
Specifying Properties of Concurrent Computations in CLF∗

Kevin Watkins
Carnegie Mellon University

kw@cs.cmu.edu

Iliano Cervesato
ITT Industries

iliano@itd.nrl.navy.mil

Frank Pfenning
Carnegie Mellon University

fp@cs.cmu.edu

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract

CLF (the Concurrent Logical Framework) is a language for
specifying and reasoning about concurrent systems. Its most
significant feature is the first-class representation of concur-
rent executions as monadic expressions. We illustrate the
representation techniques available within CLF by applying
them to an asynchronous pi-calculus with correspondence
assertions, including its dynamic semantics, safety criterion,
and a type system with latent effects due to Gordon and
Jeffrey.

1 Introduction

This paper cannot describe the clf framework in detail; a
complete description is available in other work [WCPW04,
WCPW02, CPWW02], and the syntax and typing rules of
the framework are summarized in Appendix B. Neverthe-
less, in this introduction, we briefly discuss the lineage of
frameworks on which clf is based, and the basic design of
clf.

A logical framework is a meta-language for the specifi-
cation and implementation of deductive systems, which are
used pervasively in logic and the theory of programming lan-
guages. A logical framework should be as simple and uni-
form as possible, yet provide intrinsic means for representing
common concepts and operations in its application domain.
A logical framework is characterized by an underlying meta-
logic or type theory and a representation methodology.

The principal starting point for our work is the lf logical
framework [HHP93], which is based on a minimal type the-
ory λΠ with only the dependent function type constructor Π.
lf directly supports concise expression of variable renaming
and capture-avoiding substitution at the level of syntax, and
parametric and hypothetical judgments in deductions, fol-
lowing the judgments-as-types principle. Proofs are reified
as objects, which allows properties of and relations between
proofs to be expressed within the framework.

Representations of systems involving state remained
cumbersome until the design of the linear logical framework
llf [CP02] and its close relative rlf [IP98]. llf is a conser-
vative extension of lf with the linear function type A−◦B,
the additive product type A&B, and the additive unit type
>. The main additional representation of llf is that of
state-as-linear-hypotheses. Imperative computations conse-
quently become linear objects in the framework. They can
serve as index objects, which means we can express proper-
ties of stateful systems at a high level of abstraction.

While llf solves many problems associated with stateful
computation, the encoding of concurrent computations re-
mained unsatisfactory for several reasons. One of the prob-

∗This research was sponsored in part by the NSF under grants
CCR-9988281, CCR-0208601, CCR-0238328, and CCR-0306313, and
by NRL under grant N00173-00-C-2086.

lems is that llf formulations of concurrent systems inher-
ently sequentialize the computation steps.

In this paper we are concerned with clf, a conserva-
tive extension of llf with intrinsic support for concur-
rency. Concurrent computations are encapsulated in a
monad [Mog91], which permits a simple definitional equality
and guarantees conservativity over lf and llf. The defini-
tional equality on monadic expressions identifies different
interleavings of independent steps, thereby expressing true
concurrency. Dependent types then allow us to specify prop-
erties of concurrent computations, as long as they do not rely
on the order of independent steps.

We illustrate the framework’s expressive power and rep-
resentation techniques through a sample encoding of the
asynchronous π-calculus with correspondence assertions, fol-
lowing Gordon and Jeffrey [GJ03]. Further examples, such
as encodings of Petri-nets, Concurrent ML, and the secu-
rity protocol specification framework msr can be found in
another technical report [CPWW02].

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the π-calculus with which we are concerned
and its syntax; Section 3 describes the original static seman-
tics of Gordon et al. and its clf representation; Section 4
describes the operational semantics of the language and its
clf representation; Section 5 introduces the syntax of traces
and describes the abstraction judgment relating computa-
tions and traces, and briefly discusses the safety criterion;
Section 6 briefly describes related work; and Section 7 con-
cludes. Appendices summarize the π-calculus encoding and
the syntax and judgments of the framework.

2 The asynchronous π-calculus with correspondence as-
sertions

Our asynchronous π-calculus with correspondence assertions
follows Gordon and Jeffrey’s presentation [GJ03]. Cor-
respondence assertions, originally developed by Woo and
Lam [WL93], come in two varieties, begin L and end L,
where L is a label that carries information about the state of
a communication protocol. Gordon and Jeffrey have shown
that a variety of important correctness properties of crypto-
graphic protocols can be stated in terms of matching pairs
of these begin and end assertions.

To illustrate the basic ideas, we will examine a simple
handshake protocol taken directly from Gordon and Jeffrey’s
work. This protocol is intended to ensure that if a sender
named a receives an acknowledgment message then the re-
ceiver named b has actually received the message. In the
asynchronous π-calculus with correspondence assertions, we
specify the protocol as follows.

Send(a, b, c) = new(msg); new(ack);
(out c〈msg , ack〉
| inp ack(); end (a, b,msg))

Rcv(a, b, c) = inp c(x, y); begin (a, b, x); out y〈〉

pr : type.
nm : type.
tp : type.

label : type.

stop : pr. pstopq = stop
par : pr→ pr→ pr. pP | Qq = par pPq pQq

repeat : pr→ pr. prepeat Pq = repeat pPq
new : tp→ (nm→ pr)→ pr. pnew(x :τ); Pq = new pτq (λx. pPq)

choose : pr→ pr→ pr. pchoose P Qq = choose pPq pQq
out : nm→ nm→ pr. pout x〈y〉q = out x y
inp : nm→ tp→ (nm→ pr)→ pr. pinp x(y :τ); Pq = inp x pτq (λy. pPq)

begin : label→ pr→ pr. pbegin L; Pq = begin pLq pPq
end : label→ pr→ pr. pend L; Pq = end pLq pPq

Figure 1: Process syntax represented in clf

The standard π-calculus process constructors used here
are parallel composition (P | Q), generation of a new name x
to be used in a process P (new(x); P where x is bound
in P), asynchronous output on channel c (out c〈msg , ack〉),
and input on channel c (inp c(x1, . . . , xn); P where variables
x1 through xn are bound in P). In the protocol, the send-
ing process generates a new message and a new acknowl-
edgment channel. The sender uses the asynchronous output
command to send the pair of message and acknowledgment
channel on c and waits for a response on ack . Once the
sender receives the acknowledgment, it executes an end as-
sertion which specifies that the sender (named a) requires
that the receiver (named b) has already received the input
message (msg). The receiver cooperates with the sender by
waiting for pairs of message and acknowledgment on chan-
nel c. After receiving on c, the begin assertion declares that
the receiver b has received the input message. After this
declaration, the receiver sends an acknowledgment to the
sender. We hope that in all executions of senders in par-
allel with receivers, begin assertions match up with end as-
sertions. If they do, sender a can be sure that receiver b
received the message msg .

Now, consider combining a single sender in parallel with
a single receiver: new(c); (Send(a, b, c) | Rcv(a, b, c)). This
configuration is safe since in every possible execution, ev-
ery end (a, b,msg) assertion is preceded in that execution
by a distinct corresponding begin (a, b,msg) assertion. On
the other hand, placing multiple different senders in parallel
with a single copy of a receiver is unsafe:

Send(a, b, c) | Send(a′, b, c) | Rcv(a, b, c)

This configuration is unsafe because there exists an ex-
ecution in which an end L assertion is executed but there
has been no prior matching begin L. More specifically, the
second sender a′ may create a message and send it to the
receiver. The receiver, thinking it is communicating with a,
receives the message, executes begin (a, b,msg), and returns
the acknowledgment. Finally, the second sender executes
end (a′, b,msg). In this protocol, since the identity of the
sender (either a or a′) was not included in the message,
there has been confusion over who the receiver was commu-
nicating with. This is a very simple example, but Gordon
and Jeffrey have demonstrated that these assertions can be
used to identify serious flaws in much more complicated and
important protocols.

2.1 Syntax

The syntax of the π-calculus processes P with correspon-
dence assertions is presented below. We have simplified
Gordon and Jeffrey’s calculus in a couple of ways, replacing
polyadic input and output processes with monadic versions,
dropping any data structures other than channels x, y, z and
replacing deterministic if statements with non-deterministic
choice (choose P Q). Two process forms that did not show
up in the informal example above are the process stop, which
does nothing, and the replicated process repeat P , which
acts as an unbounded number of copies of itself. The static
semantics makes use of types τ , which are discussed in the
next section; these do not affect the operational semantics
of a program.

P, Q ::= stop | (P | Q) | repeat P | new(x :τ); P
| choose P Q | out x〈y〉 | inp x(y :τ); P
| begin L; P | end L; P

The representation of process syntax follows standard
lf methodology. The signature, shown in Figure 1,
represents process syntax via clf types pr (processes),
nm (names), tp (types), and label (assertion labels). The
representation function mapping processes to clf objects is
shown at the right.

A few comments: The type nm of names does not con-
tain any closed terms; it classifies bound variables within a
process expression. The type tp is discussed in Section 3.
Channels are a special case of names. We do not specify
any particular syntax for assertion labels, but it is assumed
that they might mention names bound by new or inp. As is
common in lf representations, we use higher-order abstract
syntax, which allows us to model π-calculus bound variables
using framework variables and to implement π-calculus sub-
stitution using the framework’s substitution.

The most important property of this representation is
adequacy : every process in the original language has its own
representative as a clf object of type pr, and every object
in pr is such a representation. The canonical forms property
for clf renders proofs of such results almost trivial.

3 The static semantics

Gordon and Jeffrey present a static semantics with types
and effects for their language. The goal of the static se-
mantics is to ensure that the correspondence property for

2

name : tp. pNameq = name
chan : tp→ (nm→ eff)→ tp. pCh(x :τ)eq = chan pτq (λx. peq)

Figure 2: Type syntax represented in clf

has : nm→ tp→ type.
good : pr→ type.

consume : eff → type.
assume : eff → pr→ type.

gd stop : good stop ◦− >.
gd par : good (par P Q) ◦− good P ◦− good Q.

gd repeat : good (repeat P) ◦− > ← good P.
gd new : good (new τ (λx. P x))← wftp τ ◦− (Πx :nm. has x τ → good (P x)).

gd choose : good (choose P Q) ◦− (good P & good Q).
gd out : good (out X Y)← has X (chan τ (λy. E y))← has Y τ ◦− consume (E Y).
gd inp : good (inp X τ (λy. P y))← has X (chan τ (λy. E y))

← (Πy :nm. has y τ → assume (E y) (P y)).
gd begin : good (begin L P) ◦− (effect L−◦ good P).

gd end : good (end L P) ◦− effect L ◦− good P.

con eps : consume {1} ◦− >.
con join : consume {let {1} = latent L in let {1} = E in 1} ◦− effect L ◦− consume E.

ass eps : assume {1} P ◦− good P.
ass join : assume {let {1} = latent L in let {1} = E in 1} ◦− (effect L−◦ assume E P).

Figure 3: Static semantics represented in clf

assertions is not violated: for each end L assertion reached
in an execution, a distinct begin L assertion for L must have
been reached in the past. The static semantics associates
an effect e (a multiset of labels) with each program point,
such that it is safe to execute end L for each label L in the
multiset. (Of course, not all safe programs will necessarily
have a valid typing.)

Since clf includes llf as a sublanguage, we will be able
to represent the static “state” of the effect system as a mul-
tiset of linear hypotheses in llf style [CP02]. The basic
idea is to record a multiset of begins already reached at the
current program point as linear hypotheses of the typing
judgment.1 Then each occurrence of begin L contributes
a linear hypothesis of type effect L for the checking of its
continuation, and each end L consumes such a hypothesis.

This accounts for trivial instances of correct programs
in which an end is found directly within the continuation of
its matching begin. Of course, in actual use, one is more
interested in cases in which the end and its matching begin
occur in different processes executing concurrently (as in the
example of Section 2).

Gordon et al. introduce latent effects to treat many such
cases. The idea is that each value transmitted across a chan-
nel may carry with it a multiset of latent effects, the effects
being debited from the process sending the value and credited
to the process receiving it. Since communication synchro-
nizes the sending and receiving processes, it is certain that
the begins introducing the debited effects in the sending pro-
cess will occur before any ends making use of the credited
effects in the receiving process.2

1Really these are affine hypotheses, since the invariant is that the
multiset be merely a lower bound: it is perfectly safe to “forget” that
a begin was reached at some point in the past. Careful use of the
additives > and & will allow us to simulate affine hypotheses with
linear ones.

2Of course, this implicitly relies on the unicast nature of com-
munication in the language. If multicast or broadcast were allowed,

These considerations lead to a simple type syntax. Each
name in the static semantics has a type τ : either Name
(really nonsense; i.e., just a nonce) or Ch(x :τ)e, represent-
ing a channel transmitting names of type τ and a latent
effect e. These types (“π-types,” for short) are represented
by clf type tp, the constructors of which are shown in Fig-
ure 2. Latent effects e are themselves multisets of labels,
and are represented in clf by a type eff discussed below.

Although a latent effect is again a multiset of labels, the
llf strategy of representing multisets by linear hypotheses
does not apply, because latent effects must be first-class val-
ues. An lf strategy using explicit list constructors (cons
and nil) would represent the latent effects as first-class val-
ues, but the lf equality on such lists would be too re-
strictive: [L1, L2] and [L2, L1] are equal as multisets, but
cons L1 (cons L2 nil) and cons L2 (cons L1 nil) are not
necessarily equal as lf objects.

In clf, we have a new alternative: expressions are
first-class objects, and clf’s concurrent equality on them
can model multiset equality precisely. Each label multiset
[L1, . . . , Ln] will be represented by an expression {let {1} =
latent L1 in . . . let {1} = latent Ln in 1}. The equality on
the representation then naturally models equality of multi-
sets. We take eff to be a notational abbreviation for the type
{1} of such expressions, and add the following declaration
to the signature.

latent : label→ {1}.

In addition, we must axiomatize the objects of type {1}
that correspond to such multisets; this is the judgment wfeff
presented in Appendix A.

Next we represent the π-calculus typing judgment itself
as a clf type family good, defined in Figure 3. We use A◦−B

more than one process could be credited, violating the non-duplicable
nature of effect hypotheses.

3

and A ← B, which associate to the left, as alternate forms
of B −◦ A and B → A, giving the signature the shape of
a logic program. The type A in Πu :A. B has been omitted
where it is determined by context. We often omit outermost
Π quantifiers; in such cases the corresponding arguments to
the constant in question are also omitted (implicit). We
have also η-contracted some subterms in order to conserve
space; these should be read as abbreviations for their η-long
(canonical) forms.

Since not every declared effect must actually occur (that
is, there is implicitly a weakening principle for effects), we
must use the additive unit > to consume any leftover effects
at the leaves of a derivation (instances of the gd stop or
con eps rules).

The type family wftp, not shown in the figure (see Ap-
pendix A), represents the judgment that a π-type is well
formed, reducing more or less to the judgment wfeff for any
latent effects mentioned in the π-type. The type family has
contains no closed objects, but in the course of a derivation
of good P , hypotheses has x τ will be introduced for each
name bound by new or inp in P . Similarly, the family effect
has no closed objects, but in the course of a typing deriva-
tion, linear hypotheses effect L can be introduced by begin
and consumed by end.

The task of assume and consume is to introduce and con-
sume linear hypotheses for the whole multiset of effects con-
tained in a latent effect. Latent effects are consumed by out,
which has no continuation, and produced by inp, which does.
Accordingly, assume takes the continuation as an argument,
and invokes good to check it once the multiset of effects has
been introduced into the linear context.

It can be shown by extensions of the standard techniques
developed for the llf fragment of clf that this representa-
tion is adequate: a process P is well-typed in the original
system just when there is an object of type good P in clf.

4 The operational semantics

Gordon and Jeffrey’s operational semantics [GJ03] is based
on a traced transition system P

s−→ P ′, where s is a trace:
a sequence of begin and end actions, internal actions τ , and
gen actions binding freshly generated names (corresponding
to the execution of new). Although we have not specified
the language of labels, it is assumed that they may men-
tion such names. Then P

s−→ P ′ when P can evolve to P ′

while performing the actions in trace s. The traced transi-
tion system itself depends on the usual notion of structural
congruence P ≡ P ′ found in the π-calculus literature.

The clf representation has a somewhat different struc-
ture. Since clf has a first-class notation for concurrent
computations, we can factor the traced transition system
into two judgments: first, that a process P has a concurrent
execution E (which is represented by a clf expression); and
second, that an execution E has a (serialized) trace s. This
section is concerned with the first judgment, while the next
section treats traces.

Computations in this semantics are represented by clf
expressions

x1 :nm, . . . , xm :nm, r1 : run P1, . . . , ri : run Pi;
ri+1

∧:run Pi+1, . . . , rn
∧:run Pn ` E ← >

in a context having unrestricted hypotheses of type nm for
each generated name, unrestricted hypotheses r1 . . . ri of

type run P for each process P that is executing and avail-
able unrestrictedly, and linear hypotheses ri+1 . . . rn of type
run P for each process P that is available linearly, where
run : pr → type.3 The final result of the computation is
taken as the additive unit >, which means that computa-
tion can stop at any time, with any leftover resources (linear
hypotheses) consumed by 〈〉, its introduction form.

Then each of the structural process constructors stop,
par, repeat, and new can be represented by a corresponding
synchronous clf connective:

ev stop : run stop−◦ {1}.
ev par : run (par P Q)−◦ {run P ⊗ run Q}.

ev repeat : run (repeat P)−◦ {!run P}.
ev new : run (new τ (λu. P u))−◦ {∃u :nm. run (P u)}.

The remaining constructors are interpreted according to
their semantics:

ev choosei : run (choose P1 P2)−◦ {run Pi}.
ev sync : run (out X Y)−◦ run (inp X τ (λy. P y))

−◦{run (P Y)}.
ev begin : ΠL : label. run (begin L P)−◦ {run P}.

ev end : ΠL : label. run (end L P)−◦ {run P}.

We depart from the usual practice of leaving outermost Π
quantifiers implicit for reasons that will become clear in Sec-
tion 5.

One interesting feature of the clf encoding is that many
of the structural equivalences of the original presentation
of the π-calculus appear automatically (shallowly) as conse-
quences of the principles of exchange, weakening (since > is
present) and so forth satisfied by clf hypotheses. In the clf
setting the rest of the structural equivalences are captured
within a general notion of simulation, discussed briefly in
Section 5.

In this representation, each concurrent computation
starting from a process P corresponds to a clf object of type
run P −◦ {>}; that is, a term

∧
λr. {E} where E is a monadic

expression of type > in a context containing a single lin-
ear hypothesis r representing the process P . Because clf’s
notion of equality identifies monadic expressions differing
only in the order of execution of independent computation
steps, each such object (modulo equality) represents the de-
pendence graph of a possible computation. Thus judgments
(represented by clf types) concerning such objects, such as
the abstraction judgment to be introduced in the next sec-
tion, are predicates on depedence graphs, not on serialized
computations.

There is no simple adequacy result at this stage, since
the judgment P

s−→ P ′ of Gordon et al. refers to the trace s,
which is not directly available in the clf operational seman-
tics. (Moreover, the process P ′ to which P evolves is only
available in clf implicitly as the set of leftover hypotheses
consumed by the > introduction at the end of the clf ex-
pression representing a computation.) Once traces and the
abstraction judgment relating a computation to its traces
are introduced, it will be possible to state a precise ade-
quacy result.

5 Traces and abstraction

The syntax of the traces s mentioned in the judgment P
s−→

P ′ of Gordon et al. can be represented straightforwardly by
3Here← denotes the lax typing judgment, not reverse implication.

4

abst : {>} → tr→ type.

abst nil : abst E tnil.
abst stop : abst {let {1} = ev stop∧R in let { } = E in 〈〉} s← abst E s.
abst par : abst {let {r1 ⊗ r2} = ev alt∧R in let { } = E∧r1

∧r2 in 〈〉} s
← (Πr1. Πr2. abst (E∧r1

∧r2) s).
abst repeat : abst {let {!r} = ev repeat∧R in let { } = E r in 〈〉} s

← (Πr. abst (E r) s).
abst new : abst {let {[x, r]} = ev new∧R in let { } = E x∧r in 〈〉} (tgen (λx. s x))

← (Πx. Πr. abst (E x∧r) (s x)).
abst choosei : abst {let {r} = ev choosei

∧R in let { } = E∧r in 〈〉} (tint s)
← (Πr. abst (E r) s).

abst sync : abst {let {r} = ev sync∧R1
∧R2 in let { } = E∧r in 〈〉} (tint s)

← (Πr. abst (E∧r) s).
abst begin : abst {let {r} = ev begin L∧R in let { } = E∧r in 〈〉} (tbegin L s)

← (Πr. abst (E∧r) s).
abst end : abst {let {r} = ev end L∧R in let { } = E∧r in 〈〉} (tend L s)

← (Πr. abst (E∧r) s).

Figure 4: The abstraction judgment as a clf program

lf techniques. Though we have left the label syntax un-
specified, it is assumed that labels might depend on names
introduced in the course of the computation, so the actions
gen representing the generation of fresh names in the exe-
cution of a new process must bind a variable in the style of
higher-order abstract syntax.

The representation of traces is as follows:

tr : type.

tnil : tr. pεq = tnil
tint : tr→ tr. pτ, sq = tint psq

tbegin : label→ tr→ tr. pbegin L, sq = tbegin pLq psq
tend : label→ tr→ tr. pend L, sq = tend pLq psq
tgen : (nm→ tr)→ tr. pgen 〈x〉, sq = tgen (λx. psq)

Now we are equipped with enough tools to write the ab-
straction judgment relating a computation to its traces, as a
clf type family abst : {>} → tr → type, the logic program
for which is shown in Figure 4. The first argument of this
relation is the clf object representing the dependence graph
of the computation, while the second argument is an asso-
ciated trace. The mode (in the sense of logic programming)
is input for the first argument and output for the second.
However, the relation is not a function, because from a sin-
gle execution (as dependence graph) many possible (serial)
abstractions as a trace might be extracted. Nevertheless,
each execution has at least one abstraction as a trace.

It is also noteworthy that the context in which the abst
judgment executes uses unrestricted hypotheses r : run P for
each executing process P , whether or not the corresponding
process was represented by a linear hypothesis in the original
execution. This is a common phenomenon when writing
higher-level judgments in llf style.

This judgment, taken together with clf’s equality ad-
mitting concurrency equations, defines for each concurrent
computation the set of possible serializations of that com-
putation as a trace. The traces need not describe the whole
computation; the rule abst nil allows abstraction to stop af-
ter computing the trace of any prefix of the computation.
This suffices because we are interested only in safety prop-
erties, which are violated whenever they are violated on a
prefix of the computation.

We would like to show that each traced transition P
s−→

P ′ of Gordon and Jeffrey’s system corresponds to an ob-
ject

∧
λr. E : run P −◦ {>} as in Section 4 together with an

abstraction abst E s yielding the same trace. As it turns out,
this is not quite the case, because the structural equivalences
considered in that paper induce certain rearrangements of
tgen with respect to other actions that are not possible in
the clf variant. However, defining an appropriate notion
of “similarity” on traces admitting rearrangement of tgen
steps (which, moreover, can be characterized by another clf
judgment), we find that each traced transition is in corre-
spondence with a clf expression and abstraction yielding a
“similar” trace.

The proof technique is illustrative but is not presented
here in detail. In brief, one considers the notion of simu-
lation P1 � P2 induced by the clf operational semantics
of Section 4, abstraction, and “similarity” of traces: when-
ever P1 and some context consisting of other processes and
names yields a given trace, P2 yields a similar trace in the
same context. Then all the structural equivalences of the
traced transition system are simulations in this sense, and
it follows easily that each traced transition has its clf coun-
terpart. The converse is simple, because each rule of the clf
operational semantics is immediately available as a step of
the traced transition system (or a structural equivalence).
So we have:

Proposition 1 (Adequacy of operational semantics)
The traced transition system proves P

s−→ P ′ for some
P ′ just when there exist E : run pPq −◦ {>} and
A : (Πr. abst (E∧r) s′) (in a context binding the free names
of P and P ′), and s is similar to s′.

Finally, we can define the safety criterion for processes.
In a constructive setting, it is easiest to characterize un-
safety, because it is witnessed by finitary evidence. A pro-
cess is unsafe precisely when it has an execution admitting
some abstraction as a trace that violates the correspondence
property (see Section 2). It turns out to be easy to write
a clf judgment characterizing those traces that violate the
correspondence property (see Appendix A). Thus, each step
of the criterion is modeled by a clf judgment, and we can
write an overall judgment unsafe P , which, as a clf type,
contains all the proofs of unsafety of P . This turns out

5

to be the same, mutatis mutandis, as Gordon and Jeffrey’s
definition.

6 Related work

Right from its inception, linear logic [Gir87] has been advo-
cated as a logic with an intrinsic notion of state and con-
currency. In the literature, many connections between con-
current calculi and linear logic have been observed. Due to
space constraints we cannot survey this relatively large liter-
ature here. In a logical framework, we remove ourselves by
one degree from the actual semantics; we represent rather
than embed calculi. Thereby, clf provides another point of
view on many of the prior investigations.

Most closely related to our work is Miller’s logical frame-
work Forum [Mil94], which is based on a sequent calculus for
classical linear logic and focusing proofs [And92]. As shown
by Miller and elaborated by Chirimar [Chi95], Forum can
also represent concurrency. Our work extends Forum in sev-
eral directions. Most importantly, it is a type theory based
on natural deduction and therefore offers an internal notion
of proof object that is not available in Forum. Among other
things, this means we can explicitly represent relations on
deductions and therefore on concurrent computations.

There have been several formalizations of versions of
the π-calculus in a variety of reasoning systems, such as
hol [Mel95], Coq [Hir97, HMS01], Isabelle/HOL [RHB01]
or Linc [MT03]. A distinguishing feature of our sample en-
coding in this paper is the simultaneous use of higher-order
abstract syntax, linearity, modality, and the intrinsic notion
of concurrent computations. Also, we are not aware of a
formal treatment of correspondence assertions or dependent
effect typing for the π-calculus.

Systems based on rewriting logic, such as Maude [Mes02],
natively support concurrent specifications (and have been
used to model Petri nets, ccs, the π-calculus, etc). How-
ever, lacking operators comparable to clf’s dependent types
and proof-terms, Maude users must code concurrent com-
putations independently from the concurrent systems that
originate them.

As already mentioned above, clf is a conservative exten-
sion of llf with the asynchronous connectives ⊗, 1, !, and
∃, encapsulated in a monad. The idea of monadic encapsu-
lation goes back to Moggi’s monadic meta-language [Mog91]
and is used heavily in functional programming. Our formu-
lation follows the judgmental presentation of Pfenning and
Davies [PD01] that completely avoids the need for commut-
ing conversions, but treats neither linearity nor the existence
of normal forms. This permits us to reintroduce some equa-
tions to model true concurrency in a completely orthogonal
fashion.

7 Conclusions

The goal of this work has been to extend the elegant and log-
ically motivated representation strategies for syntax, judg-
ments, and state available in lf and llf to the concurrent
world. We have shown how the availability of a notation for
concurrent executions, admitting a proper truly concurrent
equality, enables powerful strategies for specifying proper-
ties of such executions.

Ultimately, it should become as simple and natural to
manipulate the objects representing concurrent executions
as it is to manipulate lf objects. If higher-order abstract

syntax means never having to code up α-conversion or
capture-avoiding substitution ever again, we hope that in
the same way, the techniques explored here can make it un-
necessary to code up multiset equality or concurrent equal-
ity ever again, so that intellectual effort can be focused on
reasoning about deeper properties of concurrent systems.

References

[And92] Jean-Marc Andreoli. Logic programming with
focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):197–347, 1992.

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Ap-
proach to Specification Languages. PhD thesis,
University of Pennsylvania, May 1995.

[CP02] Iliano Cervesato and Frank Pfenning. A lin-
ear logical framework. Information & Compu-
tation, 179(1):19–75, November 2002.

[CPWW02] Iliano Cervesato, Frank Pfenning, David
Walker, and Kevin Watkins. A concurrent
logical framework II: Examples and applica-
tions. Technical Report CMU-CS-02-102, De-
partment of Computer Science, Carnegie Mel-
lon University, 2002. Revised May 2003.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Com-
puter Science, 50:1–102, 1987.

[GJ03] Andrew D. Gordon and Alan Jeffrey. Typ-
ing correspondence assertions for communica-
tion protocols. Theoretical Computer Science,
300(1–3):379–409, May 2003.

[HHP93] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics. Jour-
nal of the Association for Computing Machin-
ery, 40(1):143–184, January 1993.

[Hir97] Daniel Hirschkoff. A full formalisation of pi-
calculus theory in the Calculus of Construc-
tions. In E. Gunter and A.P. Felty, editors,
Proceedings of the 10th International Confer-
ence on Theorem Proving in Higher-Order Log-
ics (TPHOLs’97), pages 153–169, Murray Hill,
New Jersey, USA, August 1997. Springer Ver-
lag LNCS 1275.

[HMS01] Furio Honsell, Marino Miculan, and Ivan
Scagnetto. Pi-calculus in (co)inductive type
theories. Theoretical Computer Science,
253(2):239–285, 2001.

[IP98] Samin Ishtiaq and David Pym. A relevant anal-
ysis of natural deduction. Journal of Logic and
Computation, 8(6):809–838, 1998.

[Mel95] Tom Melham. A mechanized theory of the pi-
calculus in HOL. Nordic Journal of Computing,
1(1):50–76, 1995.

[Mes02] José Meseguer. Software specification and veri-
fication in rewriting logic. Lecture notes for the
Marktoberdorf International Summer School,
Germany, August 2002.

6

[Mil94] Dale Miller. A multiple-conclusion meta-logic.
In S. Abramsky, editor, Ninth Annual Sympo-
sium on Logic in Computer Science, pages 272–
281, Paris, France, July 1994. IEEE Computer
Society Press.

[Mog91] Eugenio Moggi. Notions of computation
and monads. Information and Computation,
93(1):55–92, 1991.

[MT03] Dale Miller and Alwen Tiu. A proof theory
for generic judgments. In P. Kolaitis, editor,
Proceedings of the 18th Annual Symposium on
Logic in Computer Science (LICS’03), pages
118–127, Ottawa, Canada, June 2003. IEEE
Computer Society Press.

[PD01] Frank Pfenning and Rowan Davies. A judgmen-
tal reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540,
2001. Notes to an invited talk at the Workshop
on Intuitionistic Modal Logics and Applications
(IMLA’99), Trento, Italy, July 1999.

[RHB01] Christine Röckl, Daniel Hirschkoff, and Stefan
Berghofer. Higher-order abstract syntax with
induction in Isabelle/HOL: Formalizing the pi-
calculus and mechanizing the theory of con-
texts. In F. Honsell and M. Miculan, editors,
Proceedings of the 4th International Conference
on Foundations of Software Science and Com-
putation Structures (FOSSACS’01), pages 364–
378, Genova, Italy, April 2001. Springer Verlag
LNCS 2030.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfen-
ning, and David Walker. A concurrent logical
framework I: Judgments and properties. Tech-
nical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University,
2002. Revised May 2003.

[WCPW04] Kevin Watkins, Iliano Cervesato, Frank Pfen-
ning, and David Walker. A concurrent logi-
cal framework: The propositional fragment. In
Types for Proofs and Programs. Springer-Verlag
LNCS, 2004. Selected papers from the Third In-
ternational Workshop Torino, Italy, April 2003.
To appear.

[WL93] T.Y.C. Woo and S.S. Lam. A semantic model
for authentication protocols. In Proceedings of
the 1993 IEEE Computer Society Symposium
on Research in Security and Privacy, pages
178–194, Oakland, CA, USA, May 1993. IEEE
Computer Society Press.

7

A π-calculus encoding summarized

Syntax.

eff = {1} : type.
latent : label→ eff. p[L1, . . . , Ln]q =

{let {1} = latent pL1q in . . .
let {1} = latent pLnq in 1}

name : tp. pNameq = name
chan : tp→ (nm→ eff)→ tp. pCh(x :τ)eq = chan pτq (λx. peq)

stop : pr. pstopq = stop
par : pr→ pr→ pr. pP | Qq = par pPq pQq

repeat : pr→ pr. prepeat Pq = repeat pPq
new : tp→ (nm→ pr)→ pr. pnew(x :τ); Pq = new pτq (λx. pPq)

choose : pr→ pr→ pr. pchoose P Qq = choose pPq pQq
out : nm→ nm→ pr. pout x〈y〉q = out x y
inp : nm→ tp→ (nm→ pr)→ pr. pinp x(y :τ); Pq = inp x pτq (λy. pPq)

begin : label→ pr→ pr. pbegin L; Pq = begin pLq pPq
end : label→ pr→ pr. pend L; Pq = end pLq pPq

tnil : tr. pεq = tnil
tint : tr→ tr. pτ, sq = tint psq

tbegin : label→ tr→ tr. pbegin L, sq = tbegin pLq psq
tend : label→ tr→ tr. pend L, sq = tend pLq psq
tgen : (nm→ tr)→ tr. pgen 〈x〉, sq = tgen (λx. psq)

Dynamic semantics.

ev stop : run stop−◦ {1}.
ev par : run (par P Q)−◦ {run P ⊗ run Q}.

ev repeat : run (repeat P)−◦ {!run P}.
ev new : run (new τ (λu. P u))−◦ {∃u :nm. run (P u)}.

ev choosei : run (choose P1 P2)−◦ {run Pi}.
ev sync : run (out X Y)−◦ run (inp X τ (λy. P y))−◦ {run (P Y)}.

ev begin : ΠL : label. run (begin L P)−◦ {run P}.
ev end : ΠL : label. run (end L P)−◦ {run P}.

Abstraction.

abst : {>} → tr→ type.

abst nil : abst E tnil.
abst stop : abst {let {1} = ev stop∧R in let { } = E in 〈〉} s← abst E s.
abst par : abst {let {r1 ⊗ r2} = ev alt∧R in let { } = E∧r1

∧r2 in 〈〉} s
← (Πr1. Πr2. abst (E∧r1

∧r2) s).
abst repeat : abst {let {!r} = ev repeat∧R in let { } = E r in 〈〉} s

← (Πr. abst (E r) s).
abst new : abst {let {[x, r]} = ev new∧R in let { } = E x∧r in 〈〉} (tgen (λx. s x))

← (Πx. Πr. abst (E x∧r) (s x)).

abst choosei : abst {let {r} = ev choosei
∧R in let { } = E∧r in 〈〉} (tint s)

← (Πr. abst (E r) s).
abst sync : abst {let {r} = ev sync∧R1

∧R2 in let { } = E∧r in 〈〉} (tint s)
← (Πr. abst (E∧r) s).

abst begin : abst {let {r} = ev begin L∧R in let { } = E∧r in 〈〉} (tbegin L s)
← (Πr. abst (E∧r) s).

abst end : abst {let {r} = ev end L∧R in let { } = E∧r in 〈〉} (tend L s)
← (Πr. abst (E∧r) s).

8

Static semantics.

wflab : label→ type.

wfeff : eff → type.
wff eps : wfeff {1}.
wff lat : wfeff {let {1} = latent L in let {1} = E in 1} ← wflab L← wfeff E.

wftp : tp→ type.
wf name : wftp name.
wf chan : wftp (chan τ (λx. E x))← wftp τ ← (Πx. has x τ → wfeff (E x)).

consume : eff → type.
assume : eff → pr→ type.

con eps : consume {1} ◦− >.
con join : consume {let {1} = latent L in let {1} = E in 1} ◦− effect L ◦− consume E.

ass eps : assume {1} P ◦− good P.
ass join : assume {let {1} = latent L in let {1} = E in 1} ◦− (effect L−◦ assume E P).

has : nm→ tp→ type.
good : pr→ type.

gd stop : good stop ◦− >.
gd par : good (par P Q) ◦− good P ◦− good Q.

gd repeat : good (repeat P) ◦− > ← good P.
gd new : good (new τ (λx. P x))← wftp τ ◦− (Πx :nm. has x τ → good (P x)).

gd choose : good (choose P Q) ◦− (good P & good Q).
gd out : good (out X Y)← has X (chan τ (λy. E y))← has Y τ ◦− consume (E Y).
gd inp : good (inp X τ (λy. P y))← has X (chan τ (λy. E y))

← (Πy :nm. has y τ → assume (E y) (P y)).
gd begin : good (begin L P) ◦− (effect L−◦ good P).

gd end : good (end L P) ◦− effect L ◦− good P.

Safety.

invalid : tr→ type.
remove : label→ tr→ tr→ type.

6= : label→ label→ type.

inval end : invalid (tend).
inval int : invalid (tint s)← invalid s.

inval gen : invalid (tgen (λx. s x))← (Πx. invalid (s x)).
inval begin : invalid (tbegin L s)← remove L s s′ ← invalid s′.

rem match : remove L (tend L s) s.
rem nil : remove L tnil tnil.
rem int : remove L (tint s) (tint s′)← remove L s s′.

rem gen : remove L (tgen (λx. s x)) (tgen (λx. s x))← (Πx. remove L (s x) (s′ x)).
rem begin : remove L (tbegin L′ s) (tbegin L′ s′)← remove L s s′.

rem end : remove L (tend L′ s) (tend L′ s′)← L 6= L′ ← remove s s′.

invalid : tr→ type.
unsafe : pr→ type.

show unsafe : ΠE : (run P −◦ {>}). unsafe P ← (Πr. abst (E∧r) s)← invalid s.

9

B CLF type theory summarized

See the technical report [WCPW02] for further details.

Syntax.

K, L ::= type | Πu :A. K

A, B, C ::= A−◦B | Πu :A. B | A & B

| > | {S} | P
P ::= a | P N

S ::= ∃u :A. S | S1 ⊗ S2 | 1 | !A | A

Γ ::= · | Γ, u :A
∆ ::= · | ∆, x∧:A
Σ ::= · | Σ, a :K | Σ, c :A

N ::=
∧
λx. N | λu. N | 〈N1, N2〉
| 〈〉 | {E} | R

R ::= c | u | x | R∧N | R N | π1R | π2R

E ::= let {p} = R in E |M
M ::= [N, M] |M1 ⊗M2 | 1 | !N | N

p ::= [u, p] | p1 ⊗ p2 | 1 | !u | x

Ψ ::= p∧:S, Ψ | ·

Typing.

Γ `Σ K ⇐ kind
Γ `Σ A⇐ type
Γ `Σ P ⇒ K

Γ `Σ S ⇐ type

Γ;∆ `Σ N ⇐ A

Γ;∆ `Σ R⇒ A

Γ;∆ `Σ E ← S

Γ;∆;Ψ `Σ E ← S

Γ;∆ `Σ M ⇐ S

` Σ ok
`Σ Γ ok

Γ `Σ ∆ ok
Γ `Σ Ψ ok

inst kA(u. K, N) = K′

inst aA(u. B, N) = B′

inst sA(u. S, N) = S′

` · ok
` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok
` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ · ok
`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, u :A ok

Γ `Σ · ok
Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ · ok
Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S, Ψ ok

Henceforth, it will be assumed that all judgments are considered relative to a particular fixed signature Σ, and the signature
indexing each of the other typing judgments will be suppressed.

Γ ` type⇐ kind typeKF
Γ ` A⇐ type Γ, u :A ` K ⇐ kind

Γ ` Πu :A. K ⇐ kind ΠKF

Γ ` A⇐ type Γ ` B ⇐ type
Γ ` A−◦B ⇐ type −◦F

Γ ` A⇐ type Γ, u :A ` B ⇐ type
Γ ` Πu :A. B ⇐ type ΠF

Γ ` A⇐ type Γ ` B ⇐ type
Γ ` A & B ⇐ type &F Γ ` > ⇐ type >F

Γ ` S ⇐ type
Γ ` {S} ⇐ type

{}F
Γ ` P ⇒ type
Γ ` P ⇐ type

⇒type⇐

Γ ` a⇒ Σ(a)
a

Γ ` P ⇒ Πu :A. K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(u. K, N)
ΠKE

10

Γ ` S1 ⇐ type Γ ` S2 ⇐ type
Γ ` S1 ⊗ S2 ⇐ type ⊗F Γ ` 1⇐ type 1F

Γ ` A⇐ type Γ, u :A ` S ⇐ type
Γ ` ∃u :A. S ⇐ type ∃F

Γ ` A⇐ type
Γ ` !A⇐ type !F

Γ;∆, x∧:A ` N ⇐ B

Γ;∆ `
∧
λx. N ⇐ A−◦B

−◦I Γ, u :A;∆ ` N ⇐ B

Γ;∆ ` λu. N ⇐ Πu :A. B
ΠI

Γ;∆ ` N1 ⇐ A Γ;∆ ` N2 ⇐ B

Γ;∆ ` 〈N1, N2〉 ⇐ A & B
&I

Γ;∆ ` 〈〉 ⇐ > >I

Γ;∆ ` E ← S

Γ;∆ ` {E} ⇐ {S} {}I
Γ;∆ ` R⇒ P ′ P ′ ≡ P

Γ;∆ ` R⇐ P
⇒⇐

Γ; · ` c⇒ Σ(c)
c

Γ; · ` u⇒ Γ(u)
u

Γ; x∧:A ` x⇒ A
x

Γ;∆1 ` R⇒ A−◦B Γ;∆2 ` N ⇐ A

Γ;∆1, ∆2 ` R∧N ⇒ B
−◦E Γ;∆ ` R⇒ A & B

Γ;∆ ` π1R⇒ A
&E1

Γ;∆ ` R⇒ Πu :A. B Γ; · ` N ⇐ A

Γ;∆ ` R N ⇒ inst aA(u. B, N)
ΠE

Γ;∆ ` R⇒ A & B

Γ;∆ ` π2R⇒ B
&E2

Γ;∆1 ` R⇒ {S0} Γ;∆2; p∧:S0 ` E ← S

Γ;∆1, ∆2 ` (let {p} = R in E)← S
{}E

Γ;∆ `M ⇐ S

Γ;∆ `M ← S
⇐←

Γ;∆; p1
∧:S1, p2

∧:S2, Ψ ` E ← S

Γ;∆; p1 ⊗ p2
∧:S1 ⊗ S2, Ψ ` E ← S

⊗L
Γ;∆;Ψ ` E ← S

Γ;∆; 1∧:1, Ψ ` E ← S
1L

Γ, u :A;∆; p∧:S0, Ψ ` E ← S

Γ;∆; [u, p]∧:∃u :A. S0, Ψ ` E ← S
∃L

Γ, u :A;∆;Ψ ` E ← S

Γ;∆; !u∧: !A, Ψ ` E ← S
!L

Γ;∆ ` E ← S

Γ;∆; · ` E ← S
←←

Γ;∆, x∧:A; Ψ ` E ← S

Γ;∆; x∧:A, Ψ ` E ← S
AL

Γ;∆1 `M1 ⇐ S1 Γ;∆2 `M2 ⇐ S2

Γ;∆1, ∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I Γ; · ` 1⇐ 1 1I

Γ; · ` N ⇐ A Γ;∆ `M ⇐ inst sA(u. S, N)
Γ;∆ ` [N, M]⇐ ∃u :A. S

∃I
Γ; · ` N ⇐ A

Γ; · ` !N ⇐ !A !I

11

