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Abstract
Verification of large programs is impossible without proof tech-
niques that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to this
problem first considered in the context of the programming lan-
guage Euclid, developed in the 70s. The central idea is that rather
than modeling the heap as a single total function from addresses
(integers) to integers, we model the heap as a collection of partial
functions with disjoint domains. We call each such partial function
a linear map. Programmers may select objects from linear maps,
update linear maps or transfer addresses and their contents from
one linear map to another. Programmers may also declare new lin-
ear map variables and pass linear maps as arguments to procedures.
The program logic prevents any of these operations from dupli-
cating locations and thereby breaking the key heap representation
invariant: the domains of all linear maps remain disjoint. Linear
maps facilitate modular reasoning because programs that use them
are also able to use simple, classical frame rules to preserve infor-
mation about heap state across procedure calls. We illustrate our
approach through examples, prove that our verification rules are
sound, and show that operations on linear maps may be erased and
replaced by equivalent operations on a single, global heap.

1. Introduction
Verification of large programs is impossible without proof tech-
niques that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to this
problem first considered in the context of the programming lan-
guage Euclid [17, 20], developed in the 70s. This approach centers
around the introduction of a new data type, which we call a linear
map. Intuitively, linear maps are simply little heaplets: Program-
mers may store objects in linear maps, look up objects in linear
maps and, most interestingly, transfer addresses from one linear
map to another. Programmers may also declare new linear map
variables, pass them as arguments to functions, and receive them
as result. We call these maps linear because of their connection to
linear type systems [11, 28, 29]: like values with linear type, linear
maps are never duplicated nor aliased.

Programs that use linear maps tend to be written in a functional
store-passing (i.e., linear-map-passing) style as this style facilitates
local reasoning and information hiding. However, despite this func-
tional facade, linear maps programs are actually ordinary impera-
tive programs that load from, and store to, a single, global heap. In
order to connect a linear maps program to its corresponding con-
ventional imperative program, we define an erasure transformation
that erases all linear maps variables, erases all transfer operations
and replaces linear map lookups and updates with lookups and up-
dates on the global heap. In the forward direction, the erasure trans-
formation shows that using linear maps incurs no overhead; they
are really just a new kind of ghost variable, used, as ghost variables
often are, to facilitate modular verification. In the reverse direc-

tion, the erasure transformation may be seen as a tactic for prov-
ing the correctness of ordinary imperative programs: given an or-
dinary program, the reverse transformation explains the legal ways
to transform it into an easy-to-verify linear maps program without
changing its operational behavior.

There are a number of reasons we believe researchers should
adopt linear maps as a modular verification technology. First and
foremost, the idea is surprisingly simple to understand, to imple-
ment and, we hope, to build upon. We believe this is a key contri-
bution. Second, linear maps require no new language of assertions.
Generated verification conditions are encoded in first-order logic
and may be solved by off-the-shelf SMT solvers such as Z3 [6].
Third, using linear maps enables effective use of the classical frame
and hypothetical frame rules, completely unchanged, despite the
presence of an imperative heap. Fourth, linear maps technology re-
quires no changes to the overall judgmental apparatus involved in
standard, first-order verification condition generation: it does not
use non-standard modifies clauses and it does not depend upon so-
phisticated auxiliary notions such as the footprint or frame of a for-
mula. Consequently, it should be relatively easy to extend any one
of a number of standard, existing verification condition generation
tools with these new data types.

Our work on linear maps has been directly inspired by sev-
eral other recent approaches to modular reasoning, including re-
search on capability-based type systems [30, 25, 8, 5], Separation
Logic [13, 23, 22], Dynamic Frames [15, 18], Implicit Dynamic
Frames [24, 19], and Region Logic [1]. From a technical stand-
point, linear maps are clearly different from these other approaches:
the commands, their operational semantics, and program logic rules
are not the same. However, taking a broader view, linear maps and
these other systems all attempt to deal with the issue of ”separa-
tion” of heap cells in one way or another. In comparison to these
other approaches, we believe that the advantage of linear maps are
their semantic simplicity: some of these other approaches, when
compared with conventional classical Hoare logic, have new kinds
of modifies clauses, new kinds of footprint analyses, or new sorts
of assertions (such as separating conjunction). Linear maps do not
make such changes to conventional Hoare Logic – they are merely
a new data type with new operations. Having said that, the addi-
tional complexity of other systems generally provides an advan-
tage in brevity and one can see that tradeoff playing out in their
implementations: the higher-level concepts they introduce are of-
ten implemented by compilation into a series of imperative com-
mands or additional framing axioms or assertions which may then
be discharged by classical theorem provers.

2. Key Concepts
Two structural verification rules are required to verify just about
any imperative program. The first is the rule of consequence, which
states that if a Floyd-Hoare triple {P}C{Q} is valid and P ′ ⇒ P
and Q ⇒ Q′ then the triple {P ′}C{Q′} is also valid. The second



procedure incr(p: int) returns ()
modifies heap
{

heap[p] := heap[p] + 1;
}

heap[py] := 42;
call incr(px);

Figure 1. Frame rule with ordinary maps

is the (classical) frame rule, which states that if {P}C{Q} is valid
and the set of variables modified by C is disjoint from the set of
free variables of R then {R ∧ P}C{R ∧Q} is also valid. In other
words, the validity of framing formula R may be preserved across
any statement that does not modify the frame’s free variables.

With that background, consider the procedure incr:

procedure incr() returns ()
requires true, ensures true, modifies x
{ x := x + 1; }

This procedure has no input arguments and no output arguments.
Its specification consists of the precondition true, the postcondi-
tion true, and the guarantee that it does not modify any variable
except x. Henceforth, our examples will use the convention that a
missing requires clause indicates the precondition true, a miss-
ing ensures clause indicates the postcondition true, and a miss-
ing modifies clause indicates that the procedure does not modify
any variables in the caller’s scope.

Consider a call to incr in a calling scope that contains another
variable y. The Floyd-Hoare triple {y = 42} call incr() {y
= 42} is easily proved through a combination of the conventional
frame and consequence rules.

{true} call incr() {true}
---------------------------------------- (Frame)
{y=42 ∧ true} call incr() {y=42 ∧ true}
---------------------------------------- (Consequence)
{y=42} call incr() {y=42}

The main reason for the simplicity of the proof is that the set of
variables modified by the code fragment call incr() is disjoint
from the free variables in the assertion y = 42.

This simple proof strategy does not quite work when the heap is
used to allocate data. The standard method of modeling a heap [4]
uses a single map variable mapping memory addresses to their
contents. Since a procedure that updates the heap at any address
must contain the map variable in its modifies set, the conventional
frame rule cannot be used for preserving heap-related assertions
across a call to such a procedure. To illustrate the problem, we
model the heap as a variable heap mapping int to int and allocate
the variables x and y on the heap with distinct addresses px and
py (Figure 1). Further, we change the procedure incr to take
the memory address whose contents are to be incremented. Let
C denote the code fragment in Figure 1 after the definition of
incr. Then, the triple {px != py} C {heap[py] = 42} cannot
be proved using the conventional frame rule.

2.1 Linear Maps
We address this weakness of the conventional frame rule, not by
changing it, but by refining our modeling of the heap. Instead of
modeling the heap with a single monolithic map, we model it as a
collection of partial maps with disjoint domains. We call each such
map a linear map, which is essentially a pair comprising a total map
representing the contents and a set representing the domain of the
linear map. We refer to the underlying total map and domain of a
linear map ` as map(`) and dom(`) respectively. We augment our

procedure incr(p: int, t:lin)
requires p ∈ dom(t)
ensures p ∈ dom(t)

{
t[p] := t[p] + 1;

}

l[py] := 42;
var lx:lin in

lx := l@{px};
call incr(px,lx);
l := lx@{px};

Figure 2. Frame rule with linear maps

programming language with operations over linear maps that are
guaranteed to preserve the invariant that the domains of all linear
maps are pairwise disjoint and their union is the universal set. We
refer to this invariant as the disjoint domains invariant.

We now rewrite the program from Figure 1 using linear maps
as shown in Figure 2. As we explain in Section 2.2, the program in
Figure 1 can be obtained from the program in Figure 2 using the
erasure operation; consequently, any properties about the runtime
behavior of the latter program are valid for the former as well. The
new definition of procedure incr takes a pointer p and a linear map
t as arguments.1 The implementation of incr demonstrates that
linear maps can be read and written just like ordinary maps. Unlike
ordinary maps, a read or a write of a linear map t at the address p
comes with the precondition that p is in the domain t. The read and
write of t[p] performed during the increment operation are safe
because of the precondition of incr.

Let D denote the code fragment in Figure 2 after the definition of
incr. The contents of the heap at the beginning of D is modeled by
the linear map l whose domain includes both addresses px and py.
In order to call incr with the pointer px, we also need to pass in a
linear map whose domain contains the address px. We create such a
linear map by declaring a new variable lx, whose domain is empty
initially. We then perform the transfer statement lx := l@{px} to
move the contents of address px from l to lx; this operation has
the precondition that px is in the domain of l. The linear map lx is
now passed, along with the pointer px to incr, thus satisfying the
precondition of incr.

It is important to note that the procedure call has a side effect
on the variable lx passed for the linear argument t. At entry, the
contents of lx are transferred into t; at exit, the contents of t are
transferred back into lx. This operational behavior is essential to
maintain the disjoint domains invariant. After the call, we transfer
the pointer px from lx to l. Thus, there is an implicit modifies
clause on linear map arguments for a procedure that we do not
explicitly show.

Unlike the previous version of the incr procedure in Figure 1,
the new version of incr has the empty modifies specification.
Consequently, the triple {px != py} C {l[py] = 42} can be
easily verified using the conventional frame rule.

2.2 Erasure
An important aspect of our system is the erasure operation which
allows us to connect the operational semantics of the program
written using linear maps with the corresponding program written
using a global total map. As an example, the erasure of the code in
Figure 2 is the code in Figure 1 with heap being the unified total
map. Section 3 develops a program logic for verifying properties

1 tot and lin denote the types of ordinary and linear maps from int to
int respectively.



procedure incr(p: int, tm: tot, t: lin)
requires p ∈ dom(t) ∧ tm = map(t)
ensures p ∈ dom(t) ∧ t[p] = tm[p]+1
{

t[p] := t[p] + 1;
}

l[py] := 42;
l[px] := 24;
var lx: lin in

lx := l@{px};
var lxm:tot in

lxm := map(lx);
call incr(px,lxm,lx);

l := lx@{px};

Figure 3. Ghost variables

of programs that use linear maps. The erasure operation essentially
allows us to carry over the runtime properties established by the
verification of a program using linear maps over to the erased
program using a global map.

The erasure operation is defined both on the state and the pro-
gram text. The erasure of a state combines all linear map variables
in the state into a single unified total map; this transformation is
possible because of the disjoint domains invariant. The restrictions
on the operations permitted on linear maps have been designed pre-
cisely to ensure that the erasure of the state is well-defined. The
erasure of the program text removes all occurrences of linear map
variables and any transfer operations among them; further, a read or
write of a linear map variable is transformed into the corresponding
operation on the unified total map. The erasure operation ensures
that a program (with linear maps) takes a state s to s′ iff the erased
program takes the erasure of state s to the erasure of state s′.

2.3 Two-state postconditions
We now augment our increment example from Figure 2 to illus-
trate another useful feature of our system. The code fragment E in
Figure 3 assigns the value 24 to l[px] before calling incr; we
would like to show that l[px] = 25 at the end of E. To enable this
verification, we must enrich the postcondition of incr to relate the
value of t[p] upon exit with the value of t[p] upon entry. It is
difficult to express such a postcondition because any reference to
the linear argument t by default refers to its value in the exit state.
To circumvent this problem, we pass an ordinary map tm to incr
as an additional argument and add the precondition tm = map(t)
indicating the relationship between tm and t. The presence of the
parameter tm allows us to enrich the postcondition of incr to in-
dicate that the value of t[p] at exit is one more than its value at
entry. At the call site, we pass a total map whose value is map(lx)
for the argument tm. This operation does not violate our disjoint
domains invariant because while lx is a linear map, lxm is an ordi-
nary total map. The erasure of ghost variables such as tm and lxm is
standard; the erasure operation removes all references to them from
the program text. A complete Floyd-Hoare proof for the program
fragment E is shown in Figure 4. In this proof, we use two macros
for compact representation of the assertions: (l[py] 7→ ) ex-
pands to (py ∈ dom(l)) and (l[py] 7→ c) expands to (py ∈
dom(l) ∧ l[py] = c).

2.4 Aliasing
While linear maps can express separation among heap locations
naturally, they allow simple specifications even in the presence of
aliasing. Figure 5 shows a procedure swap that swaps the contents
of two heap cells whose addresses are provided as parameters a and
b. Since a and b may be aliased with each other (or not), we pass

{ px != py ∧ l[py] 7→ ∧ l[px] 7→ }

l[py] := 42;

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ }

l[px] := 24;

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 24 }

var lx:lin in

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 24 }

lx := l@{px};

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24 }

var lxm:tot in

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24 }

lxm := map(lx);

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24
∧ lxm = map(lx) }

call incr(px,lxm,lx);

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 25 }

l := lx@{px};

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 25 }

Figure 4. Proof of statement E

procedure swap(a: int, b: int, tm: tot, t: lin)
requires {a,b} ⊆ dom(t) ∧ tm = map(t)
ensures {a,b} ⊆ dom(t) ∧ t[a] = tm[b] ∧ t[b] = tm[a]

{
var tmp: int in

tmp := t[a];
t[a] := t[b];
t[b] := tmp;

}

Figure 5. Swap

the storage for a and b not as two different linear maps but as a
single linear map t. Note that this example also uses a ghost total
map tm to enable writing a precise postcondition.

2.5 Information hiding
Large programs are structured as a collection of modules, each of
which offers public procedures as services to clients. An impor-
tant goal of modular verification is to enable separate verification
of the module and its clients. The correctness of a client should
depend only on the preconditions and postconditions of the public
procedures of the module and not on the private details of the mod-
ule implementation. This requirement precludes any precondition
from referring to the private state of the module; consequently, it
becomes difficult to verify the module implementation which of-
ten depends on critical invariants at entry into a public procedure.
As an example, consider the module shown in Figure 6 that imple-
ments a rational number and provides two procedures, reset and
floor. The private representation of this module uses two integer



mod [
num : int := 0;
den : int := 1;

invariant den != 0;

procedure reset(a: int, b: int) returns ()
requires b > 0;
{

num := a;
den := b;
}

procedure floor() returns (res: int)
{

res := num/den;
}

]

Figure 6. A simple module

variables num and den for storing the numerator and denominator
respectively. The integer division operation in floor fails unless
the value of den upon entry is different from zero.

This conflict between modular verification and information hid-
ing is well-understood; so is the concept of module invariant as a
mechanism for resolving this conflict [12]. A module invariant is an
invariant on the private variables of a module that may be assumed
upon entry but must be verified upon exit. The module invariant for
the rational number module states that den != 0; it is preserved
by each procedure and allows us to prove the safety of the division
operation in floor.

There are two important reasons for the soundness of the veri-
fication method based on module invariants. First, the module in-
variant is verified upon exit from the module. Second, the module
invariant refers only to the private variables of the module which
cannot be accessed by code outside the module. As long as the pro-
gram uses only scalar variables, verification using module invari-
ants is simple. However, if the representation of a module uses the
global heap, which is potentially shared by many different modules,
verification becomes difficult since the module invariant cannot re-
fer to the global heap variable. Linear maps come to the rescue just
as they did with the framing problem in the presence of the heap;
we illustrate their use in the context of information hiding using a
memory manager example [22].

Figure 7 shows the memory manager module. This module
provides two procedures alloc and free, used for allocating and
freeing a single memory address, respectively. alloc returns the
freshly allocated address in the return variable res. free frees
the memory address pointed to by the input variable arg. It is
worth noting that the modified set of both alloc and free is
empty; therefore, they are allowed to modify only the private state
of the memory manager module and their respective linear map
arguments.

The private representation of the memory manager uses a linear
map variable local and an integer variable f. The value of f is a
pointer to the beginning of an acyclic list obtained by starting from
f and applying local repeatedly until the special address nil is
reached. The variable f is initialized to a special pointer nil and
local is initialized to the liner map with an empty domain denoted
by []<>. The module invariant of the memory manager uses a
special set constructor Btwn that takes three arguments, a linear
map l, a pointer a, and a pointer b. The set Btwn(l,a,b) is empty
if a cannot reach b by following l. Otherwise, there is a unique
acyclic path following l from a to b and Btwn(l,a,b) is the set of
all pointers on this path including a and b. The module invariant

mod [
local : lin := []<>;
f : int := nil;

invariant
Btwn(local,f,nil) = (dom(local) ∪ {nil})

procedure alloc(h:lin) returns (res:int)
requires dom(h) = ∅
ensures res != nil ∧ res ∈ dom(h)
{

if (f = nil)
res := malloc(h);

else {
res := f;
f := local[res];
h := local@{res};

}
}

procedure free(arg:int,h:lin) returns ()
requires arg != nil ∧ arg ∈ dom(h)
{

local := h@{arg};
local[arg] := f;
f := arg;
}

]

Figure 7. Memory manager

var ref1, ref2 : int in
var tmp1, tmp2 : lin in

ref1 := alloc(tmp1);
tmp1[ref1] := 3;
ref2 := alloc(tmp2);
assume dom(tmp1) ∩ dom(tmp2) = ∅;
assert ref1 != ref2;
tmp1 := tmp2@{ref2};
tmp1[ref2] := 6;
assert tmp1[ref1] = 3;

Figure 8. Client of memory manager

states that the list hanging from f is acyclic and the domain of
local includes all elements in this list except possibly nil.

The procedure alloc returns an address from the head of the
list if the list is nonempty; before returning, it transfers the returned
address from the domain of local to h. If the list is empty, alloc
simply calls a lower-level procedure malloc with the same inter-
face as alloc. Thus, alloc and malloc model two different oper-
ations with same functional specification but with different latency.
The module invariant described earlier is crucial for proving the
safety of the read and transfer operations on local. The procedure
free appends the pointer arg to the beginning of the list and trans-
fers arg from the domain of h to local.

The verification of the client code, given in Figure 8, reveals an-
other interesting feature of our proof system. The statement assume
dom(tmp1) ∩ dom(tmp2) = ∅ allows downstream code to use
the assumed fact for verification. It is sound to make this assump-
tion because tmp1 and tmp2 are distinct linear map variables whose
disjointness is assured by the disjoint domains invariant. This as-
sumption, together with the postcondition of alloc, is sufficient
to verify the assertion assert ref1 != ref2 following it. Note
that the postcondition of alloc is not strong enough to verify this
assertion by itself. All necessary disjointedness assumptions could
easily be inferred by the system without user annotations – we have



types τ ::= int | tot | lin | set
values v ::=n | f | ` | s
logical exps e ::=x | v | e1 + e2 | sel(e1, e2) | upd(e1, e2, e3)

| ite(e1, e2, e3) | selL (e1, e2) | updL (e1, e2, e3)
| map(e) | dom(e) | lin(e1, e2) | {x | F}

formulae F ::= true | false | ¬F | F1 ∨ F2 | F1 ∧ F2

| F1 ⇒ F2 | ∃x:τ.F | ∀x:τ.F
| e1 = e2 | e1 ∈ e2

Figure 9. Syntax of values, expressions and logical formulae

not done so in this presentation to highlight the disjoint domains in-
variant as its own independent, orthogonal concept.

The examples in this section have been mechanized using Boo-
gie. The verification of the memory manager module depends on
reasoning about the Btwn(l,a,b) set constructor in the presence
of updates to l and transfers to and from the domain of l. We have
extended the decision procedure for reachability [16] with a col-
lection of rewrite rules based on e-matching [9] for modeling the
interaction between Btwn and the semantics of transfer between
linear maps. Although examples in this section only illustrate the
use of transfer of singleton sets, we have verified an example in-
volving multiple lists that requires transferring the contents of an
entire list.

3. Technical Development
This section presents the technical intricacies involved in develop-
ing a program logic for imperative programs with linear maps.

3.1 The Assertions
Figure 9 presents the language of assertions. Here and elsewhere, x
ranges over variables, n ranges over integers and s ranges over sets
of integers. When we want to represent a specific set, we will use
standard set-theoretic notation such as {x | x > 0}. Metavariable f
ranges over total maps from integers to integers. When we want to
represent a specific total map, we will use standard notation from
the lambda calculus such as λx.x+ 1.

Linear maps are simply pairs of a total map f from integers
to integers and a domain s. Intuitively, the pair of total map and
domain implements a partial map. We let ` range over linear maps.
In general, when linear map ` is the pair fs, we let map(`) refer
to the underlying total map f and dom(`) refer to the underlying
domain s. We write [ ]∅ to refer to a particular linear map whose
domain is the empty set.

The logic is built upon a collection of simple expressions e,
whose denotations are values with one of four primitive types:
integer (int), total map (tot), linear map (lin), and integer set
(set). The expressions include variables, values of each type, and
a collection of simple operations on each type. For total maps,
we allow the standard operations select (sel) and update (upd).
For instance, sel(e1, e2) selects element e2 from the total map
e1 while upd(e1, e2, e3) updates total map e1 at location e2 with
the value denoted by e3. In addition, we will allow the use of a
generalized map update with the form ite(e1, e2, e3) (pronounced
“if then else”) where e1 is a set and e2 and e3 are two additional
total maps. This expression is equal to the total map that acts as
e2 when its argument belongs to the set e1 and acts as e3 when
its argument does not belong to the set e1. This non-standard map
constructor fits within the framework of de Moura and Bjørner’s
recent work on generalized array decision procedures [7] and is
supported in Z3 [6]; it can be supported in other automated theorem
provers that support quantifiers via quantified axioms.

[[e]]E = v

[[x]]E = E[x]
[[v]]E = v
[[e1 + e2]]E = [[e1]]E + [[e2]]E
[[sel(e1, e2)]]E = [[e1]]E([[e2]]E)
[[upd(e1, e2, e3)]]E = λx.ifx = [[e2]]Ethen[[e3]]Eelse[[e1]]E(x)
[[ite(e1, e2, e3)]]E = λx.ifx ∈ [[e1]]Ethen[[e2]]E(x)else[[e3]]E(x)
[[selL (e1, e2)]]E = map([[e1]]E) ([[e2]]E)
[[updL (e1, e2, e3)]]E = fdom([[e1]]E)∪{[[e2]]E}

where f = λx.ifx = [[e2]]E then [[e3]]E else map([[e1]]E)(x)
[[map(e)]]E = map([[e]]E)
[[dom(e)]]E = dom([[e]]E)
[[lin(e1, e2)]]E = ([[e1]]E)[[e2]]E
[[{x | F}]]E = {v |E, x = v |= F}

Figure 10. Denotational Semantics of Expressions

The expressions selL (e1, e2) and updL (e1, e2, e3) are variants
of the standard select and update expressions designed to operate
on linear maps. The selL (e1, e2) expression selects e2 from the
underlying total map of e1. As far as the semantics of logical ex-
pressions are concerned, e2 may lie outside the domain of e1. In
later subsections, the reader will see how the program logic will use
explicit domain checks to guarantee that reads and writes of linear
map program variables do not occur outside their domains during
program execution. The updL (e1, e2, e3) updates linear map e1 at
location e2 with the value denoted by e3. If e2 does not appear in
the domain of e1, then the domain of the resulting linear map is one
element larger than the domain of the initial map. The expressions
map(e) and dom(e) extracts the underlying total map and underly-
ing domain of linear map e while the expression lin(e1, e2) con-
structs a linear map from total map e1 and set e2. The expression
{x | F} denotes a set of integers x that satisfy formula F . We will
freely use other operations on sets such as union and intersection
as they may be encoded.

The logical formulae themselves include the usual formulae
from first-order logic as well as equality and set inclusion.

Throughout the paper, we will only consider well-typed expres-
sions and formulae. Given a type environment Γ, which is a finite
partial map from variables to their types, we write Γ ` e : τ to de-
note that e is a well-formed expression with type τ . Likewise, we
write Γ ` F : prop to denote that formula F is a well-formed for-
mula. The rules for defining these judgments are simple and stan-
dard and therefore we omit them.

In Figure 10, expressions are given semantics through a judge-
ment with the form [[e1]]E . Here, and elsewhere,E is a finite partial
map from variables to values. We write E[x] to look up the value
associated with x in E. We write E, x = v to extend E with x
(assuming x does not already appear in the domain ofE). We write
E[x = v] to update E with a new value v for x. A value envi-
ronment E has a type Γ, written ` E : Γ, when the domains of
Γ and E are equal and for every binding x:τ in Γ there exists a
corresponding value E[x] with type τ .

Given the semantics of expressions, the semantics of formulae
is entirely standard. When an environment E satisfies a formula F ,
we write E |= F . When a formula F is valid with respect to any
environment with type Γ, we write Γ |= F .

3.2 Programs
Figure 11 presents the formal syntax of programs. The main syn-
tactic program elements are expressions, statements and modules.



impl exps Z ::= x | n | Z1 + Z2

ghost exps S ::= e
statements C ::= x := Z | x1 :=G S

| varx:τ inC | skip | C1; C2

| ifZ thenC1 elseC2

| while [F ] Z doC
| assertF | x3 := g(x1, x2)
| x1 :=L x2[Z ] | x[Z1] :=L Z2

| x1 := x2@S | x1 :=L x2

| assumedom(x1) ∩ dom(x2) = ∅
mod clause mod ::= {x1, . . . , xk}
fun types σ ::= ∀arg1:τ1, arg2:τ2.F1

mod−→ ∃ret:τ3.F2

mods mv ::= [E;Finv; g:σ = C ]
mod env′s M ::= · |M ,mv
states Σ ::= (M ;E)
programs prog ::= (Σ; C )

Figure 11. Syntax of Programs

Program expressions are divided into three major categories:
implementation expressions (Z ), ghost expressions (S) and linear
expressions. Implementation expressions are those expressions that
are executed unchanged by the underlying abstract machine. Ghost
expressions are expressions that are used to help specify the behav-
ior of programs, but are not needed at run time and hence will be
erased by the erasure translation. Ghost expressions may include or
depend upon implementation expressions, but implementation ex-
pressions may not depend upon ghost expressions. Linear expres-
sions are expressions that involve linear maps. These expressions
are partially erased: the erasure translation replaces references to
linear maps with references to the single underlying heap. Linear
expressions must be constrained to ensure they are not copied.

For the purposes of this paper, we segregate the different sorts
of expressions using their types. More specifically, the int type is
our only implementation type. The types tot and set are our ghost
types. The type lin is our linear type. We write impl(τ) when τ
is an implementation type, ghost(τ) when τ is a ghost type and
linear(τ) when τ is a linear type. We write nonlinear(τ) when
τ is not a linear type. We also use these predicates over closed
values, as the type of a closed value is evident from its syntax.

Statements C include standard elements of any imperative lan-
guage: assignment, skip, sequencing, conditionals, while loops,
asserts, function calls and local variables. We assume local vari-
ables and other binding occurrences alpha-vary as usual. We re-
quire function arguments be variables to enable a slight simplifica-
tion of the verification rules. In addition to a normal assignment, we
include a linear assignment and a ghost assignment. Operationally,
the linear assignment not only assigns the source to the target, but
it also assigns the empty map to the source to ensure locations are
not copied and the disjoint domains invariant is preserved. The
ghost assignment acts as an ordinary assignment, though the lan-
guage type system will prevent implementation types from depend-
ing upon it. Reading from and writing to total maps is provided via
ghost assignments.

To read from location Z in linear map x2 and assign that value
to variable x1, programmers use the statement x1 :=L x2[Z ]. To
update location Z1 in linear map x with value Z2, programmers
use the statement x[Z1] :=L Z2. The statement x1 := x2@S
transfers the portion of linear map x2 with domain S to x1. The
statement x1 :=L x2 is a special case of the transfer operation
in which the entire contents of x2 is transferred to x1. Finally,
assumedom(x1) ∩ dom(x2) = ∅ is a no-op that introduces the

fact that two linear maps have disjoint domains into the theorem-
proving context.

Modules mv consist of a private environment, an invariant and,
for simplicity, a single, non-recursive function. These functions are
declared to have a name g, a type σ and a body C . For simplicity
again, functions are constrained to take two arguments, where the
first is non-linear and the second is a linear map. The first argument
is immutable within the body of the function and the second is a
mutable input-output parameter. The argument variables arg1 and
arg2 may appear free in the precondition F1, the postcondition F2

and the body of the function. Since arg1 is immutable in the body
of the procedure, its value in the postcondition is the same as its
value on entry to the procedure. Since arg2 is mutable in the body
of the procedure, its value in the postcondition is not necessarily
the same as its value on entry to the procedure – its value will
reflect any effects that occur during execution of the procedure. The
result variable retmay appear free in the postcondition and may be
assigned to in the function body. The set mod on the function type
arrow specifies the variables that may be modified during execution
of the function. The collection of constraints on the form of a
function signature are specified using a judgment with the form
Γ ` σ (not shown). For convenience, we often refer to a module
using the name of the function that it contains. For instance, given
a list of modules M , we select the module containing the function
g using the notation M (g). We assume the same function name g
is never used twice in a list of modules.

A complete program consists of state Σ and the statement C to
execute. A state Σ = (M , E) is a list of modules M paired with a
global environment E. We assume no variable x is bound both in
the global environment E and in some module local environment
in M (alpha-converting where necessary). We let |Σ|env be the
environment formed by concatenating the module environments
to the global environment from Σ. We also lift most operations
on environments to operations on states in the obvious way. For
instance, Σ[x] looks up the value bound to x in any environment in
Σ and Σ[x = v] updates variable x with v in any environment in
Σ. Σ, x = v extends the global environment in Σ with the binding
x = v assuming x does not already appear in Σ. Finally, [[e1]]Σ
abbreviates [[e1]]|Σ|env

and Σ |= F abbreviates |Σ|env |= F .

3.3 The Program Logic
The program logic is defined by two primary judgment forms: one
for statements and one for modules. The judgment for verification
of statements has the form G; Γ; mod ` {F1}C{F2}. Here, G is a
function context that maps function variables to their types, Γ is a
value type environment that maps value variables to their types and
mod is the set of variables that may be modified by the enclosed
statement. Given this context, F1 is the statement precondition, C
the statement to be verified, and F2 is the postcondition. The rules
for this judgement form are given in figures 12 and 13.

Figure 12 presents the most basic rules for statement verifica-
tion including the rule of consequence and the frame rule. This fig-
ure contains two rules for assignments: (Asgn) and (Ghst). (Asgn)
handles assignment for implementation types and (Ghst) handles
assignments for ghost types. The rules are identical, save the type
checking component. They are separated to simplify the definition
of the erasure translation, which will delete the ghost assignment
but leave the implementation assignment untouched. The rule for
variables in this figure is standard, though it applies only to intro-
duction of variables with non-linear type. Linear variable declara-
tions (as well as linear assignments) will discussed shortly. We have
omitted rules for skip, sequencing, if statements, and while loops
as they are standard.

Figure 13 presents the verification rules that are concerned with
maps and function calls. The first rule in the figure is the linear as-



G; Γ; mod ` {F1}C{F2}

Γ ` x1 : lin Γ ` x2 : lin x1, x2, x
′
2 are distinct variables x1, x2 ∈ mod x′2 6∈ FV (F )

G; Γ; mod ` {dom(x1) = ∅ ∧ ∀x′2:lin.dom(x′2) = ∅ ⇒ F [x′2/x2][x2/x1]}x1 :=L x2{F}
(Asgn Lin)

x 6∈ (dom(Γ) ∪ FV (F2)) G; Γ, x:lin; mod ∪ {x} ` {F1}C{F2}
G; Γ; mod ` {∀x:lin.dom(x) = ∅ ⇒ F1}varx:lin inC{F2}

(Var Lin)

Γ ` x1 : int Γ ` x2 : lin Γ ` Z : int x1 ∈ mod

G; Γ; mod ` {Z ∈ dom(x2) ∧ F [selL (x2,Z )/x1]}x1 :=L x2[Z ]{F}
(Linear Map Select)

Γ ` Z1 : int Γ ` Z2 : int Γ ` x : lin x ∈ mod

G; Γ; mod ` {Z1 ∈ dom(x) ∧ F [updL (x,Z1,Z2)/x]}x[Z1] :=L Z2{F}
(Linear Map Update)

Γ ` x : lin Γ ` y : lin Γ ` S : set x, y ∈ mod

G; Γ; mod ` {S ⊆ dom(y) ∧ F [lin(ite(S, map(y), map(x)), dom(x) ∪ S)/x][lin(map(y), dom(y)− S)/y]}x := y@S{F}
(Transfer)

Γ ` x1 : lin Γ ` x2 : lin x1, x2 are distinct variables
G; Γ; mod ` {dom(x1) ∩ dom(x2) = ∅ ⇒ F}assumedom(x1) ∩ dom(x2) = ∅{F}

(Assume)

G(g) = ∀arg1:τ1, arg2:τ2.F1
mod′
−→ ∃ret:τ3.F2

Γ ` x1 : τ1 Γ ` x2 : τ2 Γ ` x3 : τ3 (mod ′ ∪ {x2, x3}) ⊆ mod x1, x2, x3 6∈ FV (G(g))

G; Γ; mod ` {F1[x1/arg1][x2/arg2]}x3 := g(x1, x2){F2[x1/arg1][x2/arg2][x3/ret]}
(Call)

Figure 13. Program Logic: Linear Statements and Function Calls

G; Γ; mod ` {F1}C{F2}

Γ |= F1 ⇒ F ′1
G; Γ; mod ` {F ′1}C{F ′2}

Γ |= F ′2 ⇒ F2

G; Γ; mod ` {F1}C{F2}
(Consequence)

G; Γ; mod − FV (R) ` {F1}C{F2}
G; Γ; mod ` {F1 ∧R}C{F2 ∧R}

(Frame)

Γ ` x : τ impl(τ) Γ ` Z : τ x ∈ mod

G; Γ; mod ` {F [Z/x]}x := Z{F}
(Asgn)

Γ ` x : τ ghost(τ) Γ ` S : τ x ∈ mod

G; Γ; mod ` {F [S/x]}x :=G S{F}
(Ghst)

Γ ` F ′ : prop

G; Γ; mod ` {F ′ ∧ F}assertF ′{F}
(Assert)

x 6∈ (dom(Γ) ∪ FV (F2)) nonlinear(τ)
G; Γ, x:τ ; mod ∪ {x} ` {F1}C{F2}

G; Γ; mod ` {∀x:τ.F1}varx:τ inC{F2}
(Var)

Figure 12. Program Logic: The Basics (Selected Rules)

signment rule (Asgn Lin). This rule demands that the variable x1

is the empty map prior to assignment and x2 is the empty map af-
ter assignment. The quantified statement in the precondition of the
rule states that x2 may be assigned any empty linear map x′2 (i.e.,
a linear map with empty domain and any underlying total map).
These constraints ensure that an assignment neither copies linear
map addresses (thereby preserving the disjoint domains invariant)
nor overwrites them (thereby simplifying the correspondence be-
tween linear maps and heaps in the erasure translation). Note also
that both x1 and x2 are considered modified by this statement. The
second rule (Var Lin) illustrates that declaring a linear variable is
the same as declaring a non-linear variable except for the constraint
that the linear variable initially contains an empty linear map.

Rules (Linear Map Select) and (Linear Map Update) are mod-
eled after their nonlinear counterparts, with one addition: before
using a linear map, a programmer must prove that their linear map
access falls within the domain of the linear map.

The (Transfer) rule first checks that the two maps in consider-
ation, x (the map transferred to) and y (the map transferred from)
can both be modified. If they can be modified, the Hoare rule itself
acts as a specialized assignment rule where a new map that acts as y
on S and x elsewhere (i.e., lin(ite(S, map(y), map(x)), dom(x)∪
S)) is assigned to x and another new map that acts as y, but has a
smaller domain (i.e., lin(map(y), dom(y)− S)) is assigned to y.

The second last rule (Assume) allows the theorem proving en-
vironment to be extended with the fact that the domains of x1 and
x2 are disjoint, provide x1 and x2 are distict linear map variables.
This rule directly exploits the disjoint domains invariant.

The last statement rule is (Call). This rule looks up the function
signature in the context and checks its arguments and result have
the appropriate types. It also verifies that the variables modified by
the function (mod ′) are subset of those that may be modified in
this context (mod ). Finally, it checks that both x2 and x3 may be



modified. The variable x3 is clearly modified as it is the target of
an assignment. However, beware that x2 is also modified as it is
a linear map and its entire contents are transferred to the second
parameter of the call upon entry to the function, and then upon
return, a mutated linear map is transferred back. Such transfers are
necessary (as opposed to copies) to maintain the disjoint domains
invariant. The first argument to the call x1 is not mutated: as a
non-linear value, it may simply be copied into the parameter. To
simplify our formulation of the preconditions and postconditions
for the triple, we add the constraint that none of x1, x2 or x3

may appear free in the function signature (either the precondition,
postcondition or modifies clause).

Figure 14 defines the judgment form for verification of mod-
ules: G; Γ ` mv ⇒ G′. Intuitively, the module contents are type
checked in one environment (G; Γ) and the result is an extended
context (G′) for the newly declared functions. Hence, this formal-
izes simple non-recursive modules; extending the system further
with mutually recursive modules is orthogonal to the use of linear
maps. For simplicity, all module-local variables are private (as op-
posed to public), and hence, unlike G, Γ is not extended. The most
interesting elements of the rule are:

• The private module environment must have some type ΓE .
• The module invariant Finv is checked for well-formedness with

respect only to the private environment (ΓE ` Finv : prop).
This check implies Finv may only contain the private variables
of the current module, which may not be modified by code
outside the module.
• The module invariant is valid in the initial environment E.
• When checking the body of the module function, Finv is as-

sumed initially and proven upon exit. However, Finv does not
appear in σ, meaning it is hidden from module clients.
• The module function may modify any variable in its declared

modifies clause as well as the return variables and the private
environment. The domain of the private environment does not
appear in the function modifies cause (or elsewhere in the func-
tion signature), meaning these variables are hidden from clients.

Figure 14 contains definitions for several further judgement
forms for verifying lists of modules, states and finally programs
as a whole. The judgement Γ ` M ⇒ G simply chains together
the verification of all modules M in sequence. This judgment disal-
lows mutual recursion amongst modules. The issues involved with
mutual recursion, temporarily broken module invariants, and reen-
tracy are orthogonal to issues involving linear maps. The judgment
` Σ ⇒ G; Γ verifies a state, which includes both modules and
global environment. Finally, a program prog is said to be well-
formed and to establish a post-condition F2 when the judgment
` (Σ; C ) : F2 is valid. This judgment verifies the underlying
state Σ and then uses the generated verification context to check
the statement C satisfies some appropriate Hoare triple with post-
condition F2.

The program checking rule relies on one other judgment `
E wf, whose definition we have omitted, but is easy to define. This
latter judgment ensures that the initial environment satisfies the dis-
joint domains invariant. In practice, a sensible way to perform this
global disjoint domains check is to check that all declared linear
map variables are initially bound to the empty map (as we have
done in our examples), save one, which is bound to the priomordial
map, a linear map initially containing all addresses. Given a single
private priomordial map, it is easy to write an allocator module that
hands out addresses to other modules according to any invariant the
programmer chooses. In theory, however, it is irrelevant what spe-

cific initial conditions are chosen provided that the disjoint domains
condition holds.

3.4 Operational Semantics
The operational semantics of our language is specified as a judg-
ment with the form prog −→ prog . To facilitate the proof of sound-
ness, we extend the syntax of statements with one additional state-
ment with the form g[C ]. This new statement form arises when a
function g is called and execution begins on g’s body (which will be
the statement C inside the square brackets). The g[·] annotation has
no real operational effect, but its presence serves as a reminder that
code within g[·] has access to the private variables of g’s module
and must establish the invariant for g’s module prior to completion.
Figure 15 presents the formal rules. Operational rules for sequenc-
ing, if, and while are standard and were omitted.

The first point of interest in the operational semantics involves
the linear assignment rule (OS Asgn Lin). This instruction resets
the source of the linear assignment to the empty map to prevent
duplication of addresses and to maintain the disjoint domains in-
variant. In the (OS Var) rule, we assume the existence of a function
I that maps types to sets of legal initial values for that type. For
integers, sets, and total maps, any initial value may be generated.
For linear maps, only the empty map may be generated.

The primary effect of rule (OS Call1) is to look up the module
corresponding to the function g in the program state, evaluate the
function arguments, and replace the call with g[C ] where C is
the body of g. In addition, however, the call creates environment
bindings for the argument and result variables, sets the linear map
argument x2 to the empty map and sets up the instructions to copy
the results ret and arg2 back to variables visible in the current
context (x3 and x2 respectively). A linear assignment is used to
copy arg2 back to x2 after the call, ensuring that at no point is
the disjoint domains invariant ever broken. Rule (OS Call2) allows
ordinary execution underneath the g[·] annotation and rule (OS
Call3) discards the g[·] annotation when control leaves that scope.

The remaining rules are less interesting. We leave the reader to
investigate the specifics.

3.5 Soundness
The first key property of our language is that it is sound. In other
words, execution of verified programs never encounters assertion
failures, or fails domain checks on linear maps and, if execution
terminates, the postcondition will be valid in the final state. The
following definition and theorem state these properties formally.
The relation prog −→∗ prog is the reflexive, transitive closure of
prog −→ prog .

Definition 1 (Stuck Program)
A program (Σ; C ) is stuck if C is not skip and there does not exist
another state (Σ′; C ′) such that (Σ; C ) −→ (Σ′; C ′) .

Theorem 2 (Soundness)
If ` (Σ; C ) : F2 and (Σ; C ) −→∗ (Σ′; C ′) then (Σ′; C ′) is not
stuck and if C ′ = skip then Σ′ |= F2 .

The proof is carried out using standard syntactic techniques
and employs familiar Preservation and Progress lemmas. We have
checked all the main top-level cases for these lemmas by hand, but
have assumed a number of necessary underlying lemmas such as
substitution, weakening, and some others are true without detailed
proof. We are confident in our results because the difficult elements
of proof have nothing to do with linear maps at all. Rather, difficul-
ties in the proof revolved around the structure of modules, and, in
particular, setting up the technical machinery to track the scopes of
private module variables and the validity of module invariants as
functions are called.



G; Γ ` mv ⇒ G′

σ = ∀arg1:τ1, arg2:τ2.F1
mod′
−→ ∃ret:τ3.F2 Γ ` σ

g 6∈ dom(G) (dom(ΓE) ∪ {arg1, arg2, ret}) ∩ dom(Γ) = ∅
` E : ΓE ΓE ` Finv : prop E |= Finv

G; Γ,ΓE , arg1:τ1, arg2:τ2, ret:τ3; mod ′ ∪ dom(ΓE) ∪ {arg2, ret} ` {F1 ∧ Finv}C{F2 ∧ Finv}
G; Γ ` [E;Finv; g:σ = C ]⇒ G, g:σ

(Mod)

Γ ` M ⇒ G

Γ ` · ⇒ · (Mod Env Emp)

Γ ` M ⇒ G′

G′; Γ ` mv ⇒ G′′

Γ ` M ,mv ⇒ G′′
(Mod Env)

` Σ⇒ G; Γ

` E : Γ Γ ` M ⇒ G
` (M ;E)⇒ G; Γ

(State)

` prog : F2

` Σ⇒ G; Γ ` |Σ|env wf Γ ` F1 : prop Γ ` F2 : prop Σ |= F1 G; Γ; dom(Γ) ` {F1}C{F2}
` (Σ; C ) : F2

(Programs)

Figure 14. Program Logic: Modules, States and Programs

(Σ;x := Z ) −→ (Σ[x = [[Z ]]Σ]; skip)
(OS Asgn)

(Σ;x1 :=L x2) −→ (Σ[x1 = [[x2]]Σ][x2 = [ ]∅]; skip)
(OS Asgn Lin)

(Σ;x :=G S) −→ (Σ[x = [[S]]Σ]; skip)
(OS Asgn Ghst)

v ∈ I(τ) x 6∈ dom(|Σ|env )

(Σ; varx:τ inC ) −→ (Σ, x = v; C )
(OS Var)

Σ |= F

(Σ; assertF ) −→ (Σ; skip)
(OS Assert)

Σ(g) = [E′;Finv; g:∀arg1:τ1, arg2:τ2.F1
mod′
−→ ∃ret:τ3.F2 = C ] arg1, arg2, ret 6∈ dom(|Σ|env ) v3 ∈ I(τ3)

(Σ;x3 := g(x1, x2)) −→ ((Σ[x2 = [ ]∅]), arg1=[[x1]]Σ, arg2=[[x2]]Σ, ret=v3; g[C ];x3 := ret;x2 :=L arg2)
(OS Call1)

(Σ; C ) −→ (Σ′; C ′)

(Σ; g[C ]) −→ (Σ′; g[C ′])
(OS Call2)

(Σ; g[skip]) −→ (Σ; skip)
(OS Call3)

[[Z ]]Σ = n [[x2]]Σ = f cs n ∈ s
(Σ;x1 :=L x2[Z ]) −→ (Σ[x1 = f (n)]; skip)

(OS Linear Map Select)

[[x]]Σ = fs n1 ∈ s [[Z1]]Σ = n1 [[Z2]]Σ = n2

(Σ;x[Z1] :=L Z2) −→ (Σ[x = (λx.ifx = n1 thenn2 else f x)s]; skip)
(OS Linear Map Update)

[[x1]]Σ = fs1 [[x2]]Σ = hs2 [[S]]Σ = s3

(Σ;x1 := x2@S) −→ (Σ[x1 = (λx.ifx ∈ s3 thenhx else f x)s1∪s3 ][x2 = hs2−s3 ]; skip)
(OS Transfer)

(Σ; assumedom(x1) ∩ dom(x2) = ∅) −→ (Σ; skip)
(OS Assume)

Figure 15. Operational Semantics (Selected Statements)



3.6 Erasure
A second key property of our language is that all verified programs
can be implemented efficiently as ordinary imperative programs.
More precisely, we prove that our original operational semantics
on linear maps is equivalent to one in which ghost expressions are
erased and linear maps are replaced by accesses to a single, global
heap. To make these ideas precise, we define an erasure function
that maps linear maps programs into heap-based programs. The
main work done by the program erasure function is accomplished
by subsidiary functions that erase environments and erase code.

Environment erasure is relatively straightforward, and hence
the formal definitions have been omitted. Briefly, the function
erase(·) traverses all bindings in an environment, saves the imple-
mentation bindings and discards all others (either ghost bindings
or linear bindings). An auxiliary function flatten(·) traverses all
bindings in an environment, discards all non-linear bindings and
uses the linear ones to build a total map (the heap) that acts as the
union of all the linear ones on their respective domains. Hence,
given an execution environment E for linear maps programs, the
corresponding execution environment for heap-based programs is
[heap = flatten(E)], erase(E).

Figure 16 explains how to erase code. The key elements of the
erasure function on code are: (1) Select and update operations on
linear maps become select and update operations on the heap vari-
able; (2) Linear map variable declarations, assignments between
linear maps, transfer operations, and assume statements are all con-
verted into skip statements; (3) Linear map and ghost procedure
parameters and results disappear; and (4) Assertion statements dis-
appear. According to soundness, verified programs never suffer
from assertion failures and hence erasing assertions will not cause
deviations in operational behaviour.

We lift the erasure functions on environments and statements
to an erasure function on programs in a natural way. Given these
functions, we are now able to prove the following key theorem. As
with our other theorem, we have checked the main high-level cases
by hand. These high-level cases depend upon a number of simple
auxiliary lemmas that we have assumed true without detailed proof.

Theorem 3 (Erasure)
If ` prog : F2 then
prog −→∗ prog ′ iff erase(prog) −→∗ erase(prog ′)

4. Related Work
We discuss related work along four different axes—the Euclid pro-
gramming language, dynamic frames, separation logic, and linear
type systems.

4.1 Euclid
Euclid [17, 20] is an imperative programming language derived
from Pascal. In order to manage dynamically allocated data struc-
tures, Euclid introduced the idea of a collection. There are only
few ways to use a collection: one may allocate a new object in a
collection, deallocate an object in a collection, look up an object
in a collection using a pointer to it and pass a collection to a pro-
cedure. The static type of a pointer referred to the collection that
contained it. Collections satisfy the disjoint domains invariant: two
pointers into different collections are guaranteed to point to differ-
ent objects. Euclid’s creators rightly observed that this restriction
would facilitate reasoning about pointers and their aliases. How-
ever, Euclid’s collections are substantially more limited than lin-
ear maps as locations could not be transferred from one collection
to another, and collections could not be returned from functions.
Consequently, many examples presented in this paper could not be

eraseΓ(C ) = C ′

eraseΓ(x1 :=L x2) = skip

eraseΓ(x :=G S) = skip

impl(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g(x1)

impl(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g(x1)

ghost(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g()

ghost(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g()

impl(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = varx:τ inC ′

ghost(τ) or linear(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = C ′

eraseΓ(assertF ) = skip

eraseΓ(x1 :=L x2[Z ]) = x1 := heap[Z ]

eraseΓ(x[Z1] :=L Z2) = heap[Z1] := Z2

eraseΓ(x1 := x2@S) = skip

eraseΓ(assumedom(x1) ∩ dom(x2) = ∅) = skip

Figure 16. Erasing Statements (Selected Rules)

supported in Euclid. In addition, the definition of our language and
program logic is presented quite differently from Euclid’s; we have
the benefit of 30 years of technical refinements in programming
language semantics to lean on. The design of our program logic
also takes recent advances in theorem proving technology into ac-
count.

In 1995, Utting [27] again struck upon the idea of a linear map,
which he called a local store. Utting considers the idea in the con-
text of a refinement calculus and points out that Euclid’s collec-
tions are insufficiently flexible without the ability to transfer loca-
tions from one store to another. He gives an example of using local
stores to refine a functional specification of a queue data structure
into one that uses pointers. Utting does not discuss the technical
details of how a Hoare proof theory should work (omitting, for in-
stance, discussion of the frame or hypothetical frame rules and the
role of assume statements in proofs, and giving only English rec-
ommendations on how to enforce anti-aliasing rules), nor does he
give an operational semantics for his language, a proof of safety, or



evidence that local stores facilitate automated reasoning using the-
orem provers (the modern SMT solvers we use, with their extended
theory of arrays [7], were not available at that time).

4.2 Dynamic Frames
In more recent years, researchers have developed a variety of
powerful new verification tools, proof strategies and experimen-
tal language designs based on classical logics, SMT solvers and
verification-condition generation. One such research thread is
based on the use of dynamic frames [15]. A frame, also known
as a region or footprint, is the set of heap locations upon which the
truth of a formula depends. Intuitively, if the footprint of a formula
F is disjoint from the modifies clause of a statement C , the validity
of F may be preserved across execution of C . In other words, care-
ful use of footprints gives rise to useful framing rules. Kassios [15]
began this line of research by developing a sophisticated refine-
ment calculus that uses higher-order logic together with explicit
frames. Leino [18] seized upon these ideas and turned them into an
effective new language for verification called Dafny. Dafny com-
piles to Boogie [2], which in turn generates verification conditions
in first-order logic. Dafny has a set of features suitable for doing
full functional-correctness verifications, and has been been used
to verify a number of challenging heap-manipulating programs.
Finally, Banerjee, Naumann, and Rosenberg [1] have developed
Region Logic, a further extension of the idea of dynamic frames
set in the context of Java. Region Logic includes a rich new form
of modifies clause that captures the read, write and allocation ef-
fects of a procedure in terms of regions. Important components of
Region Logic include a set of subtyping rules for region-based ef-
fects, a footprint analysis algorithm for formulae and definitions of
separator formulae, which are derived from sets of effects.

Many of the ideas from dynamic frames and Region Logic
clearly show up in linear maps. In particular, the domains of lin-
ear maps seem analogous to the frames themselves. Moreover,
in Dafny and Region Logic, programmers explicitly manipulate
frames within the code using ghost variables and assignment in a
similar way to which we use transfer operations. There do appear
to be at least two key differences between the systems though:
(1) Linear maps obey the disjoint domains invariant whereas dy-
namic frames and regions do not obey any similar ”disjoint frames”
invariant. Instead, programmers use logical formulae to express the
relationships between various frame variables. (2) Linear maps are
pairs of a domain (or frame) and a total map. One consequence of
this latter fact is that every reference (select or update) to a lin-
ear map unavoidably mentions its domain/frame. The main effect
of these two global design differences is that they lead to a sub-
stantial simplification of the overall verification system: effects be-
come standard modifies clauses, the ”footprint analysis” becomes
routine identification of the free variables of a formula, frame and
hypothetical frame rules are unchanged from the classic rules, and
finally, there is no disruption to the overarching judgmental appa-
ratus for verification-condition generation.

A variant of the dynamic frames approach is the implicit dy-
namic frames approach, which was developed by Smans, Jacobs
and Piessens [24] for use in object-oriented programs and by Leino
and Müller [19] for use in concurrent programs. This approach in-
volves writing pre- and post-conditions that contain accessor for-
mulae similar to those found in the capability calculus [30], alias
types [25], or separation logic [13, 23]. The verification system will
examine the accessor formulae and then translate them into a series
of imperative statements that may be processed by an underlying
classical verification-condition generator and solved by a classical
SMT solver. These imperative statements perform a similar role as
our transfer statements. In the case of Smans’s work, they transfer
access rights from the caller to the callee during function invoca-

tion, and vice-versa on return. In the case of Leino’s work, they
also transfer privileges to access shared memory objects when locks
are acquired and released. In comparison, linear maps are a some-
what simpler, but lower-level abstraction. Consequently, formulae
involving linear maps may be interpreted as ordinary first-order for-
mulae without the need for any translation. On the other hand, pro-
grams that use linear maps are more verbose than programs that
use implicit dynamic frames because of the use of explicit trans-
fer operations. An interesting direction for future research would
be to explore compilation of implicit dynamic frames into linear
maps. Ideally, such a compilation strategy would be able to avoid
the universally-quantified framing axioms that are used by implicit
frames to relate heap states before and after function calls, as such
quantified formulae are sometimes expensive for a theorem prover
to discharge.

4.3 Separation Logic
Over the past decade, many researchers have devoted their attention
to the development of the theory and implementation of separation
logic [13, 23, 3, 10, 14], an effective framework for supporting
modular reasoning in imperative programs. Separation logic has
achieved its goals by introducing a new language of assertions that
includes F1 ∗ F2 and F1−∗F2. Unfortunately, this new language
of assertions is not directly compatible with powerful classical
theorem proving engines such as Z3 [6], which process classical
formulae. A goal of our work is to give programmers access to the
same kind of proof strategies that are used in separation logic, but
to do so with minimal extension over a classical theorem proving
and verification-condition generation environment.

Despite the differences, it is useful to try to understand the
connections between linear maps and separation logic more deeply.
One informal observation is that a separating conjunction of precise
formulae F1 ∗ F2 ∗ · · · ∗ Fk can be modelled in our context as an
ordinary conjunction F1(H1)∧F2(H2)∧· · ·∧Fk(Hk) where each
formula Fi refers to a distinct linear map variableHi. In separation
logic, the separating conjunction ensures that the footprints of each
Fi (i.e., the heap locations upon which the Fi depend) are disjoint.
In our case, the use of distinct program variables Hi together with
the disjoint domains invariant guarantees a similar property. A
second observation is that when given a separation logic formulaF ,
one will often use the rule of consequence to prove F1∗F2 and then
call a function g with precondition F2, saving the information in F1

across the call using Separation Logic’s frame rule. In our case, a
similar effect may be achieved using a transfer operation. If F (H)
is true initially for some linear map H , then the contents of H may
be transferred to two new disjoint linear maps H1 and H2, which
satisfy F1(H1) ∧ F2(H2). Next, H2 can be passed as a parameter
to g, satisfying precondition F2(H2), and F1(H1) (which contains
variables disjoint from the parameters of g) can be saved across the
call. These observations suggest that it may be possible to compile
certain precise fragments of separation logic to linear maps, which
would open up new implementation opportunities for the logic
using classical theorem proving tools.

Finally, Nanevski et al. [21] have developed powerful libraries
for reasoning about separation in Coq. In this work, like in the work
on linear maps, Nanevski eschews reasoning with separation-logic
formulae ∗ and −∗. Instead, he develops a theory for working di-
rectly with heaps. One of the main contributions is the develop-
ment of an explicit operator for disjoint union and a demonstration
that proofs using this operator can be compact. Nanevski’s work
is designed for interactive theorem proving in a higher-order logic
like Coq, but nevertheless, some of the reasoning principles might
translate to the kind of automated, first-order theorem proving en-
vironment for which linear maps were designed. This is certainly
an interesting direction for future research.



4.4 Linear Type Systems
One final source of inspiration for this work comes from linear
type systems [11, 28, 29]. In linear type systems, distinct variables
with linear type do not alias one another. Similarly, distinct linear
maps have disjoint domains. In addition, values with linear type are
neither copied nor discarded (prior to being used). Similarly again,
the contents of linear maps are neither copied nor discarded. 2

Hence, although we do not use linear type systems directly in this
work, we use similar design principles to architect our language.
The linear in linear maps is a reminder of these shared principles.

More recently, linear type systems have been combined with
dependent types to form rich specification languages for reasoning
about memory, or resources in general [30, 25, 8, 5]. The most re-
cent of these approaches, developed by Charguéraud and Pottier,
bears quite a number of similarities to work with linear maps. In
particular, Charguéraud’s capabilities resemble linear maps, and
like in work on Euclid, or on region-based type systems [26],
Charguéraud’s pointer types include the type of the region or ca-
pability that they inhabit. Consequently, each pointer may inhabit
only one region (aka., collection or linear map), and once again, a
variant of the disjoint domains invariant appears. Technically, how-
ever, there are quite a number of differences between the two sys-
tems. In particular, verification of Charguéraud’s language occurs
by translating imperative, capability-based programs into func-
tional programs, which are then analyzed in detail in a theorem
proving environment for functional programs such as Coq.

5. Conclusions
Linear maps are a simple data type that may be added to imperative
programs to facilitate modular verification. Their primary benefits
are their simplicity and their compatibility with standard first-order
verification condition generators and theorem proving technology.
We hope their simplicity, in particular, will make it easy for other
researchers to study and build upon these new ideas.
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