PADS/ML: A Functional Data Description Language

Yitzhak Mandelbaurh, Kathleen Fishér David Walket, Mary Fernandez Artem Gleyzet

*Princeton University ~ TAT&T Labs Research
yitzhakm,dpw,agleyzer@CS.Princeton.EDU kfisher,mff@research.att.com

Abstract [Name: Use [Representation

Massive amounts of useful data are stored and processettioc 2222 8{‘(}3{,‘;93”1(223,5{)” er'é‘,‘,"gg{,'?g';

formats for which common tools like parsers, printers, query en- SDSS/Reglens Data [22]: Floating point numbers,
gines and format converters are not readily available. In this paper, Weak gravitational lensing analysis among others

we explain thedesign implementatiorandtheory of PADS/ML, a Web server logs (CLKIF)Z Fixed-column

new language and system that facilitates generation of data process- ng?“é:l?(ﬁf:”"g;; ads éﬁgﬁgﬂds

ing tools for ad hoc formats. TiaDS/ML design includes features Phone call fraud detection binary records

such as dependent, polymorphic and recursive datatypes, which al- AT&T billing data: Cobol

low programmers to describe the syntax and semantics of ad hoc Monitoring billing process] .

data in a concise, easy-to-read notation. Fhes/ML implemen- SN;S"t"é‘i:]‘:r'e”;;"O“n”si simulation i';";fge"_’;'gg;:dsﬁgr;‘éﬁ;ds
tation compiles these descriptions inte structures and functors OPRA: Mixed binary & ASCIT 1ecords
that include types for parsed data, functions for parsing and prlnt— Options-market transactions with data-dependent unions
ing, and auxiliary support for user-specified, format-dependent and Palm PDA: Mixed binary & character
format-independent tool generation. Finally, theps/ML theory Device synchronization with data-dependent constraints

gives a precise formal meaning to the descriptions in terms of the
semantics of parsing, the semantics of printing, and the types of
data structures that represent parsed data.

Figure 1. Selected ad hoc data sources.

1. Introduction some cases, erroneous data is more important than error-free data;
for example, it may signal where two systems are failing to com-
municate. Unfortunately, writing code that reliably handles both
error-free and erroneous data is difficult and tedious.

An ad hocdata format is any semi-structured data format for which
parsing, querying, analysis, or transformation tools are not read-
ily available. Despite the existence of standard formats Jile ,
ad hoc data sources are ubiquitous, arising in industries as diverse
as finance, health care, transportation, and telecommunications aéLl PADS/ML
well as in scientific domains, such as computational biology and PADS/ML is a domain-specific language designed to improve the
physics. Figure 1 summarizes a variety of such formats, including productivity of data analysts, be they computational biologists,
ASCII, binary, and Cobol encodings, with both fixed and variable- physicists, network administrators, healthcare providers, financial
width records arranged in linear sequences and in tree-shaped hi-analystsgetc. To use the system, analysts describe their data in the
erarchies. Snippets of some of these data formats appear in Fig-PADS/ML language, capturing both the physical format of the data
ure 2. Note that even a single format can exhibit a great deal of and any expected semantic constraints. In return for this invest-
syntactic variability. For example, Figure 2(c) contains two records ment, analysts reap substantial rewards. First of all, the description
from a network-monitoring application. Each record has a differ- serves as clear, compact, and formally-specified documentation of
ent number of fields (delimited by) and individual fields contain the data’s structure and properties. In addition,fRRBS/ML com-
structured valuese(g, attribute-value pairs separated by ‘=" and piler can convert the description into a suite of robust, end-to-end
delimited by ;). data processing tools and libraries specialized to the format. As the
Common characteristics of ad hoc data make it difficult to per- analysts’ data sources evolve over time, they can simply update the
form even basic data-processing tasks. To start, data analysts typhigh-level descriptions and recompile to produce updated tools.
ically have little control over the format of the data,; it arrives “as The type structure of modern functional programming lan-
is,” and the analysts can only thank the supplier, not request a moreguages inspired the design of theDS/ML language. Specifically,
convenient format. The documentation accompanying ad hoc dataPADS/ML provides dependent, polymorphic recursive datatypes,
is often incomplete, inaccurate, or missing entirely, which makes layered on top of a rich collection of base types, to specify the
understanding the data format more difficult. Managing the er- syntactic structure and semantic properties of data formats. To-
rors that frequently occur poses another challenge. Common er-gether, these features enable analysts to write concise, complete,
rors include undocumented fields, corrupted or missing data, andand reusable descriptions of their data. We describeAlmss/ML
multiple representations for missing values. Sources of errors in- language using examples from several domains in Section 2.
clude malfunctioning equipment, race conditions on log entry, the ~ We have implementesabs/ML by compiling descriptions into
presence of non-standard values to indicate “no data available,” 0’ cAML code. We use a “types as modules” implementation strat-
and human error when entering data. How to respond to errors isegy in which eachPADS/ML type becomes a module and each
highly application-specific: some need to halt processing and alert PADS/ML type constructor becomes a functor. We chaseas the
a human operator, others can repair errors by consulting auxiliary host language because we believe that functional languages lend
sources, while still others simply filter out erroneous values. In themselves to data processing tasks more readily than imperative

2:3004092508||5001|dns1=abc.com;dns2=xyz.com|c=slow link;w=lost packets|INTERNATIONAL
3:/3004097201|5074|dns1=bob.com;dns2=alice.com|src_addr=192.168.0.10; \
dst_addr=192.168.23.10;start_time=1234567890;end_time=1234568000;cycle_time=17412|SPECIAL

(a) Simplified Regulus network-monitoring data.

0/1005022800
9153|91531/0]0|0|0]|152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|1001649601
9152|9151|1]9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0JAPRL1|DUO|10]1000295291

(b) Sirius data used to monitor billing in telecommunications industry.

(((erHomoC:0.28006,erCaelC:0.22089):0.40998, (erHomoA:0.32304,(erpCaelC:0.58815,((erHomoB: \
0.5807,erCaelB:0.23569):0.03586,erCaelA: 0.38272):0.06516):0.03492):0.14265):0.63594, \
(TRXHomo:0.65866, TRXSacch:0.38791):0.32147, TRXEcoli:0.57336)

(c) Newick data used to study immune system responses.

Figure 2. Snippets of a variety of ad hoc data formats. Eachiénotes a newline we inserted to improve readability.

languages such asor JAVA. In particular, constructs such as pat- language simplifies many data processing tasks, such as filtering
tern matching and higher-order functions make expressing dataand normalization, which benefit fromL’s pattern matching con-
transformations particularly convenient. Section 3 describes our structs and high level of abstraction. Second, untikes/c types,
“types as modules” strategy and shows hemps/mML-generated PADS/ML types may be parameterized by other types, resulting
modules together with functional CAML code can concisely ex- in more concise and elegant descriptions though code reuse.
press common data-processing tasks such as filtering errors and forstyle datatypes and anonymous nested tuples also help improve
mat transformation. readability by making descriptions more compact. Thivehs/ML

A key benefit of our approach is the high return-on-investment provides significantly better support for the development of new
that analysts can derive from describing their dateAps/mL. In tool generators. In particulaPADS/ML provides a generic inter-
particular,PADS/ML makes it possible to produce automatically a face against which tool generators can be writterrADS/c, the
collection of data analysis and processing tools from each descrip-compiler itself generates all tools, and, therefore, developing a new
tion. As a start, theaps/mML compiler generates from each descrip- tool generator requires understanding and modifying the compiler.
tion a parser and a printer for the associated data source. The parser In summary, this work makes the following key contributions:
maps raw data into two data structures: a canomegesentation)]
of the parsed data ancparse descriptara meta-data object detail- ~ ® We have designed and implementesds/mL, a novel data-
ing properties of the corresponding data representation. Parse de- description language that includes dependent polymorphic re-
scriptors provide applications with programmatic access to errors ~ cursive datatypes. This design allows data analysts to express
detected during parsing. The printer inverts the process, mapping the syntactic structure and semantic properties of data formats
internal data structures and their corresponding parse descriptors ~from numerous application domains in a concise, elegant, and

back into into raw data. easy-to-read notation.

In addition to generating parsers and printers, our framework e OurPADS/ML implementation employs an effective and general
permits developers to addrmat-independertbols without modi- “types as modules” compilation strategy that produces robust
fying the PADS/ML compiler by specifyingool generators Such parser and printer functions as well as auxiliary support for
generators need only match a generic interface, specified as an user-specified tool generation.

ML signature. Correspondingly, for eaehDs/ML description, the * We have defined the formal semantics of betibs/ML parsers

PADS/ML compiler generates a meta-tool (a functor) that takes a and printers and proven our generated code is type safe and

tool generator and specializes it for use with the particular descrip- well-behaved as defined by a canonical forms theorem.
tion. Section 4 describes the tool framework and gives examples of

three format-independent tools that we have implemented: a data
printer useful for description debugging, an accumulator thatkeeps 2 Describing Data in PADS/ML

track of error information for each type in a data source, and a for- L . . .
matter that maps data into XML. A PADS/ML description specifies the physical layout and semantic

To define the semantics ®hDS/ML, we extended our earlier properties of an ad hoc data source. These descriptions are com-
work on the Data Description Calculustc) [12] to account for posed of types: base types describ_e atomic_ data, w_hile structured
PADS/ML’s polymorphic types. In the process, we simplified the tYP€S describe compound data built from simpler pieces. Exam-
original presentation of the parser semantics substantially, partic- Ples of base types include ASCII-encoded, 8-bit unsigned integers
ularly for recursive types. In addition, we extended the theory to (Puint8) and 32-bit signed integer®ipt32), binary 32-bit in-
give a printing semantics. We used this new semantics to guide thet€gers Pbint32), dates Pdate), strings Pstring), zip codes
PADS/ML implementation of printing. Section 5 presents the ex- (PZiP), phone numbersRphone), and IP addresse®ip). Se-
tendedbpc® calculus, focusing on the semantics of polymorphic Mantic conditions for such base types include checking that the re-
types for parsing and the key elements of the printing semantics. sulting number fits in the indicated spate, 16-bits forElnth

PADS/ML has evolved from previous work amps/c * [11], _ Base types may be parameterizedity values. This mecha-
but PADS/ML differs from PADS/C in three significant ways. First, ~ NiSM reduces the number of built-in base types and permits base

it is targeted at theiL family of languages. UsingiL as the host ~ YPeS to depend on values in the parsed data. For example, the
base typePuintl6_FW(3) specifies an unsigned two byte in-

teger physically represented by exactly three characters, and the
1We refer to the originabADS language a®ADS/C to distinguish it from base typePstring takes an argument indicating tiberminator
PADS/ML. character i.e., the character in the source that follows the string.

ptype Summary_header = "0|" * Ptimestamp * "\n’ definitions precede uses, therefore the description should be read
bottom up. The typeéSource describes a complete Sirius data
file and denotes an ordered tuple containirguanmary_header
value followed by arOrders value.

The typeOrders uses the list type constructdlist to

pdatatype Dib_ramp =
Ramp of Pint
| GenRamp of "no_ii" * Pint

ptype Order_header = { describe a homogenous sequence of values in a data source. The
order_num : Pint; Plist constructor takes three parameters: on the left, the type of

|'; att_order_num : [i:Pint | i < order_num]; elements in the list; on the right, a liters¢paratorthat separates

|’y ord_version : Pint; elements in the list and a literedrminatorthat marks the end of the

I'; service_tn : Pphone Popt; list. In this example, the typ®rders is a list ofOrder elements,

I billing_tn : Pphone Popt; separated by a newline, and terminatedpepf , a special literal

nlp_service_tn : Pphone Popt;
'I'; nlp_billing_tn : Pphone Popt;

I
I
I
I
I that describes thend-of-file markerSimilarly, theEvents type
'I'; zip_code : Pzip Popt;

I

I

I

I

|

denotes a sequenceB¥ent values separated by vertical bars and

" ramp : Dib_ramp; terminated by a newline.

order_sort : Pstring("); Literal characters in type expressions denote singleton types.
’|'; order_details : Pint; For example, théevent type is a string terminated by a verti-

I unused : Pstring(’|"); cal bar, followed by a vertical bar, followed by a timestamp. The
; stream : Pstring(’['); singleton type|” means that the data source must contain the
T character|" at this point in the input stream. String, character,

} and integer literals can be embedded in a description and are in-

terpreted as singleton types.g, the singleton typé0|" in the
Summary_header type denotes the string literéd|"
The typeOrder_header is a record typei.e., a tuple type

ptype Event
ptype Events

Pstring(|’) * ’|' * Ptimestamp
Event Plist([’, "\n’)

ptype Order = Order_header * Events in which each field may have an associated name. The named
ptype Orders = Order Plist(\n’, peof) field att_order_num illustrates two other features BADS/ML:
dependencies and constraints. Hextt, order_num depends
ptype Source = Summary_header * Orders on the previous fieldrder_num and is constrained to be less
than that value. In practice, constraints may be complex, have
Figure 3. PADS/ML description for Sirius provisioning data. multiple dependencies, and can specify, for example, the sorted

order of records in a sequence. Constrained types have the form
[xT | e] wheree isan arbitrary pure boolean expression. Data
To describe more complex datsDs/ML provides a collection satisfies this description if it satisfifsand booleare evaluates to
programming languages like Haskell and ML. We explain these X- If the boolean expression evaluates to false, the data contains a
structured types in the following subsections using examples drawn S€manticerror.

from data sources we have encountered in practice. The datatypeDib_ramp specifies two alternatives for a data
fragment, either one integer or the fixed strimg_ii" followed
2.1 Simple Structured Types by one integer. The order of alternatives is significant, that is, the

. . parser attempts to parse the first alternative and only if it fails, it at-
The bread and butter ofaDS/ML description are the simple struc- ot 19 parse the second alternative. This semantics differs from
tured types: tuples and records for specifying ordered data, lists for

ifving h f dat ¢ f .Similar constructs in regular expressions and context-free gram-
specifying homogeneous sequences of data, sum types for SP€Clnars, which non-deterministically choose between alternatives.
fying alternatives, and singletons for specifying the occurrence of

literal characters in the data. We describe each of these construct$ 2 Recursive Types

as applied to the Sirius data presented in Figure 2(b). , . .
Sirius data summarizes orders for phone service placed with PADS/ML can describe data sources with recursive structure. An

AT&T. Each Sirius data file starts with a timestamp followed by example of such_ dataI is the Newick format, a_flat representation of
one record per phone service order. Each order consists of a heade}f€€S used by biologists [25]. Example Newick data provided by
and a sequence of events. The header has 13 pipe separated fieldsteven Kleinstein appears in Figure 2(c). The format uses properly
the order number, AT&T’s internal order number, the order version, Nested parentheses to specify a tree hierarchy. A leaf node is a string
four different telephone numbers associated with the order, the zip [2P€l followed by a colon and a number. An interior node contains a
code of the order, a billing identifier, the order type, a measure S€duence of children nodes, delimited by parentheseﬂs,_ foIIow%d by
of the complexity of the order, an unused field, and the source of & €0lon and a number. The numbers represent the “distance” that
the order data. Many of these fields are optional, in which case separates a child node from its parent. In this example, the string
nothing appears between the pipe characters. The billing identifier /20€!S are gene names and the distances denotes the number of mu-
may not be available at the time of processing, in which case the {@tions that occur in the antibody receptor genes of B lymphocytes.
system generates a unique identifier, and prefixes this value with 1he followingPADS/ML code describes this format:
the string “naii” to indicate that the number was generated. The ptype Entry = {name: Pstring('); "; dist: Pfloat32}
event sequence represents the various states a service order goes
through; it is represented as a new-line terminated, pipe separated pd?;?gi%? of T,E,e‘i Tree Plist()) * Y
list of state, timestamp pairs. There are over 400 distinct states | Leaf of Entry "
that an order may go through during provisioning. The sequence
is sorted in order of increasing timestamps. Clearly English is a
poor language for describing data formats!

Figure 3 contains theaps/ML description for the Sirius data Polymorphic types enable more concise descriptions and allow pro-
format. The description is a sequence of type definitions. Type grammers to define convenient libraries of reusable descriptions.

2.3 Polymorphic Types and Advanced Datatypes

*

(* Pstring terminated by ;" or '|'.
ptype SVString = Pstring_SE("/;|\\|/")

(* Generic name value pair. Accepts predicate
to validate name as argument. *)
ptype (Alpha) Pnvp(p : string -> bool) =
{ name : [name : Pstring(=") | p name]j;

value : Alpha }

(* Name value pair with name specified. *)
ptype (Alpha) Nvp(name:string) =
Alpha Pnvp(fun s -> s = name)

(* Name value pair with any name. *)
ptype Nvp_a = SVString Pnvp(fun _ -> true)

ptype Details = {

source : Pip Nvp("src_addr");

dest : Pip Nvp("dest_addr");
start_time : Ptimestamp Nvp(“start_time");
end_time : Ptimestamp Nvp("end_time");

V. cycle_time : Puint32 Nvp(“'cycle_time")

}

pdatatype Info(alarm_code : int) =

match alarm_code with
5074 -> Details of Details
| _ -> Generic of Nvp_a Plist(’;",’|")

pdatatype Service =
DOMESTIC of omit "DOMESTIC"
| INTERNATIONAL of omit "INTERNATIONAL"
| SPECIAL of omit "SPECIAL"

ptype Alarm = {

alarm 2 i Puint32 | i =2 ori= 3]
Uy start . Ptimestamp Popt;
I's clear . Ptimestamp Popt;
I's code . Puint32;
I's src_dns : SVString Nvp("dns1");
'y dest_dns : SVString Nvp("dns2");
', info : Info(code);
I's service : Service

}

ptype Source = Alarm Plist('\n’, peof)

Figure 4. Description of Regulus data.

The description in Figure 4 illustrates types parameterized by bot

types and values. It specifies the format of alarm data recorded by

a network-link monitor used in the Regulus project at AT&T. Fig-

ure 2(a) contains corresponding example data. We describe the for-

mat in tandem with describing isADS/ML description.

This data format has several variants of name-value pairs. The

PADS/C description of this format (shown in Appendix A) must

define a different type for each variant. In contrast, the polymorphic

types ofPADS/ML allow us to define the typPnvp, which takes
both type and value parameters to encode all the variants. As
customary inML, type parameters appear to the left of the type
name, while value parameters and their types appear to the
right. The typ®nvp has one type parameter namébha and
one value parameter nampdInformally, Alpha Pnvp(p) isa
name-value pair where the value is describedAipha and the
name must satisfy the predicate

TheNvp type reuses thenvp type to define a name-value pair
whose name must match the argument stniagie but whose value
can have any type. THevp_a also uses the typenvp. It defines

The Regulus description also illustrates the useswitched
datatypes. A switched datatype selects a variant based on the
value of a user-specified CAML expression, which typically ref-
erences parsed data from earlier in the data source. For example
the switched datatypdefo chooses a variant based on the value of
itsalarm_code parameter. More specifically, if the alarm code is
5074, the format specification given by tii¥etails constructor
will be used to parse the current data. Otherwise, the format given
by theGeneric constructor will be used.

The last construct in the Regulus description is the type qualifier
omit . In theService datatypeomit specifies that the parsed
string literal should be omitted in the internal data representation
because the literal can be determined by the datatype constructor.

’

3. From PADS/ML to O’'CAML

The pADS/ML compiler takes descriptions and generatesAML
modules that can be used by anycAML program. In this section,
we describe the generated modules and illustrate their use.

3.1 Types as Modules

We use theo’cAML module system to structure the libraries
generated by theaps/ML compiler. EachPADS/ML base type
is implemented as ap’ CAML module. For eactPADS/ML type
in a description, theeADS/ML compiler generates ap’ CAML
module containing the generatedcamL types, functions, and
nested modules that implement theDs/ML type. All the gen-
erated modules are grouped into one module that implements the
complete description. For examplepabs/ML description nhamed
sirius.pml containing three named types results indthe AML
file sirius.ml defining the moduleSirius , which contains
three submodules, each corresponding to one named type.
Namespace management alone is sufficient motivation to em-
ploy a “types as modules” approach, but the power ofibenod-
ule system provides substantially more. We implement polymor-
phicPADS/ML types as functors from (type) modules to (type) mod-
ules. Ideally, we would like to map recursiwaDs/ML types into
recursive modules. Unfortunately, this approach currently is not
possible, because’ cAML prohibits the use of functors within re-
cursive modules, and the output of theds/ML compiler includes
a functor for each type. Instead, we implement recursive types as
modules containing recursive datatypes and functions. As there is
h no theoretical reason to prevent recursive modules from containing
functors [8], we pose our system as a challenge to implementers of
module systems.
The module generated for any monomorphieds/ML type
matches the signatuf

module type S = sig
type rep
type pd_body
type pd = Pads.pd_header * pd_body

val parse :
val print :
(* Functor for tool generator
module Traverse ...

end

Pads.handle -> rep * pd
rep -> pd -> Pads.handle -> unit

%)

is

Therepresentatior{rep) type describes the in-memory representa-
tion of parsed data, while thgarse-descripto(PD) type describes
meta-data collected during parsing. The parsing function converts
the raw data into an in-memory representation and parse descrip-
tor for the representation. The printing function performs the re-
verse operation. The module also contains a generic tool genera-

a name-value pair that permits any name, but requires the valuetor implemented as a functor; we defer a description of this func-

to have typeSVString (a string terminated by a semicolon or
vertical bar). Later in the description, the type parametéhtp is
instantiated with IP addresses, timestamps, and integers.

tor to Section 4. The modulPads contains the built-in types
and functions that occur in base-type and generated modules. The
type Pads.pd_header is the type of all parse-descriptor head-

ers andPads.handle is an abstract type containing the private
data structureBADS/ML uses to manage data sources.

The structure of the representation and parse-descriptor types

resembles the structure of the correspondings/mML type, mak-

ing it easy to see the correspondence between parsed data, its inter-
nal representation, and the corresponding meta-data. For example,

given thePADS/ML type Pair
separated by a vertical bar:

ptype Pair = Pchar * | * Pint

the compiler generates a module with the signature:

describing a character and integer

module
type
type
type
val
val

Pair_sig = sig

Pchar.rep * Pint.rep

Pchar.pd * Pint.pd
Pads.pd_header * pd_body

: Pads.handle -> rep * pd

: rep -> pd -> Pads.handle -> unit

type
rep
pd_body
pd
parse
print

end

The parse-descriptor header reports on the parsing process that pro-
duced the corresponding representation. It includes the location of

the data in the source, an error code describing the first error en- s
countered, and the number of subcomponents with errors. The body 1
contains the parse descriptors for subcomponents. Parse descriptors

for base types have a body of typaeit

The signature for a polymorphirabps/ML type uses the signa-
ture S for monomorphic types, defined above. Given the polymor-
phic PADS/ML type ABPair :

ptype (Alpha,Beta) ABPair = Alpha * ’|' * Beta
the compiler generates a module with the signature:

module type ABPair_sig (Alpha : S) (Beta : S) =
sig
type rep = Alpha.rep * Beta.rep
type pd_body = (Pads.pd_header * Alpha.pd_body) *

(Pads.pd_header * Beta.pd_body)

type pd = Pads.pd_header * pd_body

val parse : Pads.handle -> rep * pd

val print : rep -> pd -> Pads.handle -> unit
end

3.2 Using the Generated Libraries

Common data management tasks like filtering and normalization
are easy to express i CAML. In the remainder of this section,
we illustrate this point by givingd’ CAML programs to compute
properties of ad hoc data, to filter it, and to transform it.

3.2.1 Example: Computing Properties
Given thepADS/ML type:

ptype IntTriple = Pint * | * Pint * ’|' * Pint
the following 0’ cCAML expression computes the average of the

three integers in the filmput.data

let ((i1,i2,i3), (pd_hdr, pd_body)) =
Pads.parse_source IntTriple.parse "input.data”
match pd_hdr with

{error_code = Pads.Good} -> (i1 + i2 + i3)/3
| _ -> raise Pads.Bad_file

Theparse_source function takes a parsing function and a file

name, applies the parsing function to the data in the specified file,

open Pads
let classify_order order (pd_hdr, pd_body) (good, bad)=
match pd_hdr with

{error_code = Good} -> (order::good, bad)

| _ -> (good, order::bad)

split_orders orders (orders_pd_hdr,order_pds) =
List.fold_right2 classify_order orders order_pds []

let

let ((header, orders),(header_pd, orders_pd)) =

parse_source Sirius.parse "input.txt"

let _ = split_orders orders orders_pd

Figure 5. Error filtering of Sirius data

ptype Header
alarm
7, start
I's clear :

:[a:Puint32 | a=2o0ra-= 3]
Ptimestamp Popt;
Ptimestamp Popt;

s code Puint32;

', src_dns Nvp("dns1");

. dest_dns : Nvp("dns2");
service : Service

ptype D_alarm = {
header : Header;
I'; info . Details

}

ptype G_alarm = {

header : Header;
I'; info : Nvp_a Plist(’;,")
}

Figure 6. Listing of RegulusNormal.pml , a normalized for-
mat for Regulus data. All named types not explicitly included in
this figure are unchanged from the original Regulus description.

cating that the data violates a semantic constraint. The expression
above raises an exception if it encounters any of these error codes.
Checking the top-level parse descriptor for errors is sufficient

to guarantee that there are no errors in any of the subcomponents.
This property holds for all representations and corresponding parse
descriptors. This design supports a “pay-as-you-go” approach to
error handling. The parse descriptor for valid data need only be
consulted once, no matter the size of the corresponding data, and
user code only needs to traverse nested parse descriptors if more
precise information about the error is required.

3.2.2 Example: Filtering

Data analysts often need to “clean” their data, remove or repair
data containing errors, before loading the data into a database or
other application.0’cCAML’S pattern matching and higher-order
functions can simplify these tasks. For example, the expression in
Figure 5 partitions Sirius data into valid orders and invalid orders.

3.2.3 Example: Transformation

Once a data source has been parsed and cleaned, a common task
is to transform the data into formats required by other tools, like
a relational database or a statistical analysis package. Transfor-

and returns the resulting representation and parse descriptor. Tomations include removing extraneous literals, inserting delimiters,
ensure the data is valid, the program examines the error code indropping or reordering fields, and normalizing the values of fields,

the parse-descriptor header. The error c8ded indicates that the
data is syntactically and semantically valid. Other error codes in-
cludeNest , indicating an error in a subcompone8in, indicat-

ing that a syntactic error occurred during parsing, &edn indi-

e.g, converting all times into a specified time zone. Because rela-
tional databases typically cannot store unions directly, one common
transformation is to convert data with variante (datatypes) into

a form that such systems can handle. One option is to partition or

open Regulus

open RegulusNormal
module A = Alarm
module DA = D_alarm
module GA = G_alarm
module Header = H

type ('a,’b) Sum Left of 'a | Right of 'b

let

split_alarm ra =
let =

{H.alarm=ra.A.alarm; H.start=ra.A.start;
H.clear=ra.A.clear; H.code=ra.A.code;
H.src_dns=ra.A.src_dns; H.dest_dns=ra.A.dest_dns;
H.service=ra.A.service}

in match ra with
{info=Details(d)} ->
Left {DA.header = h; DA.info = d}

| {info=Generic(g)} ->
Right {GA.header = h; GA.info = g}

let
let

process_alarm pads [pads_D; pads_G] =

a,a_pd = Alarm.parse pads in
match (split_alarm a, split_alarm_pd a_pd)

(Left da, Left da_p) -> DA.print da da_p pads_D
|(Right ga, Right ga_p) -> GA.print ga ga_p pads_G
| _ -> ... (* Bug! *

with

let _ = process_source process_alarm

"input.data” ['d_out.data";"g_out.data"]

Figure 7. Shredding Regulus data based onitife field.

“shred” the data into several relational tables, one for each variant.
A second option is to create an universal table, with one column
for each field in any variant. If a given field does not occur in a
particular variant, its value is marked as missing.
Figure 6 shows a partial listing dRegulusNormal.pml
a normalized version of the Regulus description from Section 2.
In this shredded versiollarm has been split into two top-level
typesD_alarm andG_alarm . The typeD_alarm contains all
the information concerning alarms with the detailed payload, while
G_alarm contains the information for generic payloads. In the
original description, thénfo field identified the type of its pay-
load. In the shredded version, the two different types of records ap-
pear in two different data files. Since neither of these formats con-
tains a union, they can be easily loaded into a relational database.
The code fragment in Figure 7 shreds Regulus data in the for-
mat described byRegulus.pml into the formats described in
RegulusNormal.pml . Itusesthenfo field of Alarm records
to partition the data. Notice the code invokes frint func-
tions generated for th&_alarm andD_alarm types to output
the shredded data.

4. The Generic Tool Framework
An essential benefit adfPADS/ML is that it can provide users with

module type S = sig
type state
module Record : sig
type partial_state
val init : (string * state) list -> state
val start . state -> Pads.pd_header
-> partial_state
val project . state -> string -> state
val process_field : partial_state -> string
-> state -> partial_state
val finish . partial_state -> state
end
module Datatype : sig
type partial_state
val init I unit -> state
val start . state -> Pads.pd_header
-> partial_state
val project . state -> string -> state option
val process_variant : partial_state -> string
-> state -> partial_state
val finish . partial_state -> state
end
end

Figure 8. Excerpt of generic-tool interfad8eneric _tool.S

corresponding tool. ABADS/ML descriptions are types, a tool gen-
erator is a type-directed program.

Support for some form of generic programming over data repre-
sentations and parse descriptors is an essential first step in support-
ing the development of tool generators. While a full-blown generic
programming system like Generic Haskell [17] would be useful
in this context,0’ cCAML lacks a generic programming facility. All
is not lost, however, as a nhumber of useful data processing tools
share a common computational paradigm, and we can support that
paradigm without full generic programming support.

In particular, many of the tools we have encountered perform
their computations in a single pass over the representation and cor-
responding parse descriptor, visiting each value in the data with a
pre-, post-, or in-order traversal. This paradigm arises naturally as it
scales to very large data sets. It can be abstracted in a manner sim-
ilar to the generic functions of Lammel and Peyton-Jones [20]. For
each format description, we generate a format-dependent traversal
mechanism that implements a generalized fold over the representa-
tion and parse descriptor corresponding to that format. Then, tool
developers can write a format-independe@neric toolby speci-
fying the behaviour of the tool for eactADS/ML type constructor.

The traversal mechanism interacts with generic tools through a sig-
nature that every generic tool must match.

The generic tool architecture #faDs/ML delivers a number
of benefits over the fixed architecture PADS/C. In PADS/C, all
tools are generated from within the compiler. Therefore, develop-
ing a new tool generator requires understanding and modifying the

a high return-on-investment for describing their data. While the compiler. Furthermore, the user selects the set of tools to generate
generated parser and printer alone are enough to justify the user'swhen compiling the description. IPADS/ML, tool generators can
effort, we aim to increase the return by enabling users to easily be developed independent of the compiler and they can be devel-
construct data analysis tools. However, there is a limit, both in re- oped more rapidly because the “boilerplate” code to traverse data
sources and expertise, to the range of tool generators that we carneed not be replicated for each tool generator. In addition, the user
develop. Indeed, new and interesting data analysis tools are con-controls which tools to “generate” for a given data format, and the
stantly being developed, and we have no hope of integrating even achoice can differ on a program-by-program basis.

fraction of them into the@ADS/ML system ourselves. Therefore, itis

essential that we provide a simple framework for others to develop
tool generators.

The techniques of type-directed programming, known variously
asgeneric[16] or polytypic[19] programming, provide a conve-
nient conceptual starting point in designing a tool framework. In

4.1 The Generic-Tool Interface

The interface between format-specific traversals and generic tools
is specified as an’ cAML signature. For every type constructor in
PADS/ML, the signature describes a sub-module that implements
the generic tool for that type constructor. In addition, it specifies an

essence, any tool generator is a function from a description to the (abstract) type for auxiliary state that is threaded through the traver-

<Order_header size="13" status="GOOD"> .
<order_num><val>9153</val></order_num> Kinds x == T|T—xrlo—k
<att_order_num><val>9153</val></att_order_num> Types 7 u= C(e)|deT|7re|Zarr |17+ T
<ord_version><val>1</val></ord_version> \ {zrle} ol par | dar |77 ...
<service_tn>

<Something><val>0</val></Something> Figure 10. DDC® syntax, selected constructs
</service_tn> !
<billing_tn>

<Something><val>0</val></Something> . . .
</billing_tn> it allows analysts to exploit the many useful tools that exist for ma-
<nlp_service_tn>) nipulating data inxmL. Figure 9 shows a sample portion of the
<m|<SS%’RI°}$'“t?]>><"a'>0</"a'></5°me‘h'“9> output of this tool when run on the Sirius data in Figure 2(b).
<n,pp—bi"ing > The accumulator tool provides a statistical summary of data.

<Something><val>0</val></Something> Such summaries are useful for deve[oping a quick understanding of
</nip_billing_tn> ‘ . data quality. In particular, after receiving a new batch of data, an-
:fa'fr’ﬁggg‘;:n'\‘p‘;tzyj;;;’g';;z%;:ﬂ/‘gg'rfr‘]gizflffﬁggd9> alysts might want to know the frequency of errors, or which fields
<order_sort><val>LOC._6<Nal></order_sort> are the most corrupted. The accumulator tool tracks the distribu-
<order_details><val>0</val></order_details> tion of the topn distinct legal values and th.e percentage of errors.
<unused><val>FRDW1</val></unused> It operates over data sources whose basic structure is a series of
<stream><val>DUO</val></stream> records of the same type, providing a summary based on viewing

</Order_header> many records in the data source. More complex accumulator pro-

- — grams and a number of other statistical algorithms can easily be
Figure 9. A fragment of thexmL output for Sirius. implemented using the tool generation infrastructure.

Finally, as an aid in debuggirepbs/ML descriptions, we have
implemented a simple printing tool. In contrast to the printer gener-
ated by theeaDs/ML compiler, the output of this tool corresponds
to the in-memory representation of the data rather than its origi-
nal format, which may have delimiteetc. that are not present in
the representation. This format is often more readable than the raw
data.

sal. Figure 8 contains an excerpt of the signature that includes the
signatures of th&kecord andDatatype modules. The signa-
tures of other modules are quite similar.

The Record module includes a typpartial_state that
allows tools to represent intermediate state in a different form
than the general state. Thait function forms the state of the
record from the state of its fields. Thetart function receives .
the PD header for the data element being traversed and beginé' The Semantics of PADS/ML
processing the element. Functiproject takes a record’s state In this section, we introducepc®, a calculus of simple, orthogo-
and the name of a field and returns that field’s state. Function nal type constructors, which serves to give a semantics to the main
process_field updates the intermediate state of the record features ofPADS/ML. DDC® is an extension and revision of our
based on the name and state of a field, fimidh ~ converts the previous work orbbDc [12]. The main new feature is the ability to
finished intermediate state into general tool state. Note that any of define functions from types to types, which are needed to model

these functions could have side effects. PADS/ML’s polymorphic data types. In the process of adding these
Although theDatatype module is similar to theRecord new functions, which we calpe abstractionas opposed tealue
module, there are some important differences. Dagtypeinit abstractionswhich are functions from values to types), we simpli-

function does not start with the state of all the variants. Instead, a fied our overall semantics by making a couple of subtle technical

variant’s state is added during processing so that only variants thatchanges. For example, we were able to eliminate the complicated
have been encountered will have corresponding state. For this rea+contractiveness” constraint from our earlier work. We have also

son,project returns astate option , rather than ®tate . added a new interpretation obc® types as printers.

This design is essential for supporting recursive datatypes as trying ~ The main practical benefit of the calculus has been as a guide for
to initialize the state for all possible variants of the datatype would our implementation. Before working through the formal semantics,

cause thénit function to loop infinitely. we struggled to disentangle the invariants related to polymorphism.
The following code snippet gives the signature of the traversal After we had defined the calculus, we were able to implement
functor as it would appear in the signat@érom Section 3. type abstractions a9’ camML functors in approximately a week.
module Traverse (Tool : Generic_tool.S) : Our new printing semantics was also very important for helping
sig us define and check the correctness of our printer implementation.
val init : unit -> Tool.state We hope the calculus will serve as a guide for implementations of
ol traverse @ rep > pd > Toolstate > Toolstate PADS in other host languages. In the remainder of this section, we

give an overview of the calculus. Appendix B contains a complete
The functor takes a generic tool generator and produces a format-formal specification.
specific tool with two functionsinit , to create the initial state
for the tool, andtraverse , which traverses the representation 5.1 DDC® Syntax

and parse descriptor for the type and updates the given tool state. Figure 10 summarizes the syntax of thec®. The interpretation

of a type with kindT is a parser that maps data from an external

4.2 Example Tools form into an internal one. A type with kind — & is a function

We have used this framework to implement a variety of tools mapping a parser to the interpretation of a type with kin&inally,

useful for processing ad hoc data, includingxam. formatter, an types with kindoe — x map values with host language typeo

accumulator tool for generating statistical overviews of the data, the interpretation of types with kingl. For concreteness, we adopt

and a data printer for debugging. We briefly describe these tools to F,, as our host language.

illustrate the flexibility of the framework. The simplest description is a base typée). The base type’s
ThexmL formatter converts any data withPaDs/ML descrip- parametek is drawn from the host language. TheDS/ML type

tion into a canonicakML format. This conversion is useful because Pstring is an example of such a base type. Structured types

include value abstractionz.m and applicationr e, which allow [Ty =&
us to parameterize types by host language values. The depende rep
sum type,X z:7.7, describes a pair of values, where the value of

Cl(e = Biype(C) + none
the first element of the pair can be referenced when describing the (©)]rep pe(©)

second element. Variation in a data source can be described with i‘ifﬂrep _ Hrep

the sum type + 7, which deterministically describes a data source rep rep

that either matches the first type, or fails to match the first branch Sonnle = [Mle* [rle
71+ 7-2]]rep - [[Tl]]rep + HTQ]]rep

—
1)
\]
®

—

=
@
o
|

[[T]]rep + [[T]]rep
« = Orep

MO"T]]rep = /Jarep'[[T]]rep
AQtrep. IIT]] rep
|I7_1]] rep HTQ]] rep

over a data source with tydec:7 | e}, which describes any value
that satisfies the descriptierand the predicate. Type variablesy
are abstract descriptions; they are introduced by recursive types and
type abstractions. Recursive types.r describe recursive formats,
like lists and trees. Type abstractian.~ and application + allow
us to parameterize types by other types. Type variablatvays
have kindT.

To specify the well-formedness of types, we use a kinding
judgment of the formA; T" - 7 : k, whereA maps type variables
to kinds and™ maps host language value variables to host language

>
L

=
\

[
[
[
[
but does match the second one. We specify semantic constraints %
[
[
[
[

)
S
=
3
k=]

I

Figure 11. Representation type translation, selected constructs

types. In our original work [12], these kinding rules were somewhat
unorthodox, but we have since simplifed them. Details appear in

Appendix B. C(e)]pp = pd_hdr xunit
Az.T|pp = [rlep
5.2 Host Language 7 elep = [rlep
Y x:71.72]pp pd-hdr * [71]pp * [72]pp

The host language afpc® is a straightforward extension @i,

with recursion and a variety of useful constants and operators.
For reference, the grammar appears in Appendix C. The constants o
include bitstringsB; offsetsw, representing locations in bitstrings; PD

pd-hdr * ([71]pp + [72]pp)
pd-hdr * [7]pp
de’ldI‘ * (XPDb

71+ T2]pp
{z:m | e}pp

and error code®k, err, and fail, indicating success, success &3':]}%” _ I;\illdﬁ[:]]“am'[wm
with errors, and failure, respectively. We use the constant to o] PD - I inb.[ﬁ]’]’D

indicate a failed parse. Because of its specific meaning, we forbid t12lpo tipol"2lpob

its use in user-specified expressions appearirmpia® types. We

use the notatioms; @ bs, to append bit strings; to bs,. Our PDb

base types include the typene, the singleton type of the constant .

none, and typessrrcode andoffset, which classify error codes [7leos = o where[r]p, = pd-hdr x o

and bit string offsets, respectively.

We extend the formal syntax with some syntactic sugar for use
in the rest of this section: anonymous functionse for fun f = =
e, with f & FV(e); span for offset * offset. We often use
pattern-matching syntax for pairs in place of explicit projections, as
in A\(B,w).e andlet (w,r,p) = e in €’. Although we have no for-
mal records with named fields, we use a dot notation for commonly
occuring projections. For example, for a paiof rep and PD, we

Figure 12. Parse-descriptor type translation, selected constructs

DDC® representation types. In Figure 11, we present the repre-
sentation type of selectembc® primitives. While the primitives

are dependent types, the mapping to the host language erases the
dependency because the host language does not have dependent
types. This involves erasing all host language expressions that ap-

usex.rep andx.pd for the left and right projections of, respec- . . 2
tively. Also, sums and products are right-associative. Finally, we P2 in types as well as value abstractions and applications. A type
variablea in DDC® is mapped to a corresponding type varialg,

only specify type abstraction over terms and application when we | - ! ; .
feel it will clarify the presentation. Otherwise, the polymorphism N F,,. Recursive types generate recursive representation types with

is implicit. We also omit the usual type and kind annotationsin the type variable named appropriately. Polymorphic types and their
with the expectation the reader can construct them from context, aPPlication becomés, type constructors and type application, re-

The static semanticsX;T" - e : o), operational semantics ~ SPECtIVely.

(e — ¢'), and type equalityf = o) are those of, extended with 5o parse descriptor types. Figure 12 gives the types of the
recursive functions and recursive types and are entirely standard.parse descriptors corresponding to selected® types. The trans-
See Pierce’s text [28] for details. lation reveals that all parse descriptors share a common structure,
consisting of two components, a header and a body. The header re-
ports on the corresponding representation as a whole. It stores the
The primitives ofobc® each have four interpretations: two types number of errors encountered during parsing, an error code indicat-
in the host language, one for the data representation itself and oneing the degree of success of the parse—success, success with errors,
for its parse descriptor, and two functions, one for parsing and one or failure—and the span of data (location in the source) described
for printing. We therefore specify the semanticsomic® types by the descriptor. To be precise, the type of the heasteh@r) is
using four semantic functions, each of which precisely conveys a int * errcode * span. The body contains parse descriptors for the
particular facet of the meaning of a type. The functi@r@rep and subcomponents of the representation. For types without subcom-
[- Jpp describe the type of the data’s in-memory representation ponents, we usenit as the body type. As with the representation
and parse descriptor, respectively. The semantic funcfonk, types, dependency is uniformaly erased.
and[-], define the parsing and printing functions generated from Like other types,pbc® type variablesa are translated into
DDC® descriptions. a pair of header and a body. The body has abstract type

This translation makes it possible for polymorphic parsing code

5.3 DDC® Semantics

[7:Tlpr = bits x offset — offset * [[Tﬂrep* (RallP

[r:0 — Klpr o — [r e:k]py, forany e

[m:T — &lpr Varep.Vapp.[a:T]pr — [Taik]pr

(arep, apob & FTV(k) UFTV(7))

[m:Tlepr [T)iep* [7]pp — bits

[r:0 — Klppr = o0 — [7e:k]ppy, foranye

[m:T — Elppr Voarep.Yoppy- [a: T]ppr — [Ta:k]ppr

(ctrep, appp & FTV(k) UFTV(T))

Figure 13. Host language types for parsing functions

[C(e)]p = A(B, w).Bimp(C) (e) (B,w)
z.7]p = Xz [1]p

[relp=1Irlpe
Exrr]e =
A(B,w).
let (w/,r,p) = [7]p (B,w) in
let x = (r,p) in
let (w”,',p') = [7']p (B,w’) in
(wllv Rz (I‘, r/)v PE(P7 P/))
[r+ 7=
A(B,w).
let (wlvrvp) = IIT}]P (va) in
if is0k(p) then (', Ri1est(r), Piese (P))
else let (w',r,p) = [7']p (B,w) in
(‘-’le R+right (I‘), P+right (P))
{z:7le}lp =
A(B,w).
let (w’,r,p) = [7]p (B,w) in
let x = (r,p) in
letc=ein
(wlz Rcon(C7 r)7 Pcon(cz P))
[a]p = parseq

norlp =

fun parse, (B:bits,w:offset): offset [[ua.Tﬂrep * [poet]pp =
let (',r,p) = [rlpllpa-T]ep/ arep ([TIppy/ pop] (B, w) in

(@', fold[[uc.T] ep] T, (p-h, fold[[ue.T]ppyl P))
[Ma.7]p = Acrep.Aowpp.Aparseq.[7]p

[ri72lp = [1]p [[72]rep [[m2]ppu] [72]p

Figure 14. ppc® parsing semantics, selected constructs

Figure 15. Host language types for printing functions

For the sake of clarity, we have factored the latter two steps into
separate representation and PD constructor functions which we de-
fine for each type. For example, the representation and PD con-
structors for the dependent sums ageandPs, respectively. We
have also factored out some commonly occuring code into auxiliary
functions. These constructors and functions appear in Appendix D.

The PD constructors determine the error code and calculate the
error count. There are three possible error cod&s:err, and
fail, corresponding to the three possible results of a parse: it
can succeed, parsing the data without errors; it can succeed, but
discover errors in the process; or, it can find an unrecoverable error
and fail. The error count is determined by subcomponent error
counts and any errors associated directly with the type itself.

Figure 14 specifies the parsing semantics of a selected portion
of bbc®. We explain the interpretations of select types, from which
the interpretation of the remaining types may be understood. The
full semantics appears in Appendix B. A dependent sum parses the
data according to the first type, binding the resulting representation
and PD tox before parsing the remaining data according to the
second type. It then bundles the results using the dependent sum
constructor functions.

A type variable translates to an expression variable whose name
corresponds directly to the name of the type variable. These expres-
sion variables are bound in the interpretations of recursive types
and type abstractions. We interpret each recursive type as a recur-
sive function whose name corresponds to the name of the recursive
type variable. For clarity, we annotate the recursive function with
its type.

We interpret type abstraction as a function over other pars-
ing functions. Because those parsing functions can have arbitrary
DDC” types (of kindT), the interpretation must be a polymorphic
function, parameterized by the representation and PD-body type of
the bDC® type parameter. For clarity, we present this type param-

to examine the header of a PD, even though it does not know the €terization explicitly. Type applicatiom 7 simply becomes the

DDC“ type it is parsingDDC® abstractions are translated infQ

application of the interpretation af; to the representation-type,

type constructors that abstract the body of the PD (as opposed toPD-type, and parsing interpretationsref

the entire PD) andDc®™ applications are translated infg, type

applications where the argument type is the PD body type.

DDC® parsing semantics. The parsing semantics of a typevith

DDC® printing semantics The definition of the printing seman-
tics for abDDC™ description uses a similar set of concepts as the
parsing semantics. To begin, the semantic funcfior]ppr = o

kind T is a function that transforms some amount of input into a gives the host language typefor the printer generated from type
pair of a representation and a parse descriptor, the types of whichr with kind x. As shown in Figure 15, the printing semantics for

are determined by. The parsing semantics for types with higher

descriptions with higher kind are functions that construct printers,

kind are functions that construct parsers, or functions that constructwhile the printing semantics for descriptions with base kind are

functions that construct parseesc. Figure 13 specifies the host-
language types of the functions generated from well-kiroied®

types.

simple first-order functions that map a representation and a parse
descriptor into a string of bits.
Figure 16 presents the printing semantics of seleptsel* con-

For each (unparameterized) type, the input to the correspondingstructs. Base typeS'(e) are printed in various ways according to
parser is a bit string to parse and an offset at which to begin parsing.the definition3,,, which is a parameter to the semantics. The base
The output is a new offset, a representation of the parsed data, andype printerBy, accepts the parse descriptor as a parameter, and

a parse descriptor.

in the case of an error, prints nothing. Dependent sums print one

For any type, there are three steps to parsing: parse the subcomeomponent and then the next in order. An ordinary sum prints the
ponents of the type (if any), assemble the resultant representationunderlying tagged value. Notice that the structure of the parse de-
and tabulate meta-data based on subcomponent meta-data (if any)scriptor and the representation should be isomorphic — both should

[C(e)lpp = Alr,pd).Bpp(C) (e) (r,pd)
P 7lpp = Az.[7]pp
[melpp=[7lppe
[E . m2]pp =
A(x, pd).
let x = (r.1,pd.2.1) in
let bsy = [71]ppx in
let bsy = [12]pp (r.2,pd.2.2) in
b51 @ b52
[+ m2]pp =
Az, pd).
case (r,pd.2) of
| (inl r1,inl p1) = [71]pp (r1,P1)
| (inr r2, inr p2) = [72]pp (T2, p2)
| -~ = badInput()
{7 | e}lop =
Az, pd).
case (r,pd.2) of
| (inl T1,p1) = [7]pp (r1,P1)
| (inr r2,p2) = [7]pp (2, P2)

establishes that the logical relation holds of all well-fornmezt®
types by induction on kinding derivations, and the desired charac-
terization follows as a corollary.

Definition 1
e H(r: T) iff 3o s.t. [7]p, = pd-hdr * 0.
e H(r: T — k) iff 30 s.t. [7]pp, = o and whenever H(r' : T),
we have H(T 7’ : k).
e H(r: 0 — k) iff 30’ s.t. [7]p, = o’ and H(7 e : k) for any
expression e.

Lemma 2
IFA;TF 7 kthen H(T : K).

Lemma 3
o IFA;T b7 : k then 3o.[7]pp = 0.

o IfFA;T t 7 : T then 30.[7]pp = pd-hdr * 0.

With this lemma, we can establish the type correctness of the
generated parsers and printers. We prove the theorem using a more

[e]pp = printa general induction hypothesis that applies to open types. This hy-

[[‘;O"T]]PF.’:) 4 it = pothesis must account for the fact that any free type variables in a
un printa (r : [ua-tle, pd : [ua-rlpp) : bits = pDC” type 7 will become free function variables ifr],. To that
[[T]gfli[fﬁgﬁilﬂf‘js/%“"][r[[’ﬁﬂ]fgﬁ/ O;’:‘:’ﬂ 1pa) end, we define the functiorfs\],; and [A] ey which map type-
\ o p . repl o HA-T Jpppl PA- variable contexts\ in the bbc® to value-variable contextf in
%nofr‘;]]}]PP:_ [[Tﬁ]rep'[[[g‘i[’b';] ﬁﬁ;ﬁtagﬂﬂ;’f F,. In addition, the functiorj| A generates the appropriafe,
PP PP re PD PP type-variable context from thebc® contextA.

| =- [A, a:T|| = [|A]l, arep:T, apop:T

[pr = [A, a:T]pr = [Alpr parsea:[e: T]pr
Ippr=" [A; :T]ppr = [Alppr printa:[e: T]ppr

Figure 16. bDC” printing semantics, selected constructs I[[I
[-
be left injections or both should be right injections. Any pair of
structures generated by the parser are guaranteed to satisfy this in-
variant. If the pair do not match, then the programmer is using the -€mma 4 (Type Correctness Lemma)
printer incorrectly. In this case, the printer calls an unspecified error ® AT 72k then [|[A[]L T, [Alpr = [r]p : [:] pr
routine nametadInput(). o IfA;T' 7 : k then ||A|l,T, [Alppr F [71pp ¢ [7:5] ppr-

The semantics of printing recursive and parameterized types fol-])) o o
lows similar lines to the semantics of parsing these constructs. In PROOF By induction on the height of the kinding derivatiom
particular, whenever a type parameter is introduced in the syntax of
a description, a corresponding value parameter with printer func- Theorem 5 (Type Correctness of Closed Types)
tion type is introduced in the generated printer code. We give the e If:- 7 : k thent [7], : [T:K]p-
value parameter the nameint.. Both type abstractions and re- o Itk 7 : i thent [7]pp ¢ [T:5] ppr-
cursive functions introduce such parameters. Notice that whereas
the parsing semantics uses a fold to build a recursive data structure A practical implication of this theorem is that it is sufficient
when interpreting a recursive type, the printing semantics uses anto check data descriptionsd. bpc® types) for well-formedness

unfold to deconstruct a recursive data structure for printing. to ensure that the generated types and functions are well formed.
This property is sorely lacking in many common implementations
5.4 Meta-theory of Lex and YACC, for which users must examine generated code to

To validate our semantic definitions, we have proven two key debug compile-time errors in specifications.
metatheoretic results. First, we show that parsers and printers areC ical F for P d Dat o " .
type-correct always returning representations and parse descrip- ~anonical Forms for Farsed Data. bDC™ parsers generate pairs
tors of the appropriate type. Second, we give a precise characteri-Cf "épresentations and parse descriptors designed to safisfy a num-
zation of the results of parsers (and input requirements of printers) Per Of invariants. Of greatest importance is the fact that when the

by defining thecanonical formsof representation-parse descriptor Parse descriptor says there are no errors in a particular substruc-
pairs associated with a dependentc® type ture, the programmer can count on the representation satisfying all

of the syntactic and semantic constraints expressed bp b

Type Correctness. Demonstrating that generated parsers and type description. When a parse descriptor and representation satisfy
printers are well formed and have the expected types is nontriv- these invariants, we say the pair of data structures éaionical

ial primarily because the generated code expects parse descriptorform. While generated parsers produce canonical outputs, gener-
to have a particular shape, and it is not completely obvious they do ated printers expect canonical inputs.

in the presence of polymorphism. Hence, to prove type correctness, For eachbbc® type, its canonical forms are defined via two
we first need to characterize the shape of parse descriptors for ar{mutually recursive) relations. The first relatidanon, (r, p), de-
bitrary bbc® types. Unfortunately, the most straightforward char- fines the canonical form of a representatioand a parse descrip-
acterization is too weak to prove directly, and hence Definition 1 tor p at normal typev. Normal typesare those closed types with
specifies a much stronger property as a logical relation. Lemma 2 base kindT that are defined in Figure 17. Types with higher kind

Normal Types v Ce) | dar | Sorr | T+ 7 Lex and YACC as well as interpreter technology such the parser

| {z:7|e} | pot | AT combinator libraries found in functional programming languages
Types T ou= v|Te|TT|a (Haskell [18], for example). Likewise, there are tools to help pro-
o grammers generate printers. Each of these technologies is very use-
Normalization: fulin its own domain, bupADS/ML is broader in its scope than each
- e — e of them: a singleADS/ML description is sufficient to generéateth

a parser and a printer. And a statistical error analysis, a format de-

Te—T1e ve—ve (AzT)v— T/ /T
() w/al bugger, arxML translator, and in the future, a query engine [10], a

T — T

T content-based search engine [21, 26], more statistical anagtses,
T2 =T T2 v —vT (AaT)v — Tlv/0] Neither combinator libraries nor tools such asxtand YACC are
- designed to generate such a range of artifacts from a single specifi-
Figure 17. bbc® Normal Types, selected constructs cation. Indeed, the proper way to think about combinator libraries

in relation toPADS/ML is that they might serve as an alternative

. . . . implementation strategy for some of the generated tools.
such as abstractions are not described by this relation as they can Generic programming [19, 16, 20] and design patterns such

T B oy oy swraon 28 (e o pater can acfae e implemertaion of ype
type and value applications. The result is a normal ty@ad the : |re(ite ata structure travytyarsa_s. Lamme an Peyton _Jones ong-
requirements on are subsequently given tyanon, (r, p). For inal “scrap your boilerplate artlclg [20] prowde; a detalleq sum-
brevity in these definitions, we write h.nerr as neyr/gn-d use mary of the trade-offs between different techniques. We investi-

to denote the function’that returns; zero wh%n assed zero an gated using these techniques in our system; however, we found
g?]z when passed another natural number. The foIIFc)Jwin definitiondthat most of them required language features such as type classes
gives the nrt))tion of, expression equivalen.ce We use 9 that are available only in Haskell. The generame@s/ML traver-

@) sal functors are less flexible than those possible in Haskell, but they

suffice for many tools useful in practice.

The networking community has developed a number of domain-
specific languages, including DataScript [2], PacketTypes [23], and
e v =(C(e) andr = inl c and p.nerr = 0. Bro’s packet processing language [27] for parsing and printing bi-
e v =C(e) andr = inr none and p.nerr = 1. nary data. LikePADS/ML, these languages use a type-directed ap-
proach to describe ad hoc data and permit the user to define se-
mantic constraints. In contrast to our work, these systems handle
only binary data and assume the data is error-free. DFDL is a spec-
ification of a data format description language withxam_ -based

Definition 6 (Canonical Forms (selected constructs))
(1) Canon, (r, p) iff exactly one of the following is true:

ey =XYxzim.me andr = (r1,r2) and p = (h, (p1,p2)) and
h.nerr = pos(pi.nerr) + pos(pz.nerr), Canon* -, (r1,p1)
and Canon” ., ((r.p) /2] (T2, D2).

v =T +T2 a?d r = inl 7' 32d10 = /(h, inl p') and syntax and type structure [7, 3]. DFDL is still under development. It
h.nerr = pos(p'.nerr) and Canon™r, (', p’). does not have a formal semantics, or a tool generation architecture.
ev =rm+mandr = inr v andp = (h,inr p’) and We believe that DFDL is similar in its expressivenessims/C.
h.nerr = pos(p'.nerr) and Canon* -, (', p’). However, because the specification is evolving, we cannot give a
o v = {x7'|e},r = inl v’ and p = (h,p’), and h.nerr = more detailed comparison.
pos(p’.nerr), Canon* ./ (', p') and e[(+’, p') /] —* true. Thfere are a pumbgr of tools designed to convert ad hoc data for-
o v={x:r'|e}.r =inr+’ andp = (h,p), and h.nerr = 1 + mats intoxmL, including XSugar [5] and the Binary Format De-
pos(p.nerr), Canon* ./ (r', p') and e[(r’, p) /z] —* false. scription language (BFD) [24]. The scope of both of these projects
o v = par',r = fo1d[ua.r] |7, p = (h, fold|[uc.™'],] p') is limited to conversion to-and-fromML;_nelther is of any use for
’, repl - e PDIE /2 analysts who do not wish to convert their datateL (and there are
p.nerr = p'.nerr and Canon” -/ (.q.- /o) (', P'). compelling reasons why an analyst might not wish to make such a
conversion)PADS/ML is thus broader in scope:danconvert data
(2) Canon*, (r, p) iff T —* v and Canon, (r, p). into XML, but it can do many other tasks as well.

Similarly, commercial database products provide some support
The first part of Lemma 7 states that parsers for well-formed for parsing data in external formats so the data can be imported into
types (of base kind) produce a canonical pair of representation andtheir systems, but they typically support only a limited number of
parse descriptor if they produce anything at all. Conversely, the formats and have fixed methods for coping with erroneous data. As
second part states that, given a canonical representation and parswith thexmL systems, these tools are of no help in any task besides
descriptor, the printer for well-formed types (of base kind) will not loading data into a database.

“go wrong” by calling thebadInput() function. A complementary class of languages includes ASN.1 [9] and
ASDL [1]. Both of these systems specify thagical in-memory
Theorem 7 (Parsing to/Printing from Canonical Forms) representation of data and then automatically generateysical
e Ift- 7: T and [7], (B,w) —* (w',r,p) then Canon*, (r, p). on-disk representation. While very useful, this technology does not
o If 7 : T, Canon*,(r,p) and [r],, (r,p) —* e then help with data that arrives in predetermined, ad hoc formats.
e # badInput(). On the theoretical front, the scientific community’s understand-

ing of type-based languages for data description is much less ma-
PrROOF Both items are proven by induction on the length of the re- ture. To the best of our knowledge, our previous work on the
spectiveF,, evaluation relations. Within the induction they proceed DDC [12] was the first to provide a formal interpretation of depen-

by a case analysis on the structure of the typea dent types as parsers and to study the properties of these parsers
including error correctness and type safety. The current paper ex-
6. Related Work tends and improves our earlier work by simplifying the basic theory

. in a number of subtle but important ways, by adding polymorphic
Many useful tools exist to help programmers generate parsers. Ex- P ys, by g polymorp

amples include compiler technology such as the many variants of

types for the purpose of code reuse, and by specifying the semantics [9] O. Dubuisson. ASN.1: Communication between heterogeneous

of printing. systemsMorgan Kaufmann, 2001.

Regular expressions and context-free grammars, the basis for[10] M. F. Ferrandez, K. Fisher, R. Gruber, and Y. Mandelbaum. PADX:
Lex and YACC, have been well-studied, but they do not have de- Querying large-scale ad hoc data with xquery. Pimgramming
pendency, a key feature necessary for expressing constraints and Language Technologies for XMilan. 2006.
parsing ad hoc dat&arsing Expression Grammaf(®EGSs), stud- [11] K. Fisher and R. Gruber. PADS: A domain specific language for
ied in the early seventies [4], revitalized by Ford [14], and im- processing ad hoc data. WCM Conference on Programming
plemented using “packrat parsing” techniques [13, 15], are more 5322‘12%%‘95':)93'9” and Implementatjgrages 295-304. ACM Press,

closely related tePADS/ML's recursive descent parsers. However,

the multiple interpretations of types in th®c® makes our theory ~ [12] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
substantially different from the theory of PEGs. description languages. WWCM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 2 — 15, Jan. 2006.

[13] B. Ford. Packrat parsing: Simple, powerful, lazy, linear timeAGM

7. Conclusions International Conference on Functional Programmimpgges 36—47.

. ACM Press, Oct. 2002.
Vast quantities of important information eX,'St only. in ad hoc for- [14] B. Ford. Parsing expression grammars: A recognition-based syntactic
mats. Data analysts desperately need reliable, high-level tools to foundation. INACM Symposium on Principles of Programming
help them document, parse, analyze, transform, query, and visu- Languagespages 111-122. ACM Press, Jan. 2004.
alize such daterADS/ML is a high-level domain-specific language |15 R. Grimm. Practical packrat parsing. Technical Report TR2004-854,
and system designed for this purpose. Inspired by the type structure New York University, Mar. 2004.
of functional programming languagesaps/ML uses dependent [16] R. Hinze. A new approach to generic functional programming. In
polymorphic recursive data types to describe the syntax and the se- ~ AcM SIGPLAN-SIGACT Symposium on Principles of Programming
mantic properties of ad hoc data sources. The language is compact Languagespages 119-132, Jan. 2000.
and expressive, capable of describing data from diverse domains[17] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory.

including networking, computational biology, finance, and cosmol- Technical Report UU-CS-2003-015, Institute of Information and
ogy. ThepaDS/ML compiler uses a “types as modules” compila- Computing Sciences, Utrecht University, 2003.

tion strategy in which everpabs/ML type definition is compiled [18] G. Hutton and E. Meijer. Monadic parsing in Haskellournal of
into ano’ caML module containing types for data representations Functional Programming8(4):437-444, July 1998.

and functions for data processing. Functional programmers can use[19] J. Jeuring and P. Jansson. Polytypic programming.Seéoond
the generated modules to write clear and confdsmat-dependent International School on Advanced Functional Programmivgume
data processing programs. Furthermore, our system design allows 1129 ofLecture Notes in Computer Sciengmges 68-114, Aug.
external tool developers to write néarmat-independeribols sim- 1996.

ply by supplying a module that matches the appropriate generic [20] R. Lammel and S. Peyton Jones. Scrap your boilerplate: A practical
signature. To givePADS/ML a precise semantics, we have simpli- design pattern for generic programmin§CM SIGPLAN Noticgs
fied and extended the Data Description Calculbsd®) [12] to 38(3):26-37, Mar. 2003. Proceedings of the ACM SIGPLAN
account for parametric polymorphism and to provide a semantics gfgfgggg” Types in Language Design and Implementation
for printing. '

[21] Q. Lv, W. Josephson, Z. Wang, M. Chrikar, and K. Li. Ferret: A
toolkit for content-based similarity search of feature-rich data. In

Acknowledgments EuroSys2006Apr. 2006.

. . . . [22] R. Mandelbaum, C. M. Hirata, U. Seljak, J. Guzik, N. Padmanabhan,
We would like to thank Derek Dreyer for discussions and advice on C. Blake, M. R. Blanton, R. Lupton, and J. Brinkmann. Systematic
advanced module systems. errors in weak lensing: application to SDSS galaxy-galaxy weak

lensing.Mon. Not. R. Astron. Sgc361:1287-1322, Aug. 2005.
[23] P. McCann and S. Chandra. PacketTypes: Abstract specificationa of

References network protocol messages. ACM Conference of Special Interest

[1] Abstract syntax description languagkttp://sourceforge. Group on Data Communicationgages 321-333. ACM Press, August
net/projects/asdl . 2000.

[2] G. Back. DataScript - A specification and scripting language [24] J. Myers and A. Chappell. Binary format definition (BFDjttp:
for binary data. InGenerative Programming and Component /lcollaboratory.emsl.pnl.gov/sam/bfd/ » 2000.
Engineering volume 2487, pages 66—77. Lecture Notes in Computer [25] Tree formats. Workshop on molecular evolutionhttp:

Science, 2002. /lworkshop.molecularevolution.org/resources/

[3] M. Beckerle and M. Westhead. GGF DFDL primehttp: fileformats/tree_forma%ts.php
Ilwww.ggf.org/Meetings/GGF11/Documents/DFDL _ [26] J. Oh. PADS and CASS utilization for beta coefficient estimation
Primer_v2.pdf , May 2004. Global Grid Forum. with the single-index model. Princeton University Undergraduate

[4] A. Birman and J. D. Ullman. Parsing algorithms with backtrack. Senior Independent Work, May 2006.

Information and Contrql23(1), Aug. 1973. [27] V. Paxson. A system for detecting network intruders in real-time. In

[5] C. Brabrand, A. Mgller, and M. I. Schwartzbach. Dual syntax for Computer NetworksDec. 1999.

XML languages. InTenth International Symposium on Database [28] B. C. Pierce.Types and Programming Languagethe MIT Press,
Programming Languagesolume 3774 of.ecture Notes in Computer Feb. 2002.

Sciencepages 27-41. Springer-Verlag, August 2005.
[6] G. O. Consortium. Gene ontology project. http://www.geneontology.org.
[7] Data format description language (DFDL) a Proposal, Working
Draft, Global Grid Forumhttps://forge.gridforum.org/
projects/dfdl-wg/document/DFDL_Proposal/en/%2 ,
Aug 2005. Global Grid Forum.
[8] D. Dreyer.Understanding and Evolving the ML Module Syst&hD
thesis, CMU, May 2005.

A. Regulus Data Description in PADS/C

/* Pstring terminated by ;' or ’|" */
Ptypedef Pstring_SE(:"/;|\|/":) SVString;

Pstruct Nvp_string(: char * s:){
s; "="; SVString val,
h

Pstruct Nvp_ip(: char * s
s; "="; Pip val;
h

Pstruct Nvp_timestamp(: char * s:}
s; "="; Ptstamp val;
h

Pstruct Nvp_Puint32(: char * s}
s; "="; Puint32 val;
h

Pstruct Nvp_a{

Pstring(:’=":) name;
'="; SVString val;
h

Pstruct Details{
Nvp_ip(:"src_addr":) source;
. Nvp_ip(:"dst_addr":) dest;

Vi Nvp_timestamp(:"start_time":) start_time;
'; Nvp_timestamp(:"end_time":) end_time;
s Nvp_Puint32(:"cycle_time":) cycle_time;

h
Parray Nvp_seq{

Nvp_a [] : Psep(;) && Pterm ('|);
h

Punion Info(: int alarm_code:){
Pswitch (alarm_code){
Pcase 5074: Details detalils;

Pdefault : Nvp_seq generic;
}
¥
Penum Service {
DOMESTIC,
INTERNATIONAL,
SPECIAL
h

Pstruct Raw_alarm {

Puint32 alarm : alarm == 2 || alarm

; Popt Ptstamp start;

; Popt Ptstamp clear;
I'; Puint32 code;

; Nvp_string(:"dns1":) src_dns;
s Nvp_string(:"dns2":) dest_dns;
;. Info(:code:) info;

' Service service;

h
int chkCorr(Raw_alarm ra) { ...};

Precord Ptypedef Raw_alarm Alarm :
Alarm a => {chkCorr(a)};

Psource Parray Source {
Alarm([];

B. Complete Syntax and Semantics abbc®
We first define the syntax @fbc® terms:

Kinds &
Types T

Tlo—k|T—k

unit | bottom | C(e) | Az.7 | Te

Serr |47 |7&T | {37 |} | Tseq(T,€,7T)
al| poat| AT | TT

compute(e:o) | absorb(T) | scan(T)

Figure 18 gives the complete kinding rules for the system.
The representation for eacibc® typer are defined as follows:

HT]]rep =0
[[unit]]rep = unit
[bottom],, = none
[[C(e)]]rep = Buype(C) + none
[Az.7] rep = [r] rep
|IT 6]] rep = [[T]] rep
[m:ﬁ.Tg]rep = [[Tl]]rep* [[Tz]]rep
IITI + TQ]]rep = [[Tl]]rep + [[7—2]]rep
|[7'1 & T2]]rep = HTl]]rep * HTQ]]rep
[[{JSIT | e}]]rep = HT]]rep + HT]]rep
[T seq(Tsep €, Ttefm)]]rep = intx ([r] rep seq)
[[a] rep = Orep
[noet] e, = p0rep-[T]iep
[Aev.7] rep = Aozep.[7] rep
1 TQ]]rep = [[Tl]]rep[[TQ]]rep
[[compute(e:a)]]rep = o0
[absorb(T)]q, = unit + none
[scan(7)]ep = [rlep+ mome

The parse descriptor for eacinc® typer are defined as follows:

[Tlep =0
unit]pp = pdhdr *unit
bottom]py = pd-hdr x unit
C(e)]pp = pd_hdr xunit
)\x-T]] PD = HT]]PD
T 6]] PD = [[T]] PD
Y x:71.m2]pp = pdhdr * [71]pp * [T2]pp
1+ T2fpp = pdhdr * ([11]pp + [72]pp)
71 & T2]pp = pdhdr * [71]pp * [T2]pp
{z:7| e}pp = pdhdr * [7]pp
7 seq(Tsep €, Tem)|[pp = pd-hdr * ([7]pp arrpd)
aIIPD = pdjndr * Qppb
pat]pp = pdhdr * poems.[T]pp
AQ.T]] PD =)\ozpr. IIT]] PD
TlT?]]PD = [[7'1]]PD[[7'2]]PDb
compute(e:0)]pp = pd_hdr *xunit
absorb(7)]pp = pdhdr *unit
scan(7)]pp = pdhdr * ((int * bits * [7]pp) + unit)

[Tlepp =10

[Tlppy, = o where[r]pp = pd-hdr * o

Figure 19 gives the parsing semanticsarc® type .

The type correctness theorem relies on base type parsers behav-
ing properly. The following conditions make explicit the properties
that base type semantic functions must satisfy.

Condition 8 (Conditions on Base-type Interfaces)
1. dom(Bxing) = dom(Bimp).

-l =- A, c:T|| = [|All; arep: T, appp:T

F A, T ok
A;T Hunit: T

F A, T ok
A;T Fbottom: T

AT xiob11 K
Abs

F A, T ok
Byind(C) =0 — T

AL TFe:o

ATHC(e): T Const

ATET:0—k ||A|,TRe: o
App

AT HEAXeT:0 > K

AsT'FrTe:k

A7 T A;F,m:[T]]rep* [rleppF 7™ :T

AT HXarr

ATH7:T AT T

ATHT+7:T Sum

ATET:T A]L T, 2:[r]iep* [T]pp I € : bool

Prod
AT 70T A;FI—T’:TIt i
ntersection
ATEHT&T T
Con

AT E{zr|e}: T

AT 7T VAN B ol P

AN;TE7m T

IALT Fe: [Tm]ep* [Tmlpp — ool (7m = 7seq(7s, e, 7))

AT+ 7seq(rs, e, 7¢)

A, T ok a:TeA AaT;I'F7:T

AT 7k

Se
: T 9

AT T—ok ATEm:T

TyVar Rec

A;THa:T AT Fpor: T

FIAlLT ok [[A,T'Fe:o [Alpbo=T
A;T F compute(e:o) : T

A;TEAaT: T — kK

AT ET:T
Compute

TyAb TyA
yAbs AT 71k yApp

AT 7T

A;T F absorb(7): T

Absorb m Scan

Figure 18. bbc® Kinding Rules

2. If Biina(C) = 0 — T then Bopy (C) = 0 — [C(e):T]py (for
any e).
3. F Bype(C) = T.

C. Host Language

Bits B
Constants c

|0B|1B

()| true | false |[O|1|—1]...
none | B |w | ok | err | fail]|...
clfun fz=ec| (v,v)

inl v | inr v | [7]

Values v

Operators op =|<|not|...
Expressions e clxz|ople)|fun fz=ecl|ee
Aa.e| e [T]

let z =eine| if etheneelsee
(e,e) | mie|inle|inre

case e of (inlz = e | inrx = e)
€lleGe|el

fold[pa.7] e | unfold[pa.7] e
unit | bool | int | none

bits | offset | errcode

Base Types a

Types o ala|lo—o|lo*xo|o+o
oseq|Va.o | pa.o | Ao | oo
Kinds K T|lk—k

D. Helper Functions
Generic Helpers:
Eof : bits x offset — bool

scanMax : int

funmax (m,n) = if m > nthenmelsen

funposn=3if n =0 then O else 1
fun isOk p = pos(p.h.nerr) =0
fun isErr p = pos(p.h.nerr) =1

fun max-ec (ecy,eca) =
if ec; = fail or ecy = fail then fail
else if ecy = err or ecy = err then err
else ok

Type-Specific Helpers:

fun Runit () = ()
fun Pypit w = ((07 ok, (wuw))7 ())

fun Reottom () = none
fun Ppottom w = ((1, fail, (w,w)), ()

fun Ry (r1,r2) = (r1,T2)
fun Hy (h17 h2) =
let nerr = pos(hj.nerr) + pos(ha.nerr) in
let ec = if hy.ec = fail then fail
else max_ec hj.ec hp.ec in
let sp = (hi.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h, p2.h), (P1,p2))

fun Ryjess T =inlr

fun Ryright * = inrr

fun H4 h = (pos(h.nerr), h.ec,h.sp)
fun P4y p = (Hy p.h,inl p)

[unit]p = A(B, w).(w, Runit (), Punit (w))
[bottom]p = A(B,w).(w, Ruotton(), Pootton(w))
[C(e)]lp = A(B,w).Bimp(C) (e) (B,w)

x.7]p = Az.[7]p

[relp=TIrlpe

Exr]p =

[T+ =
A(B,w).
let (', r,p) = [7]p (B,w) in
if isOk(p) then (', Ry1est(r), P+1ete (P))
else let (w’',r,p) = [7']p (B,w) in
(w/7 Ru&»right (I‘), P+right (P))

[r&r']p=
A(B,w).
let (w,r,p) = [7]p (B,w) in
let (W”’,’,p’) = [7']p (B,w) in
!

[{z:mle}p =
A(B,w).
let (w',1,p) = [7]p (B,w) in
let x = (r,p) in
letc=ein
(wl,Rcon(C,I‘),Pcon(Cvp))

IIT seq(TS7 €, Ti)]]P =
A(B,w).

letfun isDone (w,r,p) =
EoF(B,w) or e (r,p) or
let (w’,r’,p’) = IITt]]P(va) in
is0k(p’)
in
letfun continue (w,w’,r,p) =
if w = w’ or isDone (w’,r,p) then (w’,r,p)
else let (ws,rs,ps) = [7s]p (B,w') in
let (we,Te,pe) = [7]p (B,ws) in
continue (wz We, Rseq(r’ Ie), Pseq(P7 Ps, pe))
in
let r = Rseq.init() in
letp= Pseq,init (w) in
if isDone (w,r,p) then (w,r,p)
else let (we,Te,Pe) = [7]p (B,w) in
continue (wlv We, Rseq(r’ I‘e), Pseq(P7 Punit (w)7 Pe))

[o]p = parseq

[po.r]p =
fun parseq (B:bits,w:offset): offset x [ua.7]p* [na.T]pp =

let (w',r,p) = [[T]]P[HNO"T]]rep/O‘reP} H[MO"T]]PDb/O‘PDb] (B,w) in
(w', fold[[pa.T]ep T, (p-h, fold[[na.T]ppyl P))

[Ma.7]p = Acrep.Aowps.Aparseq.[7]p

[ri72lp = [m1lp [[72liepl [[m2]ppul [72]p

[compute(e:o)]p =

A(Bv w) . (Wa Rcompute (8)7 pcompute (w))

[absorb(7)]p =
A(B,w).

let (w',r,p) = [7]p (B,w) in
(Wl7 Rabsorb (p), Pabsorb())

[scan(r)lp =
A(B,w).

letfun try i =
let (o, r,p) = [7]p (B,w + 1) in
if isOk(p) then
(w’,Rscan (), Pscan (i, sub(B,w,i + 1),p)) else
if EoF(B,w + i) then
(W7 Rscan,err(), Pscan_err (w)) else
try (i +1)
in try O

Figure 19. bbc® Parsing Semantics

fun Pyrigne p = (Hy p.h,inr p)

fun Rg, (r,1’) = (r,1')
fun He (h1, h2) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = if hy.ec = fail and hy.ec = fail then fail
else max_ec hj.ec hy.ec in
let sp = (hi.sp.begin, max(h;.sp.end, hy.sp.end)) in
(nerr, ec, sp)

fun Pg (p1,p2) = (He (p1-h,p2.h), (p1,p2))

fun Reon (c,r) = if c then inl r else inrr

fun Peon (c,p) =
if ¢ then ((pos(p.h.nerr),p.h.ec,p.h.sp),p)
else ((1 + pos(p.h.nerr),max_ec err p.h.ec,p.h.sp),p)

fun Rseq.init () = (0, [])
fun Pseq,init w = ((07 °k7 (wu w))1 (07 07 []))
fun Rgeq (r,Te) = (r.len+ 1,r.elts @ [re])

fun Hgeq (h,hs,he) =
let eerr = if h.neerr = 0 and h.nerr > 0
then 1 else 0 in
let nerr = h.nerr + pos(hg.nerr) + eerr in
let ec = if he.ec = fail then fail
else max_ec h.ec he.ec in
let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)
fun Pseq (P, Ps, Pe) =
(Hseq (P-h, Ps-h, pe-h),
(p-neerr + pos(pe.h.nerr),p.len + 1,p.elts @ [pe]))

fun Rcompute r=r
fun Pcompute w = ((Oy ok, (0.17 UJ)), ())

fun Rapsorb p = if is0k(p) then inl () else inr none
fun Pabsors P = (p-h, ()

fun Rscan r = inl r

fun Pscan (1,B,p) =
let nerr = pos(i) + pos(p’.h.nerr) in
let ec = if nerr = O then ok else err in
let hdr = (nerr, ec, (p.sp.begin — i,p.sp.end)) in
(hdr, inl (i,B,p))
fun Rscan err () = inr none
fun Pgcan err w = let hdr = (1, fail, (w,w)) in
(hdr, inr ())

a

Definition 9 (Representation and PD Correlation Relation)
Canon, (r, p) iff exactly one of the following is true:
® v =unit andr = () and p.nerr = 0.
® y = bottom and r = none and p.nerr = 1.
® v =(C(e)andr = inl c and p.nerr = 0.
® v = (C(e) andr = inr none and p.nerr = 1.
vy = Yairy.re and r = (r1,r2) and p = (h,(p1,p2)) and
h.nerr = pos(pi.nerr) + pos(p2.nerr), Canon*r, (r1,p1) and
Canon® 1, ((r,p) /2] (T2, P2)-
v =1 +72andr = inl v’ and p = (h,inl p’) and h.nerr =
pos(p’.nerr) and Canon*,, (r',p’).
v =1 +72andr = inr v’ and p = (h,inr p’) and h.nerr =
pos(p’.nerr) and Canon*r, (', p’).
ey =1 &7, 7 = (r1,r2) andp = (h, (p1,p2)), and h.nerr =
pos(p1.nerr)+pos(pz2.nerr), Canon*, (r1, p1) and Canon* -, (12, p2).
v = {z7'|e}, r = inl 7/ and p = (h,p’), and h.nerr =
pos(p’.nerr), Canon* ./ (r',p’) and e[(r', p’) /z] —* true.

v = {z7'|e}, r = inr 7/ and p = (h,p’), and h.nerr =
1 + pos(p’.nerr), Canon* ./ (', p) and e[(r',p') /x] —* false.
® v =rT1.seq(7s,¢,7t,),r = (len, [77]), p = (h, (neerr,len’, [pi])),
len = len/, neerr = 31" pos(p;.nerr), Canon* . (r;, p;), (for

i=1...len), and h.nerr > pos(neerr).

v =pa.m’,p=(h,p'),p.nerr = p'.nerr and Canon* 11,4 7 /o1 (7, p').-
v = compute(e:o) and p.nerr = 0.

v = absorb(7’), r = inl (), and p.nerr = 0.

v = absorb(7’), r = inr none, and p.nerr > 0.

v = scan(7’), r = inl 7/, p = (h,inl (%,p’)), h.nerr =
pos(%) + pos(p’.nerr), and Canon* ./ (', p’).

v = scan(7’), r = inr none, p = (h,inr ()), and h.nerr = 1.

[unit]pp = A(x, pd).€
[bottom]pp = A(r, pd).€
[C(e)]pp = Alx, pd)-Bpp(C) (e) (r,pd)
Pa.7lpp = Az.[7]pp
[7elpp=[7lppe
[Ear.m2]pp =
A(r, pd).
let x = (r.1,pd.2.1) in
let bsy = [71]ppx in
let bsy = [12]pp (r.2,pd.2.2) in
bsy Q bsa
[71 + 72]pp =
A(r, pd).
case (r,pd.2) of
| (inlry,inl p1) = [71]pp (r1,P1)
| (inr ra, inr p2) = [2]pp (T2, p2)
| - = badInput()
[11 &m2lpp=
Az, pd).
let p;y =pd.2.1in
let pop = pd.2.2 in
if pi.h.sp.end > ps.h.sp.end
then [71]pp (r.1,p1)
else [2]pp (r.2,p2)
[{z:7[e}]pp =
A(r,pd).
case r of
| inl r1 = [7]pp (r1,pd.2)
| inr ro = [7]pp (r2,pd.2)

[seq(¢, e, mt)]pp =
A(zx,pd).
letfun print (rs,ps) =
case (rs,ps) of
NNEY
| (1.) = [1pp (5:D)
| (x::rs,p:ps) =
[7lpp (xr,p) @
printLit(¢) @
print(rs, ps)
| - = badInput()
print(r.elts,pd.elts)
[o]pp = printq
[nat]pp =
fun printa (r : [noer]en pd : [po7]pp) : bits =
HT] PP[[MO"TH rep/arep] [II/j/a'T]] PDb/aPDb]
(unfold[[par.7] ey T, unfold[[pa.T]ppyl pd.2)
[Aa.T]pp = Acrep.-Aoppp Aprinte . [7]pp
[ri72lpp = [m1lpp ([m2]rep [[2]pob] [72]pp
[compute(e:o)]pp = A(x, pd).€
[literal(£)]pp = A((), pd).printLit(¥)
[scan(7)]pp =
Az, pd).
case (r,pd.2) of
| (inl ry,inl p1) = p1.2 @ [7]pp (r1,p1.3)
| (inr rp, inr pp) = €
| -~ = badInput()

Figure 20. bbc® Printing semantics

