
A Compiler and Run-time System for
Network Programming Languages

Christopher Monsanto
Princeton University

Nate Foster
Cornell University

Rob Harrison ∗

United States
Military Academy

David Walker
Princeton University

Abstract
Software-defined networks (SDNs) are a new implementation ar-
chitecture in which a controller machine manages a distributed
collection of switches, by instructing them to install or uninstall
packet-forwarding rules and report traffic statistics. The recently
formed Open Networking Consortium, whose members include
Google, Facebook, Microsoft, Verizon, and others, hopes to use
this architecture to transform the way enterprise and data center
networks are implemented. But to do this, they need novel pro-
gramming languages to help them craft network-wide algorithms
for routing, energy-efficient network management, dynamic access
control, traffic monitoring, and other applications.

In this paper, we define a high-level language, called NCore, for
expressing packet-forwarding policies and traffic-statistics queries.
The language is designed to be simple, expressive, and composi-
tional. We define a formal semantics for NCore and show how to
compile it to a distributed switch-controller architecture. To ensure
that a majority of packets are processed efficiently on switches, we
develop a new compilation technique called reactive specialization
that generalizes, improves on, and automates the simple (but ineffi-
cient) manual techniques commonly used to program SDNs. Reac-
tive specialization and the other compilation techniques we develop
are highly generic, assuming only that the packet-matching capabil-
ities available on switches satisfy some basic algebraic laws. This
generality makes our technology applicable to all current switches
we are aware of, including switches that implement the popular
OpenFlow protocol.

Overall, this paper delivers a design for a high-level network
programming language; a novel, general-purpose compilation al-
gorithm based on reactive specialization; a run-time system based
on a SDN architecture; the first formal semantics and proofs of cor-
rectness in this domain; and an implementation and evaluation that
demonstrates the benefits over the current state-of-the-art.

1. Introduction
A network is a collection of connected devices that route traf-
fic from one place to another. Networks are pervasive: they con-
nect students and faculty on university campuses, they send pack-
ets between a variety of mobile devices in modern households,
they route search requests and shopping orders through data cen-
ters, they tunnel between corporate networks in San Francisco
and Helsinki, and they connect the steering wheel to the drive
train in your car. Naturally, these networks have different pur-
poses, properties, and requirements. To service these requirements,

∗ The views expressed in this paper are those of the authors and do not
reflect the official policy or position of the United States Military Academy,
the Department of the Army, the Department of Defense, or the U.S.
Government.

companies like Cisco, Juniper, and others manufacture a variety
of devices including routers (which forward packets based on IP
addresses), switches (which forward packets based on MAC ad-
dresses), NAT boxes (which translate addresses within a network),
firewalls (which squelch forbidden or unwanted traffic), and load
balancers (which distribute work among servers), to name a few.

While each of these devices behaves differently, internally they
are all built on top of a data plane that buffers, forwards, drops,
tags, rate limits, and collects statistics about packets at high speed.
More complicated devices like routers also have a control plane
that run algorithms for tracking the topology of the network and
computing routes through it. Using the statistics gathered from the
data plane and the results computed using the device’s specialized
algorithms, the control plane installs or uninstalls new forwarding
rules in the data plane. The data plane is built out of fast, special-
purpose hardware, capable of forwarding packets at the rate at
which they arrive, while the control plane is typically implemented
in software.

Remarkably, however, traditional networks appear to be on the
verge of a major upheaval. On March 11th, 2011, six companies,
Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and
Yahoo!, owners of some of the largest networks in the world,
announced the formation of the Open Networking Foundation [20].
The foundation’s proposal is extraordinarily simple: eliminate the
control plane from network devices. Rather than baking specific
control software into each device, support a standard protocol that
allows a separate, general-purpose machine called a controller to
program and query the data planes of many cooperating devices.
By moving the control plane from special-purpose devices onto
stock machines, companies like Facebook and Google will be able
to buy cheap, commodity switches, and write controller programs
to customize and optimize their networks however they choose.

Networks built on this new architecture, which arose from ear-
lier work on Ethane [4] and 4D [10], are now commonly referred to
as Software-Defined Networks (SDNs). Already, a number of com-
mercial switch vendors support OpenFlow [17], a concrete real-
ization of the switch-controller protocol required for implement-
ing SDNs, and many researchers have used OpenFlow to develop
new network-wide algorithms for server load-balancing, data cen-
ter routing, energy-efficient network management, virtualization,
fine-grained access control, traffic monitoring, fault tolerance, de-
nial of service detection, and host mobility [8, 12–14, 19, 27].

Now the obvious question is: Why should programming lan-
guage researchers, and the POPL community in particular, care
about these developments? The answer is clear: Some of our most
important infrastructure—our networks—will soon be running an
entirely new kind of program, and using our experience, principles,
tools and algorithms, our community has a unique opportunity to
define the languages these programs will be written in and the in-

1 2011/7/21

Controller C

Network
N1

Switch S

Network
N2

AuthServer A

Figure 1. Example topology.

frastructure used to implement them. We can have major impact,
making future networks more secure, reliable, and efficient.

As a step toward carrying out this agenda, we propose a high-
level programming language called NCore, the Network Core Pro-
gramming Language, for expressing packet-forwarding policies
and statistics queries. NCore has an intuitive syntax based on famil-
iar set-theoretic operations, which allows programmers to construct
(and reason about!) rich policies in a natural way. NCore’s primi-
tives include packet predicates, which are relatively easy to compile
to conventional switch hardware, as well as black-box functions,
which may depend on the state of the controller. Such functions
make it possible to describe complicated, dynamic policies such as
authentication and load balancing. Although they are not supported
natively on any standard switches, black-box functions can be im-
plemented in SDNs with help from the controller.

The NCore compiler analyzes programs and automatically di-
vides them into two pieces: one that runs on the switches and an-
other that runs on the controller. The main goal of the compiler
is to arrange for as much packet processing as possible to occur
on the switches because packets redirected to the controller are
slowed down by several orders of magnitude. However, as sug-
gested above, not all NCore program parts can be compiled into
static packet-processing rules for switches—some, like authentica-
tion and load balancing, are fundamentally dynamic. To cope with
these programs, we propose a new technique, called reactive spe-
cialization, that dynamically refines the NCore program using the
traffic seen at run time. The additional information obtained from
this refinement allows the run-time system to generate and install
new, specialized packet-processing rules on switches. Hence, over
time, more and more rules are added to the switches and less and
less traffic is diverted to the controller.

Our strategy is inspired by the idiom commonly used for SDN
applications today [12, 13, 28], in which an event-driven program
manually installs a rule to handle future traffic every time a packet
is diverted to the controller. However, we improve on it by (1) au-
tomating the process of dynamically unfolding packet-processing
rules on to switches instead of requiring that programmers craft
tricky, low-level, event-based programs manually, (2) synthesizing
efficient forwarding rules that exploit the capabilities of modern
switches (e.g., wildcard rules implemented using TCAMs), and (3)
providing high-level abstractions that obviate the need for program-
mers to deal with the low-level details of individual switches.

To summarize: the central contribution of this paper is a frame-
work for implementing a canonical, high-level network program-
ming language correctly and efficiently. More specifically:

• We define a denotational semantics for NCore (Section 3) and
model the interaction between the NCore run-time system and
the network in a process calculus style (Section 4). Despite the
huge industrial and academic momentum surrounding SDNs
such as OpenFlow, no one has formalized the low-level details
of how a controller system interacts with switches yet.

• We develop novel algorithms for compiling network programs,
including algebraic classifier generation and reactive special-
ization (Section 5).

• We prove key correctness theorems concerning our compiler
and run-time system (Section 6), establishing simulation rela-
tions between our low-level, distributed implementation strat-
egy and our high-level NCore semantics. We also prove im-
portant progress and quiescence theorems, which show that our
implementation successfully moves computation off of the con-
troller and onto switches.

• We describe a prototype implementation and an evaluation on
some simple benchmarks demonstrating the practical utility of
our framework (Section 7).

2. SDN and NCore Overview
This section presents additional background on SDN and NCore,
using a running example to illustrate the main ideas. For concrete-
ness, we focus on the OpenFlow SDN architecture [21] (eliding and
taking liberties with some of its inessential details). Note however,
that our compiler is designed to be general, and does not assume
the specifics of the current OpenFlow platform.

OpenFlow overview. OpenFlow is based on a two-tiered archi-
tecture in which a controller manages a collection of subordinate
switches. Figure 1 depicts a simple topology with a controller C
managing a single switch S. Packets may either be processed on the
switches or on the controller, but processing a packet on the con-
troller increases its latency by several orders of magnitude. Hence,
to ensure good performance, the controller typically installs a clas-
sifier on each switch comprising a list of rules that can be used to
process packets directly on the switch, without having to send them
to the controller.

Each forwarding rule has a pattern that identifies a set of pack-
ets, a list of actions that specifies how packets matching the pattern
should be processed, a counters that keep track of the number and
size of all packets processed using the rule, and an integer priority.
When a packet arrives at a switch, it is processed in three steps:
First, the switch selects a rule whose pattern matches the packet. If
it has no matching rules, then it drops the packet, and if it has mul-
tiple matching rules, then it picks the one with the highest priority.
Second, the switch updates the counters associated with the rule.
Finally, the switch applies each of the actions listed in the rule to the
packet. OpenFlow supports two kinds of actions: modify(h,n),
which sets the value of header field h to n, and output(l), which
forwards the packet to an adjacent network location l. A location
l is either the name of a switch, network, or host, or the special
location controller.1

NCore Example. Suppose that we want to build a security appli-
cation that implements in-network authentication for the network
in Figure 1. The networkN1 contains a collection of internal hosts,
N2 represents the upstream connection to the Internet, A is the
server that handles authentication for hosts in N1, and all three el-
ements are connected to each other by the switch S.

Informally, we want the network to perform routing and access
control according to the following policy: Forward packets from
unauthenticated hosts in N1 to A, from authenticated hosts in N1

to their intended destination in A or in N2, and from A and N2

back to N1 (although not from N2 to A). We will assume that once
a host is authenticated, it is authenticated for all time.

This policy can be described succinctly in NCore as follows:

1 On real OpenFlow switches, locations are actually integers corresponding
to physical ports on the switch; in this paper we model them symbolically.

2 2011/7/21

((InPort <: Network 1) /\ inspect auth_bb
--> [Forward (Network 2)])

\/ ((InPort <: Network 1) /\ neg (inspect auth_bb)
--> [Forward (AuthServer A)])

\/ ((InPort <: AuthServer A) \/ (InPort <: Network 3)
--> [Forward (Network 1)])

Intuitively, this policy can be read as a function from triples consist-
ing of the controller state, a switch, and a packet, to sets of actions.
Formally, it is structured as the disjunction of three clauses each
consisting of a predicate describing a set of packets (at a particu-
lar switch and controller state) and a set of actions, written con-
cretely as a list. The first states that packets arriving from the inter-
nal network (InPort <: Network 1) should be forwarded to the
external network (Forward (Network 2)) if auth_bb holds in
the current state. The inspect keyword wraps a user-defined pred-
icate, in this instance, auth_bb, which tests whether the host listed
as the source in the packet header is authenticated. Similarly, the
second clause states that packets from the internal network should
be forwarded to the authentication server if auth_bb does not hold.
The final clause states that packets from the authentication server
and external network should be forwarded to the internal network.

Besides specifying the forwarding behavior of the network,
administrators often need to monitor it for security purposes, or
for making decisions about load balancing, energy efficiency, and
billing. To keep things simple, in this example we will monitor the
traffic from the authentication server, aggregating the results by
destination host, as well as the non-web traffic (i.e., not port 80)
from internal hosts to the external network, aggregated by source
host. We can define a query in NCore that monitors these traffic
statistics, using keys to keep track of each result. For the first, we in-
troduce a key auth and assign it the indexed type Key[{dstmac}],
which indicates that only the dstmac field from each packet should
be included in the result. Likewise, for the second query, we call
the key traf and associate it with the type Key[{srcmac}]. Using
these keys, the query itself can be defined as follows:

(auth <-- (InPort <: AuthServer A))
\/ (traf <-- (InPort <: Network 1) /\ neg (DstPort <: 80))

The overall program consists of the forwarding policy and the
query.

Unfortunately, although these programs are easy to write, they
are far from easy to implement—at least, not in an efficient way.
Compiling these programs to an efficient distributed implementa-
tion on top of an OpenFlow-like architecture requires solving two
challenging problems.

Challenge 1: Dynamic program partitioning. OpenFlow’s archi-
tecture is asymmetric—the controller and the switches have vastly
different capabilities. To implement programs efficiently, the com-
piler must maximize the amount of processing done on the fast
(but computationally limited) switches and minimize the amount
done on the slow (but omnipotent) controller. In general, it can-
not simply push the entire computation onto the switches because
the switch hardware is fundamentally limited—it can match bit pat-
terns, maintain counters, and execute modify/forward actions, but it
cannot directly evaluate functions like auth_bb or collect statistics
like the total amount of non-web traffic per host (without several
billion rules). Hence, a compiler and run-time system for an SDN
must solve the fundamental problem of determining what parts of
the overall computation to execute where.

In general, as programs execute, they gain information that can
be exploited to push work onto the switches. Thus, although the
complete space of possible packets is huge, the actual set of packets
that will appear on any given network is far smaller, and those
packets are also highly correlated with each other—a packet from
one host is likely to be followed by many more packets from the

same host. Thus, although it would be impractical for the controller
to push 4.3 billion rules out to the switches in advance (one for
each possible IP address) to implement a fine-grained query such
as the one that counts per-host non-web traffic, it is feasible for
the controller to react to new packets from a particular host and
dynamically generate a new classifier that tabulates statistics for
that host using the counters on the switch. Similarly, although the
controller cannot evaluate an arbitrary function like auth_bb on
every possible packet in advance, when a packet arrives at the
controller, it can evaluate the function on that particular packet,
and, if the result is known to be fixed (i.e. invariant) on some set
of similar packets, then it can generate a new classifier that handles
future packets in that set directly on the switch.

The idea of dynamically reacting to traffic seen in the network
is not new—it is used in all SDN applications (e.g., [12, 13, 28]).
However, in current systems, the programs that dynamically react
to packets are crafted manually by programmers. For example, in
NOX [11], a popular OpenFlow controller platform, programs are
written in an event-driven style and explicitly react to the arrival of
packets at the controller by running imperative routines that install
or uninstall individual rules on switches. In contrast, examining the
NCore example presented above, the reader will notice that there
are no explicit calls to install or uninstall rules; there is not even
a separate notion of switch code and controller code. There is just
one high-level, centralized, declarative specification of the policy
and queries. Hence, the compiler and run-time system must figure
how to distribute the computation across the network efficiently,
incrementally, and adaptively over time.

Solution 1: Reactive Specialization. Reactive specialization is an
implementation strategy for NCore that automates the construction
of the kinds of reactive programs that SDN programmers currently
write by hand. This frees programmers from having to worry about
the low-level details of when to install or uninstall rules on switches
and—by construction—prevents them from making mistakes in
doing so.

When a packet arrives at the controller, the NCore run-time
automatically refines the program, using the packet as a guide.
For example, returning to the authentication program, if a packet p
from source MAC m arrives at the controller from an authenticated
host, then auth_bb holds, and, moreover, will continue to hold
in the future. Using this information, the compiler transforms the
inspect auth_bb predicate into a disjunction of two predicates:

(inspect auth_bb) \/ (SrcMac <: MAC m)

After applying this program transformation, the compiler has suf-
ficient information to generate and install new rules on the switch
that handle all future traffic involving m.

This program transformation is enabled by the observation that
each host goes through two distinct phases: unauthenticated and
authenticated. When the host is unauthenticated, the forwarding
policy can only be determined by the controller because it might
change (and the switches do not have the computational facilities
necessary to recognize the change). But when it is authenticated,
the effective forwarding policy for that host suddenly becomes
consistent and determinate—no further state-based decisions are
needed and all future packets can be forwarded directly by switches
to their intended destination. Thus, the controller can safely install
rules that do this.

Challenge 2: Switch rule selection. A second challenge that
makes compilation difficult is the large gap between the languages
used to express network policies and switch-level classifiers. With
that in mind, consider the following policy:2

2 We use standard conventions when writing IP prefixes in our code—e.g.,
10.0.0.0/8 denotes the network of IP addresses whose first octet is 10.

3 2011/7/21

(SrcAddr <: IP "10.0.0.0/8") //
(SrcAddr <: IP "10.0.0.1" \/ DstPort <: Port 80)
--> [Forward (Switch 1)]

It states that all packets from sources in the network identified by
10.0.0.0/8 should be forwarded to switch 1, except for packets
coming from 10.0.0.1 or going to a destination on port 80 (the //
operator denotes set-theoretic difference). Because switches cannot
express the difference of two patterns in a single rule, this policy
needs to be implemented using three rules installed in a particular
order: one that drops packets from 10.0.0.1, another that drops all
packets going to port 80, and a final rule that forwards all remaining
packets from 10.0.0.0/8 to switch 1. The following classifier,
which has the highest priority rule placed first, implements this
policy:

SrcAddr 10.0.0.1 : []
DstPort 80 : []
SrcAddr 10.0.0.0/8 : [Forward 1]

Next consider a similar policy:
(SrcAddr <: IP "10.2.0.0/16") //
(SrcAddr <: IP "10.2.0.1" \/ DstPort <: Port 22)
--> [Forward (Switch 2)]

We can generate a classifier for this policy in the same way:
SrcAddr 10.2.0.1 : []
DstPort 22 : []
SrcAddr 10.2.0.0/16 : [Forward 2]

Now suppose that we then want to generate a classifier that im-
plements the union of the two policies. We cannot combine the
classifiers in a simple way—e.g., by concatenating or interleaving
them—because the compiled rules interact with each other. For ex-
ample, if we were to simply concatenate the two lists of rules, the
rule that drops packets to port 80 would incorrectly shadow the
forwarding rule for traffic from 10.2.0.0/16. Instead, we need
to perform a much more complicated translation that produces the
following classifier:
SrcAddr 10.2.0.1, DstPort 80 : [],
SrcAddr 10.2.0.0/16, DstPort 80 : [Forward 2]
SrcAddr 10.2.0.1 : [Forward 1]
SrcAddr 10.2.0.0/16, DstPort 22 : [Forward 1]
SrcAddr 10.2.0.0/16 : [Forward 1,Forward 2]
SrcAddr 10.0.0.1 : []
SrcAddr 10.0.0.0/8, DstPort 80 : []
SrcAddr 10.0.0.0/8 : [Forward 1]

Dealing with these complexities often leads SDN programmers to
use exact-match rules—i.e., rules that specify a value for every sin-
gle header field, without using larger rules whose patterns contain
wildcards like 10.0.0.0/8 or leave some header fields uncon-
strained. As interactions between exact-match rules are easy to rea-
son about, composing policies is straightforward. But, exact-match
rules, which match narrow bands of traffic are far less efficient than
wildcard rules. The results of our experiments, presented in Sec-
tion 7, highlight the magnitude of the difference.

Solution 2: Algebraic classifier generation. Our solution to the
second challenge is a general algorithm that automates the task
of generating classifiers. Given an NCore program, this algorithm
constructs a low-level classifier that implements the program as
fully and efficiently as possible. The classifier is efficient because
the algorithm automatically selects and overlays wildcard rules
whenever possible. However, because of the presence of black box
functions and unimplementable queries, some of the rules will send
packets to the controller for further processing instead of sending
them directly to their destinations.

Importantly, our classifier generation algorithm interacts harmo-
niously with reactive specialization. This is critical because at run

time, the output of the latter is supplied as the input to the former.
Thus, the classifier generation algorithm must be powerful enough
to extract new information from the program produced by reactive
specialization and generate new classifiers that send fewer packets
back to the controller. The theoretical analysis presented in Sec-
tion 6, especially the progress and quiescence theorems, demon-
strates that our algorithms interoperate harmoniously.

3. A Core Calculus for Network Programming
This section defines the syntax and semantics of NCore, a core cal-
culus for high-level network programming. The calculus has three
major components: predicates, which describe sets of packets; poli-
cies, which associate high-level actions with the predicates that
trigger them; and queries, which describe various statistics about
the packets flowing through the network. Figure 2 presents the syn-
tax of these constructs as well as various network values such as
headers and packets.

Notation. Throughout this paper, whenever we define syntax, as
in the grammar for packets, we will use the grammar non-terminal
(p) as a metavariable ranging over the objects being defined, the
capitalized version of the non-terminal (P) as a metavariable rang-
ing over sets of such objects, the overlined and capitalized version
(P) for multisets of objects, and vector notation (p⃗) for sequences
of objects. To convert a given set (P) to the corresponding mul-
tiset, we simply place a line over the metavariable (P). We will
use a name written in a sans-serif font to the left of the grammar
(Packet) as the type of the objects and the name enclosed in curly
braces ({Packet}) as the type of sets of objects. Many of our types
T are indexed by a set of headers H . We write such types T[H].
We write finite maps using the notation {x1 ↦ y1, . . . , xn ↦ yn}
and we lookup elements of a map m using function application
m(xi). We write multisets as {∣x1, . . . , xn∣} and take the union of
two multisets M1 and M2 using the notation M1 ⊎M2. We use the
usual operations ∪, ∩, ¬ and ∖ for the operations of union, intersec-
tion, complement and difference on sets. Typically, we give defini-
tions for intersection and complement and leave union (S1 ∪ S2 =
¬(¬S1 ∩ ¬S2)) and difference (S1 ∖ S2 = S1 ∩ ¬S2) as derived
forms. We also overload ¬ and use it to negate booleans; its mean-
ing will be clear from context.

Network Values. For simplicity, we only model a single kind of
location in our theory, switches s. Packets p are the basic values
processed by programs. A complete packet has ` header fields, h1

to h`. We represent a packet as a finite map from these headers
to bitstrings b⃗ and write p(h) for the bitstring associated with the
header h in p. We assume all fields have fixed, finite length and
therefore the set of complete packets is finite. A subpacket sp is
like a packet, but is only defined on a subset H of the possible
headers. We write p[H] for the subpacket obtained by restricting
p to the headers in H and Packet[H] for the type of subpackets
defined on H . A transmission t represents a packet in flight and is
represented using the constructor T.

Predicates. Informally, a predicate defines the conditions under
which actions or queries are executed. Formally, a predicate e de-
fines a set of snapshots x consisting of a controller state Σ, switch
s, and packet p. The state and switch components are essential for
modeling predicates defined in terms of black-box functions, such
as the auth_bb function from Section 2. We say that a snapshot x
matches a predicate e when it belongs to the denotation of e. We
sometimes say that a packet p matches e, leaving the state and the
switch implicit because they are uninteresting.

Figure 3 defines the semantics of predicates. Basic predicates
have the form h ∶ w⃗, where w⃗ is a vector of wildcard bits. A bit
b matches a wildcard bit w, written b ⊑ w, if w is equal to b or

4 2011/7/21

Network Values
Switch s

Header h

Bit b ∶∶= 1 ∣ 0

Packet p ∶∶= {h1 ↦ b⃗1, . . . , h` ↦ b⃗`}
Packet[H] sp ∶∶= {h1 ↦ b⃗1, . . . , hk ↦ b⃗k}

Transmission t ∶∶= T (s ∣ p)

Predicates
Snapshot x ∶∶= (Σ, s, p)

WildcardBit w ∶∶= 1 ∣ 0 ∣ ?

Inspector i ∈ Snapshot[H]→ Bool
Predicate e ∶∶= h ∶ w⃗ ∣ switch s ∣ inspect i ∣ e1 ∩ e2 ∣ ¬e

Policies
Action a ∶∶= forward s ∣ modify h← b⃗ in A

{Action} A ∶∶= {a1, . . . , an}
Policy τ ∶∶= e→ A ∣ τ1 ∩ τ2 ∣ ¬τ

Queries

Key k ∈ Key[H]
{Key} K ∶∶= {k1, . . . , kn}

PreState σ ∶∶= {(s1, k1)↦ SP1, . . . , (sn, kn)↦ SPn}
State Σ ∶∶= {(s1, k1)↦ SP1, . . . , (sn, kn)↦ SPn}
Query φ ∶∶= K ← e ∣ φ1 ∩ φ2 ∣ ¬φ

Programs

Program π ∶∶= (τ, φ)

Figure 2. NCore syntax.

?. A vector of bits b⃗ matches a vector of wildcard bits w⃗, written
b⃗ ⊑ w⃗, if each bit in b⃗ matches the corresponding wildcard bit in
w⃗. A packet p matches a primitive predicate h ∶ w⃗ if the h header
of p (that is, p(h)) matches w⃗. Another basic predicate, switch s,
denotes snapshots x containing s, with arbitrary state and packet
components.

Black-box predicates, written inspect i, use an arbitrary func-
tion i to determine whether a snapshot x matches the predicate.
The behavior of inspectors is constrained in two essential ways,
which provides the compiler with sufficient information to gener-
ate switch-level rules. First, if i has type Snapshot[H] → Bool,
then the inspector may only examine the headers H of the packet
contained in x. Second, each inspector has a (programmer sup-
plied) invariance oracle that determines if the behavior of the in-
spector on a future snapshot with the same packet and switch will
be the same as for x. More formally, an inspector i is invariant
on (Σ, s, p), written invariant ((Σ, s, p), i), if for all Σ′, we have
i(Σ ⊎ Σ′, s, p) = i(Σ, s, p), where Σ ⊎ Σ′ is multiset union ap-
plied pointwise to the underlying multisets contained within each
state. As an example, the invariance oracle for the auth_bb inspec-
tor defined in Section 2 can be defined by the following function in
Haskell notation:

\(state,s,p) ->
is_auth state p || (dstaddr p) == authsrv_addr

This oracle promises that the auth_bb function will return the
same answer on all packets coming from authorized hosts or going
to the authentication server. Together, the inspector type and invari-

JeK ∈ {Snapshot}

Jh ∶ w⃗K = {(Σ, s, p) ∣ p(h) ⊑ w⃗}q
switch s′

y
= {(Σ, s, p) ∣ s′ = s}

Jinspect iK = {(Σ, s, p) ∣ i(Σ, s, p)}
Je1 ∩ e2K = Je1K ∩ Je2K

J¬eK = ¬ JeK

JAK ∈ Packet→ {Transmission}

J{a1, . . . , an}K (p) = T1 ∪⋯ ∪ Tn

where Ti = {{T (s ∣ p)} if ai = forward s
JAK (p[h↦ b⃗]) if ai = modify h← b⃗ in A

JτK ∈ Snapshot→ {Transmission}

Je→ AK (Σ, s, p) = {JAK (p) if (Σ, s, p) ∈ JeK
∅ otherwise

Jτ1 ∩ τ2K (Σ, s, p) = Jτ1K (Σ, s, p) ∩ Jτ2K (Σ, s, p)
J¬τK (Σ, s, p) = ¬ JτK (Σ, s, p)

JKK ∈ Snapshot→ PreState

J{k1, . . . , kn}K (Σ, s, p) = {(s, ki)↦ {p[Hi]} ∣ 1 ≤ i ≤ n}
where ki ∈ Key[Hi]

JφK ∈ Snapshot→ PreState

JK ← eK (x) = {JKK (x) if x ∈ JeK
∅ otherwise

Jφ1 ∩ φ2K (x) = Jφ2K (x) ∩ Jφ2K (x)
J¬φK (x) = ¬ JφK (x)

Figure 3. NCore semantics.

ance oracle allow the compiler to generate effective switch-level
rules even though the inspector function itself cannot be analyzed.

Complex predicates are built up from basic ones using the
intersection and complement operators, which are interpreted set
theoretically. Although this predicate language is minimal, it is
straightforward to define additional, familiar operators—e.g., True
can be defined as h ∶ ?⋯? (with k question marks) for a specific
k-width field h, False as ¬True, and e1 ∪ e2 as ¬(¬e1 ∩ ¬e2).

Policies. Policies τ specify how packets should be forwarded
through the network. Basic policies, written e → A, associate a
set of actions A with a predicate e. If (Σ, s, p) matches e, where
Σ is the current controller state, then this policy states that actions
A should be applied to p at s. An action may either be a simple
forwarding action forward s′ that sends the packet to another switch
s′, or a modification action (modify h← b⃗ in a), which overwrites
the value in header h with the vector b⃗ and executes the actions A
with respect to the modified packet. As with predicates, we build
complex policies by combining simple policies using intersection
and negation. Although negation is not useful on its own, as it can
cause the machine to send every possible packet to every possible
switch, we include it in the calculus for reasons of symmetry
with predicates, and likewise can use it to encode useful operators
on policies such as union and difference. Figure 3 defines the
semantics of policies formally, as a function from snapshots x to
sets of transmissions T .

5 2011/7/21

Note that although the policy language is syntactically simple,
it is remarkably expressive. In particular, inspectors, which are
arbitrary functions that possibly depend upon state, are a powerful
tool that can be used to express a wide range of policies. For
example, it is easy to define policies that implement randomized
and round-robin load balancing, fine-grained access control, and
many standard routing protocols.

Queries. A query φ selects a set of packets, projects out certain
specified fields of those packets, yielding subpackets, and aggre-
gates the subpackets under a specified set of keys. Basic queries
(K ← e) select packets that match e and associate them under each
key in K. The projection is governed by the type of the key—if k
belongs to the set K and k has type Key[H], then p[H] is stored
under k. In definitions, we write k ∈ Key[H] to indicate the type of
k and K ∈ KeySet[H] where H is the union of the sets of headers
Hi associated with each key ki ∈ K. Figure 3 defines the seman-
tics of queries as a function from snapshots to pre-states, which
are maps from key-switch pairs to sets of subpackets. (States, used
later to aggregate the results of queries, are maps from key-switch
pairs to multisets of subpackets.) We interpret the operators ∩ and
¬ on pre-states point-wise.

Programs. An NCore program π consists of a pair of a policy τ
and query φ. The semantics of a program on a given snapshot x is
defined in the obvious way: J(τ, φ)K (x) = (JτK (x), JφK (x)).

To understand how such a program executes over time, we de-
fine two abstract machines. Both machines forwards packets ac-
cording to τ and update the controller state using φ, but they differ
in how often the switches synchronize with the controller. The syn-
chronous machine defines an idealized, synchronous implementa-
tion of an NCore program. It evaluates the query and policy on
each packet immediately and instantaneously. Of course, it would
be impractical to implement this machine in a real network because,
in general, it would require sending every packet to the controller.
The asynchronous machine defines a more realistic implementa-
tion. Like the first machine, it is policy-compliant—it always for-
wards packets according to the program policy—but it updates the
state asynchronously rather than in lockstep with every packet pro-
cessed. While the synchronous machine can be thought of as the
best possible policy-compliant machine, the asynchronous machine
can be thought of as the worst policy-compliant machine. Any rea-
sonable implementation will sit between the two. In other words,
a reasonable implementation should be policy compliant, but users
should not expect perfect synchrony because the cost of implement-
ing it would be prohibitive. In practice, synchronization typically
happens at periodic, timed intervals (modulo the variance in the la-
tency of communication) but for simplicity, we do not model time
explicitly in our formal system.

Figure 4 defines both reference machines formally. The state
of the synchronous machine includes the NCore program π, the
state Σ, and a multiset T of pending transmissions. At each step,
it removes a transmission T, processes it using the policy and
query, and updates the machine state and transmissions with the
new state and transmissions generated by the program. The state
of the asynchronous machine includes the program π, state Σ, and
two multisets of transmissions: T1, which represents transmissions
waiting to be processed by the policy, and T2, which represents
transmissions that have been processed by the policy but not yet by
the query. The first inference rule for the second machine takes a
transmission from T1, processes it using the policy, and places it
in T2; the second rule takes a transmission in T2 and processes it
using the query.

Before completing this section, we comment on one limitation
of the language: the exclusive use of permanent invariance. There
are policies that are invariant for a long time, and hence could have

Msync
oÐ→M ′

sync SyncStateMsync ∶∶= (π,Σ,T)

π = (τ, φ) JτK (Σ, s, p) = T ′ JφK (Σ, s, p) = σ′

(π,Σ,T ⊎ {∣T (s ∣ p) ∣}) (s,p)ÐÐ→ (π,Σ ⊎ σ′,T ⊎ T
′)

Masync
oÐ→M ′

async AsyncStateMasync ∶∶= (π,Σ,T1,T2)

π = (τ, φ) JτK (Σ, s, p) = T′

(π,Σ,T1 ⊎ {∣T (s ∣ p) ∣},T2)
(s,p)ÐÐ→ (π,Σ,T1 ⊎ T

′

,T2 ⊎ {∣T (s ∣ p) ∣})

π = (τ, φ) JφK (Σ, s, p) = σ
(π,Σ,T1,T2 ⊎ {∣T (s ∣ p) ∣})→ (π,Σ ⊎ σ,T1,T2)

Figure 4. Reference machines.

rules installed on switches for that time, but are not permanently
invariant. We believe our framework can be extended to handle
such semi-permanent invariance properties, having the compiler
uninstall rules at the end of the period, but a rigorous investigation
of this topic is beyond the scope of this paper.

4. The Run-time System
The previous section defined the syntax and semantics of the high-
level network programming language NCore. However, it did not
discuss how to implement the semantics on a software-defined
network—i.e., on a distributed set of switches managed by a con-
troller. In this section, we give an operational semantics to the
NCore run-time system and the underlying network devices. This
operational semantics explains the basic interactions between the
controller and the switches. The next section will explain how to
compile NCore programs and will use this low-level distributed
system as the target of the compilation.

Switch Classifiers. Before we can present the run-time system,
we need a concrete representation of the rules that switches use
to process packets. A classifier r⃗ is a sequence of rules r each
containing a switch-level pattern z and action γ. We represent
classifiers as sequences as opposed to sets primarily to model the
features of modern switch hardware, including priorities (rules on
the left have higher priority than rules on the right). Note that
classifiers are more restricted than NCore policies—e.g., individual
rules cannot express negations or unions directly.

The pattern (z) component of a rule recognizes a set of packets,
and hence is similar to (but less general than) a predicate in NCore.
We write p ⊑ z when pattern z matches packet p. We assume that
patterns form a lattice with elements higher in the lattice matching
more packets and elements lower in the lattice matching fewer
packets. We write z1 ⊑ z2 when z1 is lower than (or equal to)
another element in the lattice, thereby matching a subset (or equal
set) of packets. Operators ⊓ and ⊔ implement meets and joins in
the pattern lattice. The top element (⊺) matches all packets; the
bottom element (�) matches none. In addition to ⊺ and � and the
pattern lattice contains a number of other elements. For example,
OpenFlow switches support prefix pattern matching on source and
destination IP addresses (i.e., patterns of the form 0110∗) but only
exact or wildcard matching on other most other headers. Other
switches support alternative extended patterns, such as ranges with
the form [n1, n2]. We do not specify the exact features available,

6 2011/7/21

Pattern z ∶∶= ⊺ ∣ � ∣ ⋯
Skeleton z⃗ ∶∶= (z1, . . . , zn)

SwitchAct γ ∶∶= Ω ∣ ⋯
Rule r ∶∶= z ∶ γ

Classifier r⃗ ∶∶= (r1, . . . , rn)
Help l ∶∶= H (s ∣ p)

Molecule m ∶∶= C (π ∣ Σ) ∣
S (s ∣ r⃗ ∣ Z) ∣
t ∣ l

Observation o ∶∶= ⋅ ∣ s, p

M
oÐ→ M

′

E-SWITCHHELP
r⃗ ↝p z ∶ Ω

S (s ∣ r⃗ ∣Z) ,T (s ∣p)→
S (s ∣ r⃗ ∣Z) ,H (s ∣p)

E-SWITCHDROP
r⃗ p

S (s ∣ r⃗ ∣Z) ,T (s ∣p) s,pÐ→
S (s ∣ r⃗ ∣Z)

E-SWITCHPROCESS
r⃗ ↝p z ∶ γ γ ≠ Ω
Action(γ, p) = T′

S (s ∣ r⃗ ∣Z) ,T (s ∣p) s,pÐ→
S (s ∣ r⃗ ∣Z ⊎ {∣z∣}) ,T′

E-CONTROLLER
JπK (Σ, s, p) = (T′, σ′)

Specialize((Σ, s, p), π) = r⃗′

C (π ∣Σ) ,S (s ∣ r⃗ ∣Z) ,H (s ∣p) s,pÐÐ→
C (π ∣Σ ⊎ σ′) ,S (s ∣ r⃗′, r⃗ ∣Z) ,T′

E-COLLECT
r⃗ ↝p z ∶ γ

JπK (Σ, s, p) = (T′, σ′)
C (π ∣Σ) ,S (s ∣ r⃗ ∣Z ⊎ {∣z∣})→
C (π ∣Σ ⊎ σ′Σ′) ,S (s ∣ r⃗ ∣Z)

E-STEP

M
oÐ→ M

′

(M ⊎M
′′) oÐ→

(M
′ ⊎M

′′)

Figure 5. The run-time system.

though we require that patterns have exact meets, in the sense that
if z ⊑ z1 and z ⊑ z2 then z ⊑ z1 ⊓ z2.

As with patterns, we leave the actions γ supported by the
switches abstract, as different switches support different kinds of
actions. However, actions must include Ω, which sends packets to
the controller. Moreover, although we do not require it formally, we
expect that switches will support simple forward/modify actions.
Many switches also support more sophisticated actions—e.g., De-
voFlow switches [18] can make conditional forwarding decisions
based on whether their ports are up or down. Because switch ac-
tions γ are held abstract, we assume a function Action(γ, p) that
executes an action γ on p and generates a set of transmissions T ′.
Typically T ′ will be a singleton set with a single transmission con-
taining the packet being forwarded. However, if the policy dictates
that the packet should be forwarded to multiple switches, T ′ will
be bigger.

Given a packet p and a classifier r⃗, we match the packet against
the classifer by finding the first rule whose pattern matches the
packet. We write r⃗ ↝p z ∶ γ for the matching judgment and
r⃗ p if p does not match any pattern in r⃗. More formally, we
define classifier matching as follows; note that it selects the highest
priority (leftmost) matching rule:

p ⋢ z1 ⋯ p ⋢ zi−1 p ⊑ zi
(z1 ∶ γ1, . . . , zi−1 ∶ γi−1, zi ∶ γi, . . . , zn ∶ γn)↝p zi ∶ γi

The Molecular Machine. Now we are ready to define the run-
time system itself. We formalize its operational semantics as a
molecular machine, in the style of Berry and Boudol’s chemical
abstract machine [2]. The machine’s components, called molecules,
are given on the left side of Figure 5.

The molecule C (π ∣ Σ) represents the controller machine run-
ning the NCore program π in state Σ. The molecule S (s ∣ r⃗ ∣ Z)
represents switch s with packet classifier r⃗ and local switch state Z.
The switch state records the patterns of rules that have been used to
match packets but not yet queried and processed by the controller.
Real switches use integer counters as state; for simplicity and el-
egance, we represent these integers in unary (using a multiset of
patterns) in our formal system. A transmission molecule T (s ∣ p)
represents a packet p en route to switch s. Finally, a help molecule
H (s ∣ p) represents a request issued by switch s to the controller
for assistance in processing packet p.

The machine’s operational semantics is defined on the right
side of Figure 5. To lighten the notation, in this figure, we use the
notationm1,m2 as shorthand for {∣m1,m2∣}. Each operational rule
may optionally be labelled with an observation o, which records
when transmissions are processed.

The first three rules, E-SWITCHPROCESS, E-SWITCHHELP
and E-SWITCHDROP, model the work done by switches to process

packets. There are three possibilities: either (1) the packet matches
a rule with a non-controller action and the switch executes the ac-
tion, (2) the packet matches a rule with a controller action and the
switch generates a help molecule, or (3) the packet does not match
any rule and is dropped.

The rule E-CONTROLLER models the work done by the con-
troller to process help molecules. It first interprets the packet us-
ing its NCore program, generating new transmissions T ′ and new
state Σ′. It then uses the additional information contained in the
packet to construct new reactive rules r⃗′ for the switch that gener-
ated the help molecule. These new rules typically allow the switch
to process future packets locally, in the fast path, without request-
ing further help from the controller. We keep the definitions of the
specific algorithms used to specialize the program and generate re-
active rules abstract for now; they will be described in the next
section.

The rule E-COLLECT models the work done by the controller
to collect statistics about a particular switch-level rule. First, the
switch picks a pattern z in the switch state to send to the controller.
Next, the controller performs one step of processing using the query
φ.3 Because switches do not store actual packets in their state,
only patterns, the controller must construct a packet p that matches
z to evaluate the query. We use the judgement r⃗ ↝p z ∶ γ to
represent fabrication of an appropriate packet and then appeal to
the semantics of queries in the ordinary way. Finally, the controller
stores the query result in its state. This rule places a subtle, but
crucial constraint on classifiers: because we do not know which
packet p′ originally matched z on the switch, for correctness, the
results of query evaluation must be the same no matter what packet
p the controller choses. To put it another way, if the rules placed
on the switch are too broad and match too many different kinds of
packets, then the results produced by E-COLLECT will be wrong.

5. The NCore Compiler
The NCore compiler performs two distinct tasks:

• Classifier Generation: given an NCore program, it builds a
collection of classifiers, one for each switch in the network.

• Reactive Specialization: given a packet not handled by the
current classifier installed on a switch, it generates additional
rules that allow the switch to handle future packets with similar
header fields efficiently, without consulting the controller.

3 In practice, the controller would collect all of the statistics for a given rule
at once; this can be modeled in our formal system by evaluating multiple
E-COLLECT steps in sequence.

7 2011/7/21

S (s, e) = z⃗ S (s, h ∶ w⃗) = Ocompile (h, w⃗) ,⊺
S (s, inspect i) = ⊺
S (s, switch s′) = ⊺
S (s, e1 ∩ e2) = S (s, e1) × S (s, e2)
S (s,¬e) = S (s, e)

S (s, τ) = z⃗ S (s, e→ A) = S (s, e)
S (s, τ1 ∩ τ2) = S (s, τ1) × S (s, τ2)
S (s,¬τ) = S (s, τ)

S (s, φ) = z⃗ S (s,K ← e) = S (s, e)
S (s, φ1 ∩ φ2) = S (s, φ1) × S (s, φ2)
S (s,¬φ) = S (s, φ)

S (s, π) = z⃗ S (s, (τ, φ)) = S (s, τ) × S (s, φ)

Figure 6. Skeleton Generation.

This section describes the key algorithms that implement these
tasks. Due to space constraints, we focus on predicate compilation
and, to a lesser extent, policy compilation. We discuss formal prop-
erties of the compiler in Section 6. Many of the definitions in this
section are parameterized on abstract functions called oracles. Pa-
rameterizing the compiler in this way makes it independent of the
details of the rapidly evolving SDN specifications.

5.1 Classifier Generation
The NCore classifier generator works in two phases. The first
phase, skeleton generation, builds a sequence of switch patterns
that form the backbone of the final classifier. The second, action
identification, attaches a switch action γ to each pattern in the
skeleton, using Consistent Determinate Action Analysis (CDAA)
to select the action for each rule.

Skeleton Generation. A skeleton is half of a classifier that com-
prises a sequence of patterns. Intuitively, a “good” skeleton for a
given policy is one where every pattern has a consistent and deter-
minate action in the policy. Given a skeleton with this property, we
can easily build a classifier by simply attaching the appropriate ac-
tion to each pattern. If, however, the skeleton contains patterns for
which the policy does not have a consistent and determinate action,
then we must associate those patterns with the controller action Ω,
which causes packets to be diverted to the controller. This intuition
about what makes a good skeleton cuts to the heart of why many
OpenFlow programmers write programs using exact-match rules:
Analyzing a classifier to identify consistent, determinate actions is
easily done by hand when the classifier only contains exact-match
rules. But when the classifier contains wildcard rules, the analy-
sis becomes much more difficult. Thus, like register allocation, this
analysis is better suited for computer processing than human pro-
cessing.

Figure 6 presents the skeleton generation algorithm, which is
formalized as a switch-indexed function S (s, ⋅) from NCore pro-
grams to skeletons for s. One of the invariants of the algorithm is
that it always generates a complete skeleton—one that matches all
packets. Within this complete skeleton, the algorithm attempts to
produce a pattern that matches the same set of packets as the pred-
icate being compiled (relative to the patterns appearing before it in
the classifier), and another set of patterns whose domain matches
the complement of the predicate. While the algorithm attempts to
generate skeletons with these properties, it does not always suc-
ceed, for two fundamental reasons: (1) it cannot analyze the deci-
sions made by black-box inspectors—their results are indetermi-

nate, and (2) some predicates cannot be expressed practically (i.e.,
without exponential blowup) in terms of switch patterns. For in-
stance, building a good skeleton for a query that collects statistics
on a per-source-IP (or per-destination-MAC, per-TCP port, etc.)
basis would require generating distinct patterns for each of the ap-
proximately 4.3 billion IP addresses, which is clearly impractical.
Nevertheless, in many common cases it successfully generates a
good skeleton.

The first definition in Figure 6 generates skeletons for primitive
predicates h ∶ w⃗ by invoking an oracle Ocompile. To handle cases
where the switch hardware is more limited than these primitives,4

we allow the skeleton to overapproximate the semantics of the
primitive. However, when the skeleton is an overapproximation, the
pattern in question will be associated with the Ω action in the final
classifer (the controller will resolve the pattern precisely). Note
that the skeletons generated for primitives are terminated by ⊺.
This establishes both properties mentioned above—completeness
and the existence of complementary patterns.

The rule for compiling an inspector simply returns the ⊺
pattern—it is impossible to analyze the properties of the black-box
function to generate an accurate skeleton, so the rule overapproxi-
mates. Later in this section, we will see how reactive specialization
allows us to overcome the initial ineffectiveness of this pattern.

The rule for compiling switch predicates is identical to the rule
for inspectors, but the rationale is entirely different. If the switch
name s′ equals s, then the predicate switch s′ matches all packets
on s so the rule returns the ⊺ pattern. If the two switch names
are not equal, then the predicate matches no packets. The skeleton
generation algorithm still returns ⊺—the pattern for the predicate
itself would be �, with ⊺ as the complement, but � may always be
omitted as it does not match any packets.

The rule for intersections uses a cross-product operator, defined
as follows, where ⊕m

i=1 denotes the sequence with elements in-
dexed by i ranging from 1 to m:

(z1, . . . , zm) × (z′1, . . . , z′n) =
m

⊕
i=1

n

⊕
i=1

zi ⊓ z′j

One can think of the cross product as the “intersection” of two
skeletons. We illustrate this property with an example, if the two
patterns being combined are wildcard strings, the cross-product of
the skeletons (1?, ??) and (10, 01, ??) is calculated as follows:

(1? ⊓ 10, 1? ⊓ 01, 1? ⊓ ??, ?? ⊓ 10, ?? ⊓ 01, ?? ⊓ ??)
= (10, �, 1?, 10, 01, ??)
≡ (10, 1?, 01, ??) .

Consider the relationship between the pattern 1? in the first skeleton
and the pattern ?? in the second skeleton. The set of wildcard
strings that simultaneously matches 1? and ?? in the context of their
respective skeletons is {11} (note that 10 is matched in the second
skeleton before one can reach ??). Likewise, the meet of 1? and
?? in the context of the cross product matches the same set. This
property ensures that intersection preserves the “good” structure in
skeletons.

Finally, the skeleton for a negated predicate ¬e is equal to the
skeleton for e. This follows from the invariant that a generated
skeleton must always be complete, and the goal that a skeleton
should represent the semantics of both the predicate itself and its
complement.

The cases for policies, queries, and programs are mostly straight-
forward. The skeleton generation algorithm ignores actions and
keys but generate skeletons for the embedded predicates and sur-
rounding set-theoretic operators.

4 This is not uncommon—although bitwise patterns are convenient for pro-
grammers, they are not supported in many cases on OpenFlow.

8 2011/7/21

A (s, π, z⃗) = r⃗
A (s, π, ⋅) = ⋅

A (s, π, (z⃗, z)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (s, π, z⃗) , z ∶ Oswitch (A)
if s ∣ z⃗ ∣ z ⊢ π ↝ (A,K)
and K ∈ KeySet[H]
and H ⊆ headers(z)

A (s, π, z⃗) , z ∶ Ω
otherwise

Figure 7. Action identification.

Action Identification. In the second phase of classifier genera-
tion, the compiler attaches an action to each pattern in the skeleton.
Most of the work needed to do this is encapsulated in the algo-
rithm for Consistent, Determinate Action Analysis (CDAA), which
we represent using the following judgement:

s ∣ z⃗ ∣ z ⊢ π ↝ (A,K) .
If the above holds, then the procedure has determined that for every
packet p that matches z in the context of z⃗, the program π associates
the sets of actions A and keys K with p on switch s.

The CDAA is partial—for example, it cannot analyze black-box
inspectors. Due to space limitations, we defer the full definition
of the analysis, which is mostly straightforward, to the Appendix,
along with the proofs of its formal properties. The key proper-
ties we have proven are (1) soundness, and (2) that the CDAA is
sufficiently complete to ensure that reactive specialization makes
progress; this is the main lemma used in the next section to prove
the quiescence theorem.

One other ingredient we need is a switch action oracle (Oswitch)
that translates high-level actions into switch-level actions. For most
actions, the translation is direct and obvious. For instance, it is
typically the identity function for simple forwarding actions.

The action identification procedure is defined in Figure 7. It con-
siders each pattern in the skeleton, and either (1) uses CDAA to
find a consistent determinate action to associate with the pattern,
checks that the pattern is sufficiently fine-grained for the queries,
and creates an action using the switch action oracle, or (2) con-
cludes that either a consistent determinate action does not exist (or
cannot be found yet) or the pattern is insufficiently fine-grained for
the queries, and associates the controller action with the pattern.
To ensure correct implementation of queries we assume a function
that computes a set of headers headers(z) from a pattern z. The
key property of this function is that if h ∈ headers(z), we know all
packets p ⊑ z have the same value in header h.

5.2 Reactive Specialization
The classifier generation algorithm described in the preceding sec-
tion builds classifiers that can be installed on switches. But as we
saw, it has some serious limitations. Many policies are dynamic
and use black-box inspectors that cannot be analyzed. Even for
purely static policies, a set of rules that matches all packets on
the switches can be large—much larger than the actual space of
flows that will be inhabited in a given network. To deal with these
situations, we define reactive specialization, a powerful generaliza-
tion of the simple, reactive, microflow-based strategy implemented
manually by OpenFlow programmers. We define reactive special-
ization as the composition of three basic operations: (1) program
refinement, which expands the program relative to a new packet
witnessed by the controller, (2) regeneration, which translates the
expanded program to a classifier using the tools of the previous sec-

R (x, e) = e′

R ((Σ, s, p), h ∶ w⃗) = h ∶ w⃗ ∪ h ∶ Orefine (h, w⃗, p)
R (x, switch s) = switch s

R (x, inspect i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inspect i ∪ e′ if invariant (x, i) ∧ i(x)
inspect i − e′ if invariant (x, i) ∧ ¬i(x)
inspect i if ¬ invariant (x, i)

where i ∶ Snapshot[H]→ Bool
and e′ = similar(x,H)

R (x, e1 ∩ e2) =R (x, e1) ∩R (x, e2)
R (x,¬e) = ¬R (x, e)

R (x, τ) = τ ′

R (x, e→ A) = (R (x, e))→ A
R (x, τ1 ∩ τ2) =R (x, τ1) ∩R (x, τ2)
R (x,¬τ) = ¬R (x, τ)

R (x,φ) = φ′

R (x,K ← e) =K ← (e′ ∪ (e′ ∩ similar(x,H)))
where K ∈ KeySet[H]

and e′ =R (x, e)
R (x,φ1 ∩ φ2) =R (x,φ1) ∩R (x,φ2)
R (x,¬φ) = ¬R (x,φ)

R (x,π) = π′

R (x, (τ, φ)) = (R (x, τ) ,R (x,φ))

Figure 8. NCore refinement.

tion, and (3) reactive pruning, which extracts new rules out of the
regenerated classifier.

Program Refinement. When the controller receives a new packet
that a switch could not handle, it interprets the program with re-
spect to the packet, switch, and its current state. The idea in pro-
gram refinement is to use that information to augment the program
with additional structural information so that we can build a spe-
cialized classifier that handles future similar packets on the switch.
Figure 8 defines the refinement function. The key invariant for this
program transformation is that the semantics of the old and new
programs are identical. However, syntactically, the new program
will typically have a different structure, as the transformation uses
the packet to unfold inspectors and queries. This makes skeleton
generation more precise and the recompiled program more effec-
tive.

The rules for refining a predicate appear at the top of Figure 8.
The first rule uses the refinement oracleOrefine to refine basic pred-
icates. Unlike the compilation oracle, which may overapproximate
the predicate, the refinement oracle underapproximates it, so that
the rest of the compilation infrastructure will be able to generate
an implementable switch-level rule that matches the given packet.
Importantly, because the new predicate is the union of the old
predicate and an underapproximation, the overall semantics is un-
changed. In some cases, especially if the switch-supported patterns
are weak, the best underapproximation the refinement oracle can
generate is an exact-match pattern. In many other cases, however,
if the switch has prefix matching or wildcards, the refinement ora-
cle will produce a rule that matches many more packets.

9 2011/7/21

The second rule refines the switch predicate. Because the switch
predicate already reveals the maximum amount of information, it
cannot be refined further.

The rule for inspectors is the most interesting. Recall that if an
inspector i is invariant with respect to a snapshot x (which includes
the switch, packet, and controller state) then it will return the same
boolean decision on similar packets in every future controller state.
A packet is similar to another when it agrees on the headers H
that the given inspector I examines. In such a case it is safe to
augment the inspector with a predicate that is independent of the
controller state, but matches similar packets in the same way as
the inspector. The function similar(x,H) generates a predicate that
matches packets similar to the packet in x on headers H:

similar((Σ, s, p),H) = switch s ∩⋂i ei
where ei = hi ∶ p(hi) for all hi ∈ H

In the first clause for inspectors, if the inspector depends upon
the headers H (as indicated by its indexed type), is invariant in
the current state, and evaluates to true on the current snapshot
(Σ, s, p), then it may be safely refined by taking the union of the
inspector and the similarity predicate similar((Σ, s, p),H). The
second inspector clause is similar except the inspector does not
evaluate to true and hence the inspector predicate may be refined
by subtracting out the similarity predicate. Finally, the third rule
is used when the inspector is not invariant. In this case, no sound
refinement exists—the boolean value returned by the inspector may
change as the controller state changes—and so packets must still be
diverted to the controller until the inspector stabilizes.

The other interesting element of refinement appears in the query
translation. In particular, in the first rule, for queries K ← e, the
algorithm expands the predicate e into e′, identifies the header set
H relevant to K and generates the similarity predicate e′′. The
query predicate refinement is the union of e′ (whose semantics, by
induction, is identical to e) and the intersection of e′ and e′′. The
intersection identifies those packets similar to x that also satisfy the
query predicate, and ensures that refinement preserves semantics.

Reactive pruning. In general, after the program has been refined
and recompiled, some of the new rules will be useless—they will
not process additional packets on the switch. We prune away these
useless rules using a simple function prune(r⃗, p) that removes rules
from r⃗ that (1) send packets to the controller (adding such rules
does not improve the efficiency of the switch), (2) have nothing
to do with the packet p (meaning they are redundant rules not
generated via specialization with respect to p), or (3) overlap with
a rule we removed earlier (to preserve the semantics of the rules).

5.3 Tying it all together
We now have the technical definitions needed to complete the def-
inition of the NCore compiler and run-time system. In particular,
we can now define (1) GenClassifier(π, s), the classifier generator
used to build the initial switch classifiers, and (2) Specialize(x,π),
the reactive specializer used by rule E-CONTROLLER to incremen-
tally install new switch rules.

z⃗ = S (s, π)
r⃗ = A (s, π, z⃗)

GenClassifier(π, s) = r⃗

π′ =R (x,π) z⃗ = S (s, π′)
r⃗ = A (s, π′, z⃗) r⃗′ = prune(r⃗, p)

Specialize(x,π) = r⃗′

Finally, to initialize the molecular machine for NCore program π
and switches s1 to sn, we use the following functions:

Init(s, π) = S (s ∣ GenClassifier(s, π) ∣ ∅)
Init({s1, . . . , sn} , π) = C (π ∣ ∅) , Init(s1, π), . . . , Init(sn, π)

6. Formal Properties
This section presents the essential elements of our two central the-
oretical results: (1) a proof of functional correctness for NCore,
and (2) a proof of quiescence, another fundamental theorem which
establishes that, when inspectors are invariant, the network eventu-
ally reaches a state in which all processing occurs efficiently on its
switches.

Functional Correctness To demonstrate the correctness of the
NCore compiler, we show that it inhabits the space between the
asynchronous and synchronous reference machines. More for-
mally, we prove that the asynchronous reference machine simulates
the NCore molecular machine and the molecular machine simulates
the synchronous reference machine. We state these properties for-
mally below; the specific relations used to prove the simulations
are given in the Appendix.

Theorem 1 (Asynchronous weak simulation). The asynchronous
machine (π,∅,T,∅) weakly simulates the molecular machine
(Init(S,π),T).

Theorem 2 (Synchronous weak simulation). The molecular ma-
chine (Init(S,π),T) weakly simulates the synchronous machine
(π,∅,T).

As usual with simulation arguments, the key insight needed to
complete the proof is finding the appropriate relations between the
machines. The soundness of CDAA also plays a critical role.

Quiescence The quiescence theorem demonstrates that theNCore
compiler effectively moves work off of the controller and onto
switches, even when the program is expressed in terms of black-
box inspectors. Formally, quiescence states that if all of the inspec-
tors in the program are invariant, then the NCore compiler will
eventually install rules on switches that handle all future traffic—
i.e., eventually, the system can reach a configuration where no
additional packets need to be sent to the controller.

Before we can state the quiescence theorem precisely, we need
a few definitions and supporting lemmas. Given a multiset of run-
time system molecules M, the help multiset of M, written Help(M),
is the multiset of help molecules in M. The controller set of M, writ-
ten controllerPackets(M) is the set of switch-packet pairs (s, p)
that generate a help molecule when p is processed using the classi-
fier currently installed on s. The first lemma, controller set mono-
tonicity, states that the set of packets that require processing on the
controller never increases:

Lemma 1 (Controller set monotonicity). If (Init(S,π),T) →∗

M
′ oÐ→ M

′′

then controllerPackets(M
′′) ⊆ controllerPackets(M

′).

As usual, the notation M →∗ M
′

denotes the reflexive, transitive
closure of the single step judgement, ignoring observations.

Next we introduce two properties a program π must have to
ensure quiescence: it must be realizable and fully invariant. Intu-
itively, π is realizable if it does not use features that cannnot be im-
plemented on switches—e.g., in OpenFlow, matching on the pay-
loads of packets or modifying multiple copies of a packet in dif-
ferent ways. Formally, we split realizability into two simpler prop-
erties: fully matchable and fully actionable. A program π is fully
matchable if for every basic predicate h ∶ w⃗ appearing in it and
every packet p, if Orefine (h,w, p) = w′ and Ocompile (h,w′) =
z, then for every snapshot (Σ, s, p′), we have p′ ⊑ z implies
(Σ, s, p′) ∈ Jh ∶ wK. A program π is fully actionable, if, for all
switches s, skeletons (z⃗, z), and programs π′, if JπK = Jπ′K and
s ∣ z⃗ ∣ z ⊢ π′ ↝ (A,K), then Oswitch (A) ≠ Ω. Finally, a pro-
gram π is fully invariant on Σ if, for every switch s, packet p and
predicate inspect i appearing in it we have invariant ((Σ, s, p), i).

10 2011/7/21

Now we are ready to prove the key lemma needed for quies-
cence. The controller set progress lemma states that if the con-
troller program is realizable and has become fully invariant, then
every time the controller processes a help molecule, the controller
set becomes strictly smaller. In other words, every help molecule
contains enough information (and the compiler is powerful enough
to exploit it) for the E-CONTROLLER rule to generate useful new
classifier rules. The full proof depends deeply on several complete-
ness properties of CDAA; the Appendix contains further details.

Lemma 2 (Controller set progress). For every realizable pro-
gram π, if (Init(S,π),T) →∗ (C (π ∣ Σ) ,M′) s,pÐÐ→ M

′′

, such
that π is fully invariant on Σ and Help(M

′′) ⊂ Help(M
′), then

controllerPackets(M
′′) ⊂ controllerPackets(M

′).
Quiescence follows as a simple corollary from controller set

monotonicity and progress, as the total number of possible packets
is finite. The precise statement of quiescence says that the run-time
system may (as opposed to does) quiesce, because the machine may
non-deterministically choose to continue forwarding packets using
the switches instead of processing the remaining help molecules.
Formally, a machine configuration M may quiesce if there exists a
configuration M

′

such that M→∗ M
′

and the rule E-CONTROLLER
cannot be used in any derivation in the operational semantics start-
ing from M

′

. With this definition in hand, we can state quiescence
as follows:

Corollary 1 (Quiescence). For every realizable program π, if
(Init(S,π),T) →∗ (C (π ∣ Σ) ,M′) and π is fully invariant on
Σ, then M

′

can quiesce.

7. Implementation and Evaluation
We have built a full working implementation of the NCore compiler
in Haskell. It closely follows the formal definitions presented in
this paper, modulo a few optimizations, which are described below.
The core algorithms including skeleton generation, reactive spe-
cialization, and action identification are formulated in terms of type
classes (e.g., lattices for switch patterns) and oracle functions. This
design makes it easy to instantiate the compiler to target different
switch architectures—one simply has to define instances for a few
type classes and provide the appropriate oracles. We have built two
back-ends, both based on OpenFlow switches. The first generates
the coarse-grained rules from reactive specialization described in
this paper. The other, used for comparison, generates exact-match
rules, which emulates the microflow-based techniques commonly
used by programmers today. The total amount of code needed to
define these instances was only about 200 lines of code, compared
to approximately 1600 lines for the compiler itself.

Optimizations. The implementation uses a number of heuristic
optimizations to avoid the combinatorial blowup that would result
from doing skeleton generation and reactive specialization naively.
For example, it applies algebraic rewritings on-the-fly to remove
useless patterns and rules and reduce the size of the intermediate
patterns and classifiers it needs to manipulate. The skeleton gener-
ation algorithm identifies and removes patterns completely “shad-
owed” by other patterns and patterns whose effect is “covered” by
a larger pattern lower down with the same actions. Finally, it uses a
cheap static analysis to characterize the packets that will not be sent
to the controller, which avoids invoking the more costly CDAA in
many cases. Although these heuristics are simple, in our experience
they go a long way toward ensuring reasonable performance.

Evaluation. To evaluate our implementation, we developed an
instrumented version of the run-time system that collects statistics
about the sizes of the classifiers and the amount of traffic handled

on switches (as opposed to being sent to the controller). Because
space for classifiers is a limited resource on switches, and because
the cost of diverting a packet to the controller slows down its
processing by orders of magnitude, these metrics quantify some
of the most critical aspects of the system.

We compared the performance of the “full” (which makes use of
all OpenFlow rules, including wildcards) and “µflow” (which only
generates exact-match rules) compilers on the following programs:

• Static Policy (SP): implements the simple static policy de-
scribed at the end of Section 2. This benchmark measures the
(in)efficiency of microflow-based compilation strategies.

• Static Policy with Query (SPQ): forwards packets using the
same policy as in the SP test but also collects traffic statistics
for each host. Due to the query, this program cannot be directly
compiled to a switch classifier—at least, not without expanding
all 4.3 billion possible hosts! Thus, this benchmark measures
the efficiency of reactive compilation.

• Black-Box Policy with Query (BPQ): forwards packets and
collects traffic statistics using the authentication application
presented in Section 2. This benchmark measures the perfor-
mance of a more realistic application implemented using both
queries and black-box functions.

To drive these experiments, we generated packets using fs [23], a
tool that synthesizes realistic packet traces from several statistical
parameters. We ran each experiment on 100K packets in total. The
results are shown in Figure ??. The graphs on the top row show the
number of packets that “missed” and had to be sent to the controller
against the total number of packets processed. Likewise, the graphs
on the bottom row show the size of the compiled classifier, in terms
of number of rules, versus total packets. The table at the right gives
the final results after all 100K packets were processed.

In terms of the proportion of packets processed on switches,
the full OpenFlow compiler outperforms the microflow-based com-
piler on all of the benchmarks. On the SP benchmark, the full com-
piler generates a classifier that completely handles the policy, so
no packets are sent to the controller. (The line for the full compiler
overlaps with the x-axis.) The microflow compiler, of course, di-
verts a packet to the controller for each distinct microflow. On the
SPQ benchmark, after seeing a packet from each unique host in-
volved in the query, the full compiler generates wildcard rules (via
reactive specialization) that handle all future traffic from the host—
many more packets than the exact-match rule produced by the mi-
croflow compiler. On this benchmark, it is worth noting that the
classifiers produced by the full compiler are larger than the ones
produced by the microflow compiler, especially initially. This is
due to the fact that the full compiler sometimes generates multiple
rules in response to a single controller packet, attempting to cover a
broad space of future similar packets, whereas the microflow com-
piler predictably generates a single microflow for each controller
packet. One can see that the work done by the full compiler pays
off in terms of the number of packets that must be diverted to the
controller. Moreover, over time, the size of the microflow compiler-
generated classifier approaches that of the full compiler. Lastly,
the BPQ experiment demonstrates that the full compiler gener-
ates more effective classifiers than the microflow compiler, even
in the presence of black-box functions that it cannot analyze di-
rectly. Note that a large number of packets must be diverted to the
controller in any correct implementation—at the start, the black-
box is not invariant for any host. The difference between the two
compilers starts to become clear toward the end of the experiment.

11 2011/7/21

8. Related Work
Building on ideas first proposed in Ethane [4] and 4D [10],
NOX [11] was the first concrete system to popularize what is
currently known as software-defined networking. It provides an
event-driven interface to OpenFlow [17] and requires program-
mers construct reactive programs manually out of callbacks and
explicit, switch-level packet-processing rules. There are numerous
examples of network applications built on top of NOX using mi-
croflows [12, 13, 28], but relatively few that use wildcard rules
(though Wang’s load balancer [27] is a nice example of the latter).

Networking researchers are now actively developing next-
generation controller platforms. Some of them, such as Beacon [1]
(designed for Java) and Nettle [26] (designed for Haskell) pro-
vide elegant OpenFlow interfaces for new programming languages.
Others, such as Onix [15], and Maestro [3] improve scalability and
fault tolerance through parallelization and distribution. None of
these systems automatically generate reactive protocols or provide
formal semantics or correctness guarantees like NCore does.

NCore was inspired in part by Frenetic [9], a recently proposed
high-level language for OpenFlow networks. NCore borrows from
Frenetic the idea that network programs should be split into two
parts: one for specification of forwarding policies and one for spec-
ification of queries. The major linguistic advance of NCore over
Frenetic involves the inclusion of arbitrary functions in its poli-
cies and queries. In addition, NCore has a well-defined semantics,
a parameterized, lattice-theoretic compilation strategy that uses the
full capabilities of the switches, and proofs of correctness and qui-
escence of its implementation. Frenetic’s implementation uses in-
efficient microflows, is ad hoc, tailored to OpenFlow, and has no
theoretical analysis of formal properties.

Both NCore and NDLog [16] use high-level languages to pro-
gram networking infrastructure, but the similarities end there. ND-
Log programs are written in an explicitly distributed style whereas
high-level NCore programs written as if the program has an om-
niscient, centralized view of the entire network. The NCore imple-
mentation automatically partitions work onto a distributed set of
switches and synthesizes a reactive communication protocol that
simulates the semantics of the high-level language.

Part of the job of the NCore compiler is to generate efficient
packet classifiers. Most previous research in this area (see Tay-
lor [25] for a survey) focuses on static compilation. The NCore
compiler generates classifiers in the face of non-static policies, with
unknown black box functions, and synthesizes a distributed switch-
controller implementation. Bro [22], Snortran [7], Shangri-La [5]
and FPL-3E [6] compile rich packet-filtering and monitoring pro-
grams, designed to secure networks and detecting intrusions, down
to special packet-processing hardware and FPGAs. The main dif-
ference between NCore and all of these systems is that they are
limited to a single device. They do not address the issue of how
to program complex, dynamic policies for a collection of intercon-
nected switches and they do not synthesize the distributed commu-
nication patterns between the switches and controller.

Active Networking, as in the SwitchWare project [24], shares
many high-level goals with Software-Defined Networking, but the
implementation strategy is entirely different. The former uses smart
switches to interpret programs encapsulated in packets, while the
latter uses dumb switches controlled by a remote, centralized host.

References
[1] Beacon: A java-based OpenFlow control platform., Nov 2010. See

http://www.beaconcontroller.net.
[2] G. Berry and G. Boudol. The chemical abstract machine. In POPL,

pages 81–94, 1990.
[3] Z. Cai, A. Cox, and T. Ng. Maestro: A system for scalable OpenFlow

control. Technical Report TR10-08, Rice University, Dec 2010.

[4] M. Casadod, M. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker. Rethinking enterprise network control. Trans. on
Networking., 17(4), Aug 2009.

[5] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. Shangri-
la: Achieving high performance from compiled network applications
while enabling ease of programming. In PLDI, Jun 2005.

[6] M. Cristea, C. Zissulescu, E. Deprettere, and H. Bos. FPL-3E: To-
wards language support for reconfigurable packet processing. In
SAMOS, pages 201–212, Jul 2005.

[7] S. Egorov and G. Savchuk. SNORTRAN: An Optimizing Compiler for
Snort Rules. Fidelis Security Systems, 2002.

[8] D. Erickson et al. A demonstration of virtual machine mobility in an
OpenFlow network, Aug 2008. Demo at ACM SIGCOMM.

[9] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
In ICFP, Sep 2011.

[10] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. SIGCOMM Comput. Commun.
Rev., 35:41–54, October 2005.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an operating system for networks.
SIGCOMM CCR, 38(3), 2008.

[12] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
hari. Plug-n-Serve: Load-balancing web traffic using OpenFlow, Aug
2009. Demo at ACM SIGCOMM.

[13] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. ElasticTree: Saving energy in data
center networks. In NSDI, Apr 2010.

[14] L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic
aggregates on commodity switches. In Hot-ICE, Mar 2011.

[15] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In
OSDI, Oct 2010.

[16] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. In SIGCOMM,
pages 289–300, 2005.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM CCR, 38(2):69–74, 2008.

[18] J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. Curtis, and
S. Banerjee. DevoFlow: Cost-effective flow management for high
performance enterprise networks. In HotNets, pages 1:1–1:6, 2010.

[19] A. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: Dy-
namic access control in enterprise networks. In WREN, Aug 2009.

[20] The Open Networking Foundation, Mar 2011. See http://
www.opennetworkingfoundation.org/.

[21] OpenFlow, Nov 2010. See http://www.openflowswitch.org.
[22] Vern Paxson. Bro: A system for detecting network intruders in real-

time. Computer Networks, 31(23–24):2435–2463, Dec 1999.
[23] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and

N. Duffield. Efficient network-wide flow record generation. In INFO-
COM, pages 2363–2371, 2011.

[24] SwitchWare. http://www.cis.upenn.edu/~switchware, 1997.
[25] D. Taylor. Survey and taxonomy of packet classification techniques.

ACM Comput. Surv., 37:238–275, September 2005.
[26] A. Voellmy and P. Hudak. Nettle: Functional reactive programming of

OpenFlow networks. In PADL, Jan 2011.
[27] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based server load

balancing gone wild. In Hot-ICE, Mar 2011.
[28] K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Hand-

igol, and N. McKeown. OpenRoads: Empowering research in mobile
networks. SIGCOMM Comput. Commun. Rev., 40(1):125–126, 2010.

12 2011/7/21

A. NCore Auxiliary Definitions and Properties
A.1 Elided Skeleton and Classifier Properties
We define packet lookup z⃗ ↝p z in skeletons (and its complement failed lookup: z⃗ p) analogously to lookup in classifiers:

p ⋢ z1 ⋯ p ⋢ zi−1 p ⊑ zi
(z1, . . . , zi−1, zi, . . . , zn)↝p zi

We define packets(z⃗) to be the set of all packets p such that there exists a pattern z where z⃗ ↝p z. We define the packets(z⃗, z), as
packets(z) ∖ packets(z⃗). which captures the packets defined by z with respect to its prefix. Because classifiers are processed left to right,
packets(z⃗, z) tells us the set of packets that will actually match z when preceded by z⃗.

Lemma 3 (Packets matched by cross product). If packets(z⃗1, z1) = P and packets(z⃗2, z2) = P ′, then for all z⃗,

packets((z⃗1 × (z⃗2, z2, z⃗), z1 × z⃗2), z1 ⊓ z2) = P ∩ P ′ .

Given a classifier r⃗, we define packets(r⃗) to be the set of packets p such that r⃗ ↝p z ∶ γ for some z and γ. Define controllerPackets(r⃗)
to be the set of all packets p such that r⃗ ↝p z ∶ Ω.

A.2 Oracles
This subsection states required properties of the oracles used directly in compilation. We use the type Wildcard for Vector WildcardBit.

Compilation oracle Ocompile ∈ Header ×Wildcard→ Pattern
Expansion oracle Orefine ∈ Header ×Wildcard × Packet→Wildcard

Switch oracle Oswitch ∈ Action→ SwitchAct

Definition 1 (Compilation oracle correctness). If Ocompile (h,w) = z, then for all (Σ, s, p) ∈ Jh ∶ wK, we have p ⊑ z.

Definition 2 (Expansion oracle correctness). If Orefine (h,w, p) = w′, then

• Jh ∶ w′K ⊆ Jh ∶ wK and
• if there exists a w′′ such that Ocompile (h,w′′) = z and p ⊑ z only if (Σ, s, p) ∈ Jh ∶ wK, then w′ = w′′.

Definition 3 (Switch oracle correctness). If Oswitch (A) = γ and γ ≠ Ω, then Action(γ, p) = T ′ if and only if JAK (p) = T ′.

A.3 Pruning
There are a variety of different prunes that can be done. Regardless of the prune chosen, it must satisfy the following correctness conditions.

Definition 4 (Prune correctness). Let prune(r⃗, p) = r⃗′. Then we have that:

• If r⃗ on switch s is correct with respect to π then (r⃗′, r⃗) on s is correct with respect to π,
• controllerPackets(r⃗′) = ∅,
• If p ∈ packets(r⃗) ∖ controllerPackets(r⃗), then p ∈ packets(r⃗).

A.4 Consistent Definitive Action Analysis
Consistent definitive action analysis (CDAA) is an analysis that attempts to determine the consistent set of actions and keys associated with
a pattern. To be more specific, it determines whether a predicate e′ is absorbed or annihilated by a pattern z. Notice that there are no rules
involving inspectors – the analysis can not determine the actions produced by an inspector. If it is necessary for the analysis to understand
the semantics of an inspector, it will fail to deduce a consistent action.

The analysis uses one further oracle, the CDAA oracle.

CDAA oracle OCDAA ∈ Pattern ×Header→Wildcard

Definition 5 (Disjoint bitvectors). We say w⃗ is disjoint from w⃗′ when there does not exist a bitvector b⃗ such that b⃗ ⊑ w⃗ and b⃗ ⊑ w⃗′

Definition 6 (Static analysis oracle correctness). p ⊑ z if and only if for every h, we have p(h) ⊑ OCDAA (z, h).

13 2011/7/21

s ∣ z⃗ ∣ z ⊢ e absorbed, s ∣ z⃗ ∣ z ⊢ e annihilated

AB-PRSMALLER

OCDAA (z, h) = w⃗′ w⃗′ ⊑ w⃗
s ∣ z⃗ ∣ z ⊢ h ∶ w⃗ absorbed

AN-PRDISJOINT

OCDAA (z, h) = w⃗′ w⃗ and w⃗′ disjoint
s ∣ z⃗ ∣ z ⊢ h ∶ w⃗ annihilated

AN-VOID

OCDAA (z, h) = w⃗′ OCDAA (z′, h) = w⃗′′ w⃗ ⊓ w⃗′ ⊑ w⃗ ⊓ w⃗′′

s ∣ z⃗, z′, z⃗′ ∣ z ⊢ h ∶ w⃗ annihilated

AB-PRSWITCH

s ∣ z⃗ ∣ z ⊢ switch s absorbed

AN-PRSWITCH
s ≠ s′

s ∣ z⃗ ∣ z ⊢ switch s′ annihilated

AB-PRINTERSECT
s ∣ z⃗ ∣ z ⊢ e1 absorbed s ∣ z⃗ ∣ z ⊢ e2 absorbed

s ∣ z⃗ ∣ z ⊢ e1 ∩ e2 absorbed

AN-PRINTERSECT-1
s ∣ z⃗ ∣ z ⊢ e1 annihilated

s ∣ z⃗ ∣ z ⊢ e1 ∩ e2 annihilated

AN-PRINTERSECT-2
s ∣ z⃗ ∣ z ⊢ e2 annihilated

s ∣ z⃗ ∣ z ⊢ e1 ∩ e2 annihilated

AB-PRNEG
s ∣ z⃗ ∣ z ⊢ e annihilated
s ∣ z⃗ ∣ z ⊢ ¬e absorbed

AN-PRNEG
s ∣ z⃗ ∣ z ⊢ e absorbed

s ∣ z⃗ ∣ z ⊢ ¬e annihilated

s ∣ z⃗ ∣ z ⊢ τ ↝ A

CDAA-POABPR
s ∣ z⃗ ∣ z ⊢ e absorbed
s ∣ z⃗ ∣ z ⊢ (e→ A)↝ A

CDAA-POANPR
s ∣ z⃗ ∣ z ⊢ e annihilated
s ∣ z⃗ ∣ z ⊢ (e→ A)↝ ∅

CDAA-POINTERSECT
s ∣ z⃗ ∣ z ⊢ τ ↝ A s ∣ z⃗ ∣ z ⊢ τ ′ ↝ A′

s ∣ z⃗ ∣ z ⊢ (τ ∩ τ ′)↝ A ∩A′

CDAA-POINTERSECTEMPTY-1
s ∣ z⃗ ∣ z ⊢ τ ↝ ∅

s ∣ z⃗ ∣ z ⊢ (τ ∩ τ ′)↝ ∅

CDAA-POINTERSECTEMPTY-2
s ∣ z⃗ ∣ z ⊢ τ ′ ↝ ∅

s ∣ z⃗ ∣ z ⊢ (τ ∩ τ ′)↝ ∅

CDAA-PONEG
s ∣ z⃗ ∣ z ⊢ τ ↝ A

s ∣ z⃗ ∣ z ⊢ ¬τ ↝ ¬A

s ∣ z⃗ ∣ z ⊢ φ↝K

CDAA-QABPR

s ∣ z⃗ ∣ z ⊢ e absorbed
s ∣ z⃗ ∣ z ⊢ (K ← e)↝K

CDAA-QANPR

s ∣ z⃗ ∣ z ⊢ e annihilated
s ∣ z⃗ ∣ z ⊢ (K ← e)↝ ∅

CDAA-QINTERSECT

s ∣ z⃗ ∣ z ⊢ φ↝K s ∣ z⃗ ∣ z ⊢ φ′ ↝K′

s ∣ z⃗ ∣ z ⊢ (φ ∩ φ′)↝K ∩K′

CDAA-QINTERSECTEMPTY-1
s ∣ z⃗ ∣ z ⊢ φ↝ ∅

s ∣ z⃗ ∣ z ⊢ (φ ∩ φ′)↝ ∅

CDAA-QINTERSECTEMPTY-2
s ∣ z⃗ ∣ z ⊢ φ↝ ∅

s ∣ z⃗ ∣ z ⊢ (φ ∩ φ′)↝ ∅

CDAA-QNEG

s ∣ z⃗ ∣ z ⊢ φ↝K

s ∣ z⃗ ∣ z ⊢ ¬φ↝ ¬K

s ∣ z⃗ ∣ z ⊢ π ↝ (A,K)

CDAA-PROGRAM
s ∣ z⃗ ∣ z ⊢ τ ↝ A s ∣ z⃗ ∣ z ⊢ φ↝K

s ∣ z⃗ ∣ z ⊢ (τ, φ)↝ (A,K)
Lemma 4 (Soundness of CDAA).

• If s ∣ z⃗ ∣ z ⊢ e absorbed, then for all (Σ, s, p) such that p ∈ packets(z⃗, z), we have that (Σ, s, p) ∈ JeK.
• If s ∣ z⃗ ∣ z ⊢ e annihilated, then for all (Σ, s, p) such that p ∈ packets(z⃗, z), we have that (Σ, s, p) ∉ JeK.

Proof. Induction on the derivation of the hypotheses.

Theorem 3 (Soundness). If s ∣ z⃗ ∣ z ⊢ π ↝ (A,K), then for all (Σ, s, p) such that p ∈ packets(z⃗, z), we have JπK (Σ, s, p) =
(JAK (Σ, s, p), JKK (Σ, s, p)).

A.5 Elided Correctness Properties
Definition 7 (Classifier correct with respect to policy). We say that classifier r⃗ on switch s is correct with respect to policy τ if for every p
such that r⃗ ↝p z ∶ γ and γ ≠ Ω, then for all Σ, we have Action(γ, p) = T ′ if and only if JτK (Σ, s, p) = T ′.
Definition 8 (Classifier correct with respect to query). A switch classifier r⃗ on switch s is correct with respect to φ if for all z there exists a
Σ′ such that for all p such that r⃗ ↝p z ∶ γ and γ ≠ Ω, then JφK (Σ, s, p) = Σ′.

14 2011/7/21

Definition 9 (Classifier correct with respect to program). A switch classifier r⃗ on switch s is correct with respect to π = (τ, φ) if it is correct
with respect to τ and correct with respect to φ.

Theorem 4 (Correctness of classifier generation). If GenClassifier(π, s) = r⃗, then r⃗ on switch s is correct with respect to π.

Proof. Follows from soundness of CDAA and the axioms of the switch oracle.

Theorem 5 (Expansion correctness). For all x and π, we have that JR (x,π)K = JπK.

Proof. By induction on π.

Using the above lemmas and theorems, one can prove the following relations, establishing our functional correctness theorem.

Definition 10 (Asynchronous simulation relation). Let

M = C (π ∣ Σ) ,S (s1 ∣ r⃗1 ∣ Z1) , . . . ,S (sn ∣ r⃗n ∣ Zn) ,L,T
Masync = (π′,Σ′,T1,T2) .

Then M ∼async Masync if

• JπK = Jπ′K
• For all i, classifier r⃗i on switch si is correct with respect to π.
• Σ = Σ′

• There exists a bijection between T1 and L ⊎ T, where every mapping preserves (s, p).
• There exists a bijection between transmissions T (s ∣ p) ∈ T2 and patterns z ∈ Zi, where si = s and p ⊑ z.

Definition 11 (Synchronous simulation relation). Let

M = C (π ∣ Σ) ,S (s1 ∣ r⃗1 ∣ Z1) , . . . ,S (sn ∣ r⃗n ∣ Zn) ,L,T
Msync = (π′,Σ′,T

′) .

Then M ∼sync Msync if

• JπK = Jπ′K
• For all i, classifier r⃗i on switch si is correct with respect to π.
• Σ = Σ′

• There exists a bijection between L ⊎ T and T
′

, where every mapping preserves (s, p).
• Each Zi is empty.

A.6 Elided Quiescence Properties
Definition 12 (Ideal packets matched on switch). Given a predicate e, define the set of packets ideally matched on switch s (written
packetsOn(s, e)) as all p such that (Σ, s, p) ∈ JeK implies (Σ′, s, p) ∈ JeK, for all Σ and Σ′. Analogously, define the set of packets ideally
dropped on the switch s (written nPacketsOn(s, e)) as all p such that (Σ, s, p) ∈ ¬ JeK implies (Σ′, s, p) ∈ ¬ JeK, for all Σ and Σ′.

Definition 13 (anti-kernel). Define the anti-kernel with respect to (Σ, s) of a policy τ (resp. a query φ), denoted aker(Σ, s, τ) (resp.
aker(Σ, s, φ)) as the set of all packets p such that JτK (Σ, s, p) ≠ ∅ (resp. JφK (Σ, s, p) ≠ ∅).

The following function predicts how many packets will go to the controller.

Inconsistent(s, e) = P

INCON-PREXACT

Ocompile (h, w⃗) = z Jh ∶ w⃗K = packets(z)
Inconsistent(s, h ∶ w⃗) = ∅

INCON-PROVERAPPROX

Ocompile (h, w⃗) = z Jh ∶ w⃗K ≠ packets(z)
Inconsistent(s, h ∶ w⃗) = packets(z)

INCON-PRWITCH

Inconsistent(s, switch s′) = ∅

INCON-PRINSPECT

Inconsistent(s, inspect i) = ⊺

INCON-PRINTERSECT
Inconsistent(s, e) = P Inconsistent(s, e′) = P′

Inconsistent(s, e ∩ e′) = (P ∪ P′) ∩ (packetsOn(s, e) ∪ P) ∩ (packetsOn(s, e′) ∪ P′)

INCON-PRNEG
Inconsistent(s, e) = P
Inconsistent(s,¬e) = P

15 2011/7/21

Inconsistent(s, τ) = P

INCON-POPR
Inconsistent(s, e) = P

Inconsistent(s, e→ A) = P

INCON-POINTERSECT
Inconsistent(s, τ) = P Inconsistent(s, τ ′) = P′

Inconsistent(s, τ ∩ τ ′) = (P ∪ P′) ∩ (aker(Σ, s, τ) ∪ P) ∩ (aker(Σ, s, τ ′) ∪ P′)

INCON-PONEG
Inconsistent(s, τ) = P
Inconsistent(s,¬τ) = P

Inconsistent(s, φ) = P

INCON-QPR

Inconsistent(s, e) = P
Inconsistent(s,K ← e) = P

INCON-QINTERSECT

Inconsistent(s, φ) = P Inconsistent(s, φ′) = P′

Inconsistent(s, φ ∩ φ′) = (P ∪ P′) ∩ (aker(Σ, s, φ) ∪ P) ∩ (aker(Σ, s, φ′) ∪ P′)

INCON-QNEG

Inconsistent(s, φ) = P
Inconsistent(s,¬φ) = P

Inconsistent(s,F) = P

INCON-PROGRAM
Inconsistent(s, τ) = P Inconsistent(s, φ) = P′

Inconsistent(s, (τ, φ)) = (P ∪ P′) ∩ (aker(Σ, s, τ) ∪ P) ∩ (aker(Σ, s, φ) ∪ P′)
Lemma 5 (Prefix extension).

• If s ∣ z⃗ ∣ z ⊢ e absorbed and z⃗′ is a supersequence of z⃗, then s ∣ z⃗′ ∣ z ⊢ e absorbed.
• If s ∣ z⃗ ∣ z ⊢ e annihilated and z⃗′ is a supersequence of z⃗, then s ∣ z⃗′ ∣ z ⊢ e annihilated.

Proof. Induction on the derivation of the hypotheses, ignoring the other members of z⃗′ aside from z⃗.

Lemma 6 (Uniform meet). If S (s, e) = (z⃗, z, z⃗′), then

• If s ∣ z⃗ ∣ z ⊢ e absorbed, then s ∣ z⃗ × z′ ∣ z ⊓ z′ ⊢ e absorbed.
• If s ∣ z⃗ ∣ z ⊢ e annihilated, then s ∣ z⃗ × z′ ∣ z ⊓ z′ ⊢ e annihilated.

Proof. Induction on the derivation of the hypotheses.

Lemma 7 (Cross product relations). For all z⃗, if S (s, e1) = (z⃗1, z1, z⃗′1) and S (s, e2) = (z⃗2, z2, z⃗′2) and z⃗′ = z⃗1 × (z⃗2, z2, z⃗), z1 × z⃗2, then

• If s ∣ z⃗1 ∣ z1 ⊢ e1 absorbed and s ∣ z⃗2 ∣ z2 ⊢ e2 absorbed then s ∣ z⃗′ ∣ z1 ⊓ z2 ⊢ e1 ∩ e2 absorbed.
• If s ∣ z⃗1 ∣ z1 ⊢ e1 annihilated or s ∣ z⃗2 ∣ z2 ⊢ e2 annihilated then s ∣ z⃗′ ∣ z1 ⊓ z2 ⊢ e1 ∩ e2 annihilated.

Proof. Follows from uniform meet, prefix extension, and Ab-PrIntersect/An-PrIntersect.

Lemma 8 (Consistent predicate skeleton and absorption/annihilation). If S (s, e) = (z⃗, z, z⃗′) and Inconsistent(s, e) = P, then, for all Σ,

• if packets(z⃗, z) ⊆ packetsOn(s, e) ∖ P, we have that s ∣ z⃗ ∣ z ⊢ e absorbed.
• if packets(z⃗, z) ⊆ nPacketsOn(s, e) ∖ P, we have that s ∣ z⃗ ∣ z ⊢ e annihilated.

Proof. Induction on e, using the cross-product relations and the algebraic properties of Inconsistent(s, e) to discharge cases in which we
don’t have useful induction hypotheses.

Theorem 6 (Consistent skeleton and CDAA). Let S (s, π) = (z⃗, z, z⃗′) and Inconsistent(s, π) = P . Then if packets(z⃗, z) disjoint from P,
we have that s ∣ z⃗ ∣ z ⊢ π ↝ (A,K).

16 2011/7/21

HeadersAvail(e, h) = P

HeadersAvail(h ∶ w,h) = {packets(z) if Ocompile (h,w) = z and OCDAA (z, h) = b⃗
∅ otherwise

HeadersAvail(switch s, h) = ∅
HeadersAvail(inspect i, h) = ∅
HeadersAvail(e1 ∩ e2, h) = HeadersAvail(e1, h) ∪HeadersAvail(e2, h)

HeadersAvail(¬e, h) = HeadersAvail(e, h)

HeadersAvail(τ, h) = P

HeadersAvail(e→ A,h) = HeadersAvail(e, h)
HeadersAvail(τ1 ∩ τ2, h) = HeadersAvail(τ1, h) ∪HeadersAvail(τ2, h)

HeadersAvail(¬τ, h) = HeadersAvail(τ, h)

HeadersAvail(φ,h) = P

HeadersAvail(K ← e, h) = HeadersAvail(e, h)
HeadersAvail(φ1 ∩ φ2, h) = HeadersAvail(φ1, h) ∪HeadersAvail(φ2, h)

HeadersAvail(¬φ,h) = HeadersAvail(φ,h)

HeadersAvail(π,h) = P

HeadersAvail((τ, φ), h) = HeadersAvail(τ, h) ∪HeadersAvail(φ,h)

Theorem 7 (Available headers of skeleton). Let S (s, π) = (z⃗, z, z⃗′). Then there exists a b⃗ for every p ∈ packets(z⃗, z) such that p(h) = b⃗ if
p ∈ HeadersAvail(π,h).

Definition 14 (Headers needed on snapshot). Let p ∈ HeadersNeeded(s, π, h) if for all Σ, we have JπK (Σ, s, p) = (T ′, σ′) and there exists
(k, sp) ∈ σ′ such that h ∈ dom(sp).

We now define which packets we expect to see at the controller.

Definition 15. We let p ∈ ToController(s, π) if:

• p ∈ Inconsistent(s, π) or
• there exists an h and a p such that p ∈ HeadersNeeded(s, π, h) and p ∉ HeadersAvail(π,h).

Theorem 8 (Controller actions bounded). If π is realizable on s, then S (s, π) = z⃗ and A (s, π, z⃗) = r⃗ then controllerPackets(r⃗) ⊆
ToController(s, π).

Proof. Induction on π.

Theorem 9 (Expansion monotonic). For all s, x and π, we have that ToController(s,R (x,π)) ⊆ ToController(s, π).

Proof. Induction on π.

Theorem 10 (Expansion invariance). For all (Σ, s, p), if π is fully invariant and fully matchable, we have that p ∉ ToController(s,R ((Σ, s, p), π)).

Proof. Induction on π.

17 2011/7/21

