
PADS/ML: A Functional Data Description Language

Yitzhak Mandelbaum∗, Kathleen Fisher†, David Walker∗, Mary Fernandez†, Artem Gleyzer∗

∗Princeton University †AT&T Labs Research
yitzhakm,dpw,agleyzer@CS.Princeton.EDU kfisher,mff@research.att.com

Abstract
Massive amounts of useful data are stored and processed inad hoc
formats for which common tools like parsers, printers, query en-
gines and format converters are not readily available. In this paper,
we explain the design and implementation ofPADS/ML , a new lan-
guage and system that facilitates the generation of data processing
tools for ad hoc formats. ThePADS/ML design includes features
such as dependent, polymorphic and recursive datatypes, which al-
low programmers to describe the syntax and semantics of ad hoc
data in a concise, easy-to-read notation. ThePADS/ML implemen-
tation compiles these descriptions intoML structures and functors
that include types for parsed data, functions for parsing and print-
ing, and auxiliary support for user-specified, format-dependent and
format-independent tool generation.

Categories and Subject DescriptorsD.3.2 [Language Classifica-
tions]: Applicative (functional) languages

General Terms Languages

Keywords Data description languages, domain-specific languages,
functional programming, dependent types, ML, modules, parsing,
printing

1. Introduction
An ad hocdata format is any semi-structured data format for which
parsing, querying, analysis, or transformation tools are not read-
ily available. Despite the existence of standard formats likeXML ,
ad hoc data sources are ubiquitous, arising in industries as diverse
as finance, health care, transportation, and telecommunications as
well as in scientific domains, such as computational biology and
physics. Figure 1 summarizes a variety of such formats, including
ASCII, binary, and Cobol encodings, with both fixed and variable-
width records arranged in linear sequences and in tree-shaped hi-
erarchies. Snippets of some of these data formats appear in Fig-
ure 2. Note that even a single format can exhibit a great deal of
syntactic variability. For example, Figure 2(c) contains two records
from a network-monitoring application. Each record has a differ-
ent number of fields (delimited by ‘|’) and individual fields contain
structured values (e.g., attribute-value pairs separated by ‘=’ and
delimited by ‘;’).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

Name: Use Representation

Gene Ontology (GO): Variable-width
Gene Product Information ASCII records
SDSS/Reglens Data: Floating point numbers,
Weak gravitational lensing analysis among others
Web server logs (CLF): Fixed-column
Measuring web workloads ASCII records
AT&T Call detail data: Fixed-width
Phone call fraud detection binary records
AT&T billing data: Cobol
Monitoring billing process
Newick: Fixed-width ASCII records
Immune system response simulation in tree-shaped hierarchy
OPRA: Mixed binary & ASCII records
Options-market transactions with data-dependent unions
Palm PDA: Mixed binary & character
Device synchronization with data-dependent constraints

Figure 1. Selected ad hoc data sources.

Common characteristics of ad hoc data make it difficult to per-
form even basic data-processing tasks. To start, data analysts typ-
ically have little control over the format of the data; it arrives “as
is,” and the analysts can only thank the supplier, not request a more
convenient format. The documentation accompanying ad hoc data
is often incomplete, inaccurate, or missing entirely, which makes
understanding the data format more difficult. Managing the er-
rors that frequently occur poses another challenge. Common er-
rors include undocumented fields, corrupted or missing data, and
multiple representations for missing values. Sources of errors in-
clude malfunctioning equipment, race conditions on log entry, the
presence of non-standard values to indicate “no data available,”
and human error when entering data. How to respond to errors
is highly application-specific: Some need to halt processing and
alert a human operator; others can repair errors by consulting auxil-
iary sources; still others simply filter out erroneous values. In some
cases, erroneous data is more important than error-free data; for
example, it may signal where two systems are failing to communi-
cate. Unfortunately, writing code that reliably handles both error-
free and erroneous data is difficult and tedious.

1.1 PADS/ML

PADS/ML is a domain-specific language designed to improve the
productivity of data analysts, be they computational biologists,
physicists, network administrators, healthcare providers or finan-
cial analysts. To use the system, analysts describe their data in the
PADS/ML language, capturing both the physical format of the data
and any expected semantic constraints. In return for this invest-
ment, analysts reap substantial rewards. First of all, the description
serves as clear, compact, and formally-specified documentation of
the data’s structure and properties. In addition, thePADS/ML com-
piler can convert the description into a suite of robust, end-to-end
data processing tools and libraries specialized to the format. As the

2:3004092508||5001|dns1=abc.com;dns2=xyz.com|c=slow link;w=lost packets|INTERNATIONAL
3:|3004097201|5074|dns1=bob.com;dns2=alice.com|src_addr=192.168.0.10; \
dst_addr=192.168.23.10;start_time=1234567890;end_time=1234568000;cycle_time=17412|SPECIAL

(a) Simplified Regulus network-monitoring data.

0|1005022800
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|1001649601
9152|9151|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|1000295291

(b) Sirius data used to monitor billing in telecommunications industry.

(((erHomoC:0.28006,erCaelC:0.22089):0.40998, (erHomoA:0.32304,(erpCaelC:0.58815,((erHomoB: \
0.5807,erCaelB:0.23569):0.03586,erCaelA: 0.38272):0.06516):0.03492):0.14265):0.63594, \
(TRXHomo:0.65866,TRXSacch:0.38791):0.32147, TRXEcoli:0.57336)

(c) Newick data used to study immune system responses.

Figure 2. Snippets of a variety of ad hoc data formats. Each ‘\’ denotes a newline we inserted to improve readability.

analysts’ data sources evolve over time, they can simply update the
high-level descriptions and recompile to produce updated tools.

The type structure of modern functional programming lan-
guages inspired the design of thePADS/ML language. Specifically,
PADS/ML provides dependent, polymorphic recursive datatypes,
layered on top of a rich collection of base types, to specify the
syntactic structure and semantic properties of data formats. To-
gether, these features enable analysts to write concise, complete,
and reusable descriptions of their data. We describe thePADS/ML
language using examples from several domains in Section 2.

We have implementedPADS/ML by compiling descriptions into
O’ CAML code. We use a “types as modules” implementation strat-
egy in which eachPADS/ML type becomes a module and each
PADS/ML type constructor becomes a functor. We choseML as the
host language because we believe that functional languages lend
themselves to data processing tasks more readily than imperative
languages such asC or JAVA. In particular, constructs such as pat-
tern matching and higher-order functions make expressing data
transformations particularly convenient. Section 3 describes our
“types as modules” strategy and shows howPADS/ML -generated
modules together with functionalO’ CAML code can concisely ex-
press common data-processing tasks such as filtering errors and for-
mat transformation.

A key benefit of our approach is the high return-on-investment
that analysts can derive from describing their data inPADS/ML . In
particular,PADS/ML makes it possible to produce automatically a
collection of data analysis and processing tools from each descrip-
tion. As a start, thePADS/ML compiler generates from each descrip-
tion a parser and a printer for the associated data source. The parser
maps raw data into two data structures: a canonicalrepresentation
of the parsed data and aparse descriptor, a meta-data object detail-
ing properties of the corresponding data representation. Parse de-
scriptors provide applications with programmatic access to errors
detected during parsing. The printer inverts the process, mapping
internal data structures and their corresponding parse descriptors
back into raw data.

In addition to generating parsers and printers, our framework
permits developers to addformat-independenttools without modi-
fying the PADS/ML compiler by specifyingtool generators. Such
generators need only match a generic interface, specified as an
ML signature. Correspondingly, for eachPADS/ML description, the
PADS/ML compiler generates a meta-tool (a functor) that takes a
tool generator and specializes it for use with the particular descrip-
tion. Section 4 describes the tool framework and gives examples of
three format-independent tools that we have implemented: a data
printer useful for description debugging, an accumulator that keeps

track of error information for each type in a data source, and a for-
matter that maps data into XML.

To define the semantics ofPADS/ML , we extended our earlier
work on the Data Description Calculus (DDC) [3] to account for
PADS/ML ’s polymorphic types. In the process, we simplified the
original presentation of the parser semantics substantially, partic-
ularly for recursive types. In addition, we extended the theory to
give a printing semantics. We used this new semantics to guide the
PADS/ML implementation of printing. We also proved acanoni-
cal formstheorem, which states that the generated parsers produce
well-typed, well-behaved canonical results, and, conversely, that
printers operate correctly on the appropriate canonical inputs. A
full treatment of the extended calculus appears in Mandelbaum’s
Ph.D. thesis [4], while an overview of the calculus and printing se-
mantics, as well as the associated metatheory, can be found in our
companion technical report [5].

PADS/ML has evolved from previous work onPADS/C 1 [2], but
PADS/ML differs from PADS/C in three significant ways. First, it
is targeted at theML family of languages. UsingML as the host
language simplifies many data processing tasks, such as filtering
and normalization, which benefit fromML ’s pattern matching con-
structs and high level of abstraction. Second, unlikePADS/C types,
PADS/ML types may be parameterized by other types, resulting in
more concise and elegant descriptions through code reuse.ML -
style datatypes and anonymous nested tuples also help improve
readability by making descriptions more compact. Third,PADS/ML
provides significantly better support for the development of new
tool generators. In particular,PADS/ML provides a generic inter-
face against which tool generators can be written. InPADS/C, the
compiler itself generates all tools, and, therefore, developing a new
tool generator requires understanding and modifying the compiler.
Mandelbaum’s Ph.D. thesis [4] contains a full discussion of related
work.

In summary, this research makes the following contributions:

• We have designed and implementedPADS/ML , a novel data-
description language that includes dependent, polymorphic, re-
cursive datatypes. This design allows data analysts to express
the syntactic structure and semantic properties of data formats
from numerous application domains in a concise, elegant, and
easy-to-read notation.

• OurPADS/ML implementation employs an effective and general
“types as modules” compilation strategy that produces robust
parser and printer functions as well as auxiliary support for
user-specified tool generation. Our implementation is available
athttp://www.padsproj.org/padsml/ .

1 We henceforth call the originalPADS languagePADS/C.

2. Describing Data in PADS/ML
A PADS/ML description specifies the physical layout and semantic
properties of an ad hoc data source. These descriptions are com-
posed of types: base types describe atomic data, while structured
types describe compound data built from simpler pieces. Exam-
ples of base types include ASCII-encoded, 8-bit unsigned integers
(Puint8) and 32-bit signed integers (Pint32), binary 32-bit in-
tegers (Pbint32), dates (Pdate), strings (Pstring), zip codes
(Pzip), phone numbers (Pphone), and IP addresses (Pip). Se-
mantic conditions for such base types include checking that the re-
sulting number fits in the indicated space,i.e., 16-bits forPint16 .

Base types may be parameterized byML values. This mecha-
nism reduces the number of built-in base types and permits base
types to depend on values in the parsed data. For example, the
base typePuint16_FW(3) specifies an unsigned two byte in-
teger physically represented by exactly three characters, and the
base typePstring takes an argument indicating theterminator
character, i.e., the character in the source that follows the string.

To describe more complex data,PADS/ML provides a collection
of type constructors derived from the type structure of functional
programming languages like Haskell and ML. We explain these
structured types in the following subsections using examples drawn
from data sources we have encountered in practice.

2.1 Simple Structured Types

The bread and butter of aPADS/ML description are the simple struc-
tured types: tuples and records for specifying ordered data, lists for
specifying homogeneous sequences of data, sum types for speci-
fying alternatives, and singletons for specifying the occurrence of
literal characters in the data. We describe each of these constructs
as applied to the Sirius data presented in Figure 2(b).

Sirius data summarizes orders for phone service placed with
AT&T. Each Sirius data file starts with a timestamp followed by
one record per phone service order. Each order consists of a header
and a sequence of events. The header has 13 pipe separated fields:
the order number, AT&T’s internal order number, the order version,
four different telephone numbers associated with the order, the zip
code of the order, a billing identifier, the order type, a measure
of the complexity of the order, an unused field, and the source of
the order data. Many of these fields are optional, in which case
nothing appears between the pipe characters. The billing identifier
may not be available at the time of processing, in which case the
system generates a unique identifier, and prefixes this value with
the string “noii” to indicate that the number was generated. The
event sequence represents the various states a service order goes
through; it is represented as a newline-terminated, pipe-separated
list of state, timestamp pairs. There are over 400 distinct states
that an order may go through during provisioning. The sequence
is sorted in order of increasing timestamps. Clearly English is a
poor language for describing data formats!

Figure 3 contains thePADS/ML description for the Sirius data
format. The description is a sequence of type definitions. Type
definitions precede uses, therefore the description should be read
bottom up. The typeSource describes a complete Sirius data
file and denotes an ordered tuple containing aSummary_header
value followed by anOrders value.

The type Orders uses the list type constructorPlist to
describe a homogenous sequence of values in a data source. The
Plist constructor takes three parameters: on the left, the type of
elements in the list; on the right, a literalseparatorthat separates
elements in the list and a literalterminatorthat marks the end of the
list. In this example, the typeOrders is a list ofOrder elements,
separated by a newline, and terminated bypeof , a special literal
that describes theend-of-file marker. Similarly, theEvents type

ptype Summary_header = "0|" * Ptimestamp * ’\n’

pdatatype Dib_ramp =
Ramp of Pint

| GenRamp of "no_ii" * Pint

ptype Order_header = {
order_num : Pint;

’|’; att_order_num : [i:Pint | i < order_num];
’|’; ord_version : Pint;
’|’; service_tn : Pphone Popt;
’|’; billing_tn : Pphone Popt;
’|’; nlp_service_tn : Pphone Popt;
’|’; nlp_billing_tn : Pphone Popt;
’|’; zip_code : Pzip Popt;
’|’; ramp : Dib_ramp;
’|’; order_sort : Pstring(’|’);
’|’; order_details : Pint;
’|’; unused : Pstring(’|’);
’|’; stream : Pstring(’|’);
’|’
}

ptype Event = Pstring(’|’) * ’|’ * Ptimestamp
ptype Events = Event Plist(’|’, ’\n’)

ptype Order = Order_header * Events
ptype Orders = Order Plist(’\n’, peof)

ptype Source = Summary_header * Orders

Figure 3. PADS/ML description for Sirius provisioning data.

denotes a sequence ofEvent values separated by vertical bars and
terminated by a newline.

String, character, and integer literals can be embedded in a
description and are interpreted as singleton types. For example, the
Event type is a string terminated by a vertical bar, followed by
a vertical bar, followed by a timestamp. The singleton type’|’
means that the data source must contain the character’|’ at this
point in the input stream. Correspondingly, the generated parser
reads’|’ and the generated printer writes’|’ . These literals do
not appear in the generated data representations.

The typeOrder_header is a record type,i.e., a tuple type
in which each field may have an associated name. The named
field att_order_num illustrates two other features ofPADS/ML :
dependencies and constraints. Here,att_order_num depends
on the previous fieldorder_num and is constrained to be less
than that value. In practice, constraints may be complex, have
multiple dependencies, and can specify, for example, the sorted
order of records in a sequence. Constrained types have the form
[x:T | e] wheree is an arbitrary pure boolean expression. Data
satisfies this description if it satisfiesT ande evaluates totrue
when the parsed representation of the data is substituted forx . If the
boolean expression evaluates to false, the data contains asemantic
error.

The datatypeDib_ramp specifies two alternatives for a data
fragment: either one integer or the fixed string"no_ii" followed
by one integer. The order of alternatives is significant, that is, the
parser attempts to parse the first alternative and only if it fails, it at-
tempts to parse the second alternative. This semantics differs from
similar constructs in regular expressions and context-free gram-
mars, which non-deterministically choose between alternatives.

2.2 Recursive Types

PADS/ML can describe data sources with recursive structure. An
example of such data is the Newick Standard format, a flat repre-

sentation of trees used by biologists [6]. Example Newick Standard
data provided by Steven Kleinstein appears in Figure 2(c). The for-
mat uses properly nested parentheses to specify a tree hierarchy. A
leaf node is a string label followed by a colon and a number. An
interior node contains a sequence of children nodes, delimited by
parentheses, followed by a colon and a number. The numbers rep-
resent the “distance” that separates a child node from its parent. In
this example, the string labels are gene names and the distances de-
notes the number of mutations that occur in the antibody receptor
genes of B lymphocytes. The followingPADS/ML code describes
this format:

ptype Entry = {name: Pstring(’:’); ’:’; dist: Pfloat32}

pdatatype Tree =
Interior of ’(’ * Tree Plist(’;’,’)’) * ’)’

| Leaf of Entry

2.3 Polymorphic Types and Advanced Datatypes

Polymorphic types enable more concise descriptions and allow pro-
grammers to define convenient libraries of reusable descriptions.
The description in Figure 4 illustrates types parameterized by both
types and values. It specifies the format of alarm data recorded by
a network-link monitor used in the Regulus project at AT&T. Fig-
ure 2(a) contains corresponding example data. We describe the for-
mat in tandem with describing itsPADS/ML description.

This data format has several variants of name-value pairs. The
PADS/C description of this format [5] must define a different type
for each variant. In contrast, the polymorphic types ofPADS/ML al-
low us to define the typePnvp , which takes both type and value
parameters to encode all the variants. As is customary inML , type
parameters appear to the left of the type name, while value param-
eters and theirML types appear to the right. The typePnvp has
one type parameter namedAlpha and one value parameter named
p. Informally, Alpha Pnvp(p) is a name-value pair where the
value is described byAlpha and the name must satisfy the predi-
catep.

TheNvp type reuses thePnvp type to define a name-value pair
whose name must match the argument stringnamebut whose value
can have any type. TheNvp_a type also uses the typePnvp . It
defines a name-value pair that permits any name, but requires the
value to have typeSVString (a string terminated by a semicolon
or vertical bar). Later in the description, the type parameter toNvp
is instantiated with IP addresses, timestamps, and integers.

The Regulus description also illustrates the use ofswitched
datatypes. A switched datatype selects a variant based on the
value of a user-specifiedO’ CAML expression, which typically ref-
erences parsed data from earlier in the data source. For example,
the switched datatypeInfo chooses a variant based on the value of
its alarm_code parameter. More specifically, if the alarm code is
5074 , the format specification given by theDetails constructor
will be used to parse the current data. Otherwise, the format given
by theGeneric constructor will be used.

3. From PADS/ML to O’CAML
The PADS/ML compiler takes descriptions and generatesO’ CAML
modules that can be used by anyO’ CAML program. In this section,
we describe the generated modules and illustrate their use.

3.1 Types as Modules

We use theO’ CAML module system to structure the libraries gen-
erated by thePADS/ML compiler. EachPADS/ML base type is im-
plemented as anO’ CAML module. For eachPADS/ML type in a
description, thePADS/ML compiler generates anO’ CAML module
containing the types, functions, and nested modules that implement

(* Pstring terminated by ’;’ or ’|’. *)
ptype SVString = Pstring_SE("/;|\\|/")

(* Generic name value pair. Accepts predicate
to validate name as argument. *)

ptype (Alpha) Pnvp(p : string -> bool) =
{ name : [name : Pstring(’=’) | p name];

’=’;
value : Alpha }

(* Name value pair with name specified. *)
ptype (Alpha) Nvp(name:string) =

Alpha Pnvp(fun s -> s = name)

(* Name value pair with any name. *)
ptype Nvp_a = SVString Pnvp(fun _ -> true)

ptype Details = {
source : Pip Nvp("src_addr");

’;’; dest : Pip Nvp("dest_addr");
’;’; start_time : Ptimestamp Nvp("start_time");
’;’; end_time : Ptimestamp Nvp("end_time");
’;’; cycle_time : Puint32 Nvp("cycle_time")
}

pdatatype Info(alarm_code : int) =
match alarm_code with

5074 -> Details of Details
| _ -> Generic of Nvp_a Plist(’;’,’|’)

pdatatype Service =
DOMESTIC of "DOMESTIC"

| INTERNATIONAL of "INTERNATIONAL"
| SPECIAL of "SPECIAL"

ptype Alarm = {
alarm : [i : Puint32 | i = 2 or i = 3];

’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code : Puint32;
’|’; src_dns : SVString Nvp("dns1");
’;’; dest_dns : SVString Nvp("dns2");
’|’; info : Info(code);
’|’; service : Service

}

ptype Source = Alarm Plist(’\n’, peof)

Figure 4. Description of Regulus data.

thePADS/ML type. All the generated modules are grouped into one
module that implements the complete description. For example, a
PADS/ML description namedsirius.pml , which contains three
named types, will result in theO’ CAML file sirius.ml defining
the moduleSirius , which will contain three submodules, each
corresponding to one named type.

Namespace management alone is sufficient motivation to em-
ploy a “types as modules” approach, but the power of theML mod-
ule system provides substantially more. We implement polymor-
phicPADS/ML types as functors from (type) modules to (type) mod-
ules. Ideally, we would like to map recursivePADS/ML types into
recursive modules. Unfortunately, this approach currently is not
possible, becauseO’ CAML prohibits the use of functors within re-
cursive modules, and the output of thePADS/ML compiler includes
a functor for each type. Instead, we implement recursive types as
modules containing recursive datatypes and functions. As there is
no theoretical reason to prevent recursive modules from containing
functors [1], we pose our system as a challenge to implementers of
module systems.

The module generated for any monomorphicPADS/ML type
matches the signatureS:

module type S = sig
type rep
type pd_body
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
(* Functor for tool generator ... *)
module Traverse ...

end

Therepresentation(rep) type describes the in-memory representa-
tion of parsed data, while theparse-descriptor(pd) type describes
meta-data collected during parsing. The parsing function converts
the raw data into an in-memory representation and parse descrip-
tor for the representation. The printing function performs the re-
verse operation. The module also contains a generic tool genera-
tor implemented as a functor; we defer a description of this func-
tor to Section 4. The modulePads contains the built-in types
and functions that occur in base-type and generated modules. The
typePads.pd_header is the type of all parse-descriptor head-
ers andPads.handle is an abstract type containing the private
data structuresPADS/ML uses to manage data sources.

The structure of the representation and parse-descriptor types
resembles the structure of the correspondingPADS/ML type, mak-
ing it easy to see the correspondence between parsed data, its inter-
nal representation, and the corresponding meta-data. For example,
given thePADS/ML type Pair describing a character and integer
separated by a vertical bar:

ptype Pair = Pchar * ’|’ * Pint

the compiler generates a module with the signature:

module type Pair_sig = sig
type rep = Pchar.rep * Pint.rep
type pd_body = Pchar.pd * Pint.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

The parse-descriptor header reports on the parsing process that pro-
duced the corresponding representation. It includes the location of
the data in the source, an error code describing the first error en-
countered, and the number of subcomponents with errors. The body
contains the parse descriptors for subcomponents. Parse descriptors
for base types have a body of typeunit .

The signature for a polymorphicPADS/ML type uses the signa-
tureS for monomorphic types, defined above. Given the polymor-
phic PADS/ML typeABPair :

ptype (Alpha,Beta) ABPair = Alpha * ’|’ * Beta

the compiler generates a module with the signature:

module type ABPair_sig (Alpha : S) (Beta : S) =
sig

type rep = Alpha.rep * Beta.rep
type pd_body = Alpha.pd * Beta.pd
type pd = Pads.pd_header * pd_body
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
...

end

3.2 Using the Generated Libraries

Common data management tasks like filtering and normalization
are easy to express inO’ CAML . In the remainder of this section,
we illustrate this point by givingO’ CAML programs to compute
properties of ad hoc data, to filter it, and to transform it.

3.2.1 Example: Computing Properties

Given thePADS/ML type:

open Pads

let classify_order order (pd_hdr, pd_body) (good, bad)=
match pd_hdr with

{error_code = Good} -> (order::good, bad)
| _ -> (good, order::bad)

let split_orders orders (orders_pd_hdr,order_pds) =
List.fold_right2 classify_order orders order_pds ([],[])

let ((header, orders),(header_pd, orders_pd)) =
parse_source Sirius.parse "input.txt"

let (good,bad) = split_orders orders orders_pd

Figure 5. Error filtering of Sirius data

ptype IntTriple = Pint * ’|’ * Pint * ’|’ * Pint

the following O’ CAML expression computes the average of the
three integers in the fileinput.data :

let ((i1,i2,i3), (pd_hdr, pd_body)) =
Pads.parse_source IntTriple.parse "input.data" in

match pd_hdr with
{error_code = Pads.Good} -> (i1 + i2 + i3)/3

| _ -> raise Pads.Bad_file

Theparse_source function takes a parsing function and a file
name, applies the parsing function to the data in the specified file,
and returns the resulting representation and parse descriptor. To
ensure the data is valid, the program examines the error code in
the parse-descriptor header. The error codeGood indicates that the
data is syntactically and semantically valid. Other error codes in-
cludeNest , indicating an error in a subcomponent,Syn, indicat-
ing that a syntactic error occurred during parsing, andSem, indi-
cating that the data violates a semantic constraint. The expression
above raises an exception if it encounters any of these error codes.

Checking the top-level parse descriptor for errors is sufficient
to guarantee that there are no errors in any of the subcomponents.
This property holds for all representations and corresponding parse
descriptors. This design supports a “pay-as-you-go” approach to
error handling. The parse descriptor for valid data need only be
consulted once, no matter the size of the corresponding data. User
code only needs to traverse nested parse descriptors if information
about an error is required.

3.2.2 Example: Filtering

Data analysts often need to “clean” their data (i.e., remove or repair
data containing errors) before loading the data into a database or
other application.O’ CAML ’s pattern matching and higher-order
functions can simplify these tasks. For example, the expression in
Figure 5 partitions Sirius data into valid orders and invalid orders.

3.2.3 Example: Transformation

Once a data source has been parsed and cleaned, a common task
is to transform the data into formats required by other tools, like
a relational database or a statistical analysis package. Transfor-
mations include removing extraneous literals, inserting delimiters,
dropping or reordering fields, and normalizing the values of fields
(e.g., converting all times into a specified time zone). Because rela-
tional databases typically cannot store unions directly, one common
transformation is to convert data with variants (i.e., datatypes) into
a form that such systems can handle. One option is to partition or
“shred” the data into several relational tables, one for each variant.
A second option is to create an universal table, with one column
for each field in any variant. If a given field does not occur in a
particular variant, its value is marked as missing.

Figure 6 shows a partial listing ofRegulusNormal.pml ,
a normalized version of the Regulus description from Section 2.

...
ptype Header = {

alarm : [a : Puint32 | a = 2 or a = 3];
’:’; start : Ptimestamp Popt;
’|’; clear : Ptimestamp Popt;
’|’; code : Puint32;
’|’; src_dns : Nvp("dns1");
’;’; dest_dns : Nvp("dns2");
’|’; service : Service

}

ptype D_alarm = {
header : Header;

’|’; info : Details
}

ptype G_alarm = {
header : Header;

’|’; info : Nvp_a Plist(’;’,’|’)
}

Figure 6. Listing of RegulusNormal.pml , a normalized for-
mat for Regulus data. All named types not explicitly included in
this figure are unchanged from the original Regulus description.

open Regulus
open RegulusNormal
module A = Alarm
module DA = D_alarm
module GA = G_alarm
module Header = H

type (’a,’b) Sum = Left of ’a | Right of ’b

let split_alarm ra =
let h =

{H.alarm=ra.A.alarm; H.start=ra.A.start;
H.clear=ra.A.clear; H.code=ra.A.code;
H.src_dns=ra.A.src_dns; H.dest_dns=ra.A.dest_dns;
H.service=ra.A.service}

in match ra with
{info=Details(d)} ->
Left {DA.header = h; DA.info = d}

| {info=Generic(g)} ->
Right {GA.header = h; GA.info = g}

let split_alarm_pd pd = ... (* mirrors split_alarm *)

let process_alarm pads [pads_D; pads_G] =
let a,a_pd = Alarm.parse pads in

match (split_alarm a, split_alarm_pd a_pd) with
(Left da, Left da_p) -> DA.print da da_p pads_D

|(Right ga, Right ga_p) -> GA.print ga ga_p pads_G
| _ -> ... (* Bug! *)

let _ = process_source process_alarm
"input.data" ["d_out.data";"g_out.data"]

Figure 7. Shredding Regulus data based on theinfo field.

In this shredded version,Alarm has been split into two top-level
typesD_alarm andG_alarm . The typeD_alarm contains all
the information concerning alarms with the detailed payload, while
G_alarm contains the information for generic payloads. In the
original description, theinfo field identified the type of its pay-
load. In the shredded version, the two different types of records ap-
pear in two different data files. Since neither of these formats con-
tains a union, they can be easily loaded into a relational database.

The code fragment in Figure 7 shreds Regulus data in the for-
mat described byRegulus.pml into the formats described in
RegulusNormal.pml . It uses theinfo field of Alarm records
to partition the data. Notice that the code invokes theprint func-
tions generated for theG_alarm andD_alarm types to output
the shredded data.

4. The Generic Tool Framework
An essential benefit ofPADS/ML is that it can provide users with
a high return-on-investment for describing their data. While the
generated parser and printer alone are enough to justify the user’s
effort, we aim to increase the return by enabling users to easily
construct data analysis tools. To this end, we provide a simple
framework for others to develop format-independent tools.

The techniques of type-directed programming, known variously
asgenericor polytypicprogramming, provide a convenient concep-
tual starting point in designing a tool framework. In essence, any
format-independent tool is a function from a description to a con-
crete realization of that tool. AsPADS/ML descriptions are (depen-
dent) types, a format-independent tool is a type-directed function.

Some modern functional programming languages, Generic
Haskell [?], in particular, have many features that support type-
directed programming, and hence would support development of
format-independent tools quite nicely.O’ CAML , however, lacks any
specific, built-in generic programming facility. Fortunately, we can
still achieve many of the benefits of generic programming idioms
by having thePADS/ML compiler generate well-designed, format-
specific libraries at compile time and then linking those libraries to
format-independent routines.

To be specific, for each format description,PADS/ML generates
a format-dependent traversal mechanism that implements a gen-
eralized fold over the representations and parse descriptors that
correspond to the description. Independently, tool developers write
format-independent routines that specify the behaviour of a tool
over eachPADS/ML type constructor. When users need aspecific
tool for a specific format, they link the format-dependent traversal
to the format-independent routines via functor application.

In principle, different tools might require different sorts of
traversals. However, many of the tools we have encountered in
practice so far, both in implementingPADS/ML andPADS, perform
their computations in a single pass over the representation and cor-
responding parse descriptor, visiting each value in the data with a
left-to-right, pre-, post-, or in-order traversal. This paradigm arises
naturally as it scales to very large data sets. Hence, thePADS/ML
compiler generates an implementation of a such traversal for each
data description.

4.1 The Generic-Tool Interface

The interface between format-specific traversals and generic tools
is specified as anO’ CAML signature. For every type constructor in
PADS/ML , the signature describes a sub-module that implements
the generic tool for that type constructor. In addition, it specifies an
(abstract) type for auxiliary state that is threaded through the traver-
sal. Figure 8 contains an excerpt of the signature that includes the
signatures of theRecord and Datatype modules. The signa-
tures of other modules are quite similar.

The Record module includes a typepartial_state that
allows tools to represent intermediate state in a different form
than the general state. Theinit function forms the state of the
record from the state of its fields. Thestart function receives
the PD header for the data element being traversed and begins
processing the element. Functionproject takes a record’s state
and the name of a field and returns that field’s state. Function
process_field updates the intermediate state of the record
based on the name and state of a field, andfinish converts the
finished intermediate state into general tool state. Note that any of
these functions could have side effects.

Although theDatatype module is similar to theRecord
module, there are some important differences. TheDatatype
init function does not start with the state of all the variants.
Instead, a variant’s state is added during processing so that only
variants that have been encountered will have corresponding state.

module type S = sig
type state
...
module Record : sig

type partial_state
val init : (string * state) list -> state
val start : state -> Pads.pd_header

-> partial_state
val project : state -> string -> state
val process_field : partial_state -> string

-> state -> partial_state
val finish : partial_state -> state

end

module Datatype : sig
type partial_state
val init : unit -> state
val start : state -> Pads.pd_header

-> partial_state
val project : state -> string -> state option
val process_variant : partial_state -> string

-> state -> partial_state
val finish : partial_state -> state

end
...

end

Figure 8. Excerpt of generic-tool interfaceGeneric tool.S .

For this reason,project returns astate option , rather
than astate . This design is essential for supporting recursive
datatypes as trying to initialize the state for all possible variants of
the datatype would cause theinit function to loop infinitely.

The following code snippet gives the signature of the traversal
functor as it would appear in the signatureS from Section 3.

module Traverse (Tool : Generic_tool.S) :
sig

val init : unit -> Tool.state
val traverse : rep -> pd -> Tool.state -> Tool.state

end

The functor takes a generic tool generator and produces a format-
specific tool with two functions:init , to create the initial state
for the tool, andtraverse , which traverses the representation
and parse descriptor for the type and updates the given tool state.

4.2 Example Tools

We have used this framework to implement a variety of tools
useful for processing ad hoc data, including anXML formatter, an
accumulator tool for generating statistical overviews of the data,
and a data printer for debugging. We briefly describe these tools to
illustrate the flexibility of the framework.

The XML formatter converts any data with aPADS/ML descrip-
tion into a canonicalXML format. This conversion is useful because
it allows analysts to exploit the many useful tools that exist for ma-
nipulating data inXML .

The accumulator tool provides a statistical summary of data.
Such summaries are useful for developing a quick understanding of
data quality. In particular, after receiving a new batch of data, an-
alysts might want to know the frequency of errors, or which fields
are the most corrupted. The accumulator tool tracks the distribu-
tion of the topn distinct legal values and the percentage of errors.
It operates over data sources whose basic structure is a series of
records of the same type, providing a summary based on viewing
many records in the data source. More complex accumulator pro-
grams and a number of other statistical algorithms can easily be
implemented using the tool generation infrastructure.

Finally, as an aid in debuggingPADS/ML descriptions, we have
implemented a simple printing tool. In contrast to the printer gener-
ated by thePADS/ML compiler, the output of this tool corresponds
to the in-memory representation of the data rather than its original

format, which may have delimiters or literals that are not present in
the representation. This format is often more readable than the raw
data.

5. Conclusions
PADS/ML is a high-level, domain-specific language and system de-
signed to help improve the productivity of the legions of data an-
alysts who work with ad hoc data on a regular basis. Inspired by
the type structure of functional programming languages,PADS/ML
uses dependent, polymorphic and recursive data types to describe
the syntax and the semantic properties of ad hoc data sources. The
language is compact and expressive, capable of describing data
from diverse domains including networking, computational biol-
ogy, finance, and physics. ThePADS/ML compiler uses a “types as
modules” compilation strategy in which everyPADS/ML type def-
inition is compiled into anO’ CAML module containing types for
data representations and functions for data processing. Functional
programmers can use the generated modules to write clear and con-
ciseformat-dependentdata processing programs. Furthermore, our
system design allows external tool developers to write newformat-
independenttools simply by supplying a module that matches the
appropriate generic signature. The latest release of our implementa-
tion is available athttp://www.padsproj.org/padsml/ .

The next step in our long-term agenda is to build a new gener-
ation of format-independent data analysis tools. While our current
tools perform some simple syntactic analysis and transformation,
we intend our next generation toolkit to perform deeper semantic
analysis and more sophisticated transformations. For example, we
may explore specification-driven, content-based search, clustering,
test data generation, machine learning, security, and data visualiza-
tion. We believe that if we can automatically generate stand-alone,
end-to-end tools that perform these functions over arbitrary data,
we can have a substantial impact on the productivity of researchers
in a broad array of scientific fields ranging from computational bi-
ology through computer science to cosmology and beyond.

Acknowledgments. We would like to thank Derek Dreyer for dis-
cussions and advice on advanced module systems. Some of this
material is based upon work supported by NSF awards 0615062
and 0612147. Any opinions, findings, and conclusions or recom-
mendations expressed in the material are those of the authors and
do not necessarily reflect the views of the NSF.

References
[1] D. Dreyer. Understanding and Evolving the ML Module System. PhD

thesis, CMU, May 2005.
[2] K. Fisher and R. Gruber. PADS: A domain specific language for

processing ad hoc data. InACM Conference on Programming
Language Design and Implementation, pages 295–304. ACM Press,
June 2005.

[3] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. InACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 2 – 15, Jan. 2006.

[4] Y. Mandelbaum.The Theory and Practice of Data Description. PhD
thesis, Princeton University, September 2006.

[5] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez, and A. Gleyzer.
PADS/ML: A functional data description language. Technical Report
TR-761-06, Princeton University, July 2006.

[6] Tree formats. Workshop on molecular evolution.http://
workshop.molecularevolution.org/resources/
fileformats/tree formats.php .

