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Abstract

We develop a new foundation for distributed programming languages
by defining an intuitionistic, modal logic and then interpreting the modal
proofs as distributed programs. More specifically, the proof terms for the
various modalities have computational interpretations as remote procedure
calls, commands to broadcast computations to all nodes in the network,
commands to use portable code, and finally, commands to invoke compu-
tational agents that can find their own way to safe places in the network
where they can execute. We prove some simple meta-theoretic results
about our logic as well as a safety theorem that demonstrates that the
deductive rules act as a sound type system for a distributed programming
language.

1 Introduction

One of the characteristics of distributed systems that makes developing robust
software for them far more difficult than developing software for single stand-
alone machines is heterogeneity. Different places in the system may have vastly
different properties and resources. For instance, different machines may be
attached to different hardware devices, have different software installed and run
different services. Moreover, differing security concerns may see different hosts
providing different interfaces to distributed programs, even when the underlying
computational resources are similar.

In order to model such heterogeneous environments, programming language
researchers usually turn to formalisms based on one sort of process algebra
or another. Prime examples include the distributed join calculus [5] and the
ambient calculus [3]. These calculi often come with rich theories of process
equivalence and are useful tools for reasoning about distributed systems. How-
ever, a significant disadvantage of starting with process algebras as a foundation
for distributed computing is that they immediately discard the wealth of logical
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principles that underlie conventional sequential programming paradigms and
that form the sequential core of any distributed computation.

In this paper, we develop a foundation for safe distributed programming,
which rather than rejecting the logical foundations of sequential (functional)
programming, extends them conservatively with new principles tuned to pro-
gramming in heterogeneous distributed environments. More specifically, we
develop an intuitionistic, modal logic and provide an operational interpretation
of the logical proofs as distributed programs. Our logic is conservative over
ordinary intuitionistic propositional logic in the sense that at any given place,
all of the propositional tautologies are provable. Consequently, our correspon-
dence between proofs and programs implies we can safely execute any (closed)
functional program at any place in our distributed programming environment.

We extend these simple intuitionistic proofs with modal connectives and pro-
vide computational interpretations of the connectives as operations for remote
code execution:

• Objects with type τ @ z are return values with type τ . They are the results
of remote procedure calls from the place z.

• Objects with type n[τ ] are also return values with type τ . However, they
are the results of remote procedure calls that use place-relative rather than
absolute addressing. These RPCs send a computation along the link in
the network named n from the current place.

• Objects with type 2 τ are computations that run safely everywhere, and
may be broadcast to all places in the network.

• Objects with type ◊τ are logically equivalent to those objects with type
2 τ , but are treated operationally simply as portable code that can run
everywhere, but is not actually broadcast.

• Objects with type 3τ are computational agents that have internalized the
place z where they may execute safely to produce a value with type τ .

Contributions The central technical contributions of our work may be sum-
marized as follows.

• We develop an intuitionistic, modal logic from first principles following
the logical design techniques espoused by Martin Löf [8] and Frank Pfen-
ning [11, 12]. Our logic is a relative of the hybrid logics, which are dis-
cussed in more detail at the end of the paper (see Section 4).

• The logic obeys a number of simple properties that give evidence it will
serve as a solid foundation for distributed programming languages. In
particular, each connective is defined orthogonally to all others; is shown
to be locally sound and complete; and supports the relevant substitution
principles.
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• This paper concentrates on the natural deduction formulation of the logic
due to its correspondence with functional programs. However, we have
also developed a sequent calculus that has cut elimination and shown that
the sequent calculus can prove the same theorems as the natural deduction
system.

• We give an operational interpretation of the proofs in our logic as dis-
tributed functional programs. We prove that the logical deduction rules
are sound when viewed as a type system for the programming language.

Due to space considerations, we have omitted the detailed proofs of our
theorems. Further details may be found in an extended technical report [7].

2 A Logic of Places

2.1 Preliminaries

The central purpose of our logic is to facilitate reasoning about heterogeneous
distributed systems where different nodes may have different properties and may
contain different resources. Hence, the primary judgment in the logic not only
considers whether a formula is true, but also where it is true. More precisely,
each primitive judgment has the form

`P,N F at z

where F is a formula from the logic and z is a particular place in the system.
These places may either be simple places, p, which are drawn from the set P ,
or compound places p.n1. . . . .nn that specify the relative address of a place in
terms of a simple place p and a path with edges labeled n1, ..., nn. Each edge
name is drawn from the set N . We consider judgments `P,N F at z to have no
meaning if FPN(F ) ∪ FPN(z) 6⊆ P ∪ N where FPN(X) denotes the set of free
places and names that appears in X. We also use FP(X) (FN(X)) to denote
the set of free places (names) in X. In the inference rules to come, we do not
generally specify these well-formedness conditions explicitly. When P and N
are unimportant or easy to guess from the context (i.e., most of the time) we
omit them from the judgment and simply write ` F at z.

To gain some intuition about this preliminary set up, consider a network of
computers connected in a ring:
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This picture shows five simple places (A, B, etc.), which may be referenced
directly. Alternatively, if we assume that each arc in the diagram is labeled
with the name next, we may refer to B indirectly using the path A.next or
E.next.next.

In another scenario, each of A, B, C might support several virtual machines
named VM1, VM2, etc. If the set N includes names VM1 and VM2 then we
can use indirect addressing to build a hierarchy of places by refering to A.VM1,
A.VM2, B.VM1, etc.

In general, each of these computers (A, B, C, etc.) may be attached to
different physical devices. For instance, E may be attached to a printer and B
may be attached to a scanner. If sc (“there is a scanner here”) and pt (“there
is a printer here”) are propositions in the logic, we might assert judgments such
as ` pt at E and ` sc at B to describe this situation.

Hypothetical Judgments In order to engage in more interesting reasoning
about distributed resources, we must define hypothetical judgments, facilities
for reasoning from hypotheses and the appropriate notion of substitution. To
begin with, hypothetical judgments have the form ∆ `P,N F at z where ∆ is a
list of (variable-labeled) assumptions:

contexts ∆ : := · | ∆, x : F at z

We make the usual assumption that no variables are repeated in the context,
and whenever adding a new variable to the context, we implicitly assume it
is different from all others (alpha-varying bound variables where necessary to
ensure this invariant holds). In addition, we do not distinguish between contexts
that differ only in the order of assumptions.

Logicians may use hypotheses according to the following inference rule.

∆, x : F at z ` F at z
hyp

Intuitionistic Connectives With the definition of hypothetical judgments in
hand, we may proceed to give the meaning of the usual intuitionistic connectives
for truth (>), implication (F1 → F2) and conjunction (F1∧F2) in terms of their
introduction and elimination rules.

∆ ` > at z
>I

∆, F1 at z ` F2 at z

∆ ` F1 → F2 at z
→ I

∆ ` F1 → F2 at z ∆ ` F1 at z

∆ ` F2 at z
→ E

∆ ` F1 at z ∆ ` F2 at z

∆ ` F1 ∧ F2 at z
∧I

∆ ` F1 ∧ F2 at z

∆ ` F1 at z
∧E1

∆ ` F1 ∧ F2 at z

∆ ` F2 at z
∧E2
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None of the rules above are at all surprising: Each rule helps explain how one
of the usual intuitionistic connectives operates at a particular place. Hence, if
we limit the set of places to a single place “ ” the logic will reduce to ordinary
intuitionistic logic. So far, there is no interesting way to use assumptions at
multiple different places, but we will see how to do that in a moment.

As a simple example, consider reasoning about the action of the printer at
place E in the network we introduced earlier. Let pdf be a proposition indicat-
ing the presence of a PDF file waiting to be printed and po be a proposition
indicating the presence of a printout. The following derivation demonstrates
how we might deduce the presence of a printout at E. The context ∆ referenced
below is

fE : pdf at E, ptrE : pt at E, print : pdf ∧ pt → po at E

This context represents the presence of a PDF file and printer at E as well as
some software (a function) installed at E that will initiate the printing process.

∆ ` pdf ∧ pt → po at E

∆ ` pdf at E ∆ ` pt at E

∆ ` pdf ∧ pt at E

∆ ` po at E

Simple Logical Properties Before continuing further, we should do some
preliminary checks on the reasonableness of our definitions. More specifically,
following Martin Löf’s [8] and Frank Pfenning’s [11] design principles, we should
check that the elimination rules are locally sound and locally complete with
respect to the corresponding introduction rules for the logic.

Local soundness guarantees that whenever an elimination rule directly fol-
lows an introduction rule in a proof, the two adjacent rules may be eliminated
and the conclusion proven in a simpler way. From a proofs-as-programs per-
spective, local soundness corresponds to type preservation under a single beta
reduction. Local soundness implies the elimination rules are not too strong for
the introduction rules; the elimination rules do not introduce new information
into a proof that was not already there. As an example, we exhibit one case of
the local soundness proof for conjunction through the following proof reduction
(⇒r). The second case of the proof is similar to the first, but involves ∧E2.
A calligraphic letter (D1, etc.) in a hypothesis position ranges over arbitrary
derivations of the corresponding conclusion.

D1

∆ ` F1 at z

D2

∆ ` F2 at z

∆ ` F1 ∧ F2 at z
∧I

∆ ` F1 at z
∧E1

⇒r

D1

∆ ` F1 at z

Local completeness guarantees that the elimination rules are not too weak
for the introduction rules. This property implies that the elimination rules
can extract sufficient information from an arbitrary proof of the connective
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to reconstruct that connective using the introduction rules. From a proofs-
as-programs perspective, local completeness corresponds to type preservation
under a single eta-expansion. Here, we present the local expansion (⇒e) that
witnesses the local completeness property for conjunction.

E
∆ ` F1 ∧ F2 at z

⇒e

E
∆ ` F1 ∧ F2 at z

∆ ` F1 at z
∧E1

E
∆ ` F1 ∧ F2 at z

∆ ` F2 at z
∧E2

∆ ` F1 ∧ F2 at z
∧I

Lemma 1
The introduction and elimination rules for truth, conjunction and implication
are locally sound and complete.

Local soundness and completeness help check the consistency of the logic at
an early stage of development and can be used to detect fundamental flaws in
logical design. For instance, the elimination rules for conjunction are not locally
complete with respect to the following more general introduction rule.

∆ ` F1 at z2 ∆ ` F2 at z3

∆ ` F1 ∧ F2 at z1
∧I Bad

Similarly, generalizing conjunction elimination as follows, without change to the
introduction rules, will lead to a lack of local soundness.

∆ ` F1 ∧ F2 at z2

∆ ` F1 at z1
∧E1 Bad

The lack of local soundness or completeness in these “bad” rules is symptomatic
of the fact that they deviate from the central principle guiding the logic (and
therefore language) design: In each case, they allow formulas firmly rooted at a
particular place to implicitly shift to a new place, making the presence of places
in the judgment meaningless. For instance, use of the bad introduction rule
allows a formula F1 at z1 to shift to the place z2).

D1

∆ ` F1 at z1

D2

∆ ` F2 at z2

∆ ` F1 ∧ F2 at z2
∧I Bad

∆ ` F1 at z2
∧E1

This implicit shift renders attempts to reason about immobile objects (such as
our printer) impossible, and hence is at odds with the design we hope to achieve.
In the following sections, however, we add connectives that allow us to explicitly
shift perspective. The explicit shift gives the logician the flexibility to reason
about objects at remote locations, but is completely compatible with our work
so far.
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2.2 Interplace Reasoning

To reason about relationships between objects located at different places we
introduce two modal connectives, one which describes objects in terms of their
absolute location in the system and one that describes objects in terms of their
position relative to the current location.

Absolute Placement We derive our first modal connective by internalizing
the judgmental notion that a formula is true at a particular place, but not nec-
essarily elsewhere. We write this new modal formula as F @ z. The introduction
and elimination rules follow.

∆ ` F at z2

∆ ` F @ z2 at z1
@ I

∆ ` F @ z2 at z1

∆ ` F at z2
@ E

This connective allows us to reason about objects, software or devices “from
a distance.” For instance, in our printer example, it is possible to refer to
the printer located at E while reasoning at D; to do so we might assert ∆ `
pt@E at D. Moreover, we can relate objects at one place with objects at
another. For instance, in order to share E’s printer, D needs to have software
that can convert local PDF files at D to files that may be used and print properly
at E (perhaps this sofware internalizes some local fonts, inaccessible to E, within
the document). An assumption of the form DtoE : pdf → pdf @E at D would
allow us to reason about such software.1 If ∆′ is the assumption DtoE above
together with an assumption fD : pdf at D, the following derivation allows us to
conclude that we can get the PDF file to E. We can easily compose this proof
with the earlier one to demonstrate that PDF files at D can not only be sent to
E, but actually printed there.

∆′ ` pdf → pdf @E at D
hyp

∆′ ` pdf at D
hyp

∆′ ` pdf @E at D
→ E

∆′ ` pdf at E
@E

Relative Placement The connective above allows positioning of a formula
with respect to an absolute (fully-determined) place z. A closely related con-
nective, n[F ], specifies that an object or resource described by F may be found
by traveling along the edge labeled n when starting from the current place. The
introduction and elimination rules for [ ] have similar structure to the rules for
@ :

∆ ` F at z.n
∆ ` n[F ] at z

[ ]I
∆ ` n[F ] at z

∆ ` F at z.n
[ ]E

1We assume that “ @ ” binds tighter than implication or conjunction. When fully paren-
thesized, the assumption above has the following form.

(pdf → (pdf @ E)) at D
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The owner of machine D often finds interesting technical reports on the Web
that are only distributed in PostScript. Since E’s printer will only print PDF
files, D takes the step of installing Adobe Acrobat and its Distiller program.
Distiller automatically takes PostScript documents that it finds in a local folder
called “in,” converts the documents into PDF and places them in the folder
called “out.” D’s new software set up, including routines to copy PostScript and
PDF files to and from the appropriate places can be described by the following
context:

distill : in[ps] → out[pdf] at D,
copyIn : ps → in[ps] at D,
copyOut : out[pdf] → pdf at D

These axioms can easily be composed to prove that PostScript files at D can
be converted into PDF files at D—just what the owner of D was hoping to
accomplish.

Lemma 2
The modal connectives F @ z and n[F ] are locally sound and complete.

2.3 Global Reasoning

While our focus is on reasoning about networks with heterogeneous resources,
we cannot avoid the fact that certain propositions are true everywhere. For
instance, the basic laws of arithmetic do not change from one machine to the
next, and consequently, we should not restrict the application of these laws to
any particular place. Just as importantly, we might want to reason about dis-
tributed applications deployed over a network of machines, all of which support
a common operating system interface. The functionality provided by the op-
erating system is available everywhere, just like the basic laws of arithmetic,
and use of the functionality need not be constrained to one particular place or
another.

Global Judgments To support global reasoning, we generalize the judgment
considered so far to include a second context that contains assumptions that
are valid everywhere. Our extended judgments have the form

Γ;∆ `P,N F at z

where Γ is a global context and ∆ is the local context we considered previously.

Global Contexts Γ : : = · | Γ, x : F
Local Contexts ∆ : := · | ∆, x : F at z

Our extended logic contains two sorts of hypothesis rules, one for using each sort
of assumption. L is identical to the hypothesis rule used in previous sections
(modulo the unused global context Γ). G specifies how to use global hypotheses;
they may be placed in any location and used there.
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Γ;∆, x:F at z ` F at z
L Γ, x:F ;∆ ` F at z

G

All rules from the previous sections are included in the new system unchanged
aside from the fact that Γ is passed unused from conclusion to premises.

Internalizing Global Truth The modal connective 2 F internalizes the no-
tion that the formula F is true everywhere. If a formula may be proven true at
a new place p, which by definition can contain no local assumptions, then that
formula must be true everywhere:

Γ;∆ `P+p,N F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F )

Γ;∆ `P,N 2 F at z
2I

Here, we use P + p to denote the disjoint union P ∪ {p}. If p ∈ P , we consider
P + p, and any judgment containing such notation, to be undefined. The side
condition above ensures that p is truly new and that the conclusion of the rule
is well formed in the absence of p.2

If we can prove 2 F , we can assume that F is globally true in the proof of
any other formula F ′:

Γ;∆ `P,N 2 F at z Γ, x : F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
2E

Returning to our printing example, suppose node E decides to allow all
machines to send it PDF files. In order to avoid hiccups in the printing process,
E intends to distribute software to all machines that allow them to convert local
PDF files to files that will print properly on E’s printer. We might represent this
situation with a hypothesis ToE : 2 (pdf → pdf @E) at E. Now, given a PDF
file at any other node q in the network (coded as the assumption fq : pdf at q),
we can demonstrate that it is possible to send a pdf file to E using the following
proof where ∆′′ contains assumptions ToE and fq. The global context Γ contains
the single assumption ToE′ : pdf → pdf @E.

D

Γ;∆′′ ` pdf → pdf @E at q
G

Γ;∆′′ ` pdf at q
L

Γ;∆′′ ` pdf @E at q
→ E

Γ;∆′′ ` pdf at E
@ E

·;∆′′ ` pdf at E
2 E

where the derivation D =

·;∆′′ ` 2 (pdf → pdf @E) at E
L

2If we follow our convention about judgments being meaningless when they contain names
or places not contained in the sets P and N that annotate the judgment, this side condition
is unnecessary. Nevertheless, we leave it in for emphasis.
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As another simple example, suppose the owner of A tells the system ad-
ministrator how great Distiller is, and she installs it on all machines. We can
represent the presence of software everywhere using a global context Γ with the
following form.

distill : in[ps] → out[pdf],
copyin : ps → in[ps],
copyout : out[pdf] → pdf

When any machine q uses these globally available assumptions, it processes PDF
files in its own local in and out directories (i.e., at q.in and q.out), rather than
in some global, communally decided upon places.

The truth is out there The dual notion of a globally true proposition F
is a proposition that is true somewhere, although we may not necessarily know
where. We already have all the judgmental apparatus to handle this new idea;
we need only internalize it in a connective (3F ). The introduction rule states
that if the formula holds at any particular place z in the network, then it holds
somewhere. The elimination rule explains how we use a formula F that holds
somewhere: We introduce a new place p and assume F holds there.

Γ;∆ `P,N F at z

Γ;∆ `P,N 3F at z′
3I

Γ;∆ `P,N 3F at z Γ;∆, x : F at p `P+p,N F ′ at z′

p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆ `P,N F ′ at z′
3E

Lemma 3
The modal connectives 2 and 3 are locally sound and complete.

Modal Axioms Possibility and necessity satisfy the following standard modal
axioms (taken from Huth and Ryan [6, p. 284]).

K: ·; · ` 2 (F1 → F2) → (2 F1 → 2 F2) at p
B: ·; · ` F → 2 3F at p
D: ·; · ` 2 F → 3F at p
T: ·; · ` 2 F → F at p
4: ·; · ` 2 F → 2 2 F at p
5: ·; · ` 3F → 2 3F at p

2.4 Properties

To summarize, our logic of places contains the familiar connectives from propo-
sitional intuitionistic logic as well as several modalities for reasoning about soft-
ware and data distributed across a network:

F : : = > | F1 → F2 | F1 ∧ F2 | F @ z | n[F ] | 2 F | 3F
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A summary of the proof rules may be found in the Appendix.
Our proof system satisfies the following substitution properties.

Lemma 4 (Substitution)
1. If Γ;∆ `P,N F at z then for all z′, FPN(z′) ⊆ (P∪N) implies Γ [ z′ / p ];∆ [ z′ / p ] `P,N

F [ z′ / p ] at z [ z′ / p ]

2. If Γ;∆ `P,N F at z and Γ;∆, x : F at z `P,N F ′ at z′ then Γ;∆ `P,N

F ′ at z′

3. If Γ;∆ `P+q,N F at q and Γ, x : F ;∆ `P,N F ′ at z′ then Γ;∆ `P,N

F ′ at z′

Sequent Calculus and Cut Elimination The local soundness and com-
pleteness properties we have presented earlier are a good aid when debugging
initial definitions of connectives. However, they are no substitute for global
properties of the logic. To ensure global consistency of our logic, we have de-
fined a sequent calculus, proven cut elimination and shown that the sequent
calculus is sound and complete with respect to our natural deduction formula-
tion.

A sequent calculus judgment has the following form.

Γ;∆
P,N
=⇒ F at z

It states that from global resources Γ and local resources ∆, we can reach the
goal F at place z in a network with places P and edges labelled N . We have
summarized the sequent calculus rules in the Appendix.

We let the judgment

Γ;∆
P,N
=⇒

−
F at z

denote the valid sequent calculus judgments constructed without using the cut
rule. Using Pfenning’s structural cut elimination technique [10], we are able to
prove that the sequent calculus without cut is just as powerful as the sequent
calculus with cut.

Theorem 5 (Cut Elimination)
If Γ;∆

P,N
=⇒ F at z then Γ;∆

P,N
=⇒

−
F at z.

Moreover, the sequent calculus with cut corresponds exactly to the natural
deduction style presentation of the logic.

Theorem 6 (Sequent Soundness and Completeness)
1. If Γ;∆

P,N
=⇒ F at z then Γ;∆ `P,N F at z.

2. If Γ;∆ `P,N F at z then Γ;∆
P,N
=⇒ F at z.
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Types τ : : =

b | > | τ1 → τ2 | τ1 ∧ τ2 | τ @ z | n[τ ] | 2 τ | ◊τ | 3τ

Proof Terms/Programs e : : =

c | x | sync (x) | run ( x [ z ] ) | () const/var/>
| λx:τ.e | e1 e2 functions(→)
| 〈 e1 , e2 〉 | πie pairs (∧)
| retabs(e, z) | rpcabs(e, z) rpc abs. (@ )
| retrel(e, n) | rpcrel(e, z) rpc rel. ([ ])
| close(λp. e) | bc e1 at z asx in e2 broadcast (2 )
| port(λp. e) | pull e1 at z asx in e2 portable (◊)
| agent[e, z] | go e1 at z returnx, p in e2 agent (3)

Figure 1: λrpc Syntax

3 λrpc: A Distributed Programming Language

The previous section developed an intuitionistic, modal logic capable of concisely
expressing facts about the placement of various objects in a network. Here, we
present the proof terms of logic and show how they may be given an operational
interpretation as a distributed programming language that we call λrpc. The
logical formulas serve as types that prevent distributed programs from “going
wrong” by attempting to access resources that are unavailable at the place the
program is currently operating.

3.1 Syntax and Typing

Figure 1 presents the syntax of programs and their types, and Figure 2 presents
the typing rules for the language, which are the natural deduction-style proof
rules for the logic.

Types and Typing Judgments The types correspond to the formulas of
the logic; we use the meta variable τ rather than F to indicate a shift in in-
terpretation. We also let b range over various base types we might interested
in.

One other change between logic and language is that the language interprets
2 in two different ways. To avoid confusion, the language has two distinct,
but logically identical, types, 2 τ and ◊τ . Analogously, we separate the logical
context Γ into two parts Γ2 and Γ◊ during type checking. Hence the overall
type checking judgment has the following form.

Γ2 ; Γ◊;∆ `P,N e : τ at z
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Γ2; Γ◊;∆ `P,N c : b at z
const

Γ2; Γ◊;∆, x : τ at z `P,N x : τ at z
L

Γ2, x : τ ; Γ◊;∆ `P,N sync (x) : τ at z
G2

Γ2; Γ◊, x : τ ;∆ `P,N run ( x [ z ] ) : τ at z
G◊

Γ2; Γ◊;∆ `P,N () : > at z
>I

Γ2; Γ◊;∆, x : τ1 at z `P,N e : τ2 at z

Γ2; Γ◊;∆ `P,N λx:τ1.e : τ1 → τ2 at z
→ I

Γ2; Γ◊;∆ `P,N e1 : τ1 → τ2 at z Γ2; Γ◊;∆ `P,N e2 : τ1 at z

Γ2; Γ◊;∆ `P,N e1 e2 : τ2 at z
→ E

Γ2; Γ◊;∆ `P,N e1 : τ1 at z Γ2; Γ◊;∆ `P,N e2 : τ2 at z

Γ2; Γ◊;∆ `P,N 〈 e1 , e2 〉 : τ1 × τ2 at z
∧I

Γ2; Γ◊;∆ `P,N e : τ1 × τ2 at z

Γ2; Γ◊;∆ `P,N πie : τi at z
∧E

Γ2; Γ◊;∆ `P+p,N e : τ at z p 6∈ FP (z) ∪ FP (Γ2) ∪ FP (Γ◊) ∪ FP (∆)

Γ2; Γ◊;∆ `P,N Λp:places . e : ∀p.τ at z
∀I

Γ2; Γ◊;∆ `P,N e : ∀p.τ at z FPN(z′) ⊆ P ∪N

Γ2; Γ◊;∆ `P,N e [ z′ ] : τ [ z′ / p ] at z
∀E

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N retabs(e, z) : τ @ z at z′
@ I

Γ2; Γ◊;∆ `P,N e : τ @ z at z′

Γ2; Γ◊;∆ `P,N rpcabs(e, z′) : τ at z
@ E

Γ2; Γ◊;∆ `P,N e : τ at z.n

Γ2; Γ◊;∆ `P,N retrel(e, n) : n[τ ] at z
[ ]I

Γ2; Γ◊;∆ `P,N e : n[τ ] at z

Γ2; Γ◊;∆ `P,N rpcrel(e, z) : τ at z.n
[ ]E

Γ2; Γ◊;∆ `P+p,N e : τ at p p 6∈ FP(Γ2) ∪ FP(Γ◊) ∪ FP(∆) ∪ FP(τ)

Γ2; Γ◊;∆ `P,N close(λp. e) : 2 τ at z
2I

Γ2; Γ◊;∆ `P,N e1 : 2 τ at z Γ2, x : τ ; Γ◊;∆ `P,N e2 : τ ′ at z′

Γ2; Γ◊;∆ `P,N bc e1 at z asx in e2 : τ ′ at z′
2E

Γ2; Γ◊;∆ `P+p,N e : τ at p p 6∈ FP(Γ2) ∪ FP(Γ◊) ∪ FP(∆) ∪ FP(τ)

Γ2; Γ◊;∆ `P,N port(λp. e) : ◊τ at z
◊I

Γ2; Γ◊;∆ `P,N e1 : ◊τ at z Γ2; Γ◊, x : τ ;∆ `P,N e2 : τ ′ at z′

Γ2; Γ◊;∆ `P,N pull e1 at z asx in e2 : τ ′ at z′
◊E

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N agent[e, z] : 3τ at z′
3I

Γ2; Γ◊;∆ `P,N e1 : 3τ at z Γ2; Γ◊;∆, x : τ at p `P+p,N e2 : τ ′ at z′ p 6∈ FP(τ ′) ∪ FP(z′)

Γ2; Γ◊;∆ `P,N go e1 at z returnx, p in e2 : τ ′ at z′
3E

Figure 2: λrpc Typing13



Programs The programs include an unspecified set of constants (c), and the
standard introduction and elimination forms for unit, functions and pairs.

Variables from each different context are used in different ways. As a
mnemonic for the different sorts of uses, we have added some syntactic sugar
to the standard proof terms. Uses of local variables from ∆ are just like or-
dinary uses of variables in your favorite (call-by-value) functional language so
they are left undecorated. Variables in Γ2 refer to computations that have been
broadcast at some earlier point. In order to use such a variable, the program
must synchronize with the concurrently executing computation. Hence, we write
sync (x) for such uses. Variables in Γ◊ refer to portable closures. The use of
a variable in this context corresponds to running the closure with the current
place z as an argument. Hence, we write run ( x [ z ] ) for such uses.

Our first modalities τ @ z has an operational interpretation as a remote pro-
cedure call. The introduction form (retabs(e, z)) constructs a “return value”
for a remote procedure call. This “return value” can actually be an arbitrary
expression e, which will be run at the place it is returned to. The elimination
form (rpcabs(e, z)) the remote procedure call itself. It sends the expression e to
a remote site where e will be evaluated. If the expression is well-typed, it will
eventually compute a return value that can be run safely at the caller’s place.

The interpretation of n[τ ] is quite similar to the interpretation of τ @ z. The
main difference is that the return value retrel(e, n) is constructed for a place
that may be found by following the link named n from the the place where the
remote procedure call executes. The elimination form (rpcrel(e, z)) performs
the remote procedure call by sending e to z, when the current place is z.n.

The introduction form for 2 F is close(λp. e). It creates a closure that may
be broadcast by the elimination form (bc e1 at z asx in e2) to every node in the
network. More specifically, the elimination form executes e1 at z, expecting e1

to evaluate to close(λp. e). When it does, the broadcast expression chooses a
new universal reference for the closure, which is bound to x, and sends λp.e
to every place in the network where it is applied to the current place and the
resulting expression is associated with its universal reference. Remote procedure
calls or broadcasts generated during evaluation of e2 may refer to the universal
reference bound to x, which is safe, since x has been broadcast everywhere.

Objects of type ◊τ are portable closures; they never contain local references
and consequently may be run anywhere. The elimination form (pull e1 at z asx in e2)
takes advantage of this portability by first computing e1 at z, which should re-
sult in a value with the form port(λp. e). Next, it pulls the closure λp.e from
z and substitutes it for x in e2. The typing rules will allow x to appear any-
where, including in closures in e2 that will eventually be broadcast or remotely
executed. Once again, this is safe since e is portable and runs equally well
everywhere.

Our last connective 3τ is considered the type of a computational agent
that is smart enough to know where it can go to produce a value with type
τ . We introduce such an agent by packaging an expression with a place where
the expression may successfully be run to completion. The elimination form
(go e1 at z returnx, p in e2) first evaluates e1 at z, producing an agent (agent[e, z′]).

14



Next, it commands the agent go to the hidden place z′ and execute its encapsu-
lated computation there. When the agent has completed its task, it synchronizes
with the current computation and e2 continues with p bound to z′ and x bound
to a value that is safe to use at z′.

Simple examples To gain a little more intuition about how to write pro-
grams in this language, consider computational interpretations of some of the
proofs from the previous section. The context ∆ referenced below contains the
following assumptions.

fD : pdf at D print : pdf ∧ pt → po at E
fE : pdf at E DtoE : pdf → pdf @E at D
ptrE : pt at E ToE : 2 (pdf → pdf @E) at E

Printing a PDF file (involving local computation only):

·;∆ ` print(fE , ptrE) : po at E

Fetching a PDF file (involving a remote procedure call in which the computation
DtoE fD is executed at D):

·;∆ ` rpcabs(DtoE fD, D) : pdf at E

Fetching then printing:

·;∆ ` (λx:pdf.print (x, ptrE))(rpcabs(DtoE fD, D)) : po at E

Broadcasting E’s PDF conversion function to all nodes then fetching a PDF
file from node q (recall that in general, uses of these global variables involves
synchronizing with the broadcast expression; below the broadcast expression is
a value, but we synchronize anyway):

·;∆, fq : pdf at q ` bcToE at E asToE′ in
rpcabs(sync (ToE′) fq, q) : pdf at E

Broadcasting E’s PDF conversion function to all nodes then fetching a PDF file
from multiple nodes (letx = e1 in e2 is an abbreviation for the usual lambda
abstraction and application):

·;∆, fC : pdf at C, fB : pdf at B `
bcToE at E asToE′ in
let f1 = rpcabs(sync (ToE′) fD, D) in
let f2 = rpcabs(sync (ToE′) fC , C) in
let f3 = rpcabs(sync (ToE′) fB , B) in
... : τ at E

Another way to manage PDF files is to make them portable. For instance, if C
and D contain portable PDF files, then E can pull these files from their resident
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Syntax:

τ : : = · · · | τ ref
e : : = · · · | ref e | ! e | e1 := e2

Typing:

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N ref e : τ ref at z
ref

Γ2; Γ◊;∆ `P,N e : τ ref at z

Γ2; Γ◊;∆ `P,N ! e : τ at z
!

Γ2; Γ◊;∆ `P,N e1 : τ ref at z Γ2; Γ◊;∆ `P,N e2 : τ at z

Γ2; Γ◊;∆ `P,N e1 := e2 : > at z
:=

Figure 3: Syntax and Typing for Effectful Operations

locations and print them on its local printer. Remember that portable values
are polymorphic closures that are “run” when used. In this case, the closure
simply returns the appropriate PDF file.

·;∆, fC : ◊pdf at C, fD : ◊pdf at D `
pull fC at C as f′C in
pull fD at D as f′D in
let = print(run ( f′C [E ] ), ptrE) in
let = print(run ( f′D [E ] ), ptrE) in
... : τ at E

3.2 Effectful Extensions

To begin to convince ourselves that our little lambda calculus can be scaled up to
the point that it could serve as a practical distributed programming language,
we have examined one of the trickiest but most useful effectful extensions to
the language, mutable references. Our design introduces just the right type
structure for the various modalities to ensure that assignment and dereference of
mutable references can only happen locally. In other words, well-typed programs
never attempt an assignment operation at one place, when the ref being assigned
to is stored somewhere else.

The syntax and typing rules for this extension appears in Figure 3. The
main point to note about the typing rules is that like expressions manipulating
unit, pairs and functions, if the expressions manipulating references or recursive
functions are placed at z, then the appropriate subexpressions must also be
placed at z.

Suppose we have decided to use our network as a distributed database of
technical reports and that every node supports a function db : key → ◊pdf option.
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We will let τ option be the usual disjoint union type with constructors None and
Some, and destructor case. Now node E can write code for a distributed lookup
using key k : ◊key at E. For clarity in the code below, we do not annotate uses
of the global variables with “run” or “sync;” it is trivial to reconstruct these
annotations from the context.

let r : ◊pdf option ref = ref None in
let search : 2> =
close(λp.
pull k at E as k’ in
case (db k’) of
None => ()

| Some f => pull f at p as f’ in
rpc(r := Some (port(λq.f’));

ret((),p),
E))

in bc search at E as in
...

3.3 Operational Semantics and Safety

To give an operational semantics for our programming language, we deviate
from the Curry-Howard tradition that would suggest using proof simplification
as program evaluation. An operational semantics based exclusively on proof
simplification would fail to model the action of distributing resources across a
network properly. Instead, we develop a relatively concrete notion of a network,
and explicitly allocate processes (expressions) together at different places in the
network. Figure 4 presents the various new syntactic objects we use to specify
our operational model.

Run-time Structures Networks N are 5-tuples consisting of a set of places
P , a set of names N , an edge function E, a distributed process environment L
and a distributed storage system M. We have seen places and names before.
The edge function E is a total function from pairs of places and names to places;
it is used to interpret relative addressing. If z is a path consisting of places and
names from P and N , we can interpret it using the function E∗:

E∗(p) = p

E∗(z) = p E(p, n) = q

E∗(z.n) = q

We define z1 ≡E z2 to be E∗(z1) = E∗(z2).
The process environment L is a finite partial map from places p in P to

process ids to expressions. The distributed storage system M is a finite partial
map from places to mutable storage locations (m) to values v. We write these
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Networks N : : = (P,N, E,L,M)
Edge functions E : P ×N → P
Process Envs. L : : = · | L, `→ e at p
Stores M : : = · | M,m→ v at p
Values v : : = c | m | λx:τ.e | 〈 v1 , v2 〉

| retabs(e, z) | retrel(e, n)
| close(λp. e) | port(λp. e)
| agent[e, z]

RT Terms e : : = · · · | sync (`) | run (λp.e [ z ] ) | m
| sync (rpcabs(`, z))
| sync (rpcrel(`, z))
| sync (bc ` at z asx in e2)
| sync (pull ` at z asx in e2)
| sync 1(go ` at z returnx, q in e)
| sync 2(go ` at z returnx, q in e)

Contexts C : : = [ ] | C e2 | v1 C
| 〈C , e2 〉 | 〈 v1 , C 〉 | πi C
| ref C | C := e1 | v := C | ! C

Figure 4: Syntax of Run-time Structures

partial maps as lists of elements with the form ` → e at p or m → v at p.
Whenever we write such a map, we assume that no pair of place and location
(p and `, or p and m) appears in two different components of the map. We do
not distinguish between maps that differ only in the ordering of their elements.
L(p)(`) denotes e when L = L′, ` → e at p, and similarly with M(p)(m). We
use the notation L\ ` to denote the mapping L with all elements of the form
`→ e at p removed. We emphasize that all elements are removed as there may
be one such element at every place in the network.

In order to give an operational semantics to our programs, a few of the
constructs require that we introduce new expressions (the RT terms in Figure 4)
that only occur at run time. For instance, mutable locations can appear in
expressions at run time, but should not appear in unevaluated programs. Other
run-time terms are used to represent expressions, such as the elimination forms
for 2 and 3, that are suspended partway through evaluation and are waiting
to synchronize with remotely executing expressions.

The last new bit of notation that we need involves the definition of evaluation
contexts C (see Figure 4). These contexts specify the order of evaluation, which
is left to right and call by value. Notice that there are no contexts for the
introduction forms for @ , n[ ], 2 , ◊ or 3, and consequently evaluation does
not proceed under these constructors.
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Operational Rules The state of a network N = (P,N, E,L,M) evolves
according to the operational rules listed in Figure 3.3. These rules specify a re-
lation with the form L,M 7−→ L′,M′. At any given time L may contain several
concurrently executing expressions at various stages of evaluation. Any of these
expressions may be selected for a single step of evaluation, so the judgment
gives rise to a nondeterministic operational semantics. The network evolves
(N 7−→ N ′) if and only if N = (P,N, E,L,M), and N ′ = (P,N, E,L′,M′),
and (L,M) 7−→ (L′,M′).

Most of the formal rules have been described informally in the previous sub-
section, so we will only make a few points here. First, notice that we have two
special rules sync and run to handle synchronization with broadcast expres-
sions and execution of portable code. Second, the ordinary sequential program-
ming language constructs (functions, pairs, references, etc.) operate identically
to the way they operate in ordinary sequential programming languages. Third,
each of the modalities has two or more rules to describe their evaluation. Typ-
ically, the first rule causes the elimination form for a modality to spawn an
expression at a remote node and then to move into a state in which it waits
to synchronize with that expression. The second (or third) rule performs the
appropriate synchronization and allows evaluation to continue.

Typing for Run-time Structures To carry out our safety proof for the lan-
guage, we use the standard Progress and Preservation techniques, which require
that we be able to show that the network is well-typed at every step in evalua-
tion. In order to do so, we need to generalize the form of the typing judgment to
take acount of the way that relative naming is interpreted by the network’s edge
function E. The generalized judgment has the form Γ2; Γ◊;∆ `P,N,E e : τ at z.
None of the typing rules in the previous sections change, aside from propagating
E from conclusions to premises. However, we add the rules from Figure 5 to give
types to the intermediate forms of expression. Figure 6 gives the well-formedness
conditions for the network as a whole.

Type Safety The type system is sound with respect to our operational se-
mantics for distributed program evaluation. The proofs of Preservation and
Progress theorems, stated below, follow the usual strategy.

Theorem 7 (Preservation)
If ` N : Γ2; ·;∆;P ;N and N 7−→ N ′ then there exists Γ′

2 and ∆′ such that
` N ′ : Γ′

2; ·;∆′;P ;N .

Theorem 8 (Progress)
If ` N : Γ2; ·;∆;P ;N then either

• N 7−→ N ′, or

• N = (P,N, E,L,M) and for all places p in P , and for all ` in Dom(L(p)),
L(p)(`) is a value.
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4 Discussion

Extensions and Variations This paper presents a solid foundation on which
to build a distributed functional programming language. However, in terms of
language design, it is only the beginning. A few interesting extensions and
variations are discussed briefly below.

• Values everywhere. Our interpretation of 2 involves either broadcasting a
closure or substituting a closure into local code. In each case, there is some
computational overhead to manage the closure: Either we synchronize or
we run the closure when it gets used. To avoid this overhead, we could
place a value restriction on the expression in the introduction form for 2.
One possibility that is definitely not an option is evaluating eagerly under
2 before broadcasting or substitution: In the presence of references (and
almost certainly other effects), this evaluation strategy is unsound.

• Dynamic network evolution. The current work assumes that the set of
network places and the network topology is fixed. While this is a reason-
able assumption for some distributed programming environments, others
allow the topology to evolve. An interesting challenge for future work is
to extend our logic and language with features that express evolution. We
believe that the new name connectives developed in the context of nominal
logics [13, 9] may be of help here.

• Synchronous and asynchronous variations. Just as ordinary sequential
programming languages may be defined with different evaluation strategies
(call-by-value, call-by-name, call-by-need), it appears possible to develop
different operational interpretations of the modal connectives in which
execution is more or less synchronized. For instance, when defining the
operation of the 2 -connective, we could wait until all broadcast expres-
sions have completed evaluation before proceeding with the evaluation of
the second expression e2. Likewise, remote procedure calls are synchro-
nized: Evaluation does not proceed until they have received the return
value, even though the following computation does not necessarily require
the value immediately. In the future, we plan to explore these nuances in
greater detail.

Related Work Hybrid logics are an old breed of logic that date back to
Arthur Prior’s work in the 1960s [14]. As in our logic, they mix modal necessity
and possibility with formulas such as F @ z that are built from pure names. More
recently, researchers have developed a rich semantic theory for these logics and
studied both tableau proofs and sequents; many resources on these topics and
others are available off the hybrid logics web page.3 However, work on hybrid
logics is usually carried out in a classical setting and we have not found an

3See http://www.hylo.net.
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intuitionistic, natural deduction style proof theory like ours that can serve as a
foundation for distributed functional programming languages.

Cardelli and Gordon’s ambient logic [2] highlights the idea that modalities
for possibility and necessity need not only be interpreted temporally, but can
also be interpreted spatially, and this abstract idea was a central influence in our
work. However, at a more technical level, the ambient logic is entirely different
from the logic we develop here: The ambient logic has a widely different set of
connectives, is classical as opposed to intuitionistic, and is defined exclusively
by a sequent calculus rather than by natural deduction. Moreover, it does not
serve as a type system for ambient programs; rather, it is a tool for reasoning
about them.

Another major influence on our work is Pfenning and Davies’ judgmental
reconstruction of modal logic [12], which is developed in accordance with Martin
Löf’s design patterns for type theory [8]. Pfenning and Davies go on to interpret
modal necessity temporally (as opposed to spatially) in their work on staged
computation [4]. One obvious technical difference between our logic and theirs
is that our logic is founded on local judgments that include the specific place
where a proposition is true whereas theirs do not.

The judgments ` F at z also appear in our own recent work with Ahmed [1],
where we combine the modal connective n[τ ] with substructural connectives
to reason about region-based memory management in a proof-carrying code
setting.

Concurrently with this research, members of the CMU Concert Project have
begun to build a programming language for grid computing, and Harper, Moody
and Pfenning have had similar insights as us with respect to the roll that modal
logics may play in developing a foundation for distributed computing. More
specifically, they interpret objects with type 2 τ as jobs that may be injected
into the grid and run anywhere; objects with type 3τ also have computational
significance in their language.4 In their application domain, every node is as-
sumed to contain identical resources, so they are investigating type systems
derived from pure modal logics rather than hybrid logics like the one we have
presented here.
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A Natural deduction rules

Γ;∆, F at z `P,N F at z
L

Γ, F ;∆ `P,N F at z
G

Γ;∆ `P,N () : > at z
>I

Γ;∆, F1 at z `P,N F2 at z

Γ;∆ `P,N F1 → F2 at z
→ I

Γ;∆ `P,N F1 → F2 at z Γ;∆ `P,N F1 at z

Γ;∆ `P,N F2 at z
→ E
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Γ;∆ `P,N F1 at z Γ;∆ `P,N F2 at z

Γ;∆ `P,N F1 ∧ F2 at z
∧I

Γ;∆ `P,N F1 ∧ F2 at z

Γ;∆ `P,N F1 at z
∧E1

Γ;∆ `P,N F1 ∧ F2 at z

Γ;∆ `P,N F2 at z
∧E2

Γ;∆ `P+p,N F at z p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(z)

Γ;∆ `P,N ∀p.F at z
∀I

Γ;∆ `P,N ∀p.F at z FPN(z′) ⊆ P ∪N

Γ;∆ `P,N F [ z′ / p ] at z
∀E

Γ;∆ `P,N F at z.n

Γ;∆ `P,N n[F ] at z
[ ]I

Γ;∆ `P,N n[F ] at z

Γ;∆ `P,N F at z.n
[ ]E

Γ;∆ `P,N F at z

Γ;∆ `P,N F @ z at z′
@ I

Γ;∆ `P,N F @ z at z′

Γ;∆ `P,N F at z
@ E

Γ;∆ `P+p,N F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F )

Γ;∆ `P,N 2 F at z
2I

Γ;∆ `P,N 2 F at z Γ, F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
2E

Γ;∆ `P,N F at z

Γ;∆ `P,N 3F at z′
3I

Γ;∆ `P,N 3F at z Γ;∆, F at p `P+p,N F ′ at z′

p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆ `P,N F ′ at z′
3E

B Sequent caculus rules

Γ;∆, F at z
P,N
=⇒ F at z

L-INIT

Γ, F ;∆
P,N
=⇒ F at z

G-INIT

Γ, F ;∆, F at z
P,N
=⇒ F ′ at z′

Γ, F ;∆
P,N
=⇒ F ′ at z′

COPY

Γ;∆
P,N
=⇒ > at z

>R
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Γ;∆, F1 at z
P,N
=⇒ F2 at z

Γ;∆
P,N
=⇒ F1 → F2 at z

→ R

Γ;∆
P,N
=⇒ F1 at z Γ;∆, F2 at z

P,N
=⇒ F ′ at z′

Γ;∆, F1 → F2 at z
P,N
=⇒ F at z′

→ L

Γ;∆
P,N
=⇒ F1 at z Γ;∆

P,N
=⇒ F2 at z

Γ;∆
P,N
=⇒ F1 ∧ F2 at z

∧R

Γ;∆, F1 at z
P,N
=⇒ F at z′

Γ;∆, F1 ∧ F2 at z
P,N
=⇒ F at z′

∧L1

Γ;∆, F2 at z
P,N
=⇒ F at z′

Γ;∆, F1 ∧ F2 at z
P,N
=⇒ F at z′

∧L2

Γ;∆
P+p,N
=⇒ F at z p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(z)

Γ;∆
P,N
=⇒ ∀p.F at z

∀R

Γ;∆, F [ z1 / p ] at z
P,N
=⇒ F ′ at z′

Γ;∆,∀p.F at z
P,N
=⇒ F ′ at z′

∀L

Γ;∆
P,N
=⇒ F at z.n

Γ;∆
P,N
=⇒ n[F ] at z

[ ]R

Γ;∆, F at z.n
P,N
=⇒ F ′ at z′

Γ;∆, n[F ] at z
P,N
=⇒ F ′ at z′

[ ]L

Γ;∆
P,N
=⇒ F at z

Γ;∆
P,N
=⇒ F @ z at z′

@ R

Γ;∆, F at z
P,N
=⇒ F ′ at z′′

Γ;∆, F @ z at z′
P,N
=⇒ F ′ at z′′

@ L

Γ;∆
P+p,N
=⇒ F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F )

Γ;∆
P,N
=⇒ 2 F at z

2R

Γ, F ;∆
P,N
=⇒ F ′ at z′

Γ;∆,2 F at z
P,N
=⇒ F ′ at z′

2L
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Γ;∆
P,N
=⇒ F at z

Γ;∆
P,N
=⇒ 3F at z′

3R

Γ;∆, F at p
P+p,N
=⇒ F ′ at z′ p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆,3F at z
P,N
=⇒ F ′ at z′

3L

Γ;∆
P,N
=⇒ F at z Γ;∆, F at z

P,N
=⇒ F ′ at z′

Γ;∆
P,N
=⇒ F ′ at z′

L-Cut

Γ;∆
P+q,N
=⇒ F at q Γ, F ;∆

P,N
=⇒ F ′ at z′

Γ;∆
P,N
=⇒ F ′ at z′

G-Cut
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Γ2; ·;∆ `P,N,E e : τ at z′ z′ ≡E z

Γ2; Γ◊;∆ `P,N,E e : τ at z
Equiv

Γ2; ·;∆, ` : τ at z `P,N,E ` : τ at z
LRT

Γ2, ` : τ ; ·;∆ `P,N,E sync (`) : τ at z
G2 RT

Γ2; ·;∆ `P+p,N,E e : τ at p

Γ2; ·;∆ `P,N,E run (λp.e [ z ] ) : τ at z
G◊RT

Γ2; ·;∆,m : τ at z `P,N,E m : τ ref at z
Lref

Γ2; ·;∆ `P,N,E ` : n[τ ] at z

Γ2; ·;∆ `P,N,E sync (rpcrel(`, z)) : τ at z.n
[ ]RT

Γ2; ·;∆ `P,N,E ` : τ @ z at z′

Γ2; ·;∆ `P,N,E sync (rpcabs(`, z′)) : τ at z
@ RT

Γ2; ·;∆ `P,N,E ` : 2 τ at z

Γ2, x : τ ; ·;∆ `P,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync (bc ` at z asx in e2) : τ ′ at z′
2RT

Γ2; ·;∆ `P,N,E ` : ◊τ at z

Γ2;x : τ ;∆ `P,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync (pull ` at z asx in e2) : τ ′ at z′
◊RT

Γ2; ·;∆ `P,N,E ` : 3τ at z

Γ2; ·;∆, x : τ at q `P+q,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync 1(go ` at z returnx, q in e2) : τ ′ at z′
3RT1

Γ2; ·;∆ `P,N,E ` : τ at z

Γ2; ·;∆, x : τ at q `P+q,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync 2(go ` at z returnx, q in e2) : τ ′ at z′
3RT2

Figure 5: λrpc Runtime Typing Rules
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∆m `P,N,E L : Γ2; ·;∆i

∆m `P,N,E · : ·; ·; · (Empty-L)

∆m `P,N,E L : Γ2; ·;∆i

Γ2; ·;∆i,∆m `P,N,E e : τ at p

∆m `P,N,E L, ` → e at p : Γ2; ·;∆i, ` : τ at p (Local-L)

∆m `P,N,E L\` : Γ2; ·;∆i

Γ2; ·;∆i,∆m `P,N,E L(p)(`) : τ at p for all p ∈ P

∆m `P,N,E L : Γ2, ` : τ ; ·;∆i (Global-L)

Γ2; ·;∆ `P,N,E M : ∆m

Γ2; ·;∆ `P,N,E · : · (Empty-M)

Γ2; ·;∆ `P,N,E M : ∆′
m

Γ2; ·;∆ `P,N,E v : τ at p

Γ2; ·;∆ `P,N,E M, m → v at p : ∆′
m,m : τ at p (Local-M)

` N : Γ2; ·;∆;P ;N

∆m `P,N,E L : Γ2; ·;∆i Γ2; ·;∆i,∆m `P,N,E M : ∆m

` (P,N, E,L,M) : Γ2; ·;∆i,∆m;P ;N (Network)

Figure 6: λrpc Network Typing
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L,M 7−→ L′,M′

sync RT
L, `′ → C [ sync (`) ] at p, ` → v at p,M
7−→ L, `′ → C [ v ] at p, ` → v at p,M

runRT
L, ` → C [ run ( λp.e [ z ] ) ] at q,M
7−→ L, ` → C [ e [ z / p ] ] at q,M

→ RT
L, ` → C [ (λx:τ.e) v ] at p,M
7−→ L, ` → C [ e [ v / x ] ] at p,M

∧RT
L, ` → C [πi〈 v1 , v2 〉 ] at p,M
7−→ L, ` → C [ vi ] at p,M

@ RT1
L, ` → C [ rpcabs(e, z) ] at p,M
7−→ L, ` → C [ sync (rpcabs(`1, z)) ] at p, `1 → e at p1,M
where E∗(z) = p1

@ RT2
L, ` → C [ sync (rpcabs(`1, z)) ] at p, `1 → retabs(e, z1) at p1,M
7−→ L, ` → C [ e ] at p, `1 → retabs(e, z1) at p1,M
where E∗(z) = p1 E∗(z1) = p

[ ]RT1
L, ` → C [ rpcrel(e, z) ] at p,M
7−→ L, ` → C [ sync (rpcrel(`1, z)) ] at p, `1 → e at q,M
where E∗(z) = q

[ ]RT2
L, ` → C [ sync (rpcrel(`1, z)) ] at p, `1 → retrel(e, n) at q,M
7−→ L, ` → C [ e ] at p, `1 → retrel(e, n) at q,M
where E∗(z) = q

2RT1
L, ` → C [bc e1 at z asx in e2 ] at p0,M
7−→ L, ` → C [ sync (bc `1 at z asx in e2) ] at p0, `1 → e1 at p1,M
where E∗(z) = p1

2RT2

L, ` → C [ sync (bc `1 at z asx in e2) ] at p0, `1 → close(λp. e) at p1,M
7−→ L, ` → C [ e2 [ `2 / x ] ] at p0, `1 → close(λp. e) at p1,
{ `2 → e [ q / p ] at q } (∀q ∈ P ),M
where E∗(z) = p1

◊RT1
L, ` → C [pull e1 at z asx in e2 ] at p,M
7−→ L, ` → C [ sync (pull `1 at z asx in e2) ] at p, `1 → e1 at p1,M
where E∗(z) = p1

◊RT2
L, ` → C [ sync (pull `1 at z asx in e2) ] at p, `1 → port(λp. e) at p1,M
7−→ L, ` → C [ e2 [λp.e / x ] ] at p, `1 → port(λp. e) at p1,M
where E∗(z) = p1

3RT1
L, ` → C [go e1 at z returnx, q in e2 ] at p0,M
7−→ L, ` → C [ sync 1(go `1 at z returnx, q in e2) ] at p0, `1 → e1 at p1,M
where E∗(z) = p1

3RT2

L, ` → C [ sync 1(go `1 at z returnx, q in e2) ] at p0, `1 → agent[e, z1] at p1,M
7−→ L, ` → C [ sync 2(go `2 at z1 returnx, q in e2) ] at p0, `1 → agent[e, z1] at p1,
`2 → e at p2,M
where E∗(z) = p1, E∗(z1) = p2

3RT3
L, ` → C [ sync 2(go `1 at z returnx, q in e2) ] at p0, `1 → v at p1,M
7−→ ` → C [ e2 [ z / q ] [ v / x ] ] at p0, `1 → v at p1,M
where E∗(z) = p1

ref RT
L, ` → C [ ref v ] at p,M
7−→ L, ` → C [m ] at p,M, m → v at p
(m /∈ Dom(M))

!RT
L, ` → C [ ! m ] at p,M, m → v at p
7−→ L, ` → C [ v ] at p,M, m → v at p

:= RT
L, ` → C [m := v ] at p,M, m → v′ at p
7−→ L, ` → C [ () ] at p,M, m → v at p

Figure 7: λrpc Operational Semantics
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