : σ

∆; Γ ` τ e : κ
App

∆; Γ ` τ : T ∆; Γ, x:[[τ]]rep ∗ [[τ]]PD ` τ ′ : T

∆; Γ ` Σ x:τ.τ ′ : T
Prod

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ + τ ′ : T
Sum

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ & τ ′ : T
Intersection

∆; Γ ` τ : T ‖∆‖, Γ, x:[[τ]]rep ∗ [[τ]]PD ` e : bool

∆; Γ ` {x:τ | e} : T
Con

∆; Γ ` τ : T ∆; Γ ` τs : T ∆; Γ ` τt : T
‖∆‖, Γ ` e : [[τm]]rep ∗ [[τm]]PD → bool (τm = τ seq(τs, e, τt))

∆; Γ ` τ seq(τs, e, τt) : T
Seq

` ‖∆‖, Γ ok α:T ∈ ∆
∆; Γ ` α : T

TyVar
∆, α:T; Γ ` τ : T
∆; Γ ` µα.τ : T

Rec
∆, α:T; Γ ` τ : κ

∆; Γ ` λα.τ : T → κ
TyAbs

∆; Γ ` τ1 : T → κ ∆; Γ ` τ2 : T
∆; Γ ` τ1 τ2 : κ

TyApp

` ‖∆‖, Γ ok ‖∆‖, Γ ` e : σ [[∆]]rep ` σ :: T

∆; Γ ` compute(e:σ) : T
Compute

∆; Γ ` τ : T

∆; Γ ` absorb(τ) : T
Absorb

∆; Γ ` τ : T

∆; Γ ` scan(τ) : T
Scan

Figure 18. DDCα Kinding Rules

2. If Bkind(C) = σ → T then Bopty(C) = σ ⇀ [[C(e):T]]PT (for
any e).

3. ` Btype(C) :: T.

C. Host Language
Bits B ::= · | 0 B | 1 B
Constants c ::= () | true | false | 0 | 1 | −1 | . . .

| none | B | ω | ok | err | fail | . . .
Values v ::= c | fun f x = e | (v, v)

| inl v | inr v | [~v]
Operators op ::= = | < | not | . . .
Expressions e ::= c | x | op(e) | fun f x = e | e e

| Λα.e | e [τ]
| let x = e in e | if e then e else e
| (e, e) | πi e | inl e | inr e
| case e of (inlx ⇒ e | inrx ⇒ e)
| [~e] | e @ e | e [e]
| fold[µα.τ] e | unfold[µα.τ] e

Base Types a ::= unit | bool | int | none
| bits | offset | errcode

Types σ ::= a | α | σ → σ | σ ∗ σ | σ + σ
| σ seq | ∀α.σ | µα.σ | λα.σ | σ σ

Kinds κ ::= T | κ → κ

D. Helper Functions
Generic Helpers:

Eof : bits ∗ offset → bool

scanMax : int
fun max (m, n) = if m > n then m else n

fun pos n = if n = 0 then 0 else 1

fun isOk p = pos(p.h.nerr) = 0

fun isErr p = pos(p.h.nerr) = 1

fun max ec (ec1, ec2) =
if ec1 = fail or ec2 = fail then fail
else if ec1 = err or ec2 = err then err
else ok

Type-Specific Helpers:

fun Runit () = ()
fun Punit ω = ((0, ok, (ω, ω)), ())

fun Rbottom () = none

fun Pbottom ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)
fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h2.ec = fail then fail
else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, h2.sp.end) in
(nerr, ec, sp)

fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

fun R+left r = inl r

fun R+right r = inr r

fun H+ h = (pos(h.nerr), h.ec, h.sp)
fun P+left p = (H+ p.h, inl p)

[[τ]]P = e

[[unit]]P = λ(B, ω).(ω, Runit(), Punit(ω))
[[bottom]]P = λ(B, ω).(ω, Rbottom(), Pbottom(ω))
[[C(e)]]P = λ(B, ω).Bimp(C) (e) (B, ω)
[[λx.τ]]P = λx.[[τ]]P
[[τ e]]P = [[τ]]P e

[[Σ x:τ.τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
if isOk(p) then (ω′, R+left(r), P+left(p))
else let (ω′, r, p) = [[τ ′]]P (B, ω) in
(ω′, R+right(r), P+right(p))

[[τ & τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω) in
(max(ω′, ω′′), R&(r, r′), P&(p, p′))

[[{x:τ | e}]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
let x = (r, p) in
let c = e in
(ω′, Rcon(c, r), Pcon(c, p))

[[τ seq(τs, e, τt)]]P =
λ(B, ω).
letfun isDone (ω, r, p) =
EoF(B, ω) or e (r, p) or
let (ω′, r′, p′) = [[τt]]P(B, ω) in
isOk(p′)

in
letfun continue (ω, ω′, r, p) =
if ω = ω′ or isDone (ω′, r, p) then (ω′, r, p)
else let (ωs, rs, ps) = [[τs]]P (B, ω′) in
let (ωe, re, pe) = [[τ]]P (B, ωs) in
continue (ω, ωe, Rseq(r, re), Pseq(p, ps, pe))

in
let r = Rseq init() in
let p = Pseq init(ω) in
if isDone (ω, r, p) then (ω, r, p)
else let (ωe, re, pe) = [[τ]]P (B, ω) in
continue (ω′, ωe, Rseq(r, re), Pseq(p, Punit(ω), pe))

[[α]]P = parseα

[[µα.τ]]P =
fun parseα (B:bits, ω:offset) : offset ∗ [[µα.τ]]rep ∗ [[µα.τ]]PD =
let (ω′, r, p) = [[τ]]P[[[µα.τ]]rep/αrep][[[µα.τ]]PDb/αPDb] (B, ω) in

(ω′, fold[[[µα.τ]]rep] r, (p.h, fold[[[µα.τ]]PDb] p))
[[λα.τ]]P = Λαrep.ΛαPDb.λparseα.[[τ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P
[[compute(e:σ)]]P =

λ(B, ω).(ω, Rcompute(e), Pcompute(ω))
[[absorb(τ)]]P =
λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in
(ω′, Rabsorb(p), Pabsorb(p))

[[scan(τ)]]P =
λ(B, ω).
letfun try i =
let (ω′, r, p) = [[τ]]P (B, ω + i) in
if isOk(p) then
(ω′, Rscan(r), Pscan(i, sub(B, ω, i + 1), p)) else
if EoF(B, ω + i) then
(ω, Rscan err(), Pscan err(ω)) else
try (i + 1)

in try 0

Figure 19. DDCα Parsing Semantics

fun P+right p = (H+ p.h, inr p)

fun R& (r, r′) = (r, r′)
fun H& (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h1.ec = fail and h2.ec = fail then fail
else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, max(h1.sp.end, h2.sp.end)) in
(nerr, ec, sp)

fun P& (p1, p2) = (H& (p1.h, p2.h), (p1, p2))

fun Rcon (c, r) = if c then inl r else inr r

fun Pcon (c, p) =
if c then ((pos(p.h.nerr), p.h.ec, p.h.sp), p)
else ((1 + pos(p.h.nerr), max ec err p.h.ec, p.h.sp), p)

fun Rseq init () = (0, [])
fun Pseq init ω = ((0, ok, (ω, ω)), (0, 0, []))
fun Rseq (r, re) = (r.len + 1, r.elts @ [re])

fun Hseq (h, hs, he) =
let eerr = if h.neerr = 0 and he.nerr > 0
then 1 else 0 in

let nerr = h.nerr + pos(hs.nerr) + eerr in
let ec = if he.ec = fail then fail
else max ec h.ec he.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (p, ps, pe) =
(Hseq (p.h, ps.h, pe.h),
(p.neerr + pos(pe.h.nerr), p.len + 1, p.elts @ [pe]))

fun Rcompute r = r

fun Pcompute ω = ((0, ok, (ω, ω)), ())

fun Rabsorb p = if isOk(p) then inl () else inr none

fun Pabsorb p = (p.h, ())

fun Rscan r = inl r

fun Pscan (i, B, p) =
let nerr = pos(i) + pos(p′.h.nerr) in
let ec = if nerr = 0 then ok else err in
let hdr = (nerr, ec, (p.sp.begin − i, p.sp.end)) in

(hdr, inl (i, B, p))
fun Rscan err () = inr none

fun Pscan err ω = let hdr = (1, fail, (ω, ω)) in
(hdr, inr ())

a

Definition 9 (Representation and PD Correlation Relation)
Canonν(r, p) iff exactly one of the following is true:

• ν = unit and r = () and p.nerr = 0.
• ν = bottom and r = none and p.nerr = 1.
• ν = C(e) and r = inl c and p.nerr = 0.
• ν = C(e) and r = inr none and p.nerr = 1.
• ν = Σ x:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and

h.nerr = pos(p1.nerr) + pos(p2.nerr), Canon∗
τ1 (r1, p1) and

Canon∗
τ2[(r,p)/x](r2, p2).

• ν = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and h.nerr =
pos(p′.nerr) and Canon∗

τ1 (r′, p′).
• ν = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and h.nerr =
pos(p′.nerr) and Canon∗

τ2 (r′, p′).
• ν = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and h.nerr =
pos(p1.nerr)+pos(p2.nerr), Canon∗

τ1 (r1, p1) and Canon∗
τ2 (r2, p2).

• ν = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr =
pos(p′.nerr), Canon∗

τ ′ (r′, p′) and e[(r′, p′)/x] →∗ true.
• ν = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr =

1 + pos(p′.nerr), Canon∗
τ ′ (r′, p′) and e[(r′, p′)/x] →∗ false.

• ν = τe seq(τs, e, τt,), r = (len, [~ri]), p = (h, (neerr, len′, [~pi])),
len = len′, neerr =

Plen
i=1 pos(pi.nerr), Canon∗

τe (ri, pi), (for
i = 1 . . . len), and h.nerr ≥ pos(neerr).

• ν = µα.τ ′, p = (h, p′), p.nerr = p′.nerr and Canon∗
τ ′[µα.τ ′/α](r, p′).

• ν = compute(e:σ) and p.nerr = 0.
• ν = absorb(τ ′), r = inl (), and p.nerr = 0.
• ν = absorb(τ ′), r = inr none, and p.nerr > 0.
• ν = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr =
pos(i) + pos(p′.nerr), and Canon∗

τ ′ (r′, p′).
• ν = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr = 1.

[[τ]]PP = e

[[unit]]PP = λ(r, pd).ε
[[bottom]]PP = λ(r, pd).ε
[[C(e)]]PP = λ(r, pd).Bpp(C) (e) (r, pd)
[[λx.τ]]PP = λx.[[τ]]PP

[[τ e]]PP = [[τ]]PP e

[[Σ x:τ1.τ2]]PP =
λ(r, pd).
let x = (r.1, pd.2.1) in
let bs1 = [[τ1]]PP x in
let bs2 = [[τ2]]PP (r.2, pd.2.2) in
bs1 @ bs2

[[τ1 + τ2]]PP =
λ(r, pd).
case (r, pd.2) of
| (inl r1, inl p1) ⇒ [[τ1]]PP (r1, p1)
| (inr r2, inr p2) ⇒ [[τ2]]PP (r2, p2)
| ⇒ badInput()

[[τ1 & τ2]]PP =
λ(r, pd).
let p1 = pd.2.1 in
let p2 = pd.2.2 in
if p1.h.sp.end > p2.h.sp.end
then [[τ1]]PP (r.1, p1)
else [[τ2]]PP (r.2, p2)

[[{x:τ | e}]]PP =
λ(r, pd).
case r of
| inl r1 ⇒ [[τ]]PP (r1, pd.2)
| inr r2 ⇒ [[τ]]PP (r2, pd.2)

[[τ seq(`, e, τt)]]PP =
λ(r, pd).
letfun print (rs, ps) =
case (rs, ps) of
| ([], []) ⇒ ε
| ([r], [p]) ⇒ [[τ]]PP (r, p)
| (r :: rs, p :: ps) ⇒

[[τ]]PP (r, p) @
printLit(`) @
print(rs, ps)

| ⇒ badInput()
in
print(r.elts, pd.elts)

[[α]]PP = printα

[[µα.τ]]PP =
fun printα (r : [[µα.τ]]rep, pd : [[µα.τ]]PD) : bits =

[[τ]]PP[[[µα.τ]]rep/αrep][[[µα.τ]]PDb/αPDb]
(unfold[[[µα.τ]]rep] r, unfold[[[µα.τ]]PDb] pd.2)

[[λα.τ]]PP = Λαrep.ΛαPDb.λprintα.[[τ]]PP
[[τ1τ2]]PP = [[τ1]]PP [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]PP
[[compute(e:σ)]]PP = λ(r, pd).ε
[[literal(`)]]PP = λ((), pd).printLit(`)
[[scan(τ)]]PP =
λ(r, pd).
case (r, pd.2) of
| (inl r1, inl p1) ⇒ p1.2 @ [[τ]]PP (r1, p1.3)
| (inr r2, inr p2) ⇒ ε
| ⇒ badInput()

Figure 20. DDCα Printing semantics

