
A Refined Proof Theory for Reasoning About Separation

Limin Jia David Walker

Princeton University

E-mail: {ljia,dpw}@cs.princeton.edu

Background. Automated program verification tools
can help programmers to discover bugs at an early
stage, thus producing more reliable software. A large
number of software bugs are related to operations on
shared mutable data structures such as memory al-
location, deallocation, updating the content of point-
ers. Therefore, being able to reason about the correct-
ness and safety properties of programs that manipulate
shared mutable data structures is essential to produc-
ing high-assurance software.

The recent development of separation logic [1, 2]
by Reynolds, O’Hearn, and Yang has shown that us-
ing substructural logic to describe memory as disjoint
pieces is a promising approach to verify the correct-
ness of programs that manipulate list data structures.
Now the challenge is to develop theorem provers for
separation logic so that programmers can write high-
assurance software without the burden of constructing
all of their correctness proofs by hand.

Some Simple Observations. Reynolds, O’Hearn
and Yang’s separation logic is a complex system based
on the logic of bunched implications. Our hope is that
by rethinking the proof theory necessary for reason-
ing about program data we will simplify the theorem-
proving tasking and will be able to bring off-the-shelf
theorem proving components to bare on the project.

One of the things that makes bunched implications
more complex than other logics is the presence of its
eponymous contexts — the “bunches.” Fortunately, it
appears that complex bunches appear infrequently, if
at all, in proofs about program data structures. Con-
sequently, we believe we can develop a very effective
tool for reasoning about program data based on lin-
ear logic, which shares all the connectives of bunched
logic except the implication →, which is replaced by
the modality !.

Linear logic also has the advantage that it directly
addresses one of the somewhat ad hoc concepts in sep-
aration logic – the heap-free formulas. Heap-free for-
mulas, such arithmetic equations, do not depend upon

the store and are always subject to contraction, weak-
ening and exchange. A natural way to deal with these
predicates is to treat them as ordinary formulas but
wrap them with unrestricted linear logical modality !.
By doing so, we may exploit existing theorem proving
techniques for dealing with ! rather than having to
come up with our own new techniques. We also use
! to help us represent aliased datastructures concisely,
which separation logic appears to have great difficulty
with.

Finally, we have observed that while bunched impli-
cations is classical to the core, the classical reasoning
occurs at the level of arithmetic as opposed to at the
level of the store. Reasoning about store and its trans-
formations can be achieved effectively in an intuition-
istic logic.

ILC. We developed a new logic named ILC (Intu-
itionistic Linear logic with Classical arithmetic) that
is designed as a foundation for automatic reasoning
about state and takes the above observations into ac-
count. The basic goal is to embed classical reasoning
about arithmetic into intuitionistic linear logic. We
do so in a principled way by confining the classical
formulas to a new modality #. In addition, our logic
contains all the connectives of first-order multiplicative
and additive linear logic. As in O’Hearn et al.’s work,
the multiplicative conjunction ⊗ is used to describe
the disjoint of two stores, the multiplicative implica-
tion (is used to describe store updates and the addi-
tive & is used to describe sharing. Linear logic’s unre-
stricted modality ! is used to describe heap-free data,
and aliased data similar to that in previous work on
alias types [3]. We use E to range over integer expres-
sions; Pa ranges over arithmetic predicates, which are
equality and partial-order relationship on integers. The
classical formulas A consist of classical truth, arith-
metic predicates, conjunction and negation. The first
store predicate (E1 ⇒ E2) describes a heap contain-
ing only one location, E1 and contents is E2, while the
second store predicate (E1

a

⇒ E2) describes possibly

1

aliased data. Disjunction and universal and existential
quantifiers are not shown.

Int Exps E ::= n | xi | E + E | −E

Arith. Preds Pa ::= E1 = E2 | E1 < E2

Classic. Forms A ::= true | Pa | A1 ∧ A2 | ¬A

Store Preds Ps ::= (E1 ⇒ E2) | (E1

a

⇒ E2)
Intuit. Forms F ::= Ps | 1 | F1 ⊗ F2 | F1 (F2

| > | F1 &F2 | ! F | #A

Logical Judgments. The hypothetical judgments of
our logic have the form of Γ ; Θ ; ∆ =⇒ F . This judge-
ment includes an unrestricted context Γ for classical
formulas, an unrestricted context Θ for intuitionistic
formulas, and a linear context ∆, also for intuitionis-
tic formulas. The first two contexts have contraction,
weakening and exchange properties, while the last has
only exchange.

An intuitive reading of the sequent Γ ; Θ ; ∆ =⇒ F

is that given a state described by unrestricted assump-
tions Θ, linear assumptions ∆, and satisfying all the
classical arithmetic constraints in Γ, this state can also
be viewed as a state described by F .

Sequent Rules. For the classical part of our logic,
we resort to Gentzen’s LK formalization. The sequent
rules for classical logic are in the form: Γ # Γ′, where
Γ is the context for truth assumptions and Γ′ is the
context for false assumptions. The sequent Γ # Γ′ can
be read as: the truth assumption Γ contradicts with
one of the false assumptions in Γ′. The formalization is
standard and we only give the basic Contra rule below.

Γ, A # A, Γ′
Contra

The sequent rules for most connectives are the same
as those in intuitionistic linear logic, except that the
classical context Γ is carried around. The interesting
rules are the left and right rule for the new modality
#, and the absurdity rule, which illustrates the inter-
action between the classical part and the intuitionistic
part of the logic. The right rule for # says that if Γ
contradicts the assertion “A false” (which means A is
true) then we can derive #A, without using any lin-
ear resources. If we read the left rule for # bottom
up, it says that whenever we have #A, we can put A

together with other classical assumptions in Γ. The
absurdity rule is a peculiar one. The justification for
this rule is that since Γ is not consistent, no state can
meet the constraints imposed by Γ, and therefore, any
statement based on the assumption that a state satis-
fies those constraints is simply true.

Γ # A

Γ ; Θ ; · =⇒ #A
#R

Γ, A ; Θ ; ∆ =⇒ F

Γ ; Θ ; ∆, #A =⇒ F
#L

Γ # ·

Γ ; Θ ; ∆ =⇒ F
Absurdity

Γ ; Θ ; ∆1 =⇒ F1 Γ ; Θ ; ∆2 =⇒ F2

Γ ; Θ ; ∆1, ∆2 =⇒ F1 ⊗ F2

⊗R

Γ ; Θ ; ∆, F1, F2 =⇒ F

Γ ; Θ ; ∆, F1 ⊗ F2 =⇒ F
⊗L

We have proven the following cut elimination theo-
rem for our logic.

Theorem 1 (Cut Elimination)
1. If Γ, A # Γ′

and Γ # A, Γ′
then Γ # Γ′

.

2. If Γ # A and Γ, A ; Θ ; ∆ =⇒ F then Γ ; Θ ; ∆ =⇒
F .

3. If Γ ; Θ ; · =⇒ F and Γ ; Θ, F ; ∆ =⇒ F ′
then

Γ ; Θ ; ∆ =⇒ F ′
.

4. If Γ ; Θ ; ∆ =⇒ F and Γ ; Θ ; ∆′, F =⇒ F ′
then

Γ ; Θ ; ∆, ∆′ =⇒ F ′
.

Continuing research. We are currently developing
a Hoare Logic that uses ILC as its assertion language.
The Hoare Logic is a syntax-directed set of verification-
condition generation rules. We are planning on build-
ing an automated theorem prover to discharge the ver-
ification conditions. One additional property of our
logic that increases our chance of success is that all
the classical reasoning can be pushed to the leaves of
the derivation tree. Consequently, we believe we will
be able to build our theorem prover rather directly by
combining theorem proving techniques for linear logic
with classical decision procedures for arithmetic.

Acknowledgement. We would like to thank Frank
Pfenning for fruitful discussions about this research
and for helping us work out the reading of our sequents.

References

[1] S. Ishtiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In Twenty-Eighth ACM

Symposium on Principles of Programming Languages,
pages 14–26, London, UK, Jan. 2001.

[2] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In Computer

Science Logic, number 2142 in LNCS, pages 1–19, Paris,
2001.

[3] F. Smith, D. Walker, and G. Morrisett. Alias types. In
European Symposium on Programming, pages 366–381,
Berlin, Mar. 2000.

2

