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Abstract

The termad hoc dataefers to the billions of bytes of non-standard
and continuously evolving data spread across all compystess.
Such data includes server logs, distributed system pednce and
debugging data, telephone call records, financial data afideo
repositories of scientific data.

This paper presentsaDS/D, a system that generates monitor-
ing, analysis and transformation tools for distributed ad data
from declarative specifications. The generated tools delan
archiver, a database loading system, a statistical amalymelert
system, an RSS feed generator, and debugging tools. Inaddit
the system generates libraries for application developectud-
ing modules for parsing, printing, error management, dateetsal
and transformation which developers can use to create thair
application-specific tools. Advanced users can build nenege
tools applicable to any collection of data sources.

The PADS/D data description language allows data analysts to
specifywheretheir ad hoc data is locatedpwto obtain it,whento
get it (or give up trying), anavhatpreprocessing the system should
do when it arrives. As its name suggestaps/D is layered on top
of the PADS sublanguage, developed in previous research efforts,
for specifying theformatof the data sources. We illustrate the ex-
pressiveness afADS/D by giving descriptions for several different
distributed systems including CoMon, the monitoring sysfer
PlanetLab, and a monitoring system for a web hosting sepiice
vided by AT&T. We define a formal semantics for the language, d
scribe our implementation, and evaluate its performanceskiéw
our system is capable of scaling to distributed systemsigeeas
CoMon, the current monitor for Planetlab’s 800+ nodes.

1. Introduction

An ad hoc data sources any semistructured data source for which
useful data analysis and transformation tools are not eadail-
able. The data that constitutes a single, abstract soutee cdmes
from many different concrete, physical destinations disted
across the Internet. It often becomes available over a rafij@mes
and in several, evolving formats. Before users can exttaetin-
formation they need from the data, it must be fetched, aechiv
locally for historical analysis, compressed, perhaps ygted or
anonymized, and monitored for errors or deviations fromrtbien.
Managing ad hoc data is a bane of the implementers of dis-
tributed systems. These systems may have hundreds or tiisusa
of heterogeneous, distributed components. Keeping thespa-
nents running smoothly is a continuous maintenance tasgwifis
cant complexity. Consequently, each component in a weligihed
distributed system produces a continuous stream of log tfiles
measure its performance and health. As an example, cortbieler
data manipulated by CoMon [24], a system designed to monitor
the health, performance and security of PlanetLab [26] r{Efree

minutes, CoMon attempts to contact each of 842 PlanetLabsod
across 416 sites worldwide.When all is well, which it newegiach
node responds with an ASCII data file in mail-header format co
taining information ranging from the kernel version to thgime

to the memory usage to the ID of the user with the greatest CPU
utilization. CoMon archives this data in compressed for pro-
cesses the information for display to PlanetLab users. Goiglan
invaluable resource for PlanetLab users who need to mottitor
health and performance of their applications or experiment

Almost all distributed systems have (or should have) simila
monitoring infrastructure. Currently, the implementofeach new
distributed system usually have to build “one-off” monitay tools,
which takes an enormous amount of time and expertise to do wel
A substantial part of the difficulty comes from the diversgyality,
and quantity of data these systems must handle. Implengentor
cannot ignore errors: they must properly handle networ&rsrand
partial disconnects of the network. They cannot ignoregrarance
issues: data must be fetched before it vanishes from renitete s
and it must be archived efficiently in ways that do not burtfard
drives by causing them to overheat. In addition, new moimitpr
systems also must interact with legacy devices, legacyaoétand
legacy data, preventing implementers from using robusthaff
shelf data management tools built for standard formatsXik..

Similar problems appear in the natural and social sciennes,
cluding biology, physics and economics. For example, syste
such as BioPixie [7], Grifn [6] and Golem [27], built by contpu
tional biologists at Princeton, routinely obtain data framumber
of sources scattered across the net. Often, the data isyadcand
later analyzed or mined for information about gene striectamd
regulation. Figure 1 summarizes selected distributed addaa
sources.

This paper describes a system that facilitates the creatiam-
tenance, and evolution of tools for processing ad hoc data &
wide array of distributed data sources over varying perifdsne.
The system, calleBADS/D, is a domain-specific language in which
software developers describe key aspects of the data sotireg
wish to monitor, including any of the following.

e Wherethe data is located. The data may be in a directory on the
current machine (perhaps written by another process),raeso
remote location, or at a collection of locations.

e Whento get the data. The data may need to be fetched just once
(right now!) or according to some schedule.

e How to obtain it. The data may be accessible through standard
protocols such akttp orftp orit may be created via a local
or remote computation.

e What preprocessingthe system should do when the data ar-
rives. The data may be compressed or encrypted; privacy con-
siderations may require the data be anonymized.



| NamelUse | Properties |
CoMon [24] Multiple data sets
PlanetLab host Archiving every 5 minutes
monitoring From evolving set of 800+ nodes
CoBlitz [23] Multiple data sets

File transfer

system monitoring
CoralCDN [15]

Log files from

CDN monitoring

Archiving every 3 minutes

From evolving set of 800+ nodes|
Single Format

Periodic archiving

From evolving set of 250+ hosts

AT&T Arrakis Execute programs remotely to
Website host collect data
monitoring Varied fetch frequencies

AT&T Regulus
Network monitoring

Diverse data sources
Archiving for future analysis
Per minute, hour, and day fetche

L2

AT&T Altair Thousands of data sources
Billing auditing Archiving and error analysis
GO DB [1] Multiple Formats
Gene function info. | Uploads daily, weekly, monthly
BioGrid [28] XML and Tab-separated Formats

Curated gene and
protein data

NCBI [20]
Biotechnology info.

multiple data setsc= 50MB each
Monthly data releases

Links to multiple bioinformatics
datasets

Figure 1. Example distributed ad hoc data sources.

e What format the data source arrives in. The data may be in
ASCII, binary, or EBCDIC. It may be tab- or comma-separated,
or it may be in the kind of non-standard format tiraiDs [12,

16] was designed to describe.

The PADS/D system then compiles these high-level specifica-
tions into a collection of programming libraries and enektal
tools for distributed systems monitoring. Our current tegite in-
cludes a number of useful artifacts, inspired by the needhave
observed in a variety of ad hoc monitoring systems:

e An archiver that collects distributed data on the specified
schedule, archives it, and maintains a “table of contents.”

e A printer that fetches, prints, and helps debug specifications.

¢ A performance monitor that measures fetch times and also
helps debug specifications.

¢ A RRD database loaderthat takes the data and extracts spec-
ified pieces to load into an RRD database [21]. The data is in-
dexed by its arrival time and supports time-based queries.

e An accumulator that maintains a statistical profile of the data
and its error characteristics.

e An alert systemthat generates alerts based on programmable
conditions.

gramming” involved, we refer to the act of writing simple sjie
cations and using pre-defined tools asdffehe-shelinode of use.
However, to avoid sacrificing flexibility and to support exséil-
ity, PADS/D supports two other modes of use.

The second mode is for thangle-minded implementewho
needs to build a new application forspecificcollection of dis-
tributed data sources. Such users need more than the ibs#t-of
tools, and consequently the system provides support fatiog
new tools by automatically generating libraries for fetghidata,
for parsing and printing, for performing type-safe datavérsal,
and for stream processing using classic functional prograng
paradigms such asap, fold anditerate . These generated li-
braries make it straightforward to create custom tools i§ijgetn
particular data sources. However, there is a steeper fgamirve
in this mode than in off-the-shelf mode because a varietynof i
terfaces must be learned. The average functional programrag
find these interfaces relatively intuitive, but the comiotaal sci-
entist who is not interested in functional programming mesfer
to stick with off-the-shelf uses.

The third mode is for theyeneric programmerGeneric pro-
grammers may observe that they (or their colleagues) nepdrto
form some task over and over again on different data setheRat
than writing a program specific to a particular data set, sy a
separate set of interfaces supplied by pa@</D system to write a
single generic program to complete the task. For exampeRIRD
database loader is generic because it is possible to loaddah
any specified source into the RRD tool without additionalo“pr
gramming.” The generic programming mode is the most difficul
to use as it involves learning a relatively complex set ofiifitces
for encoding Generalized Algebraic Datatypes (GADTS) [82d
Higher-Order Abstract Syntax (HOAS). These complexitiesra-
quired to encode the dependent feature®abs/D and to com-
pensate for the lack of built-in generic programming suppor
OCamL. Still the reward for building generic tools is very high:
as more and more such tools are built, the life of the offghelf
user becomes easier and easier. We have already built eightlu
generic tools ourselves and will continue to build more analed
requires.

Contributions. The paper makes the following contributions:

¢ |t outlines the design of a language for specifying the sati

temporal and auxiliary properties of distributed ad hocadat

sources. We are aware of no other research effort that has

attempted to design, implement or analyze such a language.

It provides a mechanism for the automatic generation ofteigh

different data processing tools from high-level specifaras.

e |t supports three modes of use: off-the-shelf, single-mihd
implementer and generic programmer, thereby optimizirtty bo
flexibility and ease-of-use.

¢ |t provides a formal denotational semantics for the languag
e |t reports on the implementation experience and performanc

Outline. In the remainder of the paper, we describe the two ex-

* A selector that extracts and records specified subcomponents amples we will use throughout the paper (Section 2), show teow

of a larger data source.
¢ An RSS feed generatothat wraps raw data in the appropriate

describe these data source®ADS/D (Section 3), describe the gen-
erated tool infrastructure and its different modes of usx{idn 4),

headers to create an RSS feed from diverse ad hoc data sourcesdefine a denotational semantics for the language (Sectiotiss)

The system can generate all of these tools freans/D de-
scriptions and declarative tool configuration specifigaioThus
for common tasks, users can manage distributed data sagimes
ply by writing high-level declarative specifications. Itgsick and
it is easy. There are relatively few concepts to learn, noper
interfaces and no tricky boilerplate to master to initialthe sys-
tem or thread together tool libraries. Because there igtte pro-

cuss the implementation and evaluate its performance i(®eg},
describe related work (Section 7), and conclude (Section 8)

2. Running Examples

The CoMon [24] system, developed at Princeton, monitors the
health and status of PlanetLab [26] by attempting to fetcta da
from each of PlanetLab’s 800+ nodes every 5 minutes. Thia dat



let sites = data for the feed comes from all of the locations listedites

Theschedul efield specifies that relevant data is available from
"http-//plabl-c703.uibk.ac.at:3121"; each source every five minutes, starting |mmed|atgly. Wheng
“http-//planet-lab1.cs.princeton.edu:3121" to fetch such data, the system may occasionally fail, etibeause

] a remote machine is down or because of network problems. To

"http://pll.csl.utoronto.ca:3121";

f eed simple_comon = manage such errors, the schedule specifies that the systand sh
base {| try to collect the data from each source for 60 seconds. Ifita
sources = all sites; does not arrive within that window, the system should giveRip
schedul e = every 5 min, starting now, nally, thef or mat field indicates that the fetched data conforms to
timeout 60.0 sec; the PADS/ML [16] description name&ource defined in the file
f or mat = Comon_format.Source; comon_format
I} In contrast to thesimple_comon feed, which returns data
from all sites, thecomon_1 feed defined in Figure 3 uses thay
Figure 2. simple _comon.fml : Simple CoMon feed. constructor in thesour ces field to return only a single value per

time slice: that of the first site to supply a complete set tddahis
feature is particularly useful when monitoring the behawaifrepli-

feed comon_1 = cated systems, such as those using state machine repiicetio-

ba:gu{rlces = any sites; sensus protocols, or even loosely-coupled ones such agbDist
schedul e = every 1 min, lasting 2 hours; Hash Tables (DHTSs) [4]. In these systems, the same data &ill b

format = Comon_format.Source; available from any of the functioning nodes, so receivingutes

[} from the first available node is sufficient. These kinds of itying

systems are useful in the face of partial network unreaditalbr

Figure 3. sites.fml  : Code fragment for data from one of many ~ machine failure. Specifying this behavior at the languagyellpro-

sites. vides a simpler implementation than network-centric apphes

such as anycast [25].
) ) The schedule foromon_1 indicates the system should fetch
ranges from the node uptime to memory usage to kernel version gata every minute for two hours, using thasting  field to
CoMon displays the data to users in tabular form and alloemth ingijcate the duration of the feed. It omits tiséarting and

to perform a number of simple queries to find, for instanaghtly timeout  specifications, causing the system to use default settings
loaded nodes, nodes with drifting clocks or nodes withdlit- for the start time and the timeout window.
maining disk space. CoMon also monitors nodes for variouts so The simple_comon example hard-codes the set of locations
of problems and generates reports of deviant machines opuse  from which to gather performance data. In reality, the CoMon
grams. Finally, the data is archived so PlanetLab users edorm system has an Internet-addressable configuration file tmains
their own custom analyses of historical data. a list of hosts to be queried, one per non-comment line. Tétissl

_AT&T provides a web hosting service. The infrastructure for  periodically updated to reflect the set of active nodes imétlaab.
this service includes a variety of hardware components sisch Figure 4 specifies a version of temon feed that depends
routers, firewalls, load balancing machines, actual welbessr upon this configuration information. To do so, the desavipti
and databases, replicated and geographically distribttedce, a  includes an auxiliary feetiodes that describes the configura-
given web site may be distributed across a variety of mashine- tion information: it is available from theonfig_location , it
ning a variety of operating systems in a variety of locatidhen should be fetched every two minutes, and its format is deedri
a customer signs up for AT&T's hosting service, part of the-co  py thepaps/ML descriptionsource given in the filenodelist
tract specifies what kinds of monitoring AT&T will providerfthe which appears in Figure 5. Thisps/ML description specifies that
Site. The Al’rakis infrastructure prOVides thIS monitormvice. It source is a ||St Of new_“ne terminated recordsl each Contain_
tracks a variety of resources using a wide array of measinelsd- ing anodeitem . In turn, anodeitem is either a#' character
ing network bandwidth, packet loss, cpu utilization, digkzation, followed by a comment string, which should be tagged with the
memory usage, load averaget:.For each machine in the hosting  commentconstructor, or a host name, which should be tagged as
service and for each such resource, the monitoring systehivas Data . The description also defines a helper functisnnode ,
the values at regular intervals and issues alerts when tbhewvax- which returns true if the data item in question is a host namtieer
ceed resource- and contract-specific levels. The archiused to than a comment. Given this specification, thedes feed logi-
track long-term behavior of the service, allowing engirseter de- cally yields a list of host names and comments every two remut
termine when more resources need to be provisioned, forpeam | fact, because of the possibility of errors, the feed distuteliv-
adding cpus, memory, or disk space. It also allows engirtears- ers alist option every two minutesSomeif the list is populated
derstand the “normal” behavior for a particular site suckiaity or with data,None if the data was unavailable at the given time-slice.
seasonal cycles for a particular site. Using thenodes specification, we define theomon feed as

a dependenfeed: eacmodelist  in the nodes feed defines a

3. PADS/D: An Informal Introduction collection of sources for theomon feed. Thecomon sour ces

specification processes thedelist  to manage errors and strip
out comment fields. The code that handles this processing-ill
trates that theeADS/D domain-specific language is embedded in
OCAML. We use O@ML terms where necessary to specify simple
transformations. In particular, trearrent  function checks if the
3.1 CoMon Feeds nodelist  is None, signaling a fetching error, in which case it
uses the most recently cached list of nodes instead sthe ce
specification filters out comment fields, and then conveeshibst
names to URLs with the required port using the auxiliary fiorc

ThePADS/D language allows users to describe streams of data and
meta-data that we refer to &eds To introduce the central features

of the language, we work through a series of examples dragwm fr
the CoMon and Arrakis monitoring systems.

Figure 2 presents our first attempt to define a simple CoMdissta
tics feed. This description specifies thienple_comon feed us-
ing thebase feed constructor. Theour ces field indicates that



(* Ocaml helper values and functions *)
| et config_location =
["http://summer.cs.princeton.edu/status/ \
tabulator.cgi?table=slices/ \
table_princeton_comon&format=nameonly"]

| et makeURL (Nodelist.Data x) =
“http://* = x © ":3121"

| et old_locs = ref []
| et current list_opt =

mat ch list_opt with
Some | -> old_locs = I; |
| None  -> lold_locs

(* Feed of nodes to query *)

f eed nodes =
base {|
sources = all config_location;
schedul e = every 2 min;
f or mat = Nodelist.Source;
[}

(* Dependent CoMon feed of node statistics *)
feed comon =

f or each nodelist i n nodes
create
base {|
sources = all (List.map makeURL
(List.filter Nodelist.is_node
(current nodelist)));
schedul e = once, timeout 60.0 sec;
f or mat = Comon_format.Source;
[}

Figure 4. comon.fml : Uses feed of node locations to drive data
collection.

pt ype nodeitem
Comment of '# * pstring_SE(peor)
| Data of pstring_SE(peor)

| et is_node item =
match item with
Data _ -> true
| _ -> false

ptype source =
nodeitem precord plist (No_sep, No_term)

Figure 5. nodelist.pml . PADS/ML description for CoMon
configuration files, which contain one host name per non-
commented line.

makeURL Theschedul efor this CoMon feed ionce (with a
timeout of sixty seconds) because we want to collect the fdata
each host in a givehostlist just once. The or each . ..
cr eat e construct merges the resulting data from each machine
into a single feed. As before, the format of data fetched femoh
node matches the descripti@omon_format.Source

With this specification, we expect to get data from all thévact
machines listed in the configuration file every two minutee W
further expect the system to notices changes in the configara
file within two minutes.

The previous examples all showcased feeds that contained athegen_stats

single type of dataPADS/D also provides a datatype mechanism
that allows us to construct compound feeds containing data o
different sorts. As an example where such a construct isiygae

CoMon system includes a number of administrative data ssurc
One example is a collection of node profiles, collecting thmdin
name, IP address, physical locatiatc, for each node in the
cluster. A second example is a list of authentication infation for
logging into the machines. These two data sources havedtiffe
formats, locations, and update schedules, but system &lirators
want to keep a combined archive of the administrative inftiom
present in these sourcessites_mime is a feed description of
the profile information andites_keyscan_mime  is a feed of
authentication information, then the declaration

feed sites =
Locale of sites_mime
| Keyscan of sites_keyscan_mime

creates a feed with elements drawn from each of the two feeds.
The constructord.ocale and Keyscan tag each item in the
compound feed to indicate its source.

3.2 Arrakis Example

We now shift to an example drawn from AT&T's Arrakis project.
Like the earlier CoMon example, thetats feed in Figure 6
monitors a collection of machines described in a configardtile.
Before we discuss thetats feed itself, we first explain some
auxiliary feeds that we use in the definition of ttats  feed.

The raw_hostLists description has the same form as the
nodes feed we saw earlier, except it draws the data from a local
file once a day. We use f@ed comprehensioto define a clean
version of the feedhost lists . In the comprehension, the
built-in predicateis_good verifies that no errors occurred in
fetching the current list of machinéds , as would be expected for
alocal file. The functiomet_hosts takeshl and uses the built-
in functionget_good to unwrap the payload data from the error
infrastructure, an operation that is guaranteed to sucbeeduse
of theis_good guard. The functioget_hosts then selects the
host name entries and unwraps them to produce a list of unador
host names.

We next define a feed generatgen_stats  that yields an
integrated feed of performance statistics for each supphiest.

In more detail, when given a hokt gen_stats creates a five
minute schedule with a one minute timeout. It then uses thisd
ule to describe a compound feed, which pairs two base fekds: t
first uses the Unix commanping to collect network statistics
about the route td while the second performs a remote shell in-
vocation usingsh to gather statistics about how long the machine
has been up. Both of these feeds useghec constructor in the
sour ces field to compute the data on the fly, rather than reading
it from a file. The argument t@r oc is a string that the system
executes in a freshly constructed shell. The pairing canstr for
feeds takes a pair of feeds and returns a feed of pairs, vathaaits
sharing the same scheduled fetch-time being paired. Thiaistcs
conveniently produces a compound feed that for each hashet

a pair of its ping and uptime statistics, grouping togethmr in-
formation for each host. Of course, the full Arrakis moniibgr ap-
plication uses many more tools than just ping and uptime abégr
remote machines; the full feed description has many moneches
than this simplified version.

Finally, we define the feedtats . The most interesting piece
of this declaration is théist feed comprehensiomiven in square
brackets, that we use to generate a feed of lists. Given alisbst
hl , the right-hand side of the comprehension considers eash ho
h from hl in turn. The left-hand side of the comprehension uses
feed generator to construct a feed of the statistics
for h. The list feed comprehension then takes this collection of
statistics feeds and converts them into a single feed, whach
entry is a list of the statistics for the machinesin at a particular



| et config_locations =
[(*file:///arrakis/config/machine_list")];

f eed raw_hostLists

base {|

sources = all config_locations;
schedul e = every 24 hours;

f or mat = Hosts.Source; |}

| et get _host (Hosts.Data h) = h
| et get _hosts hl =
List.map get_host
(List.filter Hosts.is_node (get_good hl))

f eed host_lists =
{] get_hosts hl | hl <- raw_hostLists,
is_good hl |}

f eed gen_stats (h) =
l et s = every 5 mins, timeout 1 min

base {|
sources = proc ("ping -c 1 " " h);
f or mat = Ping.Source;
schedul e = s; [},
base {|
sources = proc ("'ssh "~ h = " uptime");
f or mat = Uptime.Source;
schedule = s; |}
)
feed stats =
foreach hl in host_lists updat e

[ gen_stats h | h <- hl ]

Figure 6. arrakis.fml : Simplified version of Arrakis feed.

scheduled fetch-time. We call each such entrsnapshotof the
system. The resulting feed makes it easy for down-streams tise
perform actions over snapshots, relieving them of the burafe
having to implement their own multi-way synchronization.

Given the list feed comprehension, ther each. . . updat e
construct generates a feed of snapshots from the feed ofistsst
Whenever a new host list arrives, ther each. . . updat econ-
struct terminates the snapshot feed from the old host lidtstarts
generating a new snapshot feed from the new host list.

Note the difference between tlier each. . . cr eat econ-
struct from the CoMon example and tfi®r each. . . updat e
construct. The create form generates a collection of feeds a
merges their contents into a single all-inclusive feed. Tihdate
form generates a collection of feeds and produces a singtelfg
concatenating the collection, stopping one feed as sodmeaseixt
is generated. We have found the create form to be useful wieen t
actual arrival times of the argument feed are regular bezgus
regularity means we can give a finite schedule for the dep#nde
feed. In contrast, the update form is useful when the argtifeed
is irregular and we must give an infinite schedule for the depe
dent feed to ensure we get the desired values. We define @recis
semantics for the create and update forms in Section 5.

4. pPADS/D: Working with Feeds
4.1 The “Off the Shelf” User

ThePADS/D system provides a suite of “off-the-shelf” tools to help
users cope with standard data administration needs. Aftiéng

a PADS/D description, users can customize these tools by writing
simple configuration files such as shown in Figure 7. Each con-
figuration file includes a feed declaration header and a segue

f eed comon.fml/comon

t ool feedaccum
{
minalert = true;
maxalert = true;
lesssig = 3;
moresig = 3;
slicesize = 10;
slicefile = "slice.acc";
totalfile = "total.acc";
}
tool rss
{
title = "CoMon Memory RSS";
link = "http://www.comon.org/memory-rss.xml";
desc = "CoMon Memory Usage Information";
path = "<top>.[?].Mem_info";
}

Figure 7. comon.tc : Example tool configuration file.

Summary of network transmission errors

ErrCode: 1
ErrCode: 5
ErrCode: 6

ErrMsg: Misc HTTP error Count: 12
ErrMsg: Bad message Count: 27
ErrMsg: No reply Count: 2

Top 10 locations with most network errors

Loc: http://planetlab01.cnds.unibe.ch:3121 Count: 2
Loc: http://pepper.planetlab.cs.umd.edu:3121 Count: 2
Loc: http://planetlab3.cs.uchicago.edu:3121  Count: 2
.. omitted ...

Figure 8. comon.acc : Fragment of accumulator output.

path ::
"<top>"

path.ID (field/variant name)

path.INT (branch number (from 1) of a tuple)

path.[?] (any one element of array/table)

path.[*] (all elements of array/table)

path.[INT] (nth element of array (from 0))

path.[Key] (a table entry indexed by the Key)

Figure 9. Selector path language.

of tool specifications. The header specifies the path to e de-
scription file comon.fml ) and the name of the feed to be created
(comon). Each tool specification starts with the keywdood! fol-
lowed by the name of the took(g, feedaccum andrss ). The
body of each tool specification lists name-value pairs, @het-
ues are OGML expressions. Some attributes are optional, and the
compiler fills in a default value for every omitted attribukaDs/D
compiles a configuration file into an O®L program that creates
and archives the specified feed, configures the specifiesd, tant
applies them to the feed in parallel. In the following paegairs, we
describe the tools we have implemented.

Archiver. The archiver saves the data fetched by a feed in
the local file system, organizing it according to the struetaf
the feed, with one directory per base feed. It places a aatalo
each directory documenting the source of the data, its stéed
arrival time and the actual arrival time. The archiver wibtimnally
compress files.

Printer. The printer outputs the contents of a feed. If configured
to print to a single file, the tool concatenates successvestwith a



specified separator. If configured to print to multiple filesutputs
the contents of each base feed into a separate file.

Profiler. The profiler monitors performance, reporting through-
put, average network latency and average system latenesgsao
period of time. Users can specify in the configuration wheprts
file and for how long. We used this tool to produce some of the
experimental results in Section 6.4.

Accumulator. The accumulator maintains statistical profiles for
feeds, including their error characteristics. For numelata, the
accumulator keeps aggregates such as averages, max/mes val
and standard deviations. For other dagag( strings, URLs and
IP addresses), it keeps the frequency of the Abpost common
values. For all data, it tracks error rates, the most comnreor e
values and their sources. The user can configure the acctomida
profile entire feeds at once, or incrementally. The lattesisful for
infinite feeds, because it allows users to continuously toofeeds
and compare their current behavior with historical statsstThe
accumulator can output either plain text or XML. Figure 8who
portions of accumulator output for the CoMon example.

Alerter. The alerter allows users to register boolean functions
which generate notifications when they evaluate to falseeaal f
items. The tool appends these notifications to a file, whichlbe
piped into other tools. The system provides a library of canm
alerters such as exceeding max/min thresholds or devidtimg
the norm (.e., trigger an alert when a selected value strays more
than k standard deviations from its historical value). Users can
supply their own conditions by giving arbitrary Q@L predicates
in the configuration file.

Database loaderThis tool allows users to load numerical data
from a feed into a Round Robin Database (RRD) [21]. Users
specify a function to transform feed items into numeric ealand
RDD parameters such as data source type and sampling raie. RR
indexes the data by arrival time. It periodically discardid data
to make space for new. The tool supports time-indexed gsiend
displays historical data as graphs.

Selector.The selector allows users to choose subcomponents
of feed elements using path expressions. It returns a fegbeof
selected subcomponents, which may then be fed into othés. too
Figure 9 shows the path expression language, partly irgiye
XPATH [8].

RSS feed generatofrhe RSS feed generator conversans/D
feed to an RSS feed. Users specify the title, link (source3cdp-
tion, update schedule and contents of the RSS feed. Comtecit s
fications are written in the path expression language.

4.2 The Single-Minded Implementer

In addition to the off-the-shelf tool®ADS/D includes an API for
manipulating generated feeds. The API provides users widle@
abstraction representing a potentially infinite series lefrents.
This abstraction is related to that of a lazy list, but exteitdvith
support for data timing and provenance information. Thmesf
we model the feed API on the list APIs of functional languages
but provide two levels of abstraction. One level allows astr
manipulate feeds like any lazy list of data elements (igrgpvihere
they come from), while the other exposes the metadata as well
For example, consider PlanetLab users looking for a ddsirab
set of nodes on which to run their experiments. They can use th
API generated from the CoMon description to monitor PlaaétL
for a few minutes to find the least loaded nodes. Figure 10 show
an OGamL code fragment that collects the nodes with the low-
est average loads over 10 minutes and then prints them. We omi
the details for maintaining the table of top values, as itrthago-
nal to our discussion. First, we ubeed.split_every to split

the feed when 600 seconds (10 minutes) have elapsed. Then, wéa prefeed

useFeed.map to project the load data from the CoMon elements.

| et (sample, ) Feed. split_every 600. comon in
| et select_load = function
Some {Comon_format.Source.
loads = (_, load::_)} -> Some load
| None -> None in
| et loads Feed. map select_load sample in
| et load_thl = Feed. f ol d update empty_tbl loads

in print_top 10 load_tbl

Figure 10. Code fragment finding least loaded PlanetLab nodes.

| et update_m tbl adata
| et meta = Feed.get_meta adata
| et data = Feed.get_contents adata
mat ch meta, data with
(h, Some basemeta), Some load ->
| et location Meta.get_link basemeta
update tbl (location, data)
| _ -> thl (* no change to thl *) in
| et load_thl = Feed. f ol d_mupdate_m empty_tbl loads
i n print_top_with_loc 10 load_tbl

in

in

Figure 11. Revised code fragment involving provenance metadata.

Finally, we useFeed.fold  to collect the data into a table. Func-
tion update adds an entry to the table, aednpty_tbl is the
initially empty table. After filling the tableprint_top 10 pro-
cesses each node’s loads and prints the ten lowest aveadg lo

However, this solution is not enough — the CoMon data format
does not include the node location in the data, so the codegin F
ure 10 cannot report the names of the nodes with the lowest av-
erage loads. In such situations, provenance metadatadatieds
We therefore replace the last two lines of Figure 10 with theec
in Figure 11, to exploit metadata. First, we sketchugaate_m
(update with meta) function that uses metadata to assozittie
cation with every load in the table. It relies on thketa module,
which we provide to facilitate management of metadata frben t
feed. Next, we show a call to the lower-level fofdJd_m (fold
with meta), which passes the data with its metadata to thnigl
function. Last, the calprint_top_with_loc 10 prints the
ten lowest average loads with their locations.

It should be clear from these examples that the single-ndinde
implementer has a number of new interfaces to master relsoiv
the off-the-shelf user, but gains a correspondingly higlegree of
flexibility and can still write relatively concise programs

4.3 The Generic Programmer

Occasionally, users might want to develop functions thatroa-
nipulate any feed. Often, such functions can be written as para-
metric in the type of the feed element, much like the feedalipr
functions discussed above. However, the behavior of maeg fe
functions depends on the structure of the feed and its elemen
Such functions can be viewed agerpretationsof feed descrip-
tions. To support their development, we provide a framework
writing feed interpreters.

Two core examples of feed interpretations are the feed cre-
ator and the feed accumulator. The behavior of these tools de
pends essentially on the structure of the feed. Functidke li
these require as input a runtime representation of the feau;
plete with the details of the feed description that they eepr
sent. The obvious choice for representing feed description
OCAML is a datatype. However, standard @@ datatypes are
not sufficiently typeful to express the types of many genézexd
functions. For example, the feed creation function has yipe:t
feed_create : 'a prefeed ->'a feed where the type
is an AST of a feed description and feed ele-
ments have typ& . This limitation of datatypes has been widely



(host-language base types)
b ::=bool | string | loc | time | sched

(host-language types)
T o= b|Toption | T xT2 |T1+ T2 | Tlist | 1 — T2

(host-language values)
v o=
false | true
wl|l|t]s
None | Some v

|
|
| (vi,v2)
|
|

booleans
strings, locations, times, schedules
optional values

pairs
inl v |inrv sum values
[v1,. .., V5] list values
Az:T.e function values

(host-language expressions)
e =
x variables
| v data values
| None | Some e option expressions
| .. more typed lambda expressions

Figure 12. Host Language Syntax.

discussed in the literature, and various solutions have Ipee-

posed [11, 31, 32, 34]. We have chosen to represent our AST

using a variant of the Mogensen-Scott encoding [18, 30] whic
exploits higher-order abstract syntax to encode varialvldibg in
feed descriptions. This implementation strategy exploiGAML s
module system to type the encodingsAn. Our earlier work on
PADS/ML [11] exploited a similar strategy, but there we only sought
to encode the O@wmL type of the data, not the entiraDS/ML de-
scription, which is where higher-order abstract syntaxobees
useful.

The result of our work is that developers can interpret feed-
description representations by case analysis on theictsne,
while still achieving the desired static guarantees. Meggowe
have successfully used this framework to devedtipof the tools
presented in this paper, including the feed creator. Thepdlem
only infers appropriate type declarations from feed desicms
and compiles the feed syntax into our representations. Menve
as one might expect, interfaces using higher-order alistyatax

(feed types)

o u==T|Toption|o1 %02 |01+ 020 list

(core feed spec)
O .

{src =ey; source specification
sched = ea; schedule specification
win = es; time-out window specification
PP = €4; pre-processor

format =es; } format specification

(feed specs)

F o=
all C all sources
| anyC one of multiple sources
0 empty feed
[e1 | z € e2] computed feed
{le| z < F|} feed comprehension
filter F withe filter feed
let x = ey in Fy let feed
FLUF, union feed
i+ F sum feed
(F1, F2) synchronous pair
x: o+ By dependent continuous pair
x:Fyoxx By dependent local pair
| foreachx x in F1  for eachx create continuous
create Fb
| foreachxx x in Fi for eachx update localF»
update Fb
| [Flx—e€ list comprehension feed

Figure 13. Feed Language Syntax.

tiont € sto referto a timg drawn from the set. We use a similar
notation to refer to elements of a list. The host language ais

cludes standard structured types such as options, pairs, dists

and functions. We omit the typing annotations from lambdares-

sions when they can be reconstructed from the context.

5.1 Feed Syntax and Typing

The abstract syntax for our feed calculus and its typingsrafgear
in Figures 13 and 14, respectively. The feed typing judgnierst

and Mogensen-Scott encodings are one step more complex tharthe formI" = ' : o feed, which means that in conteXt mapping

those involving the more familiar maps and folds. Consetjyen
the learning curve for the generic programmer is one stegpsie
than the curve for the single-minded implementor, and two (o
perhaps ten) steps steeper than the curve for the off-tbiéster.

5. PADS/D Semantics

Developing a formal semantics f@DS/D has been an integral
part of our language design process. We have used the semanti
to communicate our ideas precisely and to explore the ngaofice
design decisions. Furthermore, the semantics provides usth a
tool to reason about the feeds resulting freaDS/D descriptions,
including subtleties related to synchronization, timsand errors.
To express locations, schedules, and constraints, thectded-
lus depends upontaost languagewhich we take to be the simply-
typed lambda calculus. Figure 12 presents its syntax, whieh
cludes a collection of constants to simplify the semanstsngs
(w), locations (), times ¢), and scheduless). We assume times
may be added and compared and wedetrepresent a time later
than all others. We treat schedules as sets of times andeisetid

variables to host language typesfeed F' produces a sequence of
values of types. As shown in Figure 13, we definein terms of
host language types, stratified to facilitate the proof ohaetic

soundness. Feed typing depends upon a standard judgment for

simply typing lambda calculus expressiofst- e : 7. We discuss
the syntax and typing for each construct in turn.

Core feeds express the underlying structure of base feeds, d
scribing the data sourcesxc), schedule §ched), window (win),
preprocessing functiorpp), and file format format). The source
field may contain pseudo-locations that modelghec form found
in the implementation. Instead of expressing time-out @@t in
the schedule as we did in the source language, the calcujuses
such conditions be specified in the window field, which slight
simplifies the semantics. The preprocessor and the formraepa
both map values with option type to option type, where theeal
None indicates a networking or data formatting error. (For thieesa
of simplicity, we do not model the variety of error codes ttta
implementation supports.) Consequently, if the formatitively
describes values of type the feed will return a sequence of values
of typer option, allowing for the possibility of errors. The typing



for core feeds reflects our choice to have their semanticspzgra
of the underlying schedule and the actual feed elements.

The feedall C selects all the data from the core fe@dwhile I'Fer:loclist I'kez2:sched I'Fe3:time
any C selects a representative good value for each time in the I'F e4 : string option — string option
schedule foC. It inserts aNone if no such value exists. '+ e5 : string option — 7 option

The empty feed(() contains no elements and has polymorphic T+ {src =ei; sched =ey; win —e3; (t-core)
type a la the empty list. The computed fegel (| = € ez]) allows b e ’format 2657; o SCheé + (r option feed)
programmers to generate a feed with scheduyleand elements
(Az.e1) t, wheret is drawn from the schedule. Likewise, the feed rec-

; X : sched * (o feed)
comprehension{(e | = « F|}) creates a feed with elements (t-all)
(Az.e) v whenw is an element of". The feedfilter F with e 'FallC:o feed
eliminates elementy from F' whene v is false. Let feeds
let x = e; in F5 provide a convenient mechanism for binding 'k C : sched * (o feed)
intermediate values. The union feed merges two feeds wih th (t-any)
same type into a single feed. In contrast, the sum feed takes t I'any C: 0 feed
feeds with (possibly) different types and injects the eletaeof
each feed into a sum before merging the results into a siegie. f — (t-empty

The calculus also contains three different pair constns¢each I'0:o0 feed
providing a different way to combine elements from the sulco
ponent feeds. The first pair, writtéi;, F>), is asynchronous pair I'kes:sched T,zitimelb e :7
Elements ofF are paired with elements df; that arescheduled TF [e1| 2 € e2] : 7 foed (t-compute
at exactly the same time, regardless of when those elemetuts a ! -
ally arrive. Synchronous pairs are most useful when the underlying
subcomponent feeds share the same schedule, as in thesfexaki '-F:0feed T'hzioke:T (t-comph
ample from Section 3. Synchronous pairs lack a dependeiatniar TH{le|x« F|}: 7 feed P
however, because in our domain it is not sensible to schatele
acquisition of an element that depends upon another elesnbatl- PEF:0feed The:o— bool _
uled at the same time. To express dependencies, we use s for T — (t-filter)

. . . . ilter F withe: o feed
of dependent paigontinuousandlocal. In the continuous variant,
each element of F} is paired with all elements of the fedd that
depend one. In the local variant, each elementof F} is paired I'bei:nn Do b Fy:opfeed (tlet)
with all elements of the feed’ until the next elemenj of F; is I'Flet x =e1 in F5 : 02 feed
scheduledThe denotational semantics, presented in the next sub-
§ectiqn, makes this idea precise: qual pairing enablesaaljggm I'HF :ofeed T'FF,: o feed _
in which programmers define an infinite fegg that gets truncated TE 7 UF, o feed (t-union)
and regenerated whenever a new elemerfiis scheduled. ! 20 tee

The final elements of the calculus include thereach feeds
and the list comprehension feed. Intuitivelyf @ each is identical 'FFi:01feed T'F Fh:o0o feed (t-sum)
to a dependent pair in which the first element of the pair isttedi 'k Fi+ Fs:01+ 02 feed
from the data representation. Consequently, there aredmosf of
foreach — one for each form of dep_endent pair. The_notat#'on _ IFF oy feed TFF: oy feed .
or x* serves as a syntactic mnemonic for the connection. The list T (F ) £ (t-synch-paip
comprehension feed generates a feed of lists where eackmtief (F1,F2) : 01 % 02 feed
the list is scheduled at the same time. It is akin to the syoraburs
pair operation. 'k Fi:01feed T',z:01F F>: 02 feed ¢ t-pai

) I'Fa:F1 % Fy : 01 % 02 feed (t-cont-pair
5.2 Feed Semantics
We give the semantics of our formal feed language in a depatt
style. The principal semantic functions &1 ., andF[F] ;. LFEF:onfeed T, zionf o : o2 feed (t-local-pair)

defining core feeds and feeds, respectively. In these defigjtF; CFx:Fy #x Fo 01 % 02 feed
is anenvironmenmapping variables to values abdis auniverse
mapping pairs of schedule time and location to arrival timd a
strirr:g ogti%n representing the actual data. Intuitivelg tiniverse I'FF:oifeed T,z:01F Fy:0; feed

models the network. Wheli (¢1, £) = (t2, Some w), the interpre- I'F foreachx x in F} create F : 02 feed
tation is that if the run-time system requests data fromtiooal
at timet; then string datav will be returned at time.. The time
t2 must be later thaty. WhenU (¢1, ¢) = (oo, None), networking

(t-foreachcony

'k Fi:01feed TI',z:01F Fy: 09 feed

(t-foreachloca)

errors have made locatidrunreachable. I' - foreachsx x in F} update F5 : o2 feed
The semantic functions yield a set of metadata/data pairsrev
the metadata is coded as follows. Phe:7list [,a:m - F:o feed Clistt
m (t,0) base metadata THI[F |z« e]:o0list feed (thistf)

(t, (m1,m2)) pair metadata
ét’ inl m) sum metadata Figure 14. Feed Language Typing.
(

t,inr m) sum metadata
t,[m1,...,my]) listmetadata



Cl[{src =esrc;
sched =e€sched;
Win =eyin;
PP =€pp;
format =ey; }] m
Flal1 Cy 5

Flany Cly 5

Fl0gv
Fller |z € e2]l gy

Fl{lelz = Fl}] gy

Fltilter F withe],,
Fllet z = e; in B]
FIFiUF] gy,
FIF + B gy
Fl(F, F2)] gy

Fla:Fy « Fa]

.7'-[[£E2F1 k3k FQ]]EU

Flforeachx x in Fy

create Fo]

Flforeachx x in Fy

update Fb]

FlIF |z —ellpy

(57 {((tve)vg[[ef (U’((,
where
S = gﬂesched]]E
timeout = (¢, (Tat, s)).if Tat < @t + E[€win] , then z; else None
U' = Xz, z¢).E[epp] i (timeout (z¢, U(ze, x1)))

t)le)) |t € Sandl € Efesrc]g})

A where(S,A) =C[C], &
{i¢ |t € S}
where (S, A) = C[C]
Ay = {(m, Some v) | (m, Some v) € Aandm.t =t}
) select_one At) if |A¢ >0
b ((t,nowhere),None) if |A: =0

{}

{((t, nowhere), E[(Az.e1) ] ;) | t € E[ea] }

) € FIFl gy}
{(m,v) | (m,v) € F[F],, and&]e v], = true}

{((m.t, nowhere), E[(Az.e) v] ) | (m

FIE] (5 wter] ) U

FlA gy UFIER] gy

{((m.t,inl m),inl v) | (m,v) € F[F]gy} U{((mt, inr m), inr v) | (m,v) € F[F2] gy}
{((ma.t, (m1,m2)), (v1,v2)) | (m1,v1) € F[F1] gy @and(mo, v2) € F[F2] 5y andma.t = mo.t}

{(mz.t, (m17m2))7 (U17U2)) | (ml,vl) S flIFl]]EU and
(m2,v2) € F[Fo] 5 4y @NAM2.t > M.t}

{(mQ-tv (m17m2))7 (1)1,1)2)) | (TTL1,’U1) € "f[[Fl]]EU and
(m2,v2) € FIF2] g )y @AMt > ma .t
((m1,v1) € F[F1] g implies (m7.t < mq.t ormi.t > ma.t))}

{(ma,v2) | (t, (m1,m2)), (v1,v2)) € Flax:F1 * Fa] ;1 }
{(m2,v2) | (t, (m1,m2)), (v1,v2)) € Fla:F1 #x Fo] ., }

{((t, [ma, . ..

where [z1,...,z2x]

,mg)), [vr, ..., vo]) | IV 1
=Ele]p

k(mi,v) € Jf[[F]]E[m»—»zi]U andm;.t =t}

Since every metadata item contains a top-level timthat time
can be used to serialize the set of items as a stream, and ourtimeout
implementation does just that. Items scheduled at the sanee t
may appear in any order in the implementation’s serializeshsn.
To refer to the top-level time in any metadata itemwe writem.t.
Figure 15 presents the semantic definitionsdand 7, using
conventional set-theoretic notations. The semanticsrdépapon
a semantics for the simply-typed host language, writiga] .,
whose definition we omit. We assume that given environment
with type I" and expressior with type 7 in T, £[e]; = v and

Fo:T.

The meaning of core feed is a pair consisting of the meaning
of the schedule of” (written S) and the set of metadata/data pairs
for the feed. To calculate this data, ttimeout
whether the item arrival time,; is within the window € [e.ix] ;)

Figure 15. Feed Language Semantics.

of the scheduled timexr¢ € S), returningNone if not. Otherwise,
returns its data argument{), which may beNone
because of other networking errors. Using timeout  function,
we define an alternate univergé' that retrieves data from the
outside world, checks for a timeout, and applies the pregssar

metadatat, ¢) with data defined by ey (U'(4,t))]
is thepADS-generated parser.

The semantics of both thell C' and theany C' feeds first
computes the meaningS, A) of the core feed”. Theall feed
simply returns the data componeAt Theany feed returns a set
with one element for each timein the scheduleS. If the data
A contains at least one good value at timehe any feed picks
an arbitrary member of this set, using the functigsiect_one.
Otherwise, the feed adds error val{(¢, nowhere), None) for ¢.

whereey

function checks

(Eleppl ) before returning. The feed data is then pairs of base



The meaning of the empty feed is the empty set. Computed '8t simple_comon =

feeds yield one value per time in the given schedule. The dumm
location fpowhere) in the computed feed metadata indicates the
value had no physical source. Feed comprehensions alsdese t
dummy location. The filter feed and feed comprehensionsthege
model the full power of the feed comprehensions found in our
implementation. The semantics flat , union and sum feeds are
all straightforward. The union feed is simply the set-tlestic
union of its constituent feeds. The sum feed injects the efgm

of its constituent feeds into a sum and likewise takes thaomu

We must take more care when defining the semantics of pairs.

The synchronous paifFi, F») is formed by finding all elements
of F at a given time (including erroneous elements) and all ele-
ments ofF; at that time (again including erroneous elements) and
generating their Cartesian product. Notice that if the dales do
not intersect, a synchronous pair will empty. The schedtited of
the composite item is the same as the scheduled times of the tw
underlying feeds.

The elements of the continuous dependent paif{ * F3)
are calculated by first determining the elementsFf For each
elementv in F1, we calculate the elements 6% by bindingz to
v in Fy's definition. The elements of the composite feed include
all elementsz of F; paired with the corresponding elements of
F; scheduled later than. As with synchronous pairs, we pair the
metadata from the constituent feeds in the composite feplike)

{frep = fun ff ->
ff. all
{Combinators. format = Comon_format.Source.parse;
print = Comon_format.Source.print;
format _rep = Comon_format.Source.tyrep;
i ncrenent al = false;
header _f or mat = None;
| ocati ons = sites;
schedul e =
Schedule. every (Time.now (), 10.,
Schedule.default_duration, 60.);
has_records = Comon_format._ PML__has_records;
pp = None}}

Figure 16. Code fragment of compiled simplgomon feed

6.1 The Compiler

ThePADS/D compiler consists dftc , the tool configuration com-
piler for .tc files, andmic , the compiler for feed declarations (.fml
files). Both compilers convert their sources into & code,
which is then compiled and linked to the runtime librariese \W-
plemented both tools witGamlp4 , the OCG\ML preprocessor.

The fmlc compiler performs code generation in two steps.

synchronous pairs, the two elements of the pair do not share aFirst, the code generator emits the type declarations fcin ézed.

schedule time. We adopt the later time( the time of the element
from F3) as the schedule time for the composite feed element.

Continuous and local dependent pairs differ in that localkee
dent pairs suppress further data dependent upon dtefrom F}
when the next item from feed F} arrives. In the semantics, the
existence of another elemept, v1) in Fy after (m1, v1) implies
that the schedule time for the item under consideratioRsir{vs)
must fall between the schedule times ferandv; (otherwisev; is
not included in the final composite feed).

The semantics for the two variants tbreach are defined in
terms of the two variants of dependent pairs, simply drogpire

first component of each item in the pair feed in both cases. The

semantics of the list comprehension feed extends the samarft
synchronous pairs to lists: each list in the resulting feeatains
the elements of the generated list with the same scheduled ti

Second, it generates representations for each feed désariphe
compiler constructs these representations by extractiegents
from the concurrently generatedb</ML libraries and using poly-
morphic combinators to build structured descriptions.uFég16
shows a fragment of the compiled code for the simple CoMod fee
in Figure 2.

6.2 The Runtime System

We implement eactPADS/D feed as a lazy list of feed items.
Following the semantics in Section 5, a feed item is a metddata
pair, although the meta-data in the implementation is richading
data arrival times and more detailed error information.
ThePADS/D runtime system is a multi-threaded concurrent sys-
tem that follows the master-worker implementation stratégch

We have proven a soundness theorem for the semantics: theworker thread either fetches data from a specified locatioth a

values contained in each feed are pairs of meta-data andalats
with the appropriate type. More specifically, if the feedibgprules
give feedF typeo feed, then its data has typeand its meta data
has typemeta(o) wheremeta(o) is defined as follows.

meta(7) = time * loc

meta(7 option) = time * loc

meta(oy * 02) = time * (meta(o1) * meta(o2))
meta(o1 +02) = time * (meta(o1) + meta(o2))
meta(o list) = time * (meta(o) list)

Theorem 1 (Semantic Soundness)

IfT' - F : o feed and for allz in dom(T"), - E(x) : I'(z)
andr U : time x loc — time * (string option) then for all
(m,v) € F[F] gy, (m,v) : meta(o) * 0.

The proof follows by induction on the structure bt

6. PADS/D Implementation and Evaluation

ThePADS/D implementation has three parts: the compiler, the run-
time system, and the built-in tools library. We describesthparts
in turn and evaluate the overall system performance anddesi

parses the data into an internal representationrépe or synthe-
sizes its data by calling a generator function. Using ermrdi-
tions, location, scheduled time and arrival time, the wodener-
ates the appropriate metadata, pairs it with the rep andesutte
feed item onto a queue. The master thread pops the feed itam fr
the queue on demanide., when the user program requests the data.
The worker thread igager which guarantees that all data will be
fetched and archived, but the master threathzy, which allows
application programs to process only relevant data.

We used thé@camlnet 2 library [29] to implement the fetch-
ing engine. It batches concurrent fetch requests into grofi200,
a size which balances maximizing throughput with avoidingre
whelming the operating system with too many open sockets.

6.3 Tools Library

As explained in Section 4, we implemented theDS/D off-the-
shelf tool suite using our generic tool framework. Some gat#-
pend upon auxiliary tools. For instance, the feed selecitis @
data selector built under theaps/mL generic tools framework
[11] for base feeds. Other tools depend upon external ligsar
For instance, théeed2rrd  tool requires the RRD round-robin
database [21] and tHfeed2rss tool uses the XML-Light pack-
age [19] for parsing and printing.
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Figure 17. Average throughput and latencies per node

6.4 Experiments

To assess performance, we measure the average networngylében
fetch a data item, the average system latency to return atdata
after receiving it from the network and the throughput of slyetem
using the CoMon feed description in Figure 4. The throughput
measures the average number of items fetched per second.

All the experiments were conducted on a Mac Powerbook G4
computer with a 1.67GHz CPU and 2GB memory running Mac OS
X 10.4. In each experiment, we randomly selected 16 subgets o
PlanetLab nodes, with increasing size from 50 to 800 in imenets
of 50. For each set, we applied the profiler tool for the CoMon
feed twice, one without archiving and one with it, to meashes
throughput and latencies as the system fetched from thede no
lists. We repeated the experiment ten times and calculdted t
average values.

Automatic elimination of boilerplate codeThe compiler elim-
inates boilerplate code by (a) generating both type deitermiand
values from descriptions (particularly record types anthygpes),
something that cannot be done in a library, (b) packaginghdefi
tions in modules for name-space management and functoeusag
(c) automatically filling in defaults for values omitted froconfig-
uration files, and (d) generating complete, stand-alonewgables
from declarative descriptions and configurations.

Syntax and simplicity of coding styl&he underlying interfaces
arevery higher-order, which, without surface sugar, would force a
complex coding style on the off-the-shelf user. For instaiatmost
every line of a description would be translated to an indregg
nested combinator application, and every variable bindiogld
induce a use of higher-order abstract syntax.

Generic programmingOCAML (and most other potential host
languages) has no direct support for the generic progragmin
needed to implement the tool suite. After considerableysttite
most effective way we have found to provide the required gene
programming interface involves judicious use of unsaféscasder
the covers. By generating type representations using thmpiter,
we guarantee these casts cannot go wrong.

Integration with PADS. CorePADS[12, 13, 14, 16] has had suc-
cess as alanguage extension on top of C as well asMClts pur-
pose is to describe and document properties of ad hoc dateesou
as well as to facilitate generation of local, single-soummals. Ex-
tending such descriptions to include source location, |avsity
and access mode helps complete the documentation in a sgmgle
tralized specification and through a uniform notation. ltegi off-
the-shelf users everything they need in a single languageirtg
a division of the specification into part library/part large would
ruin its cohesiveness, particularly in the context of dejeemn feeds
where there is tight interplay between access mode, latatahed-
ule and format.

Though we believe our current design is well motivated, vge al
believe the ideas presented here can transcend their tumple-
mentation. By defining a compact feed calculus with a presése
mantics, we allow the possibility for others to embed ourtias
tions directly in a language such as Haskell that providgesor
support for generic programming.

7. Related Work

Because of space considerations, we survey only the mastlglo
related work.

Figure 17 shows the average throughput and the average net-

work and system latencies. Generally, the throughput leitke at
multiples of 200 since the system supports up to 200 conaurre
fetches. An anomaly occurred at 400 nodes, as a number osnode
were unreachable because of DNS failures. Note that whileark
latency increases with the number of nodes, system latemsgins
almost constant and relatively low, showing that #e</D run-
time system adds little overhead to the inevitable netwet&Hing
cost. Also note that the network latency is almost lineahartum-
ber of nodes. The experiments show that the system can fetch f
800 nodes and archive the resulting data in under 40 secaedls,
under the 5 minute turnaround time currently supported bylQm
Taken together, these results suggestrhats/D is capable of sup-
porting PlanetLab-scale monitoring applications.

6.5 Language or Library

Our feed language is a veneer on 8@ built with the Camlp4
preprocessor. A natural question is whether the systemadnvbel
better implemented as a library rather than a language sixten
For the reasons described in the following paragraphs, weeto
present our work as a language.

Systems monitoring. One early and widely-used protocol for sys-
tem monitoring is SNMP, the simple network management proto
col [5], which is supported by commercial tools such as HRie®
View [2] and free tools such as MRTG [22]. It provides an open
protocol format, where vendors supply management infaomat
bases (MIBs) that provide a hierarchical description of liaed-
ware’s monitoring information. By separating the data dpsion
into the MIB, SNMP can be more concise than XML, but it has
poor support for ad hoc data, and it is more difficult to updaité
new data types or even changes to the data format.

For Grid or cluster environments, two popular monitoringlto
are Ganglia [17] and Nagios [3]. Ganglia focuses more onigont
ous monitoring of usage information and consolidates métion
provided by OS tools like vmstat, iostat, uptimetc. Nagios fo-
cuses more on availability information, and logs (or detydail-
ure and recovery events. Ganglia uses raw data in XDR foraits n
tive fields and XML-encapsulated fields for extensions. Nagias
no standard data format, but instead gathers all data bypdieri
cally executing user-specified commands described in agumafi
tion file. The commands use standardized return values tessp



status and are typically restricted to no more than 4KB of iboon
ing data.

What distinguishe®ADS/D from systems like SNMP or Gan-
glia is the ability to automatically parse and monitor vally any
kind of ad hoc data, from node-level information like thati-co
lected by Ganglia or SNMP, all the way down to applicatiovele
or even protocol-level data. These areas are the ones atoar
well served by today’s general-purpose monitoring systévitse-
over, the ability to use the same data description to auticalt
build parsers, in situ tools, and monitoring systems diyeitom
declarative descriptions represents an ease of use ndalaeain
other systems.

Functional Programming. The implementation oPADS/D de-

pends upon a tremendous body of past research in both faattio

stream processing and generic programming. Rather thapetem

ing with these technologie®ADS/D builds upon them and makes

them highly accessible to off-the-shelf users in an impurteew
domain — that of distributed ad hoc data processing.
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