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Abstract
Network misconfiguration has caused a raft of high-profile

outages over the past decade, spurring researchers to de-

velop a variety of network analysis and verification tools.

Unfortunately, developing and maintaining such tools is an

enormous challenge due to the complexity of network con-

figuration languages. Inspired by work on intermediate lan-
guages for verification such as Boogie and Why3, we develop

NV, an intermediate language for verification of network

control planes. NV carefully walks the line between expres-

siveness and tractability, making it possible to build models

for a practical subset of real protocols and their configu-

rations, and also facilitate rapid development of tools that

outperform state-of-the-art simulators (seconds vs minutes)

and verifiers (often 10x faster). Furthermore, we show that it

is possible to develop novel analyses just by writing new NV

programs. In particular, we implement a new fault-tolerance

analysis that scales to far larger networks than existing tools.

CCS Concepts: • Networks→ Protocol testing and ver-
ification; • Theory of computation→ Automated rea-
soning; Verification by model checking.

Keywords: Network Verification, Network Simulation, Con-

trol Plane Analysis, Router Configuration Analysis, Interme-

diate Verification Language
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1 Introduction
Following the explosive rise in the number of internet users

and the emergence of cloud computing, networks have seen

significant growth in their size and complexity. However,

network operators have a hard time keeping up with this

unprecedented growth: in the past few years, network mis-

configuration incidents have caused outages whose effects

range from popular websites like Facebook being inaccessi-

ble [42] to cloud services going offline [35, 41, 46], to airlines

grounding their flights [23, 34, 37].

To help improve network reliability, researchers have de-

veloped numerous verification and testing tools over the last

decade. One wave of tools included Anteater [33], Header-

Space Analysis (HSA) [26], Veriflow [27], NetKAT [4, 18, 44],

NoD [31] and Bayonet [19]. These tools were designed to

analyze the network data plane, the component of a network

responsible for forwarding (or blocking) user traffic from

point A to point B. The tools developed can check both de-

terministic and probabilistic properties of how packets flow

through the data plane, and scale to networks with thousands

of devices and millions of packet-forwarding rules.

A second wave of tools has focused on analyzing the net-

work control plane. The control plane is the component of

a network that gathers information about available routes

(paths) to destinations and chooses which routes to use. Once

the control plane has chosen its preferred routes, it passes

them off to the data plane, which implements them. From

time to time, the control plane will receive new information

about the available routes (e.g., when failures occur), and

when it does, it may compute new routes to a destination.

Tools that analyze the control plane, such as C-BGP [40],

rcc [15], Batfish [17], ARC [21], ERA [14], Bagpipe [49],

MineSweeper [6], FastPlane [32], and ShapeShifter [8], will

analyze the router configurations that specify how routes are

to be chosen and will compute the outcome of those choices

https://doi.org/10.1145/3385412.3386019
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(i.e., compute the routes that will be used by the data plane).

These tools can then answer questions such as whether the

control plane will compute a route from A to B (i.e., control
plane reachability), or whether it will compute route from A

to B regardless of which single link failure occurs (i.e., con-
trol plane fault tolerance). However, control plane tools are

usually less scalable than the data plane tools, particularly

when it comes to checking properties like control plane fault

tolerance, which may involve computing different routes

from A to B for every possible failure scenario.

This paper focuses exclusively on control plane analysis

tools and the difficulty of building such tools.
1
Much of this

difficulty arises from the fact that router vendors such as

Cisco and Juniper each have their own proprietary config-

uration languages that consist of an enormous number of

ad hoc commands that are specific to a particular protocol,

such as OSPF or BGP. To analyze a network control plane,

one must first parse these varied configuration languages

and interpret their semantics.

Fortunately, colleagues at Intentionet have built Batfish [17],

a tool that parses these configurations and creates an in-

termediate representation (IR) on top of which researchers

can develop their own analyses. Indeed, researchers from a

number of different institutions have built verification and

simulation tools using Batfish as a front end [6–8, 14, 20, 21].

While Batfish is a remarkably useful front end for manag-

ing configurations, its IR does not fundamentally change the

abstractions present in the vendor languages it supports—it

represents those surface-level abstractions directly. Doing so

has the advantage of being expedient and straightforward,

but causes Batfish to inherit some of the less desirable proper-

ties of the configuration languages themselves. In particular,

the Batfish IR is quite verbose: A recent examination of the

IR showed it contained 24 statements and more than 100

types of expressions. It has 19 ways just to modify fields of a

routing message. Implementing configuration analyses like

MineSweeper [6] requires understanding the semantics of

all these statements and expressions, which is challenging.

Moreover, Batfish continues to evolve, adding new vendor

features, and with them new components to its IR. This

makes it a challenge to maintain analysis tools. It is even

harder to develop and maintain tools like ShapeShifter [8]

that need to transform conventional routing protocols, as the

Batfish IR does not provide the “building blocks” necessary

to represent new, non-standard routing protocols.

A Low-Level IR for Network Verification. Building so-

phisticated static analysis tools is no easy feat; it requires

familiarity with different domains such as programming lan-

guage semantics, automated reasoning techniques and, in

this case, networking. Fortunately, we can simplify the task

by first parsing source languages into a surface-level IR (i.e.

1
Henceforth, whenever we refer to a “network”, the reader may assume we

are referring to the control plane of the network unless stated otherwise.

Batfish’s IR), and then encoding the semantics of this IR into

a lower-level IR designed specifically for verification.

Such an architecture separates key concerns and simplifies

each aspect of the pipeline. Indeed, this methodology has

been used successfully for general-purpose programming

languages in systems such as Boogie [30], Why [16], and

CIVL [43]. The key challenge comes in the design of the

low-level intermediate language for verification: it should

be succint, expressive enough to encode the semantics of

the source language, and tractable enough to admit efficient

analysis of its features.

A Functional Language for Modeling Routing Proto-
cols. Our first contribution is the design of NV, a functional
language for modeling routing protocols. NV uses conven-
tional, expressive and compositional constructs with ordinary,

broadly-understood semantics, such as integers, booleans,

functions, and records. Additionally, it allows users to ex-

press unknowns, such as potential failures or actions of

neighboring networks, in a general way, using symbolic val-
ues, and lets users specify network properties via assertions.
NV’s design provides building blocks for modeling both

standard routing protocols and variations thereon. The latter

is quite useful as large cloud providers have been known

to tweak standard protocols for internal use; accommodat-

ing these tweaks is easier in NV. In addition, these building

blocks can be used to implement transformations of NV pro-

grams. Optimizations, such as partial evaluation, or transfor-

mations, such as message [8] or topology [7, 22] abstractions

can be implemented as NV-to-NV transformations, indepen-

dent of one another and of the back-end analysis used. Prior

to this research, designing a network verification tool in-

volved simultaneously interpreting the low-level commands

from various vendors (Cisco, Juniper, Arista, Force10, etc.),
optimizing their representation, and converting them to the

appropriate structure (e.g., SMT constraints) all at once.

The most difficult design challenge in NV was oriented

around the definition of a dictionary (finite map) type. These

dictionaries need to be expressive enough to encode the key-

value stores and the sets processed bymost routing protocols,

yet simple enough to admit efficient encodings both as SMT

formulae for use in symbolic verification techniques, and

as multi-terminal binary decision diagrams (MTBDDs) for

simulation-based analysis. Such efficient encodings are key

to scaling NV to large networks. We chose a design that

revolves around total maps, allowing us to efficiently repre-

sent concepts such as the set of all possible route announce-

ments; limited the allowed index operations to constants and

symbolic variables; and carefully defined the aggregation

operations (map, mapIte and combine).
To show the design of NV is effective, and that it carefully

walks the tight line between expressiveness and tractability,

we develop a translation from a subset of the control plane

components of Batfish’s IR to NV. This translation covers the



NV: An Intermediate Language for Verification of Network Control Planes PLDI ’20, June 15–20, 2020, London, UK

same control plane features as MineSweeper [6] (excluding

iBGP) and a superset of the features that tools like ARC [21]

model. In particular, it includes encodings of eBGP, OSPF,

static and connected routes as well as redistribution between

these protocols. Our default eBGP encoding does not include

the full path, instead abstracting the path as its length (or,

optionally, as the set of traversed nodes), but does include

communities, local preference, multi-exit discriminator and

policy that modify these fields. Our OSPF encoding includes

OSPF areas and weighted link costs. This paper focuses ex-

clusively on the control plane, and hence data plane features

of configurations such as Access Control Lists, or protocols

such as iBGP, whose analysis requires examination of the

data plane, are not explored here.

Efficient and Flexible Analysis Tools. Our second con-

tribution involves the implementation of two important net-

work analyses over NV programs.

The first is an efficient network simulator, which com-

putes the routes of the network described by an NV program.

The simulator’s design is inspired by the ShapeShifter simu-

lator [8], which uses BDDs. However, where ShapeShifter is

hard-coded to simulate a couple of chosen protocol abstrac-

tions, our simulator efficiently simulates any NV program.

Moreover, thanks to the close correspondence between NV

and OCaml, NV functions may be compiled and natively

executed rather than interpreted. We show that the NV

simulator is on average an order of magnitude faster than

simulators such as Batfish (seconds for NV vs minutes for

Batfish), while also consuming less memory (2GB vs 16GB)

and scaling to larger networks (over a 1000 routers).

The second tool is a verifier that operates via translation

to SMT formula. While the NV simulator scales to larger

networks, NV’s SMT-based verifier is able to process sym-

bolic values (such as a value representing all possible neigh-

bor advertisements). This SMT-based verifier is inspired by

MineSweeper [6], but, like our simulator, operates over any

NV program. For networks that do simple, shortest-path

routing, MineSweeper and NV’s SMT encoding have com-

parable performance, but when more complex policy is im-

plemented, MineSweeper is 10x times slower than NV, and

eventually times out as the network grows.

Novel Network Analyses. The third contribution of this

paper is to show how NV’s expressiveness helps researchers

formulate new analyses with minimal effort. By providing a

programming language that allows users to express network

models easily, one can directly construct non-standard mod-

els that correspond to new analyses. NV makes it easy to

play with these non-standard models, rapidly prototyping

one and then the next to see what does and does not work.

We present a novel fault tolerance analysis implemented

directly as a simple NV-to-NV program transformation. Con-

trary to previous approaches to fault tolerance ([6, 17, 21, 22]),

this analysis scales well, computes precise routes, does not

impose restrictions on the policy or features used, and is

exhaustive. It is also quite a bit more flexible than past anal-

yses: One can consider any combination of node and link

failures they feel is relevant. Since fault tolerance is one of

the most important and difficult properties of networks to

check, this analysis on its own, despite its simplicity, is quite

a breakthrough. And it was originally prototyped in just a

few minutes, rather than taking weeks or months of work,

as past fault tolerance analyses have.

2 An Overview of NV
2.1 How Routing Works
To learn how to route traffic to different destinations, routers

rely on a number of distributed routing protocols. In these pro-
tocols, routers exchange routing messages with their neigh-

bors. These messages (often called “routes”) contain informa-

tion about a path through the network to a given destination.

Protocols carry different information such as the path itself

(BGP), its hop count (RIP) or physical distance (OSPF, ISIS),

or some complex combination of attributes (IGRP, EIGRP).

A router can be configured to run one or more protocols,

and each protocol can be configured via a different set of

policy parameters. For instance an Internet service provider

might tag routes in BGP to indicate “this route was learned

from Verizon”, and then drop the route when exporting it to

AT&T to avoid carrying transit traffic for free.

For each destination, a router selects a single best route

among the ones received from neighbors (after applying

any import policies). Subsequently, it forwards this route to

its neighbors, perhaps after transforming it (e.g., by incre-

menting the path length) and applying any export policies.

Eventually, this procedure reaches a stable state, where all
routers have selected the best routes available to them from

their neighbors. It is this stable state that is of interest, as

operators want to ensure that it adheres to their specifica-

tion. Such specifications usually relate to connectivity, traffic

engineering, security or other business considerations.

2.2 An Example Configuration
The distributed nature of routing makes configuration — and

the subsequent verification task— a challenging problem. But

that’s not the sole challenge in working with configurations.

Figure 1 shows a configuration snippet for a single router

in the Cisco IOS format; briefly, the first part (lines 1-3)

describes physical connections with other devices, while the

second part (lines 5-14) describes the protocols that the router

is running (OSPF, Static, BGP) and their configurations. For

example, line 12 tells OSPF to inject statically configured

routes, such as the one configured on line 5, into its routing

table. Finally, lines 16-23 define user route policies. Even in

this small snippet, some of the challenges for formal analysis

of such configuration languages quickly become apparent:
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1 interface Ethernet0
2 ip address 172.16.0.0/31
3

4 ip route 192.168.1.0 255.255.255.0 192.168.2.0
5 bgp router 1
6 redistribute static
7 neighbor 172.16.0.1 remote -as 2
8 neighbor 172.16.0.1 route -map RMO out
9

10 router ospf 1
11 redistribute static metric 20 subnets
12 distance 70
13 network 192.168.42.0 0.0.0.255 area 0
14

15 ip community -list standard comm1 permit 1:2 1:3
16 ip prefix -list pfx permit 192.168.2.0/24
17 route -map RMO permit 10
18 match community comm1
19 match ip address prefix -list pfx
20 set local -preference 200
21 route -map RMO permit 20
22 set metric 90

Figure 1. A small fragment of a router configuration.

1. Complex instruction set: Many distinct commands per-

form logically similar operations. For example, line 13 as-

signs the value 70 to the administrative distance of redis-

tributed routes, and line 21 assigns the value 200 to the BGP

local-preference parameter. Similarly, they use specific data

structures, such as prefix-list and community-list to

match routes, instead of generic data structures that serve

multiple purposes. Cisco IOS [10] alone contains over 15000

configuration commands, and over 300 for BGP alone.

2. Lack of reusable building blocks:Configuration languages
lack building blocks. Building blocks are useful for creating

new, non-standard structures, and expressing transforma-

tions or abstractions of protocols, which may accelerate veri-

fication. Programmable building blocks also allow engineers

to describe “meta-protocols”, such as our fault-tolerance anal-

ysis, and make it possible to easily attack old problems in

new and better ways.

3. Incomplete semantics: The semantics of the protocols

are not explicit in the configuration. Instead, they are scat-

tered throughout the configuration and the protocol RFC.

For instance, how the BGP protocol selects a route is partially

captured through configuration and partially specified by the

RFC. By making the semantics explicit in a well-understood

metalanguage, we can open up the field of network reliability

research to a broader audience.

NV is designed to address each of these concerns.

2.3 Encoding BGP in NV
The Border Gateway Protocol (BGP) is the protocol used

to exchange routing information between networks on the

internet. In its most basic form BGP implements shortest-

path routing; however, the protocol includes several knobs

which operators can use to implement more sophisticated

policies. To define a model of BGP in NV one defines:

1. a transfer function, defining how routes are transformed

as they are propagated through the network, and

2. a merge function, defining how a node selects a best route.

Figure 2a presents a cut-down model of BGP in NV. In this

model, we consider a single destination and represent routes

towards it as optional values. No value indicates the absence

of a route; otherwise, a BGP route consists of a record with

five components: the path length (length), an integer known
as local preference (lp), an integer known as multi exit dis-

criminator (med), a set of integers known as communities

(comms), and an originator (origin) indicating which node

initially announced the route. Intuitively, the local prefer-

ence value allows an operator to override the shortest-path

selection, while the multi-exit discriminator is used by exter-

nal peers to provide a tie-breaker in case there are multiple

connections to their network. Finally, communities are tags

that a router can attach, remove or test on a route, allowing

network operators to implement custom policies.

The transfer function computes the route to be propa-

gated over an edge in the network using the route selected

by the propagating node. In our working example it sim-

ply increases the path length by 1, but in general, it can be

used to describe more complex transformations, such as the

BGP policy of fig. 1. Finally, when choosing between two

routes, the merge function selects the route with the highest

local-preference value, or, if they are equal, the one with the

shortest path length. If the path lengths are also equal the

multi exit discriminator is used to break the tie.

2.4 Using NV for Verification
Having defined a model of BGP as in fig. 2a, we can use NV

to verify properties about a network running BGP. To do so,

we provide a topology, the initial route of each node and an

assertion to verify as in fig. 2b.

Modeling Unknowns. Operators are often interested in

verifying properties with respect to factors outside their con-

trol. Such factors could be potential hardware failures (a

failed link or device), or a route sent from a peer network.

Inspired from other solver-aided languages [47], NV uses

symbolic values to model such “unknowns”. A symbolic value

is not bound to a single concrete value; rather it represents

any possible value of its type. In the example of fig. 2b a sym-

bolic value models the fact that node 4 may send arbitrary

routes. Intuitively, this represents an external network (node

4) that peers with our network (nodes 0-3).

Specifying Properties. To specify a property of the con-

verged (stable) state of the network we may define an as-
sertion. An assertion is simply a predicate over a node and

the final route it has selected. In the case of fig. 2b, our spec-

ification asserts that node 4 cannot hijack traffic from our

network, i.e. nodes internal to our network should prefer the
route that originated from node 0.
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1 type bgp = {length:int; lp:int; med:int;
2 comms:set[int]; origin:node}
3

4 type attribute = option[bgp]
5

6 let transBgp (e: edge) (x: attribute) =
7 match x with
8 | None -> None
9 | Some b -> Some {b with length = b.length +1}
10

11 let isBetter x y =
12 match x,y with
13 | _, None -> true
14 | None , _ -> false
15 | Some b1, Some b2 ->
16 if b1.lp > b2.lp then true
17 else if b2.lp > b1.lp then false
18 else if b1.length < b2.length then true
19 else if b2.length < b1.length then false
20 else if b1.med <= b2.med then true else false
21

22 let mergeBgp (u: node) (x y: attribute) =
23 if isBetter x y then x else y

(a)

2

3 0

1

4

1 include bgp
2 let nodes = 5
3 let edges = {0n=1n;0n=2n;1n=4n;2n=4n;1n=3n;2n=3n}
4

5 symbolic route : attribute
6

7 let trans e x = transBgp e x
8

9 let merge u x y = mergeBgp u x y
10

11 let init (u : node) =
12 match u with
13 | 0n ->
14 Some {length =0; lp=100; med =80; comms ={}; origin =0n}
15 | 4n -> route
16 | _ -> None
17

18 let assert (u : node) (x : attribute) =
19 match x with
20 | None -> false
21 | Some b -> if (u <> 4n) then b.origin = 0n else true

(b)
Figure 2. (a) shows a basic model of BGP in NV. (b) shows a network running BGP. Nodes 0-3 model an internal network and

node 4 a peer announcing an unknown route to nodes 1-2. Can we verify that node 4 cannot hijack traffic from our network?

2.5 Implementing Network Analyses
To verify properties of a network, we need to compute its

stable states, also known as its solutions. A state of a network
is a labelling function L that maps each node to a route.

Such a state is stable when given a node and the routes

associated with its neighbors, there is no incentive for the

node to adopt a route that differs from the one it already has.

More precisely, we define the choices of node u as the routes

received from neighbors, i.e. the set of routes computed by

applying the transfer function over each edge (v,u) and the

label L(v) of the neighbor:

choices(u) = {a | e = ⟨v,u⟩, a = trans e L(v)}

The label of a node u can then be described as a combination

of the choices provided from its neighbors and its initial

route:

L(u) = init(u) ⊕ a1 . . . ⊕ an

when choices(u) = {a1, . . . ,an}
and x ⊕ y ≜ merge u x y

When the equation above holds for every node u in the net-

work, the function L defines a stable state for the system.

While not formulated in exactly the same way, these defi-

nitions reflect the same notion of stability as developed in

earlier work by Griffin et al. [24] and Sobrinho [45].

SimulatingRouting Protocols. Oneway to compute a sta-

ble state is through simulation. Network simulation mimics

the route exchange process in which routers engage. It com-

putes a fixpoint of the process in which each node uses the

merge function to select the best route among the received

ones, then modifies that route according to the transfer func-

tion and further propagates it to its neighbors (see section 5.1,

algorithm 1). To achieve high performance, our simulator

processes routes for multiple destinations in bulk [8], via

a novel implementation of maps based on multi-terminal
binary decision diagrams (MTBDDs) [11].

To simulate the network, we need to execute the merge

and transfer functions. Typically network simulators do this

by using an interpreter [17, 32]. However, interpreters can

be slow, particularly when route policy is complex. An alter-

native (by two orders of magnitude in certain cases) relies

on native execution to compute routes; this is enabled by

NV’s conventional language design. Section 5.1 details the

compilation and linking with a simulator process.

SMT Verification. A second way to check properties of

converged network states is through SMT [6]. The SMT-

based approach does not model the convergence procedure;

instead, it captures the stable solutions of the network using

constraints. The challenge in creating an efficient SMT encod-

ing is that high-level programs introduce abstractions that

do not favor SMT reasoning. Much like a regular compiler,

NV relies on an optimizing pipeline to produce tractable con-

straints. Section 6.2 shows that NV’s systematic approach to

optimizations results in improved performance compared to

state-of-the-art control plane verifiers like MineSweeper.

The strength of the SMT-based analysis lies in its ability to

perform symbolic reasoning. With respect to NV, this means

that it can indeed reason about all possible assignments to a

symbolic value. Returning to our working example in fig. 2b,

the SMT analysis will refute our assertion: node 4 may send
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1 include bgp
2 type attribute = option [(set[node],bgp)]
3

4 let trans e (x : attribute) =
5 let (u,v) = e in
6 match x with
7 | None -> None
8 | Some (s, b) ->
9 (match transBgp e b with
10 | None -> None
11 | b' -> Some (s[u := true], b')
12

13 let merge u x y =
14 match x,y with
15 | _, None -> x
16 | None , _ -> y
17 | Some (s1,b1), Some (s2,b2) ->
18 let b = mergeBgp u b1 b2 in
19 if (b = b1) then (s1, b) else (s2, b)

Figure 3. Model capturing traversed nodes

d

Figure 4. A FatTree network with two link failures inside a

pod; the failures do not affect nodes outside the pod.

a better route than node 0 (e.g. one with same path length as

the route from node 0 but lower med value) and since there

are no configured route filters on nodes 1 and 2, node 4 can

successfully hijack traffic from our network.

In contrast, exhaustive analysis using approaches based

on normalization, such as simulation, is usually impractical.

Instead, one explores a limited set of cases deemed interest-

ing for the assertion under test, by by providing concrete

values in place of symbolic ones.

2.6 Modeling Protocols
Large cloud providers are known to run modified versions

of protocols in-house. For instance, a recent MineSweeper

feature request was to change the way in which BGP ranks

routes [38]. Such changes require familiarity with low-level

code that generates the constraints encoding BGP’s route

ranking. Moreover, this change does not apply to other tools,

such as Batfish, which would need another patch. In contrast,

in NV it suffices to tweak the merge function (for example,

by adapting the translation from Batfish to NV), and the

change is automatically usable by all available analyses.

Furthermore, operators have information specific to their

networks and the properties they want to check. They can

leverage this information and NV’s flexibility to adapt the

model to their needs, for example by capturing more details

or making it more abstract. For instance, to reason about

waypointing (i.e. does a route traverse certain nodes) we may

augment the routes with a set of traversed nodes (fig. 3).

1 let transFail transBase e (x : dict[edge , α ]) =
2 mapIte (fun e' -> e = e')
3 (fun v -> None)
4 (transBase e) x
5

6 let mergeFail mergeBase u x y =
7 combine (mergeBase u) x y
8

9 let initFail initBase u = createDict (initBase u)

Figure 5. Meta-Protocol for Fault Tolerance Analysis

2.7 Programming New Analyses
An NV program does not necessarily have to emulate a rout-

ing protocol. Fault tolerance analysis is the holy grail of

network verification tools: simulators cannot provide ex-

haustive guarantees, and SMT-based approaches do not scale.

We implement — in just a few lines of NV code — a fault toler-

ance analysis that leverages sharing in our flexible map data

structure to simulate all possible failure scenarios at once.

Our analysis is orders-of-magnitude faster than the naive

simulator-based approach of independently trying out all fail-

ure scenarios, and faster than SMT-based approaches while

also scaling to large networks (i.e. with tens of thousands of

links) that are out-of-reach to SMT verifiers (section 6).

The NV program of fig. 5 defines ameta-protocol that mod-

els routes under different failure scenarios, using a map from

edges to routes. Intuitively, each map entry defines a single

link failure scenario. The transfer function over an edge e
uses an if-then-else operation over the map (see, section 3.1)

to apply the transfer function of a regular routing protocol

(e.g. the BGP transfer function transBgp of fig. 2a) over all
map entries except the one which corresponds to e; that en-
try is replaced with a dropped route. Here we assume that a

dropped route is denoted as a None value, but one can easily

generalize the meta-protocol of fig. 5 to use different “default”

values. The merge function uses the combine primitive to

perform a pointwise application of the merge function for

the underlying protocol.

The analysis can be easily extended to multiple link fail-

ures or even combinations of link and node failures. For

instance, to compute the routes when there is a failed node

and a link failure, we augment the map keys to be tuples

of a node and an edge and adjust the transfer function to

drop the route if it’s being propagated over a failed link or

from/towards a failed node.

The key insight behind our analysis is that, usually, a fault

in the network only affects the routers that are topologically

“close” to it. This is because networks are often built with

some redundancy to sustain hardware faults. For instance,

in the example of fig. 4 link failures inside a pod (a group

of 4 routers, 2 pink and 2 blue in this case) do not affect the

routes of nodes outside of it. More generally, faults can be or-

ganized in classes, each class triggering a different behavior.

Unfortunately, determining those classes statically (i.e. with-
out solving the routing problem) is a difficult open problem

[22]. The key to the performance of our analysis is that it
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d ::= symbolic x : ty | require e | let x : ty = e | type t = ty
v ::= NuN | true | false | None | Some v | (v1, v2) | {ℓ1 : v1; . . . ; ℓn : vn }
e ::= v | x | let x : ty = e1 in e2 | fun (x : ty) → e | e1 e2 | Some e

| (e1, e2) | {ℓ1 : e1; . . . ; ℓn : en } | e.ℓ | if e1 then e2 else e3
| (match e0 with | p1 → e1 . . . | pn → en)

ty ::= int⟨N+ ⟩ | bool | node | edge | option[ty] | α | ty1 → ty2
| (ty1, . . . , ty2) | {ℓ1 : ty1, . . . , ℓn : tyn } | dict[ty1, ty2]

Figure 6. Core NV syntax

create : β → dict[α, β ]
get : dict[α, β ] → α → β
set : dict[α, β ] → α → β → dict[α, β ]
map : (β → γ ) → dict[α, β ] → dict[α, γ ]
mapIte : (α → bool) → (β → γ ) → (β → γ ) → dict[α, β ] → dict[α, γ ]
combine : (β → β → γ ) → dict[α, β ] → dict[α, β ] → dict[α, γ ]

Figure 7. NV supported map operations.

dynamically finds these classes. It does so by leveraging the

MTBDD implementation of maps which, by construction,

groups together map entries with the same value.

3 The NV Language
NV has many features of a typical functional language (fig. 6),

including let-bindings, match statements, (non-recursive)

functions, and data structures such as options, tuples, records,

and maps. NV also has a set data type, which is imple-

mented as a map to boolean values. The base types are

booleans, integers, nodes, and edges. Furthermore, integers

are parametrized by a number of bits; for example, we write

int8 for the type of 8-bit integers and 5u8 for the 8-bit rep-

resentation of the value 5. Lack of an annotation means a

32-bit size. Specifying the number of bits allows for more

accurate modeling of protocol semantics and enables time

and space savings in MTBDD-based analyses (section 5.1).

NV also supports let-polymorphism, though the messages

exchanged between nodes must have a concrete type.

An NV program is a series of declarations (d) capturing
the topology of a network, the type of the routes exchanged,

and the init, transfer, and merge functions that describe
the semantics of the protocol (fig. 8).

NV also includes declarations to support verification. The

first is an assert function, which expresses a specification

about the converged state of a node. Users may also declare

variables that are bound to a symbolic value [47]. A symbolic

value represents a class of values as opposed to a single con-
crete value. In NV, their exact interpretation depends on the

analysis. SMT-based analyses treat symbolic values as repre-

senting any concrete value. Analyses based on normalization

(e.g. a simulator) require concrete, non-symbolic values. In

this case, symbolics are treated as inputs to the program;

prior to execution, symbolic values are fixed to concrete

ones, provided by the programmer or by random generation.

A user may also constrain the class of concrete values that

a symbolic value represents by providing a boolean requires

nodes : int
edges : set[edge]
init : node→ α
transfer : edge→ α → α
merge : node→ α → α → α
assert : node→ α → bool

Figure 8. NV required declarations and types.

clause. Any assignment of a concrete value to a symbolic one

must ensure that the requires expression evaluates to true.

3.1 Semantics of Maps
One of the more interesting aspects of NV is its treatment of

maps. Giving semantics to maps is straightforward (e.g. as a
function), but efficiently implementing them in an interpreter

or as constraints is not as easy. We found that total maps
admit efficient implementations both when interpreted and

when encoded as constraints.

The key principles driving our design of maps in NV are

derived from their use in the context of routing:

1. Maps are typically indexed using statically-known values.

For instance, routers route or block particular, known,

subnets. They attach a particular tag to a BGP message.

These values appear as constants in the configuration and

need not be computed dynamically.

2. The final solutions of routing algorithms are maps from

IP subnets to routes. Computing those solutions does not

require aggregation operations, such as folds, across those

maps. On the other hand, routing algorithms do need to

compute routes for all subnets, so we do need operations

that apply functions across all elements of the map.

3. There is a lot of symmetry in networks. Hence, many

different keys may be associated with the same value.

For instance, in our fault tolerance analysis the map keys

represent many different failure scenarios, but the values

are taken from an often small set of routes (e.g. as in fig. 4).

Points 1 and 2 are critical to our tuple-based SMT encoding

of maps (section 5.2), while point 3 motivated our MTBDD-

based interpretation of maps (section 5.1). In fact, we enforce
point 1 by requiring that the keys used in map get/set opera-

tions are constants, rather than arbitrary expressions.

Figure 7 shows the map operations in NV. Map get (also

written m[k]) and set (written m[k := v]) return and update

the value associated with key k of the map, respectively. The

combine function merges the values of two maps key-wise.

In line with the principles above, our maps support opera-

tions such as map, which maps a function over the values of a

map, and mapIte, which maps one of two different functions

over the values, based on a boolean function over their cor-

responding key. Intuitively, mapIte is useful to implement

operations that would otherwise require the map operation
to access both keys and values (e.g., filtering routes based
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on their prefix). While more general, this operation — com-

monly known as mapi — cannot be efficiently implemented

using our MTBDD encoding of maps (section 5.1).

Tradeoffs and Limitations. When designing an interme-

diate verification language there is a tension between the

expressivity needed to model the source language(s) and the

tractability of analysis. In designing NV, we limited ourselves

to constructs that admit efficient and complete verification

procedures (section 5). In addition to our restrictions on

map operations, we have omitted features such as recur-

sive functions and datatypes. These conditions, while overly

restrictive for a general-purpose language, can (with few

exceptions) be easily accommodated in our context.

One such exception is BGP’s record of a route’s path as a

string. At each hop, BGP will push the name of the router

onto the front of the string. A user may construct route

filters using regular expressions over the string. Such oper-

ations cannot be modeled in NV, though that may change

in the future. Fortunately, however, verification (as opposed

to implementation) does not usually require a precise model

of such features—approximations suffice. For instance, one

recent analysis [8] demonstrated such features can be over-

approximated without loss of precision in real networks.

4 Translating Router Configurations
To obtain NV programs from actual router configurations,

we modify Batfish to emit NV code. We first infer the basic

structure of the network (the topology and which protocols

are in use), then translate the configuration route-maps that
implement network-specific policy.

4.1 Modeling the Topology and Active Protocols
In this stage, we infer the physical connectivity between

routers, the different protocols that each router runs, and

the prefixes (subnets) they announce.

For the topology, the translation is simple. We create one

node in the graph for each router, and add edges between

each pair for which Batfish has inferred physical connec-

tivity. Representing the protocols is also straightforward.

Each router in a network may run several routing protocols,

and may also contain hardcoded static or connected routes.

This information is stored in a table, known as a Routing

Information Base (RIB), that holds information for all ac-

tive protocols. The RIB also contains a selection of which

protocol’s route is best according to network policy.

We model the RIB as a map from prefixes (destinations) to

a record containing each protocol’s route to that destination.

The example in fig. 9 maintains one each for OSFP and BGP,

and two more for hardcoded routes. The fields of ribEntry
are options because there may be no route through a given

protocol. The selected field denotes the protocol whose

route was chosen as best: 0 for OSFP, 1 for BGP, etc.

1 type ribEntry = {
2 ospf : option[ospfRoute ];
3 bgp : option[bgpRoute ];
4 static : option[staticRoute ];
5 connected : option[connectedRoute ];
6 selected : option[int2] }
7

8 type ipv4Prefix = (int , int5)
9 type attribute = dict[ipv4Prefix , ribEntry]

Figure 9. Type of routes exchanged in our network model.

4.2 Modeling the Policy
Network operators implement policy over a network using

a mechanism called route-maps. A route-map is a list of

statements which test and modify certain characteristics of a

route. For instance, a route-map applied on a BGP connection

may check if a certain tag is present and increase or decrease

the local preference value accordingly.

Abstractly, route-maps contain two types of statements:

conditional statements which test properties of the route, and

mutation statements which modify attributes of the route.

Intermediate Policy Representation. Converting route-
maps to NV is complicated somewhat by the different ab-

straction levels – route-maps operate over a single route,

while our NV encoding processes all routes at once using

the dict data type. To convert route-maps to NV expres-

sions, we go through a directed acyclic graph (DAG) based

intermediate representation. We represent each route-map

as a DAG in which non-leaf nodes correspond to conditional

statements, and leaf nodes correspond to a list of mutation

statements. This representation allows us to separate prefix

processing (map keys) from route processing (map values)

by swapping DAG nodes to reorder conditional statements.

Figure 10a shows a route-map that sets the local-preference

value of a BGP route based on the attached communities and

the destination prefix. The DAG of fig. 10b captures the se-

mantics of this route-map; note that if no route-mapmatches,

the route is implicitly dropped (denoted by ⊥).

A natural translation from this DAG representation to NV

is a chain of if-then-else expressions, which are mapped over

routes in the RIB. However, since route-maps may test not

only the route but also the prefix (i.e. the keys in the RIB), we

must use the mapIte operation, which may test map keys.

Doing so, however, requires some extra effort: conditional

statements on the prefix must be executed first, so they may

appear as predicates for mapIte.
Fortunately, our DAG-based IR makes this easy; we need

only swap nodes in the DAG until all nodes which condition

on the prefix are at the top (i.e. any parents also condition

on the prefix). Figure 10c shows the result of applying this

transformation to the DAG in fig. 10b. Translating to an NV

expression using mapIte is easy now; the pink nodes are

used as predicates to mapIte, while the rest are translated
as if-then-else chains over the map values (fig. 10d).
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(a)

1 route -map RM1 permit 10
2 match community comm1
3 match ip address prefix -list pfx
4 set local -preference 200
5 route -map RM1 permit 20
6 match community comm2
7 set local -preference 100

(b)

match comm1

match ipmatch comm2

lp <- 200lp <- 100⊥

tf

f t

f

t (c)

match ip

match comm1match comm2

lp <- 200lp <- 100⊥

tf

f t

f

t

(d)

1 let map_option f o = match o with | None -> None | Some x -> f x
2

3 let transRouteMap (x : dict[ipv4Prefix ,option[bgp]]) = mapIte (fun pre -> matchPrefix pre pfx)
4 (fun ov -> map_option (fun v -> if matchComm comm1 v then Some {v with lp = 200} else
5 if matchComm comm2 v then Some {v with lp = 100} else None) ov)
6 (fun ov -> map_option (fun v -> if matchComm comm2 v then Some {v with lp = 100} else None) ov) x

Figure 10. (a) defines a single route-map, RM1; (b) shows its DAG representation. (c) shows the transformed DAG, where all

conditional statements on prefixes are on the top of the DAG, and finally, (d) is what the resulting NV function looks like.

5 Network Analyses
5.1 Simulation
A control plane simulator is an algorithm that mimics the

exchange and processing of routes as dictated by the seman-

tics of the protocols in play. Existing simulators such as Bat-

fish [17] and FastPlane [32] are invaluable industrial tools for

testing the consequences of various routing configurations.

The key difference between our simulator and these others

is that they are designed to simulate specific protocols (e.g.,
BGP, OSPF, etc) where as our simulator simulates the NV

programming language. A standard interpreter implemen-

tation that treats NV structures as ordinary functional data

structures would have led to non-competitive performance.

To accelerate performance, we use specialized data structures

(e.g., MTBDDs) and domain-specific optimizations.

The SimulationAlgorithm. Algorithm 1 presents the core

simulation algorithm. We use the notation ⟦e⟧ to denote exe-
cution of the functional components of NV, including the init,

transfer and merge functions. We describe the non-standard

elements of the interpreter in the following subsection.

The goal of the algorithm is to compute the solution L

to the system. Recall that such a solution is a stable state of
the system. In other words, the solution L(v) at every node

v must be equal to the merge of its initial attribute with all

attributes transferred from its neighbors (see section 2.5).

Overall, the algorithm for computing solutions is a work-

list algorithm that stores the nodes to be processed on a

priority queue (q). Lines 6-9 initialize the solution L and

populate the queue with all nodes in the network. Lines 10-

11 select a node from the queue to process, or, if there are

none left, terminate the algorithm.
2

Lines 12-20 explain how to process a node u. To do so,

u sends its current attribute to all of its neighbors v . Each
neighbor v may need to update its solution. The neighbor

v checks whether it has previously received information

from u (i.e., if u ∈ received(v)). If not, it can simply merge

the new information with its current solution (lines 19-20).

Otherwise, v’s solution contains stale information from u.

2
The algorithm is not guaranteed to terminate. Past work [12, 24, 45] has

studied criteria for termination that can be checked.

The simple thing to do in this case is to recompute a merge

of all received messages, including the new one from u (line

18). However, this is costly, so we use an observation from

ShapeShifter [8], which is that when (merge old new) = new
it suffices to merge new into the existing solution rather than

recomputing a merge of all received messages (lines 15-17).

Interpreting NV with MTBDDs. Multi-Terminal binary

decision diagrams (MTBDDs) are a variant of BDDs capable

of representing functions from finite domains to arbitrary

values (rather than just to booleans). MTBDDs have been

used for symbolic model checking of domains requiring rich

structure, such as probabilistic systems [2]. We leverage the

fact that MTBDDs store one copy of each leaf — since NV

maps typically contain many repeated values, an MTBDD

representation is quite compact. Moreover, the NV simulator

frequently applies the same operation to each entry in a map

— sharing of leaves means we need apply the operation only

once per distinct entry. Finally, the canonical structure of

MTBDDs enables efficient equality tests. Fast (in)equality

tests significantly improve simulator performance by quickly

testing if a node’s attribute changed after a merge operation.

To represent a map as an MTBDD, we must represent its

domain as a series of binary decisions. With the exception of

maps and functions, types in NV are designed to be finitary,

hence they can be represented in such a fashion. For instance,

finite integers are represented bitwise; fig. 11a shows the

MTBDD corresponding to a total map from 3-bit integers to

values of type option[int].
Most map operations reduce to constructing BDDs and

combining them with the MTBDD that represents the map.

Figure 11 illustrates how to construct several MTBDDs for

simple functions over 3-bit integers and apply them. Al-

though MTBDDs provide us many advantages, constructing

BDDs and combining them can be computationally expen-

sive. To amortize the cost of these operations we cache them;

in practice, cache hits are likely to occur frequently during

simulation since multiple nodes have similar configurations

(e.g. filtering the same communities).

Native Simulation. Past implementations of control plane

simulators ([17, 32]) have interpreted computational elements
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Algorithm 1 Network Simulator

1: procedure Update(L, q, v , route)
2: if route , L(v) then L(v) ← route; q ← q ∪ {v }
3:

4: procedure simulate(V, E, init, trans, merge)
5: q ← {}
6: for u ∈ V do
7: L(u) ← init(u) ▷ Best route of node u
8: received(u)(u) ← init(u) ▷ Routes received at u
9: q ← q ∪ {u }
10: while q , empty do
11: u ← pop q ▷ Propagate u ’s route
12: for v ∈ neighbors(u) do
13: new← ⟦trans((u, v), L(u))⟧
14: if u ∈ received(v) then ▷ Is there a stale route?

15: old← received(v)(u)
16: if ⟦merge(v, old, new)⟧ = new then ▷ Incremental update

17: Update(L, q, v , ⟦merge(v, L(v), new⟧)
18: else Update(L, q, v ,

⋃
⟦merge⟧ received(v)) ▷ Full update

19: else Update(L, q, v , ⟦merge(v, L(v), new)⟧)
20: received(v)(u) ← new

of control plane protocols. Of course, interpreters are gen-

erally much slower than compiled programs. In our case,

because we have already mapped the ad hoc vendor configu-

ration languages into a functional programming language,

the work required to compile NV is significantly reduced.

Indeed, we can translate NV’s computational core to OCaml,

use OCaml’s compiler to obtain assembly code, and link the

compiled binary to the simulator.

The translation from NV to OCaml is straightforward

for most constructs; functions, options, integers, booleans,

and tuples all have corresponding constructs in OCaml. The

notable exception is maps, as there is no MTBDD-based

map construct in OCaml, and so we must reuse the MTBDD

librarywe developed for the interpreter. This library converts

the abstract syntax of NV values into keys for MTBDDs and

allows NV values to be stored in the leaves of MTBDDs.

However, it does not allow arbitrary OCaml values to be used

as keys/values in MTBDDs. To bridge the gap between this

library and the OCaml representation of the rest of the NV

values, we convert a subset of OCaml into NV (an embedding)
and, conversely, convert the subset of NV that may be used

as map keys/values back into OCaml (an unembedding).

5.2 SMT-based verification
The key insight in SMT verification of control planes is that

one does not need to model the message-passing process

directly[6, 24]. Instead, one can specify the requirements on

the stable state—that is, that every node holds an attribute

equal to the merge of its initial state and the transfer of its

neighbor’s attributes. If the converged states are specified

by a formula N (shown in section 2.5) and we wish to verify

a property P holds in those states, it suffices to show that

(a)

b2

b1

b0

Some 0

(b) b2

false true

(c) b2

None Some 1

Figure 11. Implementation of mapIte (fun k -> k > 3)
opt_incr (fun v -> None) (create (Some 0)), which
increments the length of routes with key greater than 3, and

drops others, for a map from 3-bit integers to the Some 0
value. (a) MTBDD for a map (create (Some 0)) (presented
is an unreduced MTBDD). Nodes are labelled with a bit (b2
is most significant). If a bit is false, one follows the dashed

line to find the corresponding structure; otherwise, the solid

line. Here, any bit pattern leads to (Some 0). (b) MTBDD

encoding of the (fun k -> k > 3). (c) The result of mapIte,
by performing an MTBDD apply operation on (a) and (b) and

mapping opt_incr and (fun v -> None) over the result.

N ∧ ¬P is unsatisfiable; that is, there is no converged state of

our network in which P does not hold.

As with the simulator, the key difference between NV’s

SMT verification engine and previous network verification

engines, like the one implemented in MineSweeper, is the

flexibility of the system. Rather than encoding specific proto-

cols directly as SMT formulae, we encode features of the NV

language. Most importantly, we can optimize NV programs

far more systematically than was possible during the ad hoc,

one-pass translation used in e.g. MineSweeper.

An Optimizing Pipeline to SMT.. SMT solvers offer theo-

ries for reasoning about complex constructs such as datatypes

and arrays. Unfortunately, we have found that such theo-

ries perform relatively poorly in this context. As a result,

before converting NV to SMT, we eliminate complex NV data

types through a series of mostly standard source-to-source

transformations.

Map Unrolling. Map operations are chosen to allow pro-

grammers to specify maps with huge domains, such as the

domain of all 2
32
IP addresses, but to only pay a cost propor-

tional to the subset that is used, such as the (much smaller)

set of IP addresses that appear in the network. In particular,

because there are no aggregation operations over the the

entire map, such as a fold, entries that are never accessed via

a get operation need not be represented. We implement such

sparse maps as tuples, via a map unrolling process, where an

element of the tuple is reserved for each key that accesses

the map. Map accesses then become tuple projections.

When the keys used to access a map are constants, im-

plementing the map as a tuple is straightforward — collect

all the n constant keys used in the program and create a

n-tuple with an entry for each constant. However, we also

allow indexing maps with symbolic values, whose value is
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unknown at compile time. To accommodate both n constant

keys c1, . . . , cn andm symbolic keys s1, . . . , sm , we use a tu-
ple of size n +m where the value associated with ci appears
in element i and the value associated with sj appears in ele-

ment n + j. Of course, symbolic key sj may actually resolve

to the constant ci . In this case, the computation must be as if

the constant ci was used in sj ’s place. To do this, we encode

map get on a symbolic key as follows (map set is similar).

Here, assume we have one constant key c and two symbolic

keys s1, s2.
1 encode(m[s]) = if s = c then encode(m).0 else
2 if s = s1 then encode(m).1 else encode(m).2

OptionUnboxing. Expressions of type option[A] are trans-
lated to pairs of type (bool, A) where the first component

is false for None (and the second component is irrelevant),

and true for Some.

Tuple Expansion and Flattening. After maps and options

have been eliminated, the only complex data type left are

tuples. We eliminate them too by flattening nested tuples and

expanding variables of tuple type, and then simply encode

the flat tuples as independent variables/expressions.

Partial Evaluation. Our transformations often lead to an

explosion in program size as they introduce many interme-

diate expressions. To mitigate this, we partially evaluate the

program and apply some additional simplifications before

SMT encoding, normalizing away most of the clutter intro-

duced by language abstractions and transformations.

From Expressions to Constraints. To translate an NV

program to constraints, we follow a standard model checking

approach: we inline all functions and rename variables to

ensure that bindings are unique. After applying the trans-

formations above, the remaining expressions have a direct

translation to SMTLIB2. Importantly, the translation only

relies on the quantifier-free core and linear arithmetic (or

bitvector) fragments of SMT solvers, which helps achieve

good solver performance and guarantees completeness.

6 Evaluation
To evaluate NV

3
, we conducted experiments on several bench-

marks, including a collection of real data center and wide-

area network topologies along with a collection of synthetic

router configurations based on real policies. We evaluate NV

along several dimensions: (i) the performance of its symbolic

SMT-based analysis compared to MineSweeper [6], (ii) the

performance of the new fault-tolerance analysis compared to

MineSweeper, (iii) the performance of its simulation engine

compared to Batfish [17], and (iv) the impact of native com-

pilation on network analysis time. We run all experiments

on a 2015 Mac with a 4Ghz i7 CPU and 16GB of memory.

3
The source code for NV and the networks used for experiments can be

found at https://github.com/NetworkVerification/nv

6.1 Networks Studied
For data center topologies, we focus on FatTree [1] designs,

commonly used to interconnect large numbers of servers

while providing fault tolerance and high bisection bandwidth.

Fattree designs are parameterized by k , the number of “pods”,

and by varying k , one can explore the impact of topology size

on analysis time. For routing, modern datacenter designs use

the eBGP routing protocol [29] for its scalability and policy-

rich configurability, coupled with variants of shortest path

routing and equal cost multipath (ECMP) load balancing.

We consider two different policies described in the liter-

ature: a pure shortest-path routing policy (denoted using

SP), and a variant that uses tagging and filtering to disallow

“valley routing”’ [9], i.e. dropping routes that go through the

same layer of the fat tree multiple times (denoted FAT).
To evaluate our fault tolerance, we consider both the (sym-

metric) data center networks as well as an asymmetric wide-

area network topology (USCarrier, consisting of 174 nodes

and 410 links) from the Topology Zoo [28] with a policy

previously synthesized by NetComplete [13].

6.2 Performance of SMT Verification
We compare our SMT-based analysis with MineSweeper, the

state-of-the-art SMT verifier for control planes. For the ex-

periment we use six FatTree networks running the routing

policies described above, and ranging in size from 80 to 180

routers (nodes)
4
. MineSweeper and NV solve slightly differ-

ent problems; Minesweeper asserts facts about a data packet

in the network, which requires modeling the part of the con-

trol plane that affects this data packet. On the other hand,

NV currently only models the control plane and does not

consider data packets. However, since there are no dataplane

access control lists (ACLs) in the examples, the encodings are

similar [6]. Each leaf in the fat tree announces a destination

prefix; we pick a node at random (called the destination).
For MineSweeper, we assert that a data packet sent from

4
SP(k) and FAT(k) each have (5/4)k2 nodes and k3 edges
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Figure 12. SMT time to solve the constraints for NV and

MineSweeper (MS). MineSweeper timeouts after 30 minutes

for FAT10 and FAT12.

https://github.com/NetworkVerification/nv
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any node in the network, with a concrete destination IP that

matches the prefix of our destination, reaches the destination.

Similarly, in NV, we assert that every node has a route to the

prefix announced by the destination node.

Discussion. Figure 12 compares the SMT time for the con-

straints generated by MineSweeper and NV. Our goal is not

to compare the absolute verification time, but rather to ob-

serve differences in performance trends.

Networks based on shortest-path routing have similar ver-

ification time and scaling pattern. The FAT networks, which

route based on more complex policy, provide more interest-

ing data. For NV, SMT time is 40-50x slower compared to the

SP networks. On the other hand, MineSweeper only verified

the smaller 80 node network, with a slowdown of more than

500x. It is difficult to pinpoint the cause of this difference

between the two; however, it is likely that some of the opti-

mizations MineSweeper performs do not kick in when deal-

ing with more complex policy. For instance, MineSweeper

also performs some forms of partial evaluation. However,

unlike NV, MineSweeper reduction rules are rather ad-hoc,

as they are defined over a language that was designed for

neither partial-evaluation nor translation to constraints.

Unsurprisingly, MineSweeper computes the SMT encod-

ing faster than NV (not shown in fig. 12). This is because

MineSweeper builds on top of the original structure of the

problem, while NV requires many transformations to re-

duce the abstractions introduced. However, the bottleneck

remains the constraint solver; the encoding procedure can be

further optimized, and even parallelized, but it is not obvious

how to improve the performance of the SMT solver.

6.3 Performance of Fault Tolerance Analysis
Next, we examine the performance of our map-based fault

tolerance analysis that simulates all faults at once.

Comparisonwith SMT-basedApproaches. Currently, the
only other tool that provides exhaustive fault-tolerance veri-

fication of networks with expressive policy is the SMT-based

analysis of MineSweeper. Figure 13a compares the verifi-

cation performance of our analysis; MineSweeper; and the

SMT backend of NV, when verifying single link fault toler-

ance. As witnessed in the previous experiment, SMT-based

techniques have certain scaling limits even when failures —

which largely increase the state space — are not considered.

Unsurprisingly, in the presence of failures the performance of

the SMT-based analysis deteriorates even faster before even-

tually timing out. In contrast, our MTBDD-based analysis

leverages the symmetries in failure scenarios and computes

the routes for any possible failure in a matter of seconds.

Failure Analysis Scaling. We further evaluate how the

fault tolerance analysis scales as we increase the size of the

networks and the number of failures (fig. 13b). We note that

precise fault tolerance analysis of some of these networks is

out of reach of existing network analysis tools
5
.

In the highly symmetric fat tree topologies, the analysis

scales linearly with the number of link failure combinations.

For instance, considering a single link failure, scaling is prac-

tically linear in the number of links. Of course, the number

of unique failure combinations grows exponentially as we

increase the bound on link failures, as demonstrated by the

slowdownwhen considering 2 or 3 link failures for a network

like FAT28, which has roughly 22,000 links.

On the other hand, USCarrier faces greater impact when

the number of failures is increased; this is because the net-

work is less symmetric and lacks redundancy to sustain mul-

tiple failures. As more edges fail, the network’s behavior

changes significantly. Hence, by the time we reach 3 link fail-

ures, the routes computed for each scenario can vary wildly,

reducing the sharing that MTBDDs exploit.

Single-prefix vs All-prefixes. An alternative model takes

advantage of disjoint prefixes, i.e. prefixes whose routing

solutions can be computed independently. We found that

fault tolerance analysis for each destination prefix separately

is more effecient than doing all-prefixes simultaneously, for

a number of reasons. First, single-prefix models have signifi-

cantly more uniform routes among different failure scenarios

and hence the underlying MTBDDs achieve better sharing.

Second, single-prefix models make the most of native execu-

tion thanks to a reduced number of embedding/unembedding

operations (see next section for details). Third, we amortize

the compilation cost of native simulation, as we compile

once and then run multiple simulations, one per destina-

tion. In addition, we could run the simulations for different

destinations in parallel, further reducing execution time.

Figure 13c shows the total execution time for these choices.

In particular, it compares the performance of the fault toler-

ance analysis for 1 link failure over each prefix independently

vs. all-prefixes simultaneously. The networks used are SP16

and FAT16. A total of 128 destinations are announced in

these networks, hence the single prefix analysis was run

128 times (but compiled once). Doing the analysis on each

prefix separately using the native simulator resulted in 3-7x

times speedup (with no parallelism) compared to doing all

prefixes simultaneously. We discuss the performance of the

interpreter and native execution in the next section.

6.4 Simulation Performance
To gauge the performance of our simulator, we measure how

it fares compared to Batfish when solving the all-prefixes

routing problem for networks ranging in size from 500 to

1280 nodes. Batfish is written in Java, and employs a paral-

lelized simulation engine. Figure 14 shows that our MTBDD-

based simulator is an order of magnitude faster than Batfish.

More importantly, as the network size grows, the runtime

5
ARC [21] can scale, but is not compatible with rich policy (e.g., tagging)
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Figure 14. All-prefixes analysis time (Batfish runs out-of-

memory after FAT28). NV uses the interpreter for simulation.

NV-native uses the native simulator but excludes compilation

time. NV-native-total includes OCaml’s compilation time.

of NV only marginally increases, while Batfish has a steeper

trend. The same is true of the memory consumption of the

two; NV peaks at 2GB for FAT32 while Batfish runs out of

memory (16GB) on the smaller FAT28. Although Batfish’s

route model is more detailed, these performance differences

are mainly attributed to the MTBDD representation of a

router’s RIB in NV; these networks advertise hundreds of

prefixes and the ability to compactly represent them and

process them in bulk is key to scaling the simulation.

Native and Interpreted Simulation. Native execution can
deliver significant performance improvements compared to

conventional interpreter-based simulators, but it also has

inherent overheads. Compiling a large OCaml program to

assembly is a time consuming process, sometimes more so

than the simulation itself. Furthermore, embedding and un-

embedding values betweenNV andOCaml also induces some

overhead, although we try to minimize that through caching.

In the all-prefix simulations of fig. 14, execution time of

the native simulator is constrained by embedding/unembed-

ding operations on maps. As the policy is rather simple, the

overhead of these operations dominates execution time. On

the other hand, if more complex operations are used, native

simulation can significantly outperform the interpreted one.

An example of this is our fault tolerance analysis (fig. 13c,

orange and green bars): the functions applied over maps are

more complex (applying a full transfer function) and thus

the embedding operations are amortized. Overall, it makes

sense to use the native simulator in applications where the

benefits of faster execution outweigh the overheads of com-

pilation, such as simulating networks with complex policy,

running analyses like fault tolerance, and/or doing multiple

simulations by instantiating symbolic values with different

concrete values which amortizes the compilation cost.

7 Related Work
Analysis ofData Planes. Over the past decade, researchers
have developed many systems for analysis or verification

of network data planes. Examples include systems such as

Anteater [33], Header-Space Analysis (HSA) [26], NoD [31],

and Veriflow [27]. These systems operate by pulling snap-

shots of the current data plane from a set of routers and then

checking that the data plane exhibits key properties such as

reachability, isolation, or absence of black holes.

NetKAT [4] is another line of work in this vein. NetKAT

offers a rich specification language based on Kleene Algebra

with Tests (KAT). The operators supplied by NetKAT suffice

to encode a network’s topology as well as the forwarding

behavior of its data plane. However, NetKAT cannot encode

the semantics of network control plane protocols such as

BGP. Such protocols compare routes to one another, discard-

ing some and forward others, and they continue executing

until they find a set of “stable paths.”

McNetKAT is an extension of NetKAT with probabilistic

operations [18, 44]. Such probabilistic operations make it

possible to reason about expected congestion and probabilis-

tic failures. Indeed, McNetKAT has studied verification of

data plane fault tolerance properties extensively. Their sys-
tem also leverages variants of BDDs to scale their analysis

to the point of being able to analyze data centers with a few

hundred nodes in a few minutes [44]. The work in this pa-

per on control plane fault tolerance properties complements
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the work on McNetKAT rather than competing with it. In

addition to differing by virtue of analyzing the control plane

rather than the data plane, our work adopts a different fail-

ure model (we consider a bounded number of failures rather

than an arbitrary number of probabilistic failures).

It is also possible to extend data plane models with state-

ful primitives [3, 5, 36, 39, 48]. These stateful models can

represent various kinds of middle boxes including NATs or

stateful firewalls. Bayonet [19] combines probabilistic prim-

itives with stateful operations. Gehr et al. [19] show that

these stateful systems can be also used to model control

plane protocols such as OSPF. However, analysis of these

stateful systems appear to scale much more poorly than NV

or other tools designed specifically for control plane analy-

sis. For instance, it takes Bayonet several minutes to analyze

networks that have just 30 nodes [19].

Modeling Control Planes. Batfish [17] is a network analy-

sis framework that parses network configuration files, simu-

lates control plane execution, generates a dataplane and then

runs a dataplane analysis over that data plane. One of the

benefits of using Batfish over simpler data-plane-only analy-

sis tool kits of the kind mentioned in the prior paragraphs,

is that Batfish allows a user to ask “what if” questions: What

if this link were to fail? By simulating control plane seman-

tics afresh under such speculative conditions, Batfish can

answer those questions. The data plane tools that simply

download the current dataplane from a set of routers cannot.

Batfish also serves as a platform for developing new control

plane analyses. Tools such as ARC [21], MineSweeper [6],

ShapeShifter [8], and Bonsai [7] have all been implemented

on top of Batfish. One of the central contributions of NV

is to make the process of constructing these auxiliary tools

simpler by creating a more compact, compositional and ex-

pressive intermediate language for representing network

protocols. Of course, NV continues to depend upon Batfish

for its front end. Moreover, unlike Batfish, NV does not com-

pute a data plane, nor does it support protocols like iBGP

that rely on data plane elements.

ARC [21] is another system that may be viewed as a mod-

eling language for network control planes. ARC’s models

are graphs and it performs network analysis by executing

standard graph algorithms, such as shortest paths, over these

graphs. One of the advantages of this approach is that many

graph algorithms are guaranteed to be polynomial, whereas

the BDDs and SAT/SMT encodings used by NV result in

exponential algorithms in the worst case. On the other hand,

ARC is incapable of representing certain control plane fea-

tures, such as BGP local preference and communities.

Routing algebras [45] and metarouting [25] are another

line of work on building models of network control planes.

The key difference between these systems and NV lies in the

properties considered and the approach to checking them.

The work onMetarouting was concerned primarily with con-

vergence of protocols. Moreover, instead of developing tools

to check whether existing networks satisfy the properties of

interest, the work provides local, topologically-independent

criteria of the transfer function that imply various conver-

gence properties of the protocol. Additionally, it devises

combinators designed to ensure those key properties are

preserved when constructing new protocols. In contrast, NV

focuses on analyzing global, end-to-end properties of net-

works that depend upon a combination of network topology

and policy such as reachability and fault-tolerance. We use

SMT and BDD-based verification to validate these properties

and we have built tools that translate real configurations

into our declarative modelling language.

OtherControl Plane Fault ToleranceAnalyses. Asmen-

tioned above, ARC [21] may be viewed as a modelling lan-

guage for control plane protocols. Like NV, one of the focuses

of ARC is fault tolerance analysis, which they reduce to stan-

dard graph algorithms. Origami [22] is another fault toler-

ance analysis. It operates by exploiting symmetries in the net-

work’s policy and topology to reduce its size. It computes an

abstraction of the network using a counterexample-guided

abstraction refinement algorithm that uses an oracle to deter-

mine whether the property holds. An SMT verifier was used

as an oracle, but there is no reason that an MTBDD-based

analysis could not be used instead. Like ARC, Origami also

imposes restrictions on policy (though the restrictions are

less stringent). Furthermore, its abstraction only preserves

an approximation of the original routes, making it unsuitable

for reasoning about properties beyond reachability.

Verification Languages. NV was inspired, in part, by the

Rosette solver-aided language [47]. Rosette embeds a sym-

bolic compiler in the Racket programming language to trans-

late solver-aided programs into logical constraints that can

be solved by SMT solvers. Like Rosette, NV is a functional

language with symbolic values and constraints. However,

NV differs from Rosette in both the tools it supports (e.g.,
MTBDDs) and the applications (networking) it attacks.

NV also draws inspiration from intermediate verification

languages such as Boogie [30], Why3 [16], and CIVL [43].

However, while these tools focus on general purpose pro-

gramming languages and the complications that come with

them (e.g., recursion), NV is specialized for the data struc-

tures, functions, and algorithms needed to analyze networks.
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