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Abstract are really just a new kind of ghost variable, used, as ghost variables

often are, to facilitate modular verification. In the reverse direc-
tion, the erasure transformation may be seen as a tactic for prov-
Sing the correctness of ordinary imperative programs: given an or-
dinary program, the reverse transformation explains the legal ways
to transform it into an easy-to-verify linear maps program without
changing its operational behavior.

There are a number of reasons we believe researchers should
adopt linear maps as a modular verification technology. First and

alinear map Programmers magelectobjects from linear maps, ~ [orémost, the idea is surprisingly simple to understand, to imple-
ment and, we hope, to build upon. We believe this is a key contri-

updatelinear maps otransferaddresses and their contents from X ! . X
bution. Second, linear maps require no new language of assertions.

one linear map to another. Programmers may also declare new lin- ted verificati dit ded in first-order loai
ear map variables, pass linear maps as arguments to procedures angenerated verification conditions are encoded in first-order logic

nest one linear map within another. The program logic prevents any an_d may be _solved by off-the-shelf SMT solvers such as Z3 [8].
of these operations from duplicating locations and thereby break- Third, using linear maps enables effective use of the.classmal frame
ing the key heap representation invariant: the domains of all linear &1d anti-frame rules, completely unchanged, despite the presence

maps remain disjoint. Linear maps facilitate modular reasoning be- o;}an |mpterat$:ve heapl.l F%”nh’ Ilpelar mapst teqhnollogé/ _reqltjlreds né)
cause programs that use them are also able to use the simple, class'2N9€s 10 thé overall judgmental apparatus Involved In stanaard,

sical frame and anti-frame rules to preserve information about heap |:st-3rd§r vegf;patlo? condltlog gtegeratlont: g doesd not use n(;]r.l-t.
state across procedure calls. We illustrate our approach through ex-> a:ndar T_O ! |est_c auseshan tlh ?est no . ep;en up?n ?op ISt-
amples, prove that our verification rules are sound, and show that €2!€C auxiliary notions such as the footprint or frame of a formu-

operations on linear maps may be erased and replaced by equivalen2€: Consequently, it should be relatively easy to extend any one
operations on a single, global heap of a number of standard, existing verification condition generation

tools with these new data types.

Our work on linear maps has been directly inspired by several
1. Introduction other recent approaches to modular reasoning, including research
on Separation Logic [15, 25, 24], Dynamic Frames [17, 20] and Re-
gion Logic [1]. The advantages of linear maps over these previous
Sapproaches are their simplicity and the minimalism of the required
extensions over standard first-order Floyd-Hoare logic. For exam-
ple, Separation Logic achieves its goals at the expense of introduc-
ing a new set of assertions involving teeparating conjunction
Fy = F, — assertions that cannot be proven directly by classical
off-the-shelf first-order theorem provers. Alternatively, Dynamic
Frames and Region Logic operate by changing classical concepts
such as the modifies clause, tracking exotic effects, or developing
ew footprint analyses.

Linear maps are also closely connected to research done on the
Euclid programming language in the 70s. Euclid contained a data
type called a “collection” and each pointer was associated, via its
static type, with such a collection. Such collections are similar to
| the linear maps developed in this report, and one of the important
contributions of our work is to resurrect this basic idea, which
the research community had almost entirely forgotten. In addition,
however, we have presented the theory in a modern style, added
critical new operations on linear maps, developed a logic tailored
for modern SMT solvers, outlined the connection to Separation
Logic and its frame rules, and proven important technical results

Verification of large programs is impossible without proof tech-

nigues that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to thi
problem first considered in the context of the programming lan-
guage Euclid, developed in the 70s. The central idea is that rather
than modeling the heap as a single total function from addresses
(integers) to integers, we model the heap as a collection of partial
functions with disjoint domains. We call each such partial function

Verification of large programs is impossible without proof tech-
nigues that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to thi
problem first considered in the context of the programming lan-
guage Euclid [19, 22], developed in the 70s. This approach centers
around the introduction of a new data type, which we cdihear

map Intuitively, linear maps are simply little heaplets: Program-
mers maystore objects in linear mapdpok up objects in linear
maps and, most interestingliyansfer addresses from one linear
map to another. Programmers may also declare new linear map
variables, pass them as arguments to functions, receive them ag!
results, or nest them within one another. We call these rliaps
ear because of their connection to linear type systems [13, 30, 31]:
like values with linear type, linear maps are never duplicated nor
aliased.

Programs that use linear maps tend to be written in a functional
store-passind.g., linear-map-passing) style as this style facilitates
local reasoning and information hiding. However, despite this func-
tional facade, linear maps programs are actually ordinary impera-
tive programs that load from, and store to, a single, global heap. In
order to connect a linear maps program to its corresponding con-
ventional imperative program, we definee@masure transformation h /
that erases all linear maps variables, erases all transfer operationdncluding soundness and erasure theorems. .
and replaces linear map lookups and updates with lookups and up- The rest of the paperis organized as follqws. Section 2 presents
dates on the global heap. In the forward direction, the erasure trans-tN€ central concepts in greater depth. Section 3 presents the tech-

formation shows that using linear maps incurs no overhead; they



procedure incr(int p) returns () procedure incr(p: int, t:1lin)
modifies heap requires p € dom(t)
ensures p € dom(t)
heap[p] := heapl[p] + 1;
tlp]l := tlp]l + 1;

heap[py] := 42;

call incr(px); 1llpyl := 42;
var lx:1lin in
Figure 1. Frame rule with ordinary maps i;ﬁiﬁgﬁ;lm .
1 := 1x0{px};
nical details. Section 4 explains some interesting extensions. Sec- Figure 2. Frame rule with linear maps
tions 5 and 6 discuss related work in greater depth and conclude.
2. Key Concepts 2.1 Linear Maps

Two structural verification rules are required to verify just about e address this weakness of the conventional frame rule, not by
any imperative program. The firstis the rule of consequence, which changing it, but by refining our modeling of the heap. Instead of

states that if a Floyd-Hoare triple”} C{Q} is valid andP’ = P modeling the heap with a single monolithic map, we model it as a
and@ = Q' then the triple{ P'}C{Q"} is also valid. The second  collection of partial maps with disjoint domains. We call each such
is the (classical) frame rule, which states thatif}C{Q} is valid map a linear map, which is essentially a pair comprising a total map
and the set of variables modified 6y is disjoint from the set of  representing the contents and a set representing the domain of the
free variables of? then{ R A P}C{R A Q} is also valid. In other  |inear map. We refer to the underlying total map and domain of a
words, the validity of framing formula may be preserved across jinear map¢ asmap(¢) anddom(¢) respectively. We augment our
any statement that does not modify the frame’s free variables. programming language with operations over linear maps that are

With that background, consider the procedifier: guaranteed to preserve the invariant that the domains of all linear

procedure incr() returns () maps are pairwise disjoint and their union is the universal set. We

requires true, ensures true, modifies x refer to this invariant as the disjoint domains invariant.
{ x:=x+1;} We now rewrite the program from Figure 1 using linear maps

) . as shown in Figure 2. As we explain in Section 2.2, the program in
This procedure has no input arguments and no output arguments.Figyre 1 can be obtained from the program in Figure 2 using the
Its specification consists of the preconditiorue, the postcondi-  erasure operation; consequently, any properties about the runtime
tion true, and the guarantee that it does not modify any variable pehavior of the latter program are valid for the former as well. The
exceptx. Henceforth, our examples will use the convention that a pew definition of procedurencr takes a pointep and a linear map

missingrequires clause indicates the preconditionue, a miss- t as argument$.The implementation ofncr demonstrates that
ing ensures clause indicates the postconditiofue, and a miss-  jinear maps can be read and written just like ordinary maps. Unlike
ingmodifies clause indicates that the procedure does not modify ordinary maps, a read or a write of a linear magt the address
any variables in the gallerjs scope. _ comes with the precondition thais in the domairt. The read and
Consider a call tdncr in a calling scope that contains another  yrite of ¢ [p] performed during the increment operation are safe
vanablgy. The Floyd-Hoare triple{y = _42}_ call incr() {y_ because of the precondition dficr.
= 42} is easily proved through a combination of the conventional | etp denote the code fragment in Figure 2 after the definition of
frame and consequence rules. incr. The contents of the heap at the beginning &f modeled by
{true} call incr() {true} the linear map. whose domain includes both addressesindpy.
(Frame) In order to callincr with the pointerpx, we also need to pass in a
{y=42 A true} call incr() {y=42 A true} linear map whose domain contains the addpas$\e create such a
(Consequence) linear map by declaring a new varialile, whose domain is empty
{y=42} call incr() {y=42} initially. We then perform the transfer statemant := 1@{px} to

move the contents of addregs from 1 to 1x; this operation has
the precondition thaix is in the domain ofi.. The linear majix is
now passed, along with the pointet to incr, thus satisfying the
precondition ofincr.

The main reason for the simplicity of the proof is that the set of
variables modified by the code fragmerll incr() is disjoint
from the free variables in the assertipn= 42.

This simple proof strategy does not quite work when the heap is It is important to note that the procedure call has a side effect

used to allocate data. The standard method of modeling a heap [5] - .
uses a single map variable mapping memory addresses to their" the variablelx passed for the linear argumentAt entry, the

conent Sne a procedure that updaes he hea at any eSS 1 nSToes o s out, e ontrts v
must contain the map variable in its modifies set, the conventional x- P

frame rule cannot be used for preserving heap-related assertion%mhglnt;'gt;?exd;fé?;mlg(i??n?gz\éar{ﬁgﬁéﬁge;ﬂ%cﬁgitwrr?oté"iif?;;er
across a call to such a procedure. To illustrate the problem, we clauge on ﬁnear man an u.ments’ for a rocedurg that we do not
model the heap as a varialtleap mappingint to int and allocate explicitly show parg P

the variablest andy on the heap with distinct addresses and Unlike the previous version of thincr procedure in Figure 1,

py (Figure 1). Further, we change the procedurer o take the new version ofi has the empty modifies specification
the memory address whose contents are to be incremented. Let Lner Pty P :

denote the code fragment in Figure 1 after the definitionrgfr.

Then, the triple{px != py} C {heapl[py]l = 42} can not be ltot and1lin denote the types of ordinary and linear maps frimt to
proved using the conventional frame rule. int respectively.




procedure incr(p: int, tm:tot, t:lin) { px !'= py A llpyl — _ A llpx] — _ }
requires p € dom(t) A tm = map(t)

ensures p € dom(t) A t[p] = tm[p]l+1 1[py]l := 42;
tlpl := tlp]l + 1; { px !'= py A llpyl — 42 A 1lpx] — _ }
1[px] := 24;
1[pyl := 42;
1[px] := 24; { px !'= py A llpyl — 42 A 1lpx] — 24 }
var 1x:1lin in
1x := 1l@{px}; var lx:lin in
var lxm:tot in
lxm := map(lx); { px !'=py A llpyl — 42 A 1[px] — 24 }
call incr(px,lxm,1x);
1 := 1x0{px}; 1x := 1l@{px};

Figure 3. Ghost variables {px t=py A 1lpy] > 42 A Ixlpx] — 24 }

var lxm:tot in

Consequently, the tripldpx '= py} C {1[py]l = 42} can be

. - ; d 1= Al 42 A1 24
easily verified using the conventional frame rule. {px Py eyl = xlpx] — }

2.2 Erasure 1xm := map(lx);
An important aspect of our system is the erasure operation which { px !'= py A 1llpyl — 42 A 1x[px] — 24
allows us to connect the operational semantics of the program A lxm = map(lx) }
written using linear maps with the corresponding program written
using a global total map. As an example, the erasure of the code in
Figure 2 is the code in Figure 1 witteap being the unified total
map. Section 3 develops a program logic for verifying properties
of programs that use linear maps. The erasure operation essentially 1 .= 1xe{px};
allows us to carry over the runtime properties established by the
verification of a program using linear maps over to the erased { px !'= py A 1[py] + 42 A 1[px] + 25 }
program using a global map.

The erasure operation is defined both on the state and the pro-
gram text. The erasure of a state combines all linear map variables
in the state into a single unified total map; this transformation is
possible because of the disjoint domains invariant. The restrictions 04 [
on the operations permitted on linear maps have been designed pre-  num : int
cisely to ensure that the erasure of the state is well-defined. The den : int
erasure of the program text removes all occurrences of linear map
variables and any transfer operations among them; further, a read or invariant den != 0;
write of a linear map variable is transformed into the corresponding
operation on the unified total map. The erasure operation ensures
that a program (with linear maps) takes a state s’ iff the erased {
program takes the erasure of stat® the erasure of state.

call incr(px,lxm,1x);

{ px !'= py A llpyl — 42 A 1x[px] — 25 }

Figure 4. Proof of statemert

0;
1;

procedure reset(a: int, b: int) returns ()
requires b > 0;

num := a;
2.3 Two-state postconditions } den := b
We now augment our increment example from Figure 2 to illus-
trate another useful feature of our system. The code fragment procedure floor() returns (res: int)
Figure 3 assigns the valu®t to 1[px] before callingincr; we { - )
would like to show thal [px] = 25 at the end of. To enable this ) res := num/den;
verification, we must enrich the postconditioniafcr to relate the ]

value oft [p] upon exit with the value of [p] upon entry. It is
difficult to express such a postcondition because any reference to
the linear argument by default refers to its value in the exit state.
To circumvent this problem, we pass an ordinary mago incr

as an additional argument and add the preconditiors map (t) . .
indicating the relationship betweem andt. The presence of the ~ fOr compact representation of the assertio@B[py] — ) ex-
parametettm allows us to enrich the postcondition piicr to in- pands to(py € dom(1)) and(1[py]l — c) expands to(py €
dicate that the value of [p] at exit is one more than its value at dom(1) A 1lpyl = o).

entry. At the call site, we pass a total map whose valusjs(1x)

for the argumentm. This operation does not violate our disjoint
domains invariant because while is a linear maplxm is an ordi- Large programs are structured as a collection of modules, each of
nary total map. The erasure of ghost variables suamasdlxm is which offers public procedures as services to clients. An impor-
standard; the erasure operation removes all references to them frontant goal of modular verification is to enable separate verification
the program text. A complete Floyd-Hoare proof for the program of the module and its clients. The correctness of a client should
fragmentE is shown in Figure 4. In this proof, we use two macros depend only on the preconditions and postconditions of the public

Figure 5. A simple module

2.4 Information hiding



mod [
local :
f : int

lin := [I<>;

= nil;

invariant
Btwn(local,f,nil) = (dom(local) U {nil})

procedure alloc(h:1lin) returns (res:int)
requires dom(h) = ()
ensures res != nil A res € dom(h)

if (f
res :

nil)
malloc(h);

f;
local[res];
local@{res};

procedure free(arg:int,h:1lin) returns ()
requires arg != nil A arg € dom(h)

local := he{arg};
locallarg] := f;
f := arg;
}
1

Figure 6. Memory manager

procedures of the module and not on the private details of the mod-

ule implementation. This requirement precludes any precondition
from referring to the private state of the module; consequently, it
becomes difficult to verify the module implementation which of-
ten depends on critical invariants at entry into a public procedure.
As an example, consider the module shown in Figure 5 that imple-
ments a rational number and provides two procedureset and
floor. The private representation of this module uses two integer
variablesnum andden for storing the numerator and denominator
respectively. The integer division operationfiloor fails unless
the value ofden upon entry is different from zero.

This conflict between modular verification and information hid-
ing is well-understood; so is the concept of module invariant as a
mechanism for resolving this conflict [14]. A module invariant is an

var refl, ref2 : int in
var tmpl, tmp2 : lin in
refl alloc(tmpl);
tmpl[refl] := 3;
ref2 alloc(tmp2);
assume dom(tmpl) N dom(tmp2) = 0;
assert refl != ref2;
tmpl := tmp2@{ref2};
tmpl[ref2] := 6;
assert tmpl[refl] = 3;

Figure 7. Client of memory manager

the memory address pointed to by the input variadtg. It is
worth noting that the modified set of botilloc and free is
empty; therefore, they are allowed to modify only the private state
of the memory manager module and their respective linear map
arguments.

The private representation of the memory manager uses a linear
map variablelocal and an integer variable. The value off is a
pointer to the beginning of an acyclic list obtained by starting from
£ and applyinglocal repeatedly until the special addressl is
reached. The variable is initialized to a special pointeril and
local isinitialized to the liner map with an empty domain denoted
by [1<>. The module invariant of the memory manager uses a
special set construct@twn that takes three arguments, a linear
mapl, a pointera, and a pointeb. The seBtwn(1,a,b) is empty
if a cannot reachb by following 1. Otherwise, there is a unique
acyclic path followingl from a tob andBtwn(1,a,b) is the set of
all pointers on this path including andb. The module invariant
states that the list hanging fromis acyclic and the domain of
local includes all elements in this list except possibiy .

The procedurexlloc returns an address from the head of the
list if the list is nonempty; before returning, it transfers the returned
address from the domain abcal toh. If the list is emptyalloc
simply calls a lower-level procedusmlloc with the same inter-
face asalloc. Thus,alloc andmalloc model two different oper-
ations with same functional specification but with different latency.
The module invariant described earlier is crucial for proving the
safety of the read and transfer operations.enal. The procedure
free appends the pointerrg to the beginning of the list and trans-

invariant on the private variables of a module that may be assumedfersarg from the domain of to local.

upon entry but must be verified upon exit. The module invariant for
the rational number module states tliah !'= 0; it is preserved

The verification of the client code, given in Figure 7, reveals an-
other interesting feature of our proof system. The statemenime

by each procedure and allows us to prove the safety of the division dom (tmp1) N dom(tmp2) = @ allows downstream code to use

operation infloor.

There are two important reasons for the soundness of the veri-

fication method based on module invariants. First, the module in-
variant is verified upon exit from the module. Second, the module
invariant refers only to the private variables of the module which

the assumed fact for verification. It is sound to make this assump-
tion becausemp1 andtmp?2 are distinct linear map variables whose
disjointness is assured by the disjoint domains invariant. This as-
sumption, together with the postconditionadfloc, is sufficient to
verify the assertioassert refl != ref2following it. Note that

cannot be accessed by code outside the module. As long as the prothe postcondition aiilloc is not strong enough to verify this asser-

gram uses only scalar variables, verification using module invari-

tion by itself. Our programming language allows the programmer

ants is simple. However, if the representation of a module uses theto supply such sound assumptions wherever needed.

global heap, which is potentially shared by many different modules,
verification becomes difficult since the module invariant cannot re-

The examples in this section have been mechanized using Boo-
gie. The verification of the memory manager module depends on

fer to the global heap variable. Linear maps come to the rescue justreasoning about thetwn(1,a,b) set constructor in the presence

as they did with the framing problem in the presence of the heap;
we illustrate their use in the context of information hiding using a
memory manager example [24].

Figure 6 shows the memory manager module. This module
provides two proceduresiloc andfree, used for allocating and
freeing a single memory address, respectivelyloc returns the
freshly allocated address in the return variabkes. free frees

of updates ta and transfers to and from the domainlofWe have
extended the decision procedure for reachability [18] with a col-
lection of rewrite rules based on e-matching [11] for modeling the
interaction betweeBtwn and the semantics of transfer between lin-
ear maps. Although examples in this section only illustrate the use
of transfer of singleton sets, we have verified an example involving
multiple lists that requires transferring the contents of an entire list.



types T :=1int | tot | lin| set lelp=v

values va=n|f|Ll]|s
logical exps e ==z |v | e1 + ez | sel(er, e2) | upd(es, e2, €3) z] 5 = Elz]
| ite(es, ez, €3) | selL(61,62) |ude(€1762763) v =
| map(e) | dom(e) | 1in(er, &) | {z | F} et el —[er]p + [ea] g
formulae  F:u=true|false|—~F |F1V Fo| F1 A F» sel(er, e2)] 5 =[e] z([e2] )
| Fi = F> | 3z:7.F | Vo:r.F upd(er, e2, e3)]; = Az.ifz = [ez2] then[es] zelseler] 5(x)
| e1=ex|e1 € e ite(e1, ez, e3)]p, = Az.ifx € [e1] gthen[es] ,(x)else]es] z(x)

ﬂselt (er,e2)]p  =map([e] p) ([e2] )
Figure 8. Syntax of values, expressions and logical formulae  [upd” (e1, €2, €3)] 5 = faom([e1] ) U{lea] 5}
wheref = Az.ifz = [e2] ; then [es] ; else map([ei] ;) ()

) map(e)] = map([e] ;)
3. Technical Development dom(e)] 5 = dom([e] )
. . _ Lo . 1i = e
This section presents the technical intracacies involved in develop- H{;n‘(%’ﬂez)h _ g}e‘l%)ﬂ 2:]]’% = F}
ing a program logic for imperative programs with linear maps. B ’
3.1 The Assertions Figure 9. Denotational Semantics of Expressions

Figure 8 presents the language of assertions. Here and elsewhere,
ranges over variables, ranges over integers asdanges over sets

of integers. When we want to represent a specific set, we will use
standard set-theoretic notation suc ag = > 0}. Metavariablef
ranges over total maps from integers to integers. When we want to
represent a specific total map, we will use standard notation from
the lambda calculus such as.x + 1.

Linear maps are simply pairs of a total mgpfrom integers
to integers and a domais Intuitively, the pair of total map and
domain implements a partial map. We fatange over linear maps.

In general, when linear mapis the pairf,, we letmap(¢) refer

to the underlying total mayp anddom(¢) refer to the underlying
domains. We write [y to refer to the empty linear map: a linear
map with the empty set as its domain and any map as its underlying
total map.

The logic is built upon a collection of simple expressians
whose denotations are values with one of four primitive types:
integer @int), total map €ot), linear map {in), and integer set
(set). The expressions include variables, values of each type, and
a collection of simple operations on each type. For total maps,
we allow the standard operations sele¢1) and updateypd).

For instancesel(es, e2) selects element, from the total map

e1 While upd(e1, ez, e3) updates total map; at locationes with

the value denoted bys. In addition, we will allow the use of a
generalized map update with the fotre(e1, ez, e3) (pronounced

“if then else”) wheree; is a set anck; and es are two additional
total maps. This expression is equal to the total map that acts as
e2 When its argument belongs to the sgtand acts ags when

its argument does not belong to the setThis non-standard map
constructor fits within the framework of de Moura and Bjgrner's Figure 10 presents the formal syntax of programs. The main syn-
recent work on generalized array decision procedures [9] and is tactic program elements are expressions, statements and modules.

{z | F} denotes a set of integersthat satisfy formulaf’. We will
freely use other operations on sets such as union and intersection
as they may be encoded.

The logical formulae themselves include the usual formulae
from first-order logic as well as equality and set inclusion.

Throughout the paper, we will only consider well-typed expres-
sions and formulae. Given a type environm&ntvhich is a finite
partial map from variables to their types, we wiiteé- ¢ : T to de-
note thate is a well-formed expression with type Likewise, we
writeT" - F : prop to denote that formul#' is a well-formed for-
mula. The rules for defining these judgments are simple and stan-
dard and therefore we omit them.

In Figure 9, expressions are given semantics through a judge-
ment with the forn{e; ] . Here, and elsewheré; is a finite partial
map from variables to values. We wrifg[x] to look up the value
associated withx in E. We write E, x = v to extendE with z
(assuminge does not already appear in the domairEdf We write
E[z = v] to updateE with a new valuev for x. A value envi-
ronmentE has a typd’, written+ E : T', when the domains of
I" and F are equal and for every binding~ in T" there exists a
corresponding valu€[x] with typer.

Given the semantics of expressions, the semantics of formulae
is entirely standard. When an environménsatisfies a formuld’,
we write E = F. When a formulaF’ is valid with respect to any
environment with typd”, we write" = F.

3.2 Programs

supported in Z3 [8]. Program expressions are divided into three major categories:
The expressionsel® (e;, e2) andupd” (e1, ez, e3) are variants implementation expressioni&), ghost expressiongS) andlinear

of the standard select and update expressions designed to operatexpressiondmplementation expressions are those expressions that

on linear maps. Theel® (e1, e2) expression selects, from the are executed unchanged by the underlying abstract machine. Ghost

underlying total map ot;. As far as the semantics of logical ex- expressions are expressions that are used to help specify the behav-

pressions are concerneeh, may lie outside the domain af;. In ior of programs, but are not needed at run time and hence will be

later subsections, the reader will see how the program logic will use erased by the erasure translation. Ghost expressions may include or
explicit domain checks to guarantee that reads and writes of linear depend upon implementation expressions, but implementation ex-
map program variables do not occur outside their domains during pressions may not depend upon ghost expressions. Linear expres
program execution. Thepd" (e1, ez, e3) updates linear map; at sions are expressions that involve linear maps. These expressions
location ez with the value denoted bys. If e; does not appear in  are partially erased: the erasure translation replaces references to
the domain ok, then the domain of the resulting linear map is one linear maps with references to the single underlying heap. Linear
element larger than the domain of the initial map. The expressions expressions must be constrained to ensure they are not copied.
map(e) anddom(e) extracts the underlying total map and underly- For the purposes of this paper, we segregate the different sorts
ing domain of linear mag while the expressiofin(e;, e2) con- of expressions using their types. More specifically, the type is
structs a linear map from total map and sete;. The expression our onlyimplementation typelhe typesot andset are ourghost



impl exps 72
ghost exps S
statements C

X ‘ n | Z1 —+ ZQ

= e

=7 |z =" |21 :=%S
varz:7in C | skip | C1; Ca
if Z then C) else (>

while [F]| Zdo C

assert F' | z3 := g(x1,x2)

X1 Z:L $2[Z} ‘ SL‘[Zﬂ ::L Z2

1 1= 22@QS
assume dom(z1) N dom(z2) = 0
mod clause mod {z1,..., 21}

mod
Yargi:mi,arga:me. F1 — Jret:1s. Fa

fun types o =

mods mu = |E; Finv; g:0 = C]
mod env’s M = | M,mv

states D) = (M;E)

programs prog == (%;C)

Figure 10. Syntax of Programs

types The typelin is ourlinear type We write impl(7) whenrt
is an implementation typghost(7) whenr is a ghost type and
linear(7) whenr is a linear type. We writeonlinear(7) when

arrow specifies the variables that may be modified during execution
of the function. The collection of constraints on the form of a
function signature are specified using a judgment with the form
T" + o (not shown). For convenience, we often refer to a module
using the name of the function that it contains. For instance, given
a list of modulesM/, we select the module containing the function
g using the notationV/ (g). We assume the same function nagne

is never used twice in a list of modules.

A complete program consists of stafeand the statement' to
execute. A stat& = (M, E) is a list of modules\/ paired with a
global environmenf. We assume no variableis bound both in
the global environmenE and in some module local environment
in M (alpha-converting where necessary). We |Bt.., be the
environment formed by concatenating the module environments
to the global environment frorx. We also lift most operations
on environments to operations on states in the obvious way. For
instance Y[z] looks up the value bound toin any environment in
3 andX [z = v] updates variable with v in any environment in
3. ¥, x = v extends the global environmentihwith the binding
x = v assumingr does not already appear 1. Finally, [e:]y,
abbreviatede:]|y; ~andX |= F abbreviatesX|en, = F.

3.3 The Program Logic
The program logic is defined by two primary judgment forms: one

7 is not a linear type. We also use these predicates over closedfor statements and one for modules. The judgment for verification

values, as the type of a closed value is evident from its syntax.
Statements” include standard elements of any imperative lan-
guage: assignmengkip, sequencing, conditionals, while loops,

asserts, function calls and local variables. We assume local vari-

of statements has the for6t I'; mod - {F1} C{F>}. Here,Gis a
function context that maps function variables to their tyfess a
value type environment that maps value variables to their types and
mod is the set of variables that may be modified by the enclosed

ables and other binding occurrences alpha-vary as usual. We re-statement. Given this context; is the statement preconditiofy;

quire function arguments be variables to enable a slight simplifica-
tion of the verification rules. In addition to a normal assignment,

we include a linear assignment and a ghost assignment. Opera-

the statement to be verified, aid is the postcondition. The rules
for this judgement form are given in figures 11 and 12.
Figure 11 presents the most basic rules for statement verifica-

tionally, the linear assignment not only assigns the source to the tar-tion including the rule of consequence and the frame rule. This fig-
get, but it also assigns the empty map to the source to ensure loca-ure contains two rules for assignments: (Asgn) and (Ghst). (Asgn)
tions are not copied and the disjoint domains invariant is preserved. handles assignment for implementation types and (Ghst) handles
The ghost assignment acts as an ordinary assignment, though th@ssignments for ghost types. The rules are identical, save the type
language type system will prevent implementation types from de- checking component. They are separated to simplify the definition
pending upon it. of the erasure translation, which will delete the ghost assignment
To read from locatiorZ in total mapz, and assign that value  but leave the implementation assignment untouched. The rule for
to variablez, programmers use the statemant := z2[Z]. To variables in this figure is standard, though it applies only to intro-
update locatior?; in total mapz with value Z,, programmers use  duction of variables with non-linear type. Linear variable declara-
the statement[Z:1] := Z». Analogous statements for linear maps tions (as well as linear assignments) will discussed shortly. We have
are superscripted with the characterThe remaining statements  omitted rules forskip, sequencing, if statements, and while loops
are particular to the language of linear maps. The statement as they are standard.
x2@S transfers the portion of linear map, with domain S to Figure 12 presents the verification rules that are concerned with
z1. Finally, assume dom(z1) N dom(z2) = 0 is a no-op that maps and function calls. The first rule in the figure is the linear as-
introduces the fact that two linear maps have disjoint domains into signment rule (Asgn Lin). This rule demands that the variahle
the theorem-proving context. is the empty map prior to assignment anglis the empty map af-
Modulesmuv consist of a private environment, an invariant and, ter assignment. The quantified statement in the precondition of the
for simplicity, a single, non-recursive function. These functions are rule states that> may be assignedny empty linear mapc5 (i.e.,
declared to have a namg a typeo and a bodyC'. For simplicity a linear map with empty domain and any underlying total map).
again, functions are constrained to take two arguments, where theThese constraints ensure that an assignment neither copies linear
firstis non-linear and the second is a linear map. The first argument map addresses (thereby preserving the disjoint domains invariant)
is immutable within the body of the function and the second is a nor overwrites them (thereby simplifying the correspondence be-
mutable input-output parameter. The argument variattegs and tween linear maps and heaps in the erasure translation). Note also

arge may appear free in the preconditiéfi, the postconditiorF
and the body of the function. Sinegg; is immutable in the body

that bothz; andz, are considered modified by this statement. The
second rule (Var Lin) illustrates that declaring a linear variable is

of the procedure, its value in the postcondition is the same as its the same as declaring a non-linear variable except for the constraint

value on entry to the procedure. Sinegy, is mutable in the body
of the procedure, its value in the postconditiomi® necessarily

that the linear variable initially contains an empty linear map.
Rules (Map Select) and (Map Update) are standard rules for

the same as its value on entry to the procedure — its value will processing total maps. Rules (Linear Map Select) and (Linear Map
reflect any effects that occur during execution of the procedure. Th Update) are modeled after their nonlinear counterparts, with one
result variableret may appear free in the postcondition and may be addition: before using a linear map, a programmer must prove that
assigned to in the function body. The setd on the function type their linear map access falls within the domain of the linear map.



G:T;mod F {F1}C{F>}

F'kzy:1lin Tk oy lin z1, 32,25 are distinct variables z1,x2 € mod x5 € FV (F)

G;T;mod F {dom(z1) = 0 A Vzh:lindom(xh) = 0 = Flab/zs][xe/z1]} 21 :=" 22{F}

z ¢ (dom(I') U FV(F2)) G;T',z:lin;mod U{z} - {F1}C{F>}

(Asgn Lin)

G;T;mod b {Vz:lin.dom(z) = ) = Fi}var z:linin C{F>}

I'kxy:int TI'kao:1lin I'H Z:int x1 € mod

(Var Lin)

G;T;mod - {Z € dom(x2) A F[sel® (x2, Z)/x1]}x1 :=" 22[Z]{F}

I'Zy:int T'FZy:int I'k2x:1lin z € mod

(Linear Map Seleqt

G;T;mod - {Z1 € dom(z) A Flupd® (z, Z1, Z2) /z)}x[Z1] :=" Zo{F}

(Linear Map Updatg

I'kFz:1lin ThFy:lin T'F S:set x,y € mod

G;T;mod F {S C dom(y) A F[lin(ite(S,map(y),map(x)),dom(x) U S)/z][1lin(map(y),dom(y) — S)/y]}x := yQS{F}

(Transfey

I'ka2y:1lin T'F a2 :1lin x4, xz2 are distinct variables

G; s mod + {dom(z1) N dom(z2) = ) = F}assume dom(z1) Ndom(zs) = O{F}

(Assume

G(g) =Vargi:m,arga:m2.F1 mod, Jret:ms. Fo
Frkazi:m Thaoy:m Thas:ms (mod U{xe,z3}) C mod =1,z2,73 € FV(G(g))

G;T;mod b {Fi[z1/argi][x2/args|}xs := g(x1, x2){F2[z1/argi][x2/args][xs/ret]}

(Call)

Figure 12. Program Logic: Linear Statements and Function Calls

G;T;mod - {F1}C{F>»} ‘

TR =F
G;T;mod + {F{}C{Fs}
TEF =R

G;T;mod + {F1} C{F»}

(Consequenge

G;T;mod — FV(R) - {F1}C{F2}
G;T;mod + {F1 AN R}C{F> A\ R}

(Frame

'kz:7 impl(r) I'HZ:7 x € mod

A
GiTimod F {FIZ)alte = Z{F} s
Pkxz:7 ghost(r) I'FS:7 x € mod (Ghst
G;T;mod - {F[S/z]}x :=% S{F}
'+ F' : prop
A
G;T;mod - {F' A F}assert F'{F} (Assen
x ¢ (dom(I') U FV(F2)) nonlinear(r)
G;T,z:m;mod U {z} F {F1}C{F>} (Var)
ar

G;T;mod & {Va:7.F }var x:7 in C{F>}

Figure 11. Program Logic: The Basics (Selected Rules)

The (Transfer) rule first checks that the two maps in consider-
ation, z (the map transferred to) and(the map transferred from)
can both be modified. If they can be modified, the Hoare rule itself
acts as a specialized assignment rule where a new map that gcts as
on.S andz elsewherei(e.,1in(ite(S, map(y), map(z)), dom(z)U
S)) is assigned ta: and another new map that actsiadut has a
smaller domaini(e., lin(map(y), dom(y) — S)) is assigned tg.

The second last rule (Assume) allows the theorem proving en-
vironment to be extended with the fact that the domains,oénd
xo are disjoint, provider; andx. are distict linear map variables.
This rule directly exploits the disjoint domains invariant.

The last statement rule is (Call). This rule looks up the function
signature in the context and checks its arguments and result have
the appropriate types. It also verifies that the variables modified by
the function (nod’) are subset of those that may be modified in
this context fnod). Finally, it checks that botk; andzs may be
modified. The variable:s is clearly modified as it is the target of
an assignment. However, beware thatis also modified as it is
a linear map and its entire contents &m@nsferredto the second
parameter of the call upon entry to the function, and then upon
return, a mutated linear maptimnsferredback. Such transfers are
necessary (as opposed to copies) to maintain the disjoint domains
invariant. The first argument to the cath is not mutated: as a
non-linear value, it may simply be copied into the parameter. To
simplify our formulation of the preconditions and postconditions
for the triple, we add the constraint that noneaaf, x> or z3
may appear free in the function signature (either the precondition,
postcondition or modifies clause).

Figure 13 defines the judgment form for verification of mod-
ules: G;T' - mv = G’. Intuitively, the module contents are
type checked in one environmer@(I') and the result is an ex-
tended context’) for the newly declared functions. For simplic-
ity, all module-local variables are private (as opposed to public),



and hence, unlik&r, T is not extended. The most interesting ele- Z that maps types to sets of legal initial values for that type. For

ments of the rule are: integers, sets, and total maps, any initial value may be generated.
For linear maps, only the empty map may be generated.
e The private module environment must have some fype The primary effect of rule (OS Calll) is to look up the module
e The module invarianF’,,., is checked for well-formedness with ~ corresponding to the functiopin the program state, evaluate the
respect only to the private environmetity - Fi,, : prop). function arguments, and replace the call withC'] where C' is

This check |mp||e§7‘znv may 0n|y contain the private variables the body Ofg In addition, hOWeVer, the Ca” creates enVirOnment

of the current module, which may not be modified by code bindings for the argument and result variables, sets the linear map
outside the module. argumente, to the empty map and sets up the instructions to copy

the resultsret and arg». back to variables visible in the current
context (3 andxo respectively). A linear assignment is used to

The module invariant is valid in the initial environmeht

e When checking the body of the module functidh,,,, is as- copy arge back tox, after the call, ensuring that at no point is
sumed initially and proven upon exit. Howevét,,,, does not the disjoint domains invariant ever broken. Rule (OS Call2) allows
appear i, meaning it is hidden from module clients. ordinary execution underneath thy:] annotation and rule (OS

The module function may modify any variable in its declared CaI_II%) discards thg[} annotalltlon_wthen ctpntrc\)llvleiawes t?ﬁt scoge. ;
modifies clause as well as the return variables and the private . € remaining ru'es are less interesting. vve leave the reader to

environment. The domain of the private environment does not investigate the specifics.
appear in the function modifies cause (or elsewhere inthe func- 3 5 gqundness

tion signature), meaning these variables are hidden from clients. : . .
The first key property of our language is that itssund In other

Figure 13 contains definitions for several further judgement words, execution of verified programs never encounters assertion
forms for verifying lists of modules, states and finally programs failures, or fails domain checks on linear maps and, if execution
as a whole. The judgemeftt~ M = G simply chains together  terminates, the postcondition will be valid in the final state. The
the verification of all modules/ in sequence. This judgment disal-  following definition and theorem state these properties formally.
lows mutual recursion amongst modules. The issues involved with The relationprog —* prog is the reflexive, transitive closure of
mutual recursion, temporarily broken module invariants, and reen- prog — prog.
tracy are orthogonal to issues involving linear maps. The judgment
F ¥ = G;T verifies a state, which includes both modules and Definition 1 (Stuck Program)
global environment. Finally, a programvog is said to be well- A program(X; C') isstuckif C' is notskip and there does not exist
formed and to establish a post-conditiéh when the judgment  another staté€~'; C') such that:; C) — (X/; C') .

F (%;C) : Fyis valid. This judgment verifies the underlying

state> and then uses the generated verification context to check Theorem 2 (Soundness)

the s_te_ltemenC satisfies some appropriate Hoare triple with post- f |- (2;C) : Fy and(2; C) —* (X C") then(X'; C') is not
condition 5. , ) , stuck and ifC’ = skip thenX' |= F .

The program checking rule relies on one other judgntent
E wf, whose definition we have omitted, but is easy to define. This  The proof is carried out using standard syntactic techniques
latter judgment ensures that the initial environment satisfies the dis- and employs familiar Preservation and Progress lemmas. We have
joint domains invariant. In practice, a sensible way to perform this checked all the main top-level cases for these lemmas by hand, but
global disjoint domains check is to check that all declared linear have assumed a number of necessary underlying lemmas such as
map variables are initially bound to the empty map (as we have substitution, weakening, and some others are true without detailed
done in our examples), save one, which is bound tetfemordial proof. We are confident in our results because the difficult elements
map a linear map initially containing all addresses. Given a single of proof have nothing to do with linear maps at all. Rather, difficul-
private priomordial map, it is easy to write an allocator module that ties in the proof revolved around the structure of modules, and, in
hands out addresses to other modules according to any invariant theparticular, setting up the technical machinery to track the scopes of
programmer chooses. In theory, however, it is irrelevant what spe private module variables and the validity of module invariants as
cific initial conditions are chosen provided that the disjoint domains functions are called.
condition holds.

3.6 Erasure

3.4 Operational Semantics A second key property of our language is that all verified programs

The operational semantics of our language is specified as a judg-can be implemented efficiently as ordinary imperative programs.
ment with the formprog — prog. To facilitate the proof of sound- More precisely, we prove that our original operational semantics
ness, we extend the syntax of statements with one additional state-on linear maps is equivalent to one in which ghost expressions are
ment with the formg[C]. This new statement form arises when a erased and linear maps are replaced by accesses to a single, global
functiong is called and execution begins 918 body (which will be heap. To make these ideas precise, we define an erasure function
the statemen€’ inside the square brackets). Téle] annotation has that mapdinear maps programsénto heap-based program§he

no real operational effect, but its presence serves as a reminder thamain work done by the program erasure function is accomplished

code withing[-] has access to the private variablesgsf module by subsidiary functions that erase environments and erase code.

and must establish the invariant fgs module prior to completion. Environment erasure is relatively straightforward, and hence
Figure 14 presents the formal rules. Operational rules for sequenc-the formal definitions have been omitted. Briefly, the function
ing, if, and while are standard and were omitted. erase(-) traverses all bindings in an environment, saves the imple-

The first point of interest in the operational semantics involves mentation bindings and discards all others (either ghost bindings
the linear assignment rule (OS Asgn Lin). This instruction resets or linear bindings). An auxiliary functiofilatten(-) traverses all
the source of the linear assignment to the empty map to preventbindings in an environment, discards all non-linear bindings and
duplication of addresses and to maintain the disjoint domains in- uses the linear ones to build a total map (the heap) that acts as the
variant. In the (OS Var) rule, we assume the existence of a function union of all the linear ones on their respective domains. Hence,
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Figure 13. Program Logic: Modules, States and Programs
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(X; assume dom(z1) Ndom(zz) = ) — (3; skip) (OS Assumg

Figure 14. Operational Semantics (Selected Statements)



given an execution environmei for linear maps programs, the
corresponding execution environment for heap-based programs is

eraser(C) = C’

[heap = flatten(F)], erase(FE).

Figure 15 explains how to erase code. The key elements of
the erasure function on code are: (1) Select and update operations
on linear maps become select and update operations atetye
variable; (2) Linear map variable declarations, linear map proce-
dure parameters, assignments between linear maps, transfer oper-
ations, and assume statements are all convertedsiatp state-
ments; and (3) Assertion statements also disappear. According to
soundness, verified programs never suffer from assertion failure
and hence erasing assertions will not cause deviations in opera-
tional behaviour.

We lift the erasure functions on environments and statements
to an erasure function on programs in a natural way. Given these
functions, we are now able to prove the following key theorem. As
with our other theorem, we have checked the main high-level cases
by hand. These high-level cases depend upon a number of simple
auxiliary lemmas that we have assumed true without detailed proof.

Theorem 3 (Erasure)
If = prog : F> then
prog —* prog’ iff erase(prog) —* erase(prog’)

4. Extensions for Nested Data Structures

In this section, we extend our programming language to handle
nested data structures. The main difficulty in writing programs
that traverse and modify nested data structures is that the portion
of the heap accessed by the program is discovered dynamically
as the program executes and chases pointers. To express such a
programming idiom, we need the ability to store linear maps as
values in the heap. Therefore, we introduce two new linear types
rlin andpair defined mutually-recursively in terms of each other.

rlin
pair

int — pair
int * rlin

Unlike 1in which represents a linear map framat to int, rlin
represents a linear map frommt to pair, wherepair itself is
a pair comprising arint value and arrlin value. The first and
second components of a paiare accessed gs 1 andp. 2.

Sincerlin is a linear map ang@air contains a linear map as
one of its components, programming with these types is subject
to restrictions similar to those with the typen. The initial value

eraser(z1 :=" x2) = skip

eraser(z :=° S) = skip

impl(T'(z1)) impl(T'(z3))

eraser(zs := g(z1,22)) = z3 := g(x1)

impl(l—‘(:rl)) ghOSt(F(CE3))

eraser(z3 = g(x1,22)) = g(x1)

ghost(I'(z1)) impl(I'(x3))

(
eraser(zs3 = g(21,22)) = 3 := g()

ghost(I'(z1)) ghost(I'(z3))

eraser(l’s = 9(951,952)) = 9()

impl(7) eraser...(C)=C'

eraser(var z:7 in C') = var z:7 in C’

ghost(7) or linear(7) eraser,q..(C) = C’

eraser(var z:7in C) = ('

eraser(assert F') = skip

eraser(z1 :=" 22[Z]) = 21 := heap|7]

eraser(z[Z1] :=" Z2) = heap[Z1] := Z>

eraser(z1 := 22@QS) = skip

eraser(assume dom(z1) Ndom(z2) = @) = skip

of arlin variable has empty domain; the initial value opair
variable is a pair whose second component has empty domain. The
semantics for passing arguments of these two types to procedure
calls are exactly the same as that far.

The manipulation ofrlin and pair values needs two new
primitive operations{n,1) := pandp := 1[n], where the type
of n is int, 1 is rlin, andp is pair. The first operation swaps
the contents of the pair&,1) andp; the second operation swaps
the contents op with 1[n]. The semantics op := (n,1) and
1[n] := pare exactly the same da,1) := pandp := 1[n],

erased to the parallel assignment [n]
rlin values in the state are still flattened into a single total map
heap. However, the flatten function now has to traverse the recur-
sive structure ot1in andpair to collect all domain elements.

Figure 15. Erasing Statements (Selected Rules)

:= 1[n],p.All linand

4.1 Binary tree traversal

respectively. The choice of the variation to use is simply a matter Figure 16 shows the code for traversing a binary tree that stores
of conceptual intent. Please observe that these swap operationsint data values; the goal is to increment the data value at each
like transfer, never copy addresses and hence always preserve thnode. The implementation is a recursive procedliierement

disjoint domains invariant.
The addition ofrlin andpair is a conservative extension of

which takes a single argumemof typepair. The precondition and
postcondition oflncrement uses a recursive predicatav (c,p)

the language defined in Section 3. The existing erasure operationswhose definition is given at the top of the figure. The definition of
on the state and the program text are extended to deal with the newInv(c,p) first extracts the contents of theinton andl1. If n =

types and primitive operations. Afllin variables are deleted and
eachpair variable is converted to aint variable. The operations

(n,1) := pandp := (n,1) are erased to the parallel assign-
mentn,p := p,n;the operationp := 1[n] andl[n] := pare

nil, we have a valid binary tree, srue is returned. Otherwise,
true is returned only if the three contiguous addresses in the range
[n,n+3) are in the domain of, the first address contains the data
valuec, and the second and third addresses recursively point to the



function Inv(c: int, p: pair) returns (bool)
let (n,1) in
if (n =
true
else
[n,n+3) C dom(1) A Int(1[n]) = c A
Inv(c,1[n+1]) A Inv(c,1l[n+2])

=p
nil)

}

procedure Increment(p: pair)
requires Inv(0,p)
ensures Inv(1,p)

{
var n: int, 1: rlin, t: pair in
(n,1) := p;
if (n !'= nil) {
t :=1[n]; t.1 :=t.1 + 1; 1[n] := t;
t := 1[n+1]; call Increment(t); 1l[n+1] := t;
t := 1[n+2]; call Increment(t); 1[n+2] := t;
}
p := (n,1);
}
Figure 16. Iteration over a binary tree
mod [

function List(list: pair) returns (bool)

let (n,1l) = list in
n != nil A n € dom(1) A
let (head,tail) = 1[n] in
Btwn(tail,head,nil) = dom(tail) U {nil}

}

procedure list new(list: pair)
ensures List(list)

procedure list_insert(list: pair)
requires List(list)
ensures List(list)

Figure 17. List module

left and right sub-trees. Note that expressiort (e) returns the
first (integer) component of paér.

With that background, it is straightforward to understand the
implementation ofincrement. The code opens the components of
pinto variablesx andl; if n !'= nil, the data value is incremented
and recursive calls to the left and right sub-tree are made; finally,
the contents of and1 are put back inte.

4.2 Implementing abstract data types

procedure malloc(l: rlin) returns (n: int)
requires dom(1l) = 0
ensures n != nil A n € dom(1)

mod [
function Set(set: pair) returns (bool)

let (n,l) = set in
n != nil A n € dom(1) A List(1[n])
}

procedure set new(set: pair)
ensures Set(set)

{
var n: int, 1: rlin, list: pair in
call list_new(list);
call n := malloc(l);
1[n] := list;
set := (n,1);
}

procedure set_insert(set:
requires Set(set)
ensures Set(set)

pair)

{
var n: int, 1: rlin, list: pair in

(n,1) := set;
list := 1[n];
list_insert(list);
1[n] := list;
set := (n,1l);

}

Figure 18. Set module

cate. However, we assume the definition of thet predicate is
private to the implementation of theist module. The module im-
plementer may change the internal definitiorLagt and be sure
that any proofs of client code correctness remain valid.

Figure 18 shows a set module that implements each set returned
by set_new in terms of a list value returned lyi st _new. The rep-
resentation of each set is a value of type pair that satisfies the pred-
icateSet. A pair (n,1) satisfiesSet iff n is different fromnil, n
is a member oflom(1), andl [n] satisfies th&ist predicate. The
precondition ofset_insert in terms ofList allows us to prove
the safety of the call taist_insert from set_insert. The use
of theList predicate in the definition of th&et predicate does not
violate the principle of information hiding, since the definition of
theList predicate is private to the list module.

5. Related Work

There are four main areas of related work: (1) research on the
programming language Euclid, (2) research on verification through

Section 4.1 addressed the difficulty of programming an unbounded the use of dynamic frames, (3) research on separation logic and (4)
data structure. This section addresses the difficulty of programming research on linear type systems.

a data structure whose representation uses another abstract datg lid

structure implemented separately. Figure 17 shows a list module 1 Bucli

that provides to its clients the ability to create a new list using the Euclid [19, 22] was an imperative programming language derived
procedurelist_new and to insert a value into a previously created from Pascal. It was developed in the late 70s and early 80s, and

list using the procedureist_insert; to keep the example simple,
we have deliberately elided the second argumeatikt_insert,

which provides the value to be inserted into the list. The represen-

tation of each list is @air value that satisfies theist predicate.

The definition of this predicate is crucial for proving the correct-
ness of the procedures inst; consequently, the precondition of
list_insert requires that the input list value satisfy this predi-

was designed with the hope of facilitating program verification.
In order to manage dynamically allocated data structures, Euclid
introduced the idea ofeollection There are only few ways to use a
collection: one may allocate a new object in a collection, deallocate
an object in a collection, look up an object in a collection using a
pointer to it and pass a collection to a procedure. The static type of
a pointer referred to the collection that contained it. The interesting



thing about collections is that they satisfy the disjoint domains frames within the code using ghost variables and assignment in a
invariant: two pointers into different collections are guaranteed similar way to which we use transfer operations. There do appear
to point to different objects. Euclid's creators rightly observed to be at least two key differences between the systems though:
that this restriction would facilitate reasoning about pointers and (1) Linear maps obey the disjoint domains invariant whereas dy-
their aliases. However, Euclid’s collections are substantially more namic frames and regions do not obey any similar "disjoint frames”
limited than linear maps as locations could not be transferred from invariant. Instead, programmers use logical formulae to express the
one collection to another, collections could not be returned from relationships between various frame variables. (2) Linear maps are
functions, and there was no support for recursion or nesting such aspairs of a domain (or frame) and a total map. One consequence of
that provided by our rlin and pair types. Consequently, many of the this latter fact is that every reference (select or update) to a lin-
examples presented in this paper could not be supported in Euclid.ear map unavoidably mentions its domain/frame. The main effect
In addition, the definition of our language and program logic is of these two global design differences is that they lead to a sub-
presented quite differently from Euclid’'s — we have the benefit stantial simplification of the overall verification system: effects be-
of 30 years of technical refinements in programming language come standard modifies clauses, the "footprint analysis” becomes
semantics to lean on. The design of our program logic also takes routine identification of the free variables of a formula, frame and
recent advances in theorem proving technology into account. anti-frame rules are unchanged from the classic rules, and finally,
In 1995, Utting [29] again struck upon the idea of a linear map, there is no disruption to the overarching judgmental apparatus for
which he called a local store. Utting considers the idea in the con- verification condition generation.
text of a refinement calculus and points out that Euclid’s collec- A variant of the dynamic frames approach is theplicit dy-
tions are insufficiently flexible without the ability to transfer loca- namic framesapproach, which was developed by Smans, Jacobs
tions from one store to another. He gives an example of using local and Piessens [26] for use in object-oriented programs and by Leino
stores to refine a functional specification of a queue data structureand Peter Miller [21] for use in concurrent programs. This ap-
into one that uses pointers. Utting does not discuss the technicalproach involves writing pre- and post-conditions that consaices-
details of how a Hoare proof theory should work (omitting, for in-  sor formulaesimilar to those found in the capability calculus [32],
stance, discussion of the frame and anti-frame rules and the rolealias types [27] or separation logic [15, 25]. The verification system
of assume statements in proofs, and giving only English recom- will examine the accessor formulae and then translate them into a
mendations on how to enforce anti-aliasing rules), nor does he give series of imperative statements that may be processed by an under-
an operational semantics for his language, a proof of safety, or evi- lying classical verification condition generation system and solved
dence that local stores facilitate automated reasoning using theorermby a classical SMT solver. These imperative statements perform a
provers (the modern SMT solvers we use, with their extended the- similar role as our transfer statements. In the case of Smans’s work,
ory of arrays [9], were not available at that time). He also does not they transfer access rights from the caller to the callee during func-
consider nested or layered data structures such as those supportetion invocation, and vice-versa on return. In the case of Leino’s

by our rlin and pair types. work, they also tranfer privileges to access shared memory objects
when locks are acquired and released. In comparison, linear maps
5.2 Dynamic Frames are a somewhat simpler, but lower-level abstraction. Consequently,

| t hers h develoned etwof there is no need to translate formulae involving linear maps into
N more recent years, researcners have developed a vanetwel po oyarevel objects; they may be interpreted as ordinary first-order

erful new yer|f|cat|on tools, propf strategies and experimental I.a.n- formulae as they are. On the other hand, programs that use linear
guage de_s_lgns based on classical logics, SMT solvers and verlflca-maps are more verbose than programs that use implicit dynamic
8rames because of the use of explicit transfer operations. An inter-
esting direction for future research would be to explore compila-
tion of implicit dynamic frames into linear maps. Ideally, such a
compilation strategy would be able to avoid the universally quanti-
fied framing axioms that are used by implicit frames to relate heap
states before and after function calls, as such quantified formulae
are sometimes expensive for a theorem prover to discharge.

use ofdynamic frameg$l7]. A frame also known as aegion or
footprint, is the set of heap locations upon which the truth of a for-
mula depends. Intuitively, if the footprint of a formufais disjoint
from the modifies clause of a statemefit the validity of F* may
be preserved across execution @f In other words, careful use
of footprints gives rise to useful framing (and anti-framing) rules.
Kassios [17] began this line of research by developing a sophisti-
cated refinement calculus that uses higher-order logic together with
explicit frames. Leino [20] seized upon these ideas and turned them
into an effective new language for verification called Dafny. Dafny Over the past decade, many researchers have devoted their attention
compiles to Boogie [2], which in turn generates verification condi- to the development of the theory and implementation of separa-
tions in first-order logic. Dafny is generally quite fast, has a set of tion logic [15, 25, 3, 12, 16], an effective framework for supporting
features suitable for doing full functional-correctness verifications, modular reasoning in imperative programs. Separation logic has
and has been been used to verify a number of challenging heap-achieved its goals by introducing a new language of assertions that
manipulating programs. Finally, Banerjee, Naumann, and Rosen- includesF; x F» and Fy —F». Unfortunately, this new language of
berg [1] have developed Region Logic, a further extension of the assertions is not directly compatible with powerful classical theo-
idea of dynamic frames set in the context of Java. Region Logic in- rem proving engines such as Z3 [8], as such engine process classi-
cludes a rich new form of modifies clause that captures the read, cal formulae. One of the goals of our work is to give programmers
write and allocation effects of a procedure in terms of regions. access to the same kind of proof strategies that are used in separa-
Important components of Region Logic include a set of subtyp- tion logic, but to do so only with the most minimal extension over
ing rules for region-based effects, a footprint analysis algorithm for a classical theorem proving and verification condition generation
formulae and definitions of separator formulae, which are derived environment.
from sets of effects. Despite the differences, it is useful to try to understand the
Many of the ideas from dynamic frames and Region Logic connections between linear maps and separation logic more deeply.
clearly show up in linear maps. In particular, the domains of lin- One informal observation is that a separating conjunction of precise
ear maps seem analogous to the frames themselves. MoreoverformulaeF; * F5 * - - - x F}, can be modelled in our context as an
in Dafny and Region Logic, programmers explicitly manipulate ordinary conjunctiorfy (H1) A Fa(H2)A- - -AF(Hy) where each

5.3 Separation Logic



formula F; refers to a distinct linear map variahté;. In separation maps. In particular, Charguaud’s capabilities resemble linear
logic, the separating conjunction ensures that the footprints of eachmaps, and like in work on Euclid, or on region-based type sys-
F; (i.e.,the heap locations upon which tt#& depend) are disjoint. tems [28], Chargéraud’s pointer types include the type of the re-
In our case, the use of distinct program variabistogether with gion or capability that they inhabit. Consequently, each pointer may
the disjoint domains invariant guarantees a similar property. A inhabit only one regiongka.,collection or linear map), and once
second observation is that when given a separation logic forfula  again, a variant of the disjoint domains invariant appears. Techni-
one will often use the rule of consequence to préye F» and then cally, however, there are quite a number of differences between the
call a functiong with preconditionFs, saving the information i two systems. In particular, verification of Chasgaud'’s language
across the call using Separation Logic’s frame rule. In our case, a occurs by translating imperative, capability-based programs into
similar effect may be achieved using a transfer operatiof.(If7) functional programs, which are then analyzed in detail in a theo-
is true initially for some linear maj/, then the contents dff may rem proving environment for functional programs such as Cog.
be transferred to two new disjoint linear mafs and Hs, which
satisfy F1 (H1) A F2(H2). Next, Hy can be passed as a parameter i
to g, satisfying preconditio (Hs), and i (H1) (which contains 6. Conclusions
variables disjoint from the parametersg)fcan be saved across the ~ Linear maps are a simple data type that may be added to imperative
call. These observations suggest that it may be possible to compileprograms to facilitate modular verification. Their primary benefits
certain precise fragments of separation logic to linear maps, which are their simplicity and their compatibility with standard first-order
would open up new implementation opportunities for the logic Verification condition generators and theorem proving technology.
using classical theorem proving tools. We hope their simplicity, in particular, will make it easy for other
Another way past researchers have considered implementingresearchers to study and build upon these new ideas.
separation logic formulae is by compiling them directly to first-
order logic. For example, Calcagres al. [6] show how to com- Acknowledgments
pile propositional separation logic with equality and the points-to . . ,
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of an explicit operator for disjoint union and a demonstration that

proofs using this operator can be very compact. Nanevski's work

is designed for interactive theorem proving in a higher-order logic
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vironment for which linear maps were designed. This is certainly
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A. Appendix: Linear Maps Language Definition

This appendix defines the syntax, static semantics and operationaltganedithe linear maps language in its entirety.

A.1 Syntax

expression variables T
function variables g
integers n
sets s
total maps f
linear maps / = fs
types T = int|tot|lin|set
values v = n|f|Ll]s
logical exps e = z|v|e + ex|sel(er,er) | upd(e, ez, €3)
|  ite(er, ez, e3) | sel” (er, e2) | upd® (e1, ez, €3)
| map(e) | don(e) | 1in(er, e5) | {x | F}
formulae F := true|false|-F|FiVF|FiAF
| Fi = F| 37 F |Vor.F
| ee=ele €e
type environments T = | Dar
value environments E = | E,x=v
function contexts G = |G,gi0
implementation exps 7 = z|n| L+ 2
ghost exps S = e
statements C w= xi=Z |z ="x2 |11 :=%8
| varz:tinC|skip| Ci; Co
| if Z then Celse
| while[F]ZdoC
| assert F|xs:= g(z1,x2) | g[C]
| 21 =" 22[2] | x[Z1] =" 22
‘ Ty = :L'Q@S
| assumedom(zi)Ndom(zz) =10
modifies clause mod = {z1,...,zk}
function types o = Vargi:m,args:me. Fi mod dret:r3. Fy
modules mu w= [E; Finv; g:0 = C]
module environments M = | M,mv
states by = (M;E)
programs prog == (%;C)
stack frames b = g[G;T; Fino]
stacks k = by---by
stacks with a position K = by---bl--by

Stack frames, stacks and stacks with a position do not appear in the btgyreport. They are used in extended typing rules required
by the proof of soundness.

A.2 Notation

¢ Setss are defined using standard set-theoretic notation su¢hk &g > 0}
e Total mapsf are defined using standard lambda calculus notation sush.as+ 1.

¢ When linear mag is the pairf;, we letmap(¢) refer to the underlying total map anddom(¢) refer to the underlying domais. We
write [ ] to refer to the empty linear map: a linear map with the empty set as its domaemgndap as its underlying total map.

e impl(7) is true whenr = int. impl(v) is true wherw = n.
e linear(7) is true whenr = 1lin. linear(v) is true wherw = ¢.
® nonlinear(r) is true whenr # lin. nonlinear(v) is true wherw # /.



e ghost(7) is true whenr = tot or 7 = set. ghost(v) is true wherw = sorv = f.

¢ We treat environment®, I', andG as finite partial maps. For instance, we wrif¢z] to look up the value associated within E. We
write £, x = v to extendE with = (assuminge does not already appear in the domairE)f We write E[z = v] to updateE with a new
valuew for z. We writedom(E) for the domain of the mag’. We use similar notation fdr andG.

Given a stat& = (M; E), we assume no variableis bound both in the global environmehtand in some module local environment
in M (alpha-converting where necessary). We assume no function géassociated with more than one functioniih

We let|X|.., be the environment formed by concatenating the module environments gbaial environment frornx.

Y[z] looks up the value bound toin any environment irE andX [z = v] updates variable with v in any environmentirt. £,z = v
extends the global environmentihwith the bindingz = v assuminge does not already appearih

3[g] looks up the module containing the function nanged X.

Given a typer, Z(7) is the set of valid initial values of a declared variable of that type. For linggss, only the empty linear map is a
legal initial value. For other types, any value is legal initially.

When we have a stadk we will write &* to indicate the same stack with a single asterix at some position. Intuitivelystiandicates
the stack frame the typing rules are currently analyzing. We allow the astepbecede all stack frames. In other words; #= by - - - by,
thenk™ may be*b; - - - b,. We also writek— when the asterix is on the rightmost (top) stack frame. When the stack iygmprefers
to the empty stack paired with an asterix.

Ifb= g[G7 I Finv] then:

*priv(b) =T
= mod(b) = dom(T")
» funs(b) = G

If K=0y---b;---b, andi > 0 then
" priv(K) = priv(b;)
" mod(K) = mod(b;)
» funs(K,G) = funs(b;)
If K ="by---b,then
= priv(K) =-
"mod(K) =10
= funs(K,G) =G
If K =by---b; ---bp_1bn, Whereb; - - - b; may be the empty sequence, thaixt(K) is a set containing the following elements:

" by---bj - bp—1b, (@ndn may bei) and
*by---bf - bn_1 (@ndn — 1 may bei but not less thar) and
B R S Y

o If K =b1---bibiy1 - bn, Whereb; - - -b; may be the empty sequence, thanpriv(K) = U,c,, ;. , dom(priv(b;)).

A.3 Static Semantics

Fz]=71
I'tx:7

I'kFn:int
I'kEf:tot
'k fs:1lin

'k s:set

I'Fe :int I'F ep:int
't e + es: int




I'Fe:tot I'kFes:int
I'F sel(er, e) : int

I'Fe :tot I'te:int I'Fe3:int
I' - upd(ei, ez, €3) : tot

I'Fe :set I'tFex:tot TI'Hes:tot
'k ite(er, ez, €3) : tot

I'e;:1in I'F e : int
'k sel® (e, e) : int

I'Fer:1lin T'Fex:int I'F e3: int

[ upd” (e1, ez, €3) : 1in

I'Fe:lin
I' - map(e) : tot

I'Fe:lin
'+ dom(e) : set

I'Fe :tot I'k e set
' lin(ei, e2) : lin

I',z:int - F' : prop
PH{z]|F}:set

I' - true : prop

I' - false : prop

'k Fy:prop T'F F5:prop
'k Fy VvV F; : prop

'k Fy :prop I'F F>:prop
'k Fy A F5 : prop

'k Fy :prop I'F Fy:prop
I'+Fy = F5 : prop

I'z:7 - F : prop
I'F 3z:7.F : prop

I',x:7 = F : prop
I' - Va:7.F : prop

I'tei:7m TThex: 7
I'+e = ez : prop

I'te:int T'F es: set
'k e € e :prop

forall z € dom(T"), + E[z] : T'[z]
FE:T




EEF

e]ly, =v

= —
-
| 3

SEF

FY=

»

l

FXYw

I'to

z] 5

V]

er + e2] o
sel(el, 62)]]E
upd(e1, ez, e3)] 5 Az.ifx = [ez] pthen[es] zelse[er] z(x)
ite(e1, ez, e3)]p = Aw.ifx € [e1] gthen[ea] ,(v)else[es] 5 ()
[[SGlt (e1,e2)];  =map([er] ) ([e2] )

[upd™ (e1, €2, €3)] p = faom([er] p)UtTeal )

wheref = Az.ifz = [e2] ; then [es] 5 else map([ei] ;) ()

e p([e2] )

map(e)] g = map([e] z)
dom(e)] = dom([e] )
lin(e, &) = ([e1] p)ieal
[{z | F} g ={v|Ez=v[EF}
E | true always
FE = false never
EE-F iff FE = Fisnotvalid
E &= F1V Fy iff E|:F10rE):F2
E &= F1 N Fy iff E|:F1andE}:F2
EEF = F iff E|:—|F10rE|:F2
E =3P iff existskv:7stEz=vEF
E E=Vxr.F iff foralkFv:7, E,x=vkEF
F = €1 = é3 Iff |I€1]]E = |I€2]]E
El=e €e iff  [e]y € [e2] g

I'=Fiff T+ F:propandforallEsth E:TE = F

[e]is),,., =©

[e]s, =v

|Z]eny = F
SEF

F-=0

FE=s Fwv:7 nonlinear(r)
F(E,z=v)=s

FE=5s sns =0
F(E,z=f)=sUs

F|M|env, E = s
F(M;E)=s

FY=7Z
X wf

nonlinear(7i,73) linear(rs)
T,argi:m1,args:me = Fy : prop TI',argi:mi,args:me, ret:7s = F> : prop  mod C dom(T")

' -VYargy:mi,args:m. Fy med Iret:1s. Fy



I'-G

I'-rG Thro
'k I'kG, g0

(G mod - (R} C{F} ]

TeF = F
G;T;mod = {F{}C{F3}
I'EF = R

G;T;mod - {F1}C{F>}

(Consequenge

G;TI';mod — FV(R) - {F,} C{F:
mod = FV(R) FAFJCLR} (o
G;T;mod - {Fi1 AN R}C{F> A\ R}

Pkz:7 impl(r) T'HZ:7 x € mod
G;T;mod - {F[Z/z]}x = Z{F}

(Asgn)

Fkzy:1lin Tkay:lin x4, 30,25 are distinct variables z1,x2 € mod x5 € FV (F)
G;T;mod F {dom(z1) = 0 A Vzh:lindom(xh) = 0 = Flxb/z2][ve/z1]} 21 =" 22{F}

(Asgn Lin)

Pkz:7 ghost(r) I'FS:7 x € mod
G;T;mod - {F[S/z]}x :=% S{F}

(Ghsy

z ¢ (dom(I") U FV(F5)) nonlinear(r)
G;T,z:Tr;mod U {z} F {F}C{F>}

G;T; mod & {Va:7.F }var x:7 in C{F>}

(Var)

z ¢ (dom(I') U FV(F2)) G;T,z:lin;mod U{z} F {F1}C{F>}
G;T;mod b {Vz:lin.dom(z) = ) = Fi}var z:linin C{F>}

(Var Lin)

G;T; mod F {F}skip{F'} (Skip)

G;Tymod F{F1}Ci{F>} G;T';mod - {F>}Co{F3} (Seq
G;T;mod - {F}Cy; Co{F3}

G;T;mod - {F1}Ci{F3} G;I;modt {F2}Ca{Fs} (1)
G;T;mod - {(Z #0= F1) AN (Z =0 = F3)}if Z then () else Co{F3}

G;F; mod |_ {Fl}C{F”w}
G;T;mod F {Finy A (Fino A Z # 0= Fy) A (Fino A Z = 0 = F)}while [Fin,] Z do C{F}

(While)

'+ F': prop
G;T;mod + {F' A F}assert F'{F}

(Assen

G(g) =Vargi:m,arga:ma.Fi mod] Jret:13. Fo
Fkazi:m Thay:m Thaos:ms (mod U{xe,z3}) C mod 1,702,735 € FV(G(g))

G;T;mod = {Fi[x1/argi][x2/arge]}as i= g(x1, x2){ Fox1/argi][xe/arga][xs /ret]}

(Call)

I'tzy:int I'kFa9:1in I'H Z :int 21 € mod
G;T;mod - {Z € dom(x2) A F[sel® (w2, Z)/x1]}x1 :=" z2[Z]{F}

(Linear Map Seleqt

I'FZ :int T'FZy:int I'tx:1in x € mod
G;T;mod &+ {Z; € dom(z) A Flupd® (z, Z1, Z2) /z)}x[Z1] :=" Zo{F}

(Linear Map Updatg



I'Fx:1lin T'ky:1lin T'HS:set z,y € mod

Transfe
G;T;mod F {S C dom(y) A F[lin(ite(S,map(y),map(x)),dom(x) U S)/z][1lin(map(y), dom(y) — S)/y|}x := yQS{F} ( )
I'Fx1:1lin 'k 22:1in 21,22 are distinct variables (Assumg
G;T;mod + {dom(z1) Ndom(z2) = @ = F}assume dom(x1) Ndom(xz) = O{F}
G:TFmv=G
o =VYargi:T1,arg2:2.F1 ic dret:ms.Fo 'k o
g & dom(G) (dom(T'g) U {argi,args,ret}) Ndom(I") =0
FE:Tg Tgt Fiy:prop EE Fine
G;T,Tg,argi:71, args:m2, ret:73; mod’ Udom(T'g) U {args, ret} - {F1 A Fino} C{F2 A Finy} (Mod)
O
G;T b [E; Finv;g:0 = C] = G, gio
I'-M=G
M= G’
G'TFmv=G" Mod E
- (0] nv)
Fl_':>.(ModEnvEmp T Mo S O ( )
FY = Gl
FE:T THFM=G
Stat
F(M;E)=G;T (Statg
FY=GT b [Slow wf TFF: THF: SEF G:Tdom(T) F {F)}C{F.
|5 eno W | : prop 2:prop Y B om(I) F {F1} C{F>} (Programs
F(E0): F
A.4 Additional Static Semantics Rules for Proof of Soundness
G;T;mod; K; ¥ + O{FQ}\
T-F e SEF FSw GTimod - {F)C{F
L PEOP A HW mod I {11} 0115} (Connect-R7
G;T;mod; kX F C{F2}
G;T;mod; K; X F C{F;} Tk F;=F
o () = 2 (Consequence-RT
G;T;mod; K; X F C{F>}
SR G:Tiymod — FV(R); K:S F {F1}C{F
- mod = FV(R) K SEARYOLRY Lo
G;T;mod; K; X+ C{F> A R}
G;Tsmod; K; X+ Ci{ F: G;Tsmod F {F2} Co{ F:
mo {2} mod = {F2} Co{F3} (Seq-RT
G;Tymod; K; X+ Cy; Co{F3}
K=by - bibifr b
Ki =by---bibiiq by
bi+1 =01 [Gl, Fp'ri'u; F’anl]
I = (T' — dom(priv(K))), Tpriv
mod’ = (mod —mod(K)) Udom (T priv)
I Fy:prop Gi;17;mod’s Ki; 5 F C{Finu1 A Fa} R
GiT;mod; K; % - g1 [C){F2} (-RT)
GiT:kF mv:>G’;k"
I'to o =Vargi:mi,args:m2.F1 W)J: dret:r3. Fy
g & dom(G) (dom(T'g) U {argi,args,ret}) Ndom(I") =@
FE:Tg Tgt Fi:prop EE Fine
G;T,Tg,argi:m,argz:m2, ret:73; mod’ Udom(Tg) U {args, ret} = {Fi A Finy} C{F2 A Fipny} (Mod RT)
(0]

G;T;kF [E; Finv;g:0 = C] = G, g0 k



I'-o0 o =Vargi:m,arga:m.Fi mod, dret:rs. Fs
g € dom(G) (dom(T'g) U {argi,args,ret}) Ndom(T") =0
FE:Tr I'rtF Fiu:prop
G;T,T'g,arg::71, argz:72, ret:r3; mod’ Udom(T'g) U {args, ret} b {F1 A Fipno} C{F2 A Finy}

G Tk [B: P gio = C] = G,g:03g[Gi Tei i [k
THM= Gk

(Mod Stack R

'-M= Gk

G;T; k' = muv= G k"
Gr = (Mod Env Emp RT TF Mo =

(Mod Env RT)

FY =Gk

FE:T T'-M=G"k
F(M;E)= G';T; k'

(State RT

F prog : Fo rt

FY=GTik F[Xenw wf T'HF:prop ' Fh:prop X = Fi GiIidom(D); "k X H {F1} C{F}
F(EC0): Fort

(Programs RT

A.5 Operational Semantics

OS A Li
S = 22) — (Bl = Palglles = [olokip) oo

OS A Gh
(o= 5) — (Sl = [Slliokap) o oo O

veZ(r) z¢dom(|X|enw)

Vi
(Z;varz:Tin O) — (T, =v; C) (OS Vvan
kip-
(3 skip; C) — (% C) (OS Skip-Se
e (OSs If1)
(X;if Z then C) else Cs) — (X; C1)
IIZHZ =0
(2;if Z then C else C2) — (X; C2) (Os If2)
(Z;while [F] Z do C) — (3; skip) (OS While)
Z 0
s (OS While2

(3;while [F] Zdo C) — (X; C;while [F] Z do C)

SEF
(3;assert F) — (%; skip)

(OS Assert

S(g) = [E'; Finvs g:¥argum, argoma. Fy ™ Jretirs. Fy = €] argy, arga, ret & dom(|Slen) vs € T(rs)

Os Call
(5523 == g(21,22)) — (B[22 = [Jo]), argr=[1] 5, arga=[w2] s, ret=vs; g[C]; x5 := ret; 22 :=" arg, ( Y



(%;C) — (5, C)
(2 9(C) — (X5 9(C")

(OS call?

(; g[skip]) — (X skip) (Os call3

[Z]g =n [z2]s=f" nes
(Sso1 =" 22(Z)) — (Slor = /()]s skip)

(OS Linear Map Selegt

[zly =f mi€s [Zlg=n1 [Z]g=n

- (OS Linear Map Update
(3;2[Z1] :=" Z2) — (Z[z = (\x.if © = n1 thenns else f x);]; skip)

[zi]g = f1 [z2]lg =hs, [Slg=ss

(501 = 2285) — (S[o1 — (\e.1f @ € 5 thenhwelse] 2)uyom]lws = hogai]iskip) (00 Transtey
(3; assume dom(z1) Ndom(z2) = ) — (3; skip) (OS Assumeg
(550 —" (%;0)]
(5 0) —" (% 0) (OS-Refley
(15 C1) — (825 C2) (325 Co) —" (%55 Ci) (OS-Trans

(X1; C1) —" (Xs; Cs)

A.6 Soundness Theorem and Related Lemmas

Lemma 4 (Canonical Forms)
IfE:T andl’ & e : 7 then[e] , = v and:

if = int thenv = n
if T =tot thenv = f
if T = 1in thenv = ¢
if = set thenv = s

Proof By induction on the derivatioff - ¢ : 7.

Lemma 5 (Runtime Typing)
If (X; C) : F» then (3; C) : F> rt wherek is everywhere empty in the latter derivation.

Proof By inspection.

Lemma 6 (Skip Preservation I)
If G; I'; mod - {F1}Skip{F2} andx ': Fy thenX ': F5.

Proof By induction on the verification derivation.

Lemma 7 (Skip Preservation II)
If G;T; mod; K; 3+ {F1}skip{ F2} then¥ | F>.

Proof By induction on the verification derivation.

Theorem 8 (Preservation 1)
If

oY= G;I';k and
e '+ F; : prop and



e K=k and

® mod C dom(I") Umod(K') and

e G/ = funs(K,G) and

* ¥ = F1 and

o |X|eny wf and

e G';T,priv(K); mod - {1 }C{F>} and
* (%0) — (X0

then
oY = G;T';ky and
L] K2 = k‘;

® K, € next(K) and

e " extendd and

o G';TV priv(K>); mod U (dom(T"') — dom(T")); K2; X' + C'{F>} and

e forall x € dom(|X|eny), if $[z] # X'[z] thenz € mod orx € allpriv(K)

Proof By induction on the verification derivation.

Theorem 9 (Preservation Il)
If

oY= G;T';kand

e I' - F, : prop and

® mod C dom(I") Umod(K') and

e ' = funs(K,G) and

e G';T,priv(K); mod; K; X + C{F:»} and
* (%0) — (X5

then
o ¥ = G;I"; ks and
o K»r = k3 and

® K5 € next(K) and

o I extendd" and

o G';TV,priv(K>); mod U (dom(I'") — dom(T")); K2; &' = C'{F»} and

e forall z € dom(|X|eno), if T[z] # X'[z] thenz € mod orx € allpriv(K)

Proof By induction on the verification derivation.

Theorem 10 (Progress |)
If

oY =G;T';k and

e '+ F; : prop and

e K =k and

¢ mod C dom(I") Umod(K') and

e G’ = funs(K,G) and

e Y = Fy and

o - |X|eny wfand

e G';T,priv(K); mod - {F1 } C{F:}
then

e O = skip or
* (5;0) — (X0

Proof By induction on the verification derivation for statements.

Theorem 11 (Progress Il)
If

o Y= G;T';kand
e I' - F, : prop and
® mod C dom(I") Umod(K) and



e G’ = funs(K,G) and
o G';T,priv(K); mod; K; 3 - C{F>}

then

e O = skip or
* (%0) — (250

Proof By induction on the verification derivation for statements within the derivatfdn prog : F> rt.

Definition 12 (Stuck Program)
A program(%; C') is stuckif C' is notskip and there does not exist another staté C’) such that%; C) — (X'; C") .

Theorem 13 (Soundness)
If(Z;C) : Fy and(X; C) —* (X'5 C") then(X'; C') is not stuck and iC" = skip thenS' = F» .

Proof By induction on the length of the execution and using Progress, Préiseraad Skip Preservation lemmas.
B. Appendix: Erasure
B.1 Additional Syntax for Erased Programs

d ” 4 .
o | Yargi:m. 2% Iret:rs. Fo | Vargi:mi. Fi oS By | Fy ™4 Spetirs. Fy | Fy mod g

-+ | @ :=heap[Z] | heap[Z1] := Zs | 3 := g(z1) | g(w1) [ w3 := g() | 9()

fun types o
statements C'

B.2 Additional Operational Rules for Erased Programs

[Z]y =n [heap]y =f
(3;x1 := heap[Z]) — (M; E[z1 = f n]; skip)

(OS Map Selegt

[heap]y, = f [Zi]y =m1 [Z]s =no
(X;heap[Z1] := Z2) — (X[heap = (Az.if x = n1 thenng else f z)[; skip)

(OS Map Updatg

¥(g) = [E'; Finv; g:Vargy:mi . Fy a4 Jret:r3.Fo = C| argi,ret & dom(|X|eny) vs € Z(73)

oS Ccall

(Bs 23 == g(z1)) — (5, argi=[z1], ret=vs3; g[C]; &3 := ret; skip) ( 3

Y(g) = [E'; Finv; g:Varg::mi . F, MF =C] ar dom(|Z|enw

(9) = g:Vargy:m.F1 P) ] .glg‘ (12| env) (0S calls
(B;59(z1)) — (8, arg1=[z1]5; g[C]; skip; skip)
mod’
3(g) = [E; Finp; g:F1 == Tret:m3.F5 = O] ret € dom(|Z|eny) v3 € Z(T:
(9) =1 g 3.12 ] & (1Z]env) w3 (73) (0S Callg

(3;z3 :=g()) — (X, ret=vs; g[C]; x5 := ret; skip)

E(g) = [E/;Fin1x§ng1 m_od: = C}
(2;9()) — (3; g[C7; skip; skip)

(OS Call?)
B.3 Erasure Function
erase(E) = E'
erase(-) = -

erase(F) = E' impl(v)

erase(E,x =v) = F ,z=v




erase(F) = E' ghost(v)

erase(E,x =v) = F’

erase(F) = E'
erase(F,z ={) = E'

flatten(E) = f

flatten(:) = Az.0

flatten(E) = f nonlinear(v)
flatten(E,z =v) =f

flatten(E) = f’
flatten(E,z = f;) = Az.if v € sthenfzelsef x

’ eraser(C) = C’

eraser(z:=2)=z:=27

eraser(z1 =L z2) = skip

eraser(z :=° ) = skip

impl(7) eraser,q..(C) = C’

eraser(var z:7in C') = var x:7 in C’

ghost(7) or linear(r) eraser . (C)= C’

eraser(varz:Tin C) = C’

eraser(skip) = skip

eraser(C)) = C] eraser(Cs) = Cy

eraser(Ci; C2) = Cf; Cy

eraser(C)) = C] eraser(C:) = C

eraser(if Z then C) else (5) = if Z then (] else Cj

eraser(C) = ('
eraser(while [F] Z do C) = while[F] Z do C’

eraser(assert F') = skip

impl(I'(x1)) impl(I'(z3))

eraser(;rg = g(ail,wQ)) = X3 = g(xl)

impl(I'(z1)) ghost(I'(x3))

eraser(z3 = g(z1,22)) = g(x1)

ghost(I'(z1)) impl(['(x3)

eraser(z3 := g(21,22)) = 23 := g()

ghost(I'(z1)) ghost(I'(x3))

eraser(zs := g(z1,%2)) = g()




eraser(C) = ¢’
eraser(g[C]) = g[C’]

eraser(z1 :=" 72[Z]) = 21 := heap|7]

eraser(x[Z1] :=" Z2) = heap|[Zi] := Z»

eraser(z1 := 22@QS) = skip

eraser(assume dom(z1) N dom(zz2) = () = skip

erase(o) =0

impl(7) impl(rs)

d
erase(Varg::mi,argz:m2.F1 mod Tret:rs.Fa) = Varg:m.Fi %% Jret:rs. Fo

impl(71) ghost(7s)

erase(Varg::mi,arga:m2. Fi med Jret:rs. Fo) = Yargi:m1.F1 mod I

ghost(71) impl(7s)

erase(Vargi:7i,argz:m2. F1 med Iret:rs.Fo) = Fi med dret:13.F»

ghost(m1) ghost(73)

mod mod
erase(Varg::mi,argz:me.F1 — Fretirs. Fo) = F1 — F»

’ eraser(mv) = mv’ ‘

FE:Tg o=Vargi:m,argz:m.F mod dret:r3. Fy

eraser ([F; Finv; g:0 = C]) = [erase(E); Finv; g:erase(o) = eraser,ry,arg;:r1,args:ira,retirs (C)]

’ eraser(M) =M’

eraser(-) =-

eraser(M, mv) = eraser (M), eraser(mv)

erase(X) =Y’

FE:T flatten(E,|M|en) =f
erase((M; E)) = (eraser(M );heap = f, erase(F))

/
’ erase(prog) = prog ‘

erase(X) =% F|Z|eny : [ eraser(C) = C’
erase((%; C)) = (X' C')

B.4 Erasure Theorems and Related Lemmas

Theorem 14 (Erasure 1)
If

oY= G;I';k and

e '+ F; : prop and

e K =k~ and

® mod C dom(I") Umod(K) and



e G’ = funs(K,G) and

e Y | Fyand

® - |X|eny wf and

o G';T,priv(K); mod + {F, } C{F:»} and
* (3:0) — (¥

thenerase((XZ; C)) —* erase((X'; C'))

Proof By induction on the verification derivation.

Theorem 15 (Erasure Il)
If

o ¥ =G;I';kand

e I' - F5 : prop and

¢ mod C dom(I") Umod(K) and

e ' = funs(K,G) and

e G';T,priv(K); mod; K; ¥ = C{F»} and
* (%0) — (X0

thenerase((Z; C)) —* erase((X'; C'))

Proof By induction on the verification derivation.

Theorem 16 (Erasure Il1)
If

oY= G;I';k and

e '+ F; : prop and

e K =k and

® mod C dom(I") Umod(K') and

e ' = funs(K,G) and

* ¥ = Fy and

o |X|eny wf and

o G';T,priv(K); mod - {1 }C{F>} and
e erase((X; C)) — erase((X'; C))

then(; C) —* (X5 C")

Proof By induction on the verification derivation.

Theorem 17 (Erasure V)
If
o ¥ =G;T';k and
e '+ F5 : prop and
e mod C dom(T") Umod(K) and
e G’ = funs(K,G) and
e G';T,priv(K); mod; K; ¥+ C{F»} and
e erase((X; C)) — erase((X'; C))

then(s; C) —* (X5 C")

Proof By induction on the verification derivation.

C. Appendix: Nested Data Structures
C.1 Syntax



types

rlin values
pair values
values
logical exps

SIS o N
([ [

c

statements

C.2 Notation
e Typesrlin andpair are considered linear types.
¢ maptype(7) isvalid if 7 = linor7 = rlin

-+ | rlin| pair

<o | itet(e, e e) e —e | (e1,e2) | el €2

|z =" (rlin)2,QZ | ; ;=" (1in)z,QZ
1. R T2 Z] | X1 =P r2,@QS | (mn,mT) .—R Tp

Herncear(rlin) andlinear(pair) are both true.

e Expressionglom(e), sel® (e, e), andupd" (e, e, e) are overloaded for use with typg in.

* Rather than introducing total maps over pairs, we is€'(S,1,72) to describe the linear map, extended with elements frofi
transferred fronr,. We user, — S to describe the map, without the elements of.

¢ In examples, we allow,.1 in an implementation expression. This may be erased to simply

e Only []y is a valid initial value of typerlin. ie: only[]y € Z(rlin).

® (n,[]p) € Z(pair) for any integem.

¢ r[n = p'] updates the partial map Assumingr is in the domain of-, r[n] looks upn in r. dom(r) is the domain of the partial map.

o Fe1, ea/x1,22] denotes simultaneous substitutioreefande, for 1 andz,.

C.3 Static Semantics

I'tei1:set I'Fey:rlin I'F e3:rlin

I'Fitef(er, e2,€3) : rlin

I'tFe:rlin T'k e : set

T

I' e —es:rlin

Fe :rlin T'k e :int

I'te :rlin T'keg:

'+ sel® (e, e2) : int

int I'F e3:int

I Fupd® (e1, €2, e3) : rlin

I'Fe:rlin
I't- dom(e) : set

I'Fep:int T'F ex:rlin
Ik (e1, e2): int
'k e: pair
I'Fel:int
'k e: pair
I'ke2:rlin
. . . i € andn; = p; €
HlteR(el, e, 63)]]E = [nl = p1, , N = pk] where for; = 17 .. .,k, Ny = Pi if { ZI g %21%2 and:lli :Zl c &Ei%i
ler — e2] 5 = [n1=p1,....,nk =pr] Wherefori=1,...,k, ni=p; if n; € [e2]; andn; = p; € [e1]
[sel” (e, e2)l g = (el p)lle=] ] ?f [e2] 5 € dom([er] ;)
= (0,[]p if [e2] p & dom([er] )
[upd” (e1, e2,e3)] ;= [e]p[lea] o = [es] g]
[dom(e)] = dom([e] )
[[(31»62)]]}3 = ([[61]]E, 2| g
le1] g = n where[e] , = (n,r)
[e2] 5 = r where[e] , = (n,r)



F[]@=>®

Fr=s k7" =5 sand{n}ands’ are mutually disjoint
Fron=(n,r")=sUsU{n}

FE=s fori=1.k Fr;=s; s;ands’ are mutually disjoint sets

F (va = [17,1 = (nllvrl)v' cey e = (n;c?rk)}) = (Ui:lnk Sl) us'

FE=s Fr=3s sands aredisjoint
FE,z=(n,r)=sUs

G;T;mod + {F1} Ci{F>} ‘

z & (dom(I") U FV(F2)) G;T,xz:rlin;mod U{z} F {F1}C{F>} (Var Rlin)
G;T;mod b {Vz:rlin.dom(xz) = ) = F}var z:rlinin C{F>}

z & (dom(T) U FV(F2)) G;T',zpair;mod U {z} - {F1}C{F2} (Var Pai
G;T; mod b {Vz:pair.dom(z.2) = 0 = F}}varz:pairin C{F>}

F'kzy:rlin Tk a:rlin  z1, 0,25 are distinct variables z1,x2 € mod x5 & FV (F) (Asgn RLin)
G;T; mod - {dom(x1) = 0 A Vzh:rlin.dom(zh) = O = Fzh/x2][w2/x1]}21 =" 22{F} g

'tz :pair Tk 2o :pair 1,22,z are distinct variables 1, z2 € mod x5 ¢ FV(F) (Asgn Pail
G;T;mod F {dom(z1.2) = B A Vaoh:pair.dom(xh.2) = 0 = Flzh/xo][x2/m1] o1 =" 22 {F} 9

I'Z:int T'Fax;:1lin 'k 2, :rlin 2,y € mod .
- (RLin Cas)
G;T;mod b {Z € dom(z;) A Flupd(zr, Z, (sel(x;, Z),[lo)/zr][x1 — Z /z:1]} 2y := (rlin)zQZ{F'}

I'Z:int Tk :1lin 'k, :rlin z,y € mod
G;T;mod b {Z € dom(z,) A sel(xr, Z) = O A Flupd(zy, Z, (sel(xr, Z)).1)/zi][xr — Z /x| }a

—[injmaz{F Hncast

I'Fazy:pair I'Fao:rlin T'F Z:int x1,22 € mod (RLin Swap
G;T;mod F {Z € dom(w2) A F[sel® (z2, Z),upd” (w2, Z, x1) /x1, 22| 21 =" 22 [Z){ F'}

I'tx:rlin Thy:xrlin T'FS:set =z,y € mod .
(RLin Transfey
G;T;mod F {S C dom(y) A F[ite®(S,y,z)/z][y — S/y]}x := yQS{F}

I'kzp:int I'kFa,:rlin I'F 2y, pair a,, 2., zp € mod

o (Pair Swap
G;T;mod b {Flxp.1,2p.2, (T, Tr)/Tn, Tr, Tp) }H (Tn, Tr) =" zp{F}

I'Far: I'Fxzs: t t , x2 are distinct variables
T1:T1 X2 : T2 maptype(zi) maptype(z2) x1,x2 (General Assume
G;T; mod + {dom(z1) Ndom(z2) = § = F}assume dom(z1) Ndom(zz) = O{F}
C.4 Operational Semantics

[y =7 [z2]s =f [Z]lgy=n
(Z; 21 :=" (rlin)z2@Z) — (Z[x1

(OS Cast RIin

= (r[n = (f(n), [Jo)D][z2 = fo—ny]; skip)

[z1]s = fs [z2]s =7 [Zlg=n
h = Az.if x = nthenr[n].1else f(n)

T — (OS Cast Lin
(Z; 21 :=" (1in)22QZ) — (S[z1 = hsugny][z2 = [r2 — {n}]y); skip)

[Z]gy=n nedom(r) [z2]y=7 [ri]g=p
(Sr01 = 2217]) — (Sl = (1l = p)][zx = r[nll; skip)

(OS Rlin Swap



[#1]g =m1 [z2ly =72 [Sly =5 (OS Transfey

(Z;21 1= 22@Q8) — (Z[z1 = [ite (s, 72, 71)]s][w2 = [r2 — s]s); skip

[#a]y =n [zc]g =7 [2]y = (0,7) (OS Pair Swap

(55 (n, 20) =" 2p) — (Blan = n]fzr = r][xy = (n,7)]; skip

C.5 Erasure

erase(E) = F’
erase(F) = E'

erase(E,x =r)=E’

erase(F) = E'

erase(FE,z = (n,r))=FE,z=n

flatten(r) = f

flatten([]p) = Az.0

flatten(r) = f flatten(r')=f +Fr'=s
flatten(r,n = (n/,r')) = Az.if x = nthenn'elseif r € sthenf' zelsefx

flatten(E) = f

flatten(E) = f flatten(r)=f +tr=s

flatten(E,z =r) = Az.ifx € sthenf' zelsefx

flatten(E) = f flatten(r)=f +tr=s
flatten(E,z = (n,r)) = Az.if v € sthenf zelsefz

eraser(C) = C’

eraser(z, :=" (rlin)z;@Z) = skip

eraser(z; :=" (1in)z,@QZ) = skip

y is distinct fromz1,x2,FV(Z)

eraser (1 :=" x2[Z]) = vary:int iny := x1; 71 := heap[Z];heap[Z] :==y

eraser(z1 :=" 2@S5) = skip

y is distinct fromz,, .z,

eraser ((Tn, ) =" xp) = var y:int iny := Tn; Ty = Tp; Tp = Y



