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Abstract

This paper presents a new program logic designed for facilitating automated reasoning about pointer programs.
The program logic is directly inspired by previous work by O’Hearn, Reynolds, and Yang on separation logic,
but rather than using classical bunched logic as the basis for assertions, we use Girard’s intuitionistic linear
logic extended with a sublogic for classical logic reasoning about arithmetic. The main contributions of the
paper include the definition of a sequent calculus for our new logic, which we call ILC (Intuitionistic Linear
logic with Classical arithmetic) and proof of a cut elimination. We also give a store semantics for the logic. Next,
we define a simple imperative programming language with mutable references and give verification condition
generation rules that produce assertions in ILC. We have proven verification condition generation is sound.
Finally, we identify a fragment of ILC, ILC−, that is both decidable and closed under generation of verification
conditions. In other words, if loop invariants are specified in ILC−, then the resulting verification conditions are
also in ILC−. Since verification condition generation is syntax-directed, we obtain a decidable procedure for
checking properties of pointer programs.

1. Introduction

In the eighties and early nineties, formal program specification and verification was left for dead: it was too
difficult, too costly, too time-consuming and completely unscalable. Perhaps the government could pay to
formally specify and check parts of their most critical space shuttle infrastructure, but certainly no one else
could use it to verify their own products. Amazingly, in 2005, Microsoft is now using verification technology in
many of their internal projects and is currently planning to include a logical specification and checking language
in their next version of Visual C.1 This remarkable turnaround was made possible in part by moving away from
complete program verification to verification of a smaller selection of simple, but useful program properties,
and in part by great improvements in abstract interpretation and theorem proving technologies.

Some of the most successful recent verification projects including the Microsoft assertion language men-
tioned above, Leino et al.’s extended static checking project and its successors [7, 8, 3], and Necula and Lee’s
proof-carrying code [18, 17], to name just a few, have used conventional classical logic to specify and check

1 Zhe Yang, Microsoft Research at Princeton Computer Science Department Colloquium, March 2005.
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program properties. These conventional classical logics work exceptionally well for specifying arithmetic con-
ditions and verifying that array accesses are in bounds. One place where there remains room for improvement
is in specification and verification of programs that manipulate pointers and manage resources.

To better support verification of pointer programs, O’Hearn, Reynolds and Yang [10, 20] have advocated
using the classical logic of bunched implications, extended with a collection of domain specific axioms about
storage, as the assertion language for program verification. The crucial insight in this research is that the
expressive connectives of the logic of bunched implications encapsulate key invariants used over and over again
when reasoning about storage. For instance, the separating conjunction of bunched logic F1 ∗ F2 says that F1

accurately describes a portion of the store (h1) and F2 also accurately describes a portion of the store (h2) and
the two portions of the store have no location to common. In classical logic, expressing the same condition
is much more verbose. One might try introducing some set theory into the logic and using a formula such as
F1 ∧ F2 ∧ S1 ∩ S2 = ∅ where S1 and S2 are the sets of program locations that F1 and F2 respectively depend
upon. As one increases the number of separate memory chunks, the separation logic formula remains relatively
simple: F1 ∗ F2 ∗ F3 ∗ F4 represents four separate pieces of the store. On the other hand, the related classical
formula becomes increasingly complex:

F1 ∧ F2 ∧ F3 ∧ F4 ∧ S1 ∩ S2 = ∅ ∧ S1 ∩ S3 = ∅ ∧ S1 ∩ S4 = ∅ ∧ S2 ∩ S3 = ∅ ∧ S2 ∩ S4 = ∅ ∧ S3 ∩ S4 = ∅
The end result is that while in theory it is not impossible to reason about memory in conventional classical

logic, in practice invariants concerning linear data structures, in particular, can quickly grow to an unmanageable
size. Separation logic has certainly not yet solved all memory management problems, but for many examples
studied by O’Hearn et al., proofs are much more concise and manageable than they would be in classical logic.
Finding logics that allow concise and intuitive specification of common program properties is clearly crucial for
bringing the technology to bear on practical programming problems.

Most of the research by O’Hearn et al. so far focuses on manual construction of program proofs as opposed to
automatic techniques. Two exceptions are work by Calcagno et al. [5] and Berdine et al. [4], who have identified
fragments of quantifier-free separation logic that are decidable, though they have not yet shown how to use
these fragments in program verification. The main purpose of this paper is to set up a foundation for automatic
verification of properties of pointer programs. One natural way to pursue this agenda is to use the weakest
precondition generation rules defined by O’Hearn et al. and to develop a special-purpose theorem prover to
check validity of the generated assertions. However, we have not taken this road. Instead, we have developed a
closely related, but new logic that combines Intuitionistic Linear logic with Classical arithmetic (ILC). We have
also give a syntax-directed algorithm for generating verification conditions for a simple programming language
with control flow constructs, mutable references, allocation, and deallocation.

For the purposes of automatic program verification, there are four main reasons for using this new logic as
opposed to separation logic.

• First, ILC supports a strict division between the substructural part (intuitionistic linear logic), which is used
to reason about memory, and the unrestricted classical part, which is used to reason about arithmetic. This
separation will allow us to exploit directly the highly effective decision procedures for arithmetic that have
been used so successfully in previous program verification efforts.

• Second, by using well-known complexity results for intuitionistic linear logic, we have identified a fragment
of ILC that is decidable. Moreover, our verification condition generation algorithm is syntax-directed and
closed under this fragment of ILC. In other words, if programmers write loop invariants in this fragment of
ILC then the resulting verification conditions are also in this fragment and can be decided. Overall, this leads
to a decidable procedure for program verification.

• Third, the proof theory for O’Hearn et al.’s separation logic is a combination of the proof theory for the logic
of bunched implications plus a collection of specialized axioms. A number of the specialized axioms are
dedicated to reasoning about pure formulas — those formulas that do not refer to the store. We observe that
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when representing pure formulas using linear logic’s unrestricted modality !F , the main axioms fall out for
free. Consequently, it is unnecessary to develop specialized theorem proving techniques for them.

• Fourth, we have recently looked at generating proof-carrying code for programs with rich memory manage-
ment invariants [2, 1, 11] and while we found encoding “single-pointer” invariants in separation logic highly
effective, we were unable to find a simple encoding for general-purpose (typed) shared mutable references.
Consequently, we fell back on older ideas from the work on alias types, which implicitly [22], and in newer
work, explicitly [15], use linear logic’s unrestricted modality as part of the encoding. Though we do not focus
on this issue in this paper, it is clear that ILC can easily accommodate these encodings.

In addition to these main points, we are also simply curious to more fully understand the relative strengths and
weaknesses of using intuitionistic linear logic as opposed to the logic of bunched implications as the foundation
for verification of pointer programs. O’Hearn [19] explains convincingly that, in general, there are deep and
important differences between the two logics, but the question of which logic is better for verifying pointer
programs persists. O’Hearn, Reynolds, Yang and others have now spent approximately six years studying the
use of bunched implications in this domain. However, the need for complex bunches in their proofs is rare at
best. The question we ask is whether they are needed at all. This paper does not answer that question but it
does lay out a foundation for using intuitionistic linear logic as opposed to bunched logic in automatic program
verification. This is a starting point from which we can begin to study the relationship between the two logics
in this domain in depth.

In summary, there are three central contributions of this paper. First, in Section 2, we propose ILC as opposed
to bunched logic as a foundation for checking safety properties of pointer programs. We outline the proof theory
for ILC as a sequent calculus, prove a cut-elimination theorem to show it is well defined, and give number of
simple examples. The proof theory is sound with respect to the storage model, but not complete. Separation
logic also suffers from a lack of completeness (c.f., Reynolds [21, pg. 6] comments “regrettably these [axioms]
are far from complete.”). This lack of completeness does not concern us as previous successful defect detectors
such as ESC [7] have also been incomplete. Our second contribution (Section 3) is to define a simple imperative
language with references and to give syntax-directed verification condition generation rules that use ILC as
the assertion language. We prove that verification condition generation is sound with respect to our memory
model and give a few examples. The third main contribution of this paper, discussed in Section 2.6, is in the
definition of a very useful, but decidable fragment of the logic, ILC−. The key property of ILC− is that it is
closed under verification condition generation. In other words, if loop invariants and pre- and post-conditions
fall into ILC− then the generated verification conditions also fall into ILC−. All of the example programs we
verify in section 3.4 use invariants in ILC−. Overall, the decidable logic plus the syntax-directed verification
condition generation gives rise to a terminating algorithm for verification of pointer programs.

Section 4 compares our research more completely with related work. Section 5 summarizes our research
again and suggests directions for future work. One crucial direction for future work is the study of recursive
data structures, which is beyond the scope of this initial paper.

2. Intuitionistic Linear Logic with Classical Arithmetic

In this section we introduce ILC, Intuitionistic Linear logic with Classical arithmetic. It is designed as a
foundation for reasoning about state with arithmetic constraints. The basic goal is to embed classical reasoning
about arithmetic into intuitionistic linear logic. We do so in a principled way by confining the classical formulas
to a new modality #. Our logic contains all the connectives of first-order multiplicative and additive linear logic.

This section is organized as follows: we will first familiarize the readers with the syntax, then informally
discuss basic concepts behind the connectives of our logic, and the connections and differences between ILC
and separation logic. The formal semantics and proof theory are introduced in Section 2.3 and Section 2.4. After
discussing the properties of our logic in Section 2.5, we will present a decidable fragment, ILC−, in Section 2.6.
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Figure 1. A sample heap

2.1 Syntax

The syntax of the logic is shown below. We use E to range over terms (integer expressions), which include
variables x, constants n, and the application of function symbols + and −. We use Pa to range over arithmetic
predicates, which are equality and partial-order relationships on integers. The classical formulas A consist of
classical truth, arithmetic predicates, conjunction and negation. The state predicate (E1 ⇒ E2) describes a
heap containing only one location, E1 and its contents E2. The intuitionistic formulas, F , contain the store
predicate and formulas constructed from the connectives in first-order linear logic and the new modality #.

Integer Terms E : : = n | x | E + E | −E
Arithmetic Predicates Pa : : = E1 = E2 | E1 < E2

Classical Formulas A : : = true | false | Pa | A1 ∧ A2 | ¬A | A1 ∨ A2

State Predicates Ps : : = (E1 ⇒ E2)
Intuitionistic Formulas F : : = Ps | 1 | F1 ⊗ F2 | F1 ( F2 | > | F1 &F2 | 0 | F1 ⊕ F2

| !F | ∃b.F | ∀b.F | #A

2.2 Basic Concepts

We informally discuss the semantics of the connectives and highlight the key ideas for reasoning about program
states. Most of the ideas also appear in separation logic. All the examples in the section refer to Figure 1.
Figure 1 shows a heap h that contains two disjoint parts: h1 and h2. The first part h1 contains location x, which
contains integer 3; the second part h2 contains location y, which contains integer 4.

Emptiness. The connective 1 describes an empty heap. The counterpart in separation logic is usually written
as emp.

Separation. Multiplicative conjunction ⊗ separates a linear state into two disjoint parts. For example, the heap
h can be described by formula (x ⇒ 3) ⊗ (y ⇒ 4) . Multiplicative conjunction does not allow weakening or
contraction: F1 ⊗ F1 is not the same as F1. Therefore, we can uniquely identify each part in the heap and track
its state changes. The multiplicative conjunction (∗) in separation logic has the same properties.

Update. Multiplicative implication ( is similar to the multiplicative implication −∗ in separation logic.
Formula F1 ( F2 describes a heap h waiting for another piece; if given another heap h′ that is described
by F1, and if h′ is disjoint from h, then the union of h and h′ can be described by F2. For example, h2 in
Figure 1 can be described by (x ⇒ 3) ( ( (x ⇒ 3) ⊗ (y ⇒ 4) ). Perhaps a more interesting example is that
heap h in Figure 1 satisfies formula F = (x ⇒ 3) ⊗ ( (x ⇒ 5) ( ( (x ⇒ 5) ⊗ (y ⇒ 4) )). This example
brings out the idea of describing store updates using multiplicative conjunction and implication. Formula F can
be read as: location x is allocated on heap h (because part of h is described by (x ⇒ 3) ), and if we update
the contents of location x with 5 (the new piece is described by (x ⇒ 5) ), then the resulting heap is described
by (x ⇒ 5) ⊗ (y ⇒ 4) . This scheme comes up very often in the preconditions we generate for the assertion
language in the next section.

No information. The connective > is the unit of additive conjunction. It describes any linear state, and
therefore it does not contain any specific information about the linear state it describes. The counterpart of
> in separation logic is usually written true.
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Sharing. Additive conjunction & shares one linear state between two descriptions. Formula F1 &F2 repre-
sents a state can be described by both F1 and F2. For example, h is described by ( (x ⇒ 3) ⊗ >)& ( (y ⇒
4) ⊗ >).

The additive conjunction in separation logic is written ∧. The behavior of ∧ is closely connected to the
additive implication → and the bunched contexts, which our logic doesn’t have. However, the connective ∧ will
behave differently from & in our logic only in the presence of the additive implication →. The basic sharing
properties of these two connectives are the same.

Heap Free Conditions. The unrestricted modality !F describes an empty heap and asserts F is true. For
instance, ! ( (x ⇒ 3) ( ∃y. (x ⇒ y) ) describes the empty heap. It says that given no initial resources, if we
add a heap in which location x holds 3 then we end up with a heap in which location x holds some y. On the
other hand, ! (x ⇒ 3) cannot be satisfied. The ! connective requires the underlying formula describe an empty
heap but (x ⇒ 3) always describes a heap with one element.

The observant reader will immediately notice that !F is semantically equivalent to F&1. The latter formula
describes the same heap in two ways, once as F and once as empty. However, as we will see in the next section,
the two formulas have different proof-theoretic properties. Formula !F satisfies weakening and contraction and
therefore can be used as many times as we choose; F&1 does not satisfy this properties in general. Hence !
is used as a simple syntactic marker that informs the theorem prover of the structural properties to apply to the
underlying formula.

The equivalent idea in separation logic is that of a “pure formula”. Rather than using a connective to mark
the purity attribute, a theorem prover analyzes the syntax of the formula to determine its status. Pure formulas
are specially axiomatized in separation logic.

Classical Reasoning. In separation logic, negation is defined by additive implication and false as ¬P
def
=

P → false. And law of excluded middle holds in the classical semantics. For instance, formula (x ⇒
3) ∨ ¬ (x ⇒ 3) is valid. However, negations of “heap-ful” conditions, such as ¬ (x ⇒ 3) , appear very rare.
On the other hand classical reasoning about arithmetic is ubiquitous. Consequently, we add a classical sublogic
to what we have already presented. The classical formulas are confined under the modality #. For example, the
heap h in Figure 1 satisfies ∃e1.∃e2. (x ⇒ e1) ⊗ (y ⇒ e2)⊗ ! (#(¬(e1 = e2))). In separation logic we should
write ∃e1.∃e2.( (x ⇒ e1) ∗ (y ⇒ e2) ) ∧ (¬(e1 = e2)). The modality # separates the classical arithmetic
reasoning from the rest of the intuitionistic linear reasoning making it possible to use an efficient off-the-shelf
decision procedure for classical arithmetic.

2.3 Semantics of the Logic

Following Reynold’s [21], all values are integers, some integers (an infinite collection of them) are considered
heap locations. We use meta variable n when referring to integers, ` when referring to locations, and v when
referring to values. We use stores as models for our logic. A store (heap) is a finite map from locations to values.

We also define the following operations on the store:

• dom(h) denotes the domain of store h.
• h(`) denotes the value stored at location `.
• h [ ` := v ] denotes a store h′ in which ` maps to v but is otherwise the same as h.
• h1 ] h2 denotes the union of disjoint stores. It is undefined if the stores are not disjoint.

There are three semantic judgments:

M � A Arithmetic model M satisfies classical formula A
M;h � F store h together with arithmetic model M satisfy formula F
h � F store h satisfies formula F
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• M; h � (E1 ⇒ E2) iff dom(h) = [[E1]], h([[E1]]) = [[E2]]

• M; h � 1 iff dom(h) = ∅

• M; h � F1 ⊗ F2 iff h = h1 ] h2, and M; h1 � F1, and M; h2 � F2.

• M; h � F1 ( F2 iff for all store h′, M; h′
� F1 implies M; h ] h′

� F2.

• M; h � > it is true for all stores.

• M; h � F1 & F2 iff M; h � F1, and M; h � F2.

• M; h � 0, no store satisfies 0.

• M; h � F1 ⊕ F2 iff M; h � F1, or M; h � F2.

• M; h � ! F iff dom(h) = ∅, and M; h � F .

• M; h � ∃x.F iff there exists some integer a such that M; h � F [a/x].

• M; h � ∀x.F iff for all integer a, M; h � F [a/x].

• M; h � #A iff dom(h) = ∅, and M � A.

Figure 2. The Semantics of formulas

The arithmetic terms, functions, and predicates are interpreted in Presburger Arithmetic. We write [[E]] for
the integer value that the closed expression E denotes to. The definition of the semantics of classical formulas
are standard, and we omit it in this paper.

Because classical arithmetic constraints play an important role in our logic, we explicitly mention the
arithmetic model in the semantics of the formulas. The informal semantic meanings of formulas are discussed
in the previous section, and the formal definitions of M;h � F are given in Figure 2. The semantics of the
formulas is straightforward; only the classical modality needs some attention. Formula #A is valid if the store
is empty and the classical formula A is valid in Presburger Arithmetic.

Lastly, a store h satisfies a formula F if and only if Presburger arithmetic together with the store satisfies F :

h � F iff M;h � F where M is Presburger Arithmetic.

2.4 Proof Theory

In this section we formalize the sequent calculus for ILC.

Logical Contexts Our logical judgments make use of an unrestricted context Γ for classical formulas, an
unrestricted context Θ for intuitionistic formulas, and a linear context ∆, also for intuitionistic formulas. The
first two contexts have contraction, weakening, and exchange properties; while the last has only exchange. The
context Ω contains a set of variables.

Classical Unrestricted Context Γ : : = · | Γ, A
Intuitionistic Unrestricted Context Θ : : = · | Θ, F
Intuitionistic Linear Context ∆ : : = · | ∆, F
Variable Context Ω : : = · | Ω, x

Logical Judgments There are two sequent judgments in our logic.

Ω | Γ # Γ′ classical sequent rules
Ω | Γ ; Θ ; ∆ =⇒ F intuitionistic sequent rules

The sequent rules for classical logic are in the form Ω |Γ # Γ′, where Γ is the context for truth assumptions
and Γ′ is the context for false assumptions. The sequent Ω |Γ # Γ′ can be read as: the truth assumptions in Γ
contradicts with one of the false assumptions in Γ′. The formalization is Gentzen’s LK formalization, and we
only give the basic Contra rule below.
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Sequent rules for ILC: Ω |Γ ; Θ ; ∆ =⇒ F

Ω | Γ; Θ; F =⇒ F
L-Init

Ω | Γ; Θ, F ; ∆, F =⇒ F ′

Ω | Γ; Θ, F ; ∆ =⇒ F ′
Copy

Ω | Γ; Θ; ∆1 =⇒ F1 Ω | Γ; Θ; ∆2 =⇒ F2

Ω | Γ; Θ; ∆1, ∆2 =⇒ F1 ⊗ F2
⊗R

Ω | Γ; Θ; ∆, F1, F2 =⇒ F

Ω | Γ; Θ; ∆, F1 ⊗ F2 =⇒ F
⊗L

Ω | Γ; Θ; ∆, F1 =⇒ F2

Ω | Γ; Θ; ∆ =⇒ F1 ( F2
( R

Ω | Γ; Θ; ∆ =⇒ F1 Ω | Γ; Θ; ∆′, F2 =⇒ F

Ω | Γ; Θ; ∆, ∆′, F1 ( F2 =⇒ F
( L

Ω | Γ; Θ; · =⇒ 1
1R

Ω | Γ; Θ; ∆ =⇒ F

Ω | Γ; Θ; ∆, 1 =⇒ F
1L

Ω | Γ; Θ; ∆ =⇒ F1 Ω | Γ; Θ; ∆ =⇒ F2

Ω | Γ; Θ; ∆ =⇒ F1 & F2
&R

Ω | Γ; Θ; ∆, F1 =⇒ F

Ω | Γ; Θ; ∆, F1 & F2 =⇒ F
&L1

Ω | Γ; Θ; ∆, F2 =⇒ F

Ω | Γ; Θ; ∆, F1 & F2 =⇒ F
&L2

Ω | Γ; Θ; ∆ =⇒ >
>R

Ω | Γ; Θ; ∆ =⇒ F1

Ω | Γ; Θ; ∆ =⇒ F1 ⊕ F2
⊕R1

Ω | Γ; Θ; ∆ =⇒ F2

Ω | Γ; Θ; ∆ =⇒ F1 ⊕ F2
⊕R2

Ω | Γ; Θ; ∆, F1 =⇒ F Ω | Γ; Θ; ∆, F2 =⇒ F

Ω | Γ; Θ; ∆, F1 ⊕ F2 =⇒ F
⊕L

Ω | Γ ; Θ ; ∆, 0 =⇒ F
0L

Ω | Γ; Θ; ∆ =⇒ F [t/x]

Ω | Γ; Θ; ∆ =⇒ ∃x.F
∃R

Ω, a | Γ; Θ; ∆, F [a/x] =⇒ F ′

Ω | Γ; Θ; ∆, ∃x.F =⇒ F ′
∃L

Ω, a | Γ; Θ; ∆ =⇒ F [a/x]

Ω | Γ; Θ; ∆ =⇒ ∀x.F
∀R

Ω | Γ; Θ; ∆, F [t/x] =⇒ F ′

Ω | Γ; Θ; ∆, ∀x.F =⇒ F ′
∀L

Ω | Γ; Θ; · =⇒ F

Ω | Γ; Θ; · =⇒ ! F
! R

Ω | Γ; Θ, F ; ∆ =⇒ F ′

Ω | Γ; Θ; ∆, ! F =⇒ F ′
! L

Ω | Γ # A

Ω | Γ ; Θ ; · =⇒ #A
#R

Ω | Γ, A ; Θ ; ∆ =⇒ F

Ω | Γ ; Θ ; ∆, #A =⇒ F
#L

Ω | Γ # ·

Ω | Γ ; Θ ; ∆ =⇒ F
Absurdity

Figure 3. Sequent Calculus

Ω | Γ, A # A, Γ′
Contra

The intuitionistic sequent rules have the form: Ω |Γ ; Θ ; ∆ =⇒ F . An intuitive reading of the sequent is
that if a state described by unrestricted assumptions in Θ, linear assumptions ∆, and satisfying all the classical
arithmetic constraints in Γ, then this state can also be viewed as a state described by F . Context Ω contains all
the free variables in Γ, Θ, ∆, and F . The complete set of sequent rules are listed in Figure 3

The sequent rules for multiplicative connectives, additive connectives, and quantifications are the same as
those in intuitionistic linear logic except that the classical context Γ is carried around. The interesting rules are
the left and right rule for the new modality # and the absurdity rule, which illustrates the interaction between the
classical part and the intuitionistic part of the logic. The right rule for # says that if Γ contradicts the assertion
“A false” (which means A is true) then we can derive #A without using any linear resources. If we read the left
rule for # bottom up, it says that whenever we have #A, we can put A together with other classical assumptions
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in Γ. The absurdity rule is a peculiar one. The justification for this rule is that since Γ is not consistent, no state
can meet the constraints imposed by Γ, therefore, any statement based on the assumption that a state satisfies
those constraints is simply true.

Example Derivation The proof tree of judgment x, y | y > 1; ·; (x ⇒ y) =⇒ ∃z. (x ⇒ z)⊗ ! # (z > 0) is
given below. We omit the variable context in the derivation.

y > 1; ·; (x ⇒ y) =⇒ (x ⇒ y)
L-Init

D
y > 1 # y > 0

y > 1; ·; · =⇒ #(y > 0)
#R

y > 1; ·; · =⇒ ! # (y > 0)
! R

y > 1; ·; (x ⇒ y) =⇒ (x ⇒ y) ⊗ ! # (y > 0)
⊗R

y > 1; ·; (x ⇒ y) =⇒ ∃z. (x ⇒ z) ⊗ ! # (z > 0)
∃R

We can see that because the classical formula is encapsulated under # and the classical context is separated
from other contexts, the classical reasoning is pushed to the leaves of the derivation tree. There is a clear bound-
ary between classical reasoning about arithmetic and the intuitionistic reasoning about states. Consequently, a
decision procedure for classical arithmetic reasoning can be incorporated as a separate module in the structure
of the theorem prover.

Interesting Theorems To get a better understanding of interactions between the classical and intuitionistic
connect this, we present the following axioms, all of which are provable in our sequent calculus.

#true ⇐⇒ 1 0 ⇐⇒ #false

#A ⊗ #B ⇐⇒ #(A ∧ B) #(A ∧ B) =⇒ #A & # B
#A ⊕ #B =⇒ #(A ∨ B)

The first three rows illustrate formulas that are provably equivalent. The last two rows illustrate formulas for
which the formula on the left implies the formula on the right but not the other way around. For instance, the
intuitionistic disjunction of classical assertions implies the classical disjunction of classical formulas. Intuitively,
the reason the implication does not hold in the other direction is that the classical disjunction may use the law
of the excluded middle in it’s proof. Naturally, if it does, there is no way to and guarantee that we can construct
a proof of #A or construct a proof of #B. Consequently, the intuitionistic disjunction does not hold.

It is also interesting to consider the proof theory for heap-free formulas, which we represent using Girard’s
unrestricted modality. The critical axioms here are the structural properties of contraction and weakening.

! F =⇒ 1
! F =⇒ ! F⊗ ! F

Tensor is also associative and commutative. In separation logic, Reynolds [21] adds specialized axioms for
relating the additive conjunction of pure facts to the multiplicative conjunction of pure facts:

P ∧ Q =⇒ P ∗ Q when P or Q is pure
P ∗ Q =⇒ P ∧ Q when P and Q is pure

In our logic, we can prove !P⊗ !Q =⇒ !P & !Q but not the reverse. Only one of !P or !Q may be used in any
proof assuming !P & !Q. We forgo these additional axioms for practical reasons: we wish to reuse a theorem
prover for first-order intuitionistic linear logic rather than building a new prover from scratch. One consequence
of this choice is that programmers must write invariants consistently in the form !P⊗ !Q as opposed to writing
!P⊗ !Q at times and writing !P& !Q at times. In separation logic, programmers do not have to be so careful
as the proof theory will bridge the syntactic gap between specifications for them. It remains to be seen whether
this choice actually limits our ability to verify any programs.

2.5 Properties of ILC

We have proven a cut elimination theorem of our logic (Theorem 1). We also proved that the proof theory of
our logic is sound with regard to its semantics (Theorem 2).
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Theorem 1 (Cut Elimination)
1. If Ω |Γ, A # Γ′ and Ω |Γ # A,Γ′ then Ω |Γ # Γ′.

2. If Ω |Γ # A and Ω |Γ, A ; Θ ; ∆ =⇒ F then Ω |Γ ; Θ ; ∆ =⇒ F

3. If Ω |Γ ; Θ ; · =⇒ F and Ω |Γ ; Θ, F ; ∆ =⇒ F ′ then Ω |Γ ; Θ ; ∆ =⇒ F ′.

4. If Ω |Γ ; Θ ; ∆ =⇒ F and Ω |Γ ; Θ ; ∆′, F =⇒ F ′ then Ω |Γ ; Θ ; ∆,∆′ =⇒ F ′.

The semantic judgment for logical contexts is written as: h � Γ;Θ;∆. It means that store h satisfies all the
arithmetic constraints in context Γ and that h contains all the unrestricted resources in context Θ and all the
linear resources in context ∆. We define the semantics of the logical contexts as follows:

h � Γ;Θ;∆ iff M � Γ and M;h � (
⊗

! Θ) ⊗ (
⊗

∆)
where M is Presburger arithmetic, and

⊗
∆ is the resulting formula of tensoring all the formulas in ∆, and⊗

! Θ is the formula we get if we wrap ! around all the formulas in Θ, and tensor them together.

Theorem 2 (Soundness of Logic Deduction)
1. If Ω |Γ;Θ;∆ =⇒ F and σ is a substitution of integers for all the variables in Ω,

and M � σΓ, and M;h � σ((
⊗

! Θ) ⊗ (
⊗

∆)) then M;h � σF .

2. If Ω |Γ;Θ;∆ =⇒ F and σ is a substitution of integers for all the variables Ω,
and h � σΓ;σ∆;σ∆, then h � σF

2.6 A Decidable Fragment: ILC−

Since we intend to use our logic in automated program verification, we would like to find a decidable fragment.
The logic we introduced in the previous sections contains Intuitionistic Linear Logic as a sub-logic, so it is
clearly undecidable. Fortunately, we have identified a fragment of our logic, ILC−, which is decidable and
sufficient to encode the pre- and post-conditions for many programs. One important property of ILC− is that it
is closed under the verification condition generation, which we will present in the next section. In other words,
if all the programmer supplied program invariants fall into this fragment, then the whole process of program
verification is decidable.

Intuitionistic linear logic without ! is decidable since every premise of each rule is strictly smaller than its
consequent (by smaller we mean the number of connectives in the sequent decreases[12]). However, we require
some occurrences of ! and we also need classical arithmetic for our fragment to be useful. The problem with !
comes from the copy rule, which is listed below.

Ω | Γ ; Θ, F ; ∆, F =⇒ F ′

Ω | Γ ; Θ, F ; ∆ =⇒ F ′
Copy

If we manage to exclude the copy rule from our logic, then we can obtain a decidable fragment. Now the
question is how can we eliminate the copy rule and still have an expressive logic. The function of the copy rule
is to use the assumptions in the unrestricted context. After we remove it from our logic, we lack the ability to
use the assumptions in the unrestricted context Θ. The first step of solving this problem is to add another init
rule, so that we can use the atomic assumptions in Θ.

Ω | Γ ; Θ, P ; ·
−

=⇒ P
U-Init

Ω | Γ ; Θ, F ; ·
−

=⇒ F
U-Init’

We cannot add the more general rule U-Init’, because we won’t be able to prove cut-elimination. Adding
U-Init is not enough, because we still cannot decompose connectives in the unrestricted context. The next step
is to put syntactic restrictions on logical formulas so that in this restricted fragment of ILC, we don’t need
rules to decompose connectives in the unrestricted context. The restriction is that all the formulas appear in the
unrestricted intuitionistic context Θ are in Du, all the formulas that appear in the linear intuitionistic context ∆
are in Dl, and all the formulas that appear on the right-hand side of the sequent are in G. Each syntactic class in
this decidable fragment is defined as follows:
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Forms in Intuitionistic Unrestricted Ctx Du : : = Ps
Forms in Intuitionistic Linear Ctx Dl : : = Ps | ! Ps | ! # A | 1 | Dl ⊗ D′

l | > | Dl & D′

l

| 0 | Dl ⊕ D′

l | ∃x.Dl | ∀x.Dl

Forms G : : = Ps | 1 | G1 ⊗ G2 | Dl ( G | > | G1 & G2

| 0 | G1 ⊕ G2 | ! G | ∃b.G | ∀b.G | #A

Now the only formula that can appear in the unrestricted intuitionistic context are store predicates Ps.
Consequently, the U-Init rule is enough to use the assumptions in the unrestricted context. Notice that we do
not include G ( Dl in Dl. That’s because the function postconditions belong to this category, yet they show
up both in the negative and positive position during the verification condition generation (refer to Section 3).

Lastly, we add the ! # L rule to make sure that #A won’t be trapped in the Θ context.

Ω | Γ, A ; Θ ; ∆
−

=⇒ F

Ω | Γ ; Θ ; ∆, ! # A
−

=⇒ F
! # L

In summary, we obtain a fragment of our logic, ILC−, by restricting the syntax of formulas, and replacing
the copy rule with U-init and ! # L rules. We proved that with the syntactic restriction, the sequent rules with
U-Init and ! # L are sound and complete with regard to the original sequent rules we developed in the previous
section.

Theorem 3 ( Soundness & Completeness of −
=⇒)

Ω |Γ ; Θ ; ∆
−

=⇒ G iff Ω |Γ ; Θ ; ∆ =⇒ G provided that all the formulas in Γ are in A, all the formulas in Θ
are in Du, and all the formulas in ∆ are in Dl.

In order to show that ILC− is decidable, we define an equivalent alternative calculus that collects classical
constraints during proof search and defers them to the end. We show that the alternative calculus, which we call
the linear residuation calculus, is decidable. Judgments in residuation calculus have the form Ω |Γ ; Θ ; ∆

r
=⇒

F\Rs, where Rs is a residuation formula:

Residuation Formulas Rs : : = A | Rs1 ∧ Rs2 | ∃x.Rs | ∀x.Rs

The following two theorems shows that the residuation calculus is equivalent to the original sequent calculus
for ILC−.

Theorem 5 (Soundness of Residuation)
If Ω |Γ ; Θ ; ∆

r
=⇒ F\Rs and for any ground substitution ρ for Ω, M � ρRs then Ω |Γ ; Θ ; ∆

−
=⇒ F .

Theorem 6 (Completeness of Residuation)
If Ω |Γ ; Θ ; ∆

−
=⇒ F , and ρ is a ground substitution for Ω then Ω |Γ ; Θ ; ∆

r
=⇒ F\Rs for some Rs and

M � ρRs

The provability of ILC− is reduced to the validity of the residual formula and the decidability of the
residuation calculus. Residuation formulas are simply formulas in Presburger Arithmetic and therefore their
validity are decidable.

Lemma 8
Residuation calculus is decidable.

PROOF. By examination of the proof rules. The premise of each rule is strictly smaller than its conclusion, so
there are finite number of possible proof trees altogether (a similar argument was made in Lincoln’s paper on
the decidability properties of propositional linear logic [12]).

Theorem 9 (Decidability)
ILC− is Decidable
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PROOF. By the result of the completeness and soundness of residuation calculus, the provability of ILC− is
reduced to the validity of the residual formula and the decidability of the residuation calculus. By Lemma 8, the
validity of the residual formula and the decidability of the residuation calculus are both decidable, so ILC− is
Decidable.

3. Verifying Pointer Programs

In this section, we introduce a simple imperative language with control-flow, mutable references, and functions.
The language also contains assertions in ILC, which we use to define a set of syntax-directed verification
condition generation rules. We present syntax-directed rules and give three examples to illustrate how to verify
programs using our logic. At the end of this section, we present our main technical result, a proof of soundness
of our verification condition generation.

3.1 Syntax

The syntactic constructs of our language are listed below. We use E to range over integer expressions, B
to range over boolean expressions. R ranges over condition expressions used in while loops. The condition
expressions R appear a little strange. They allow conditions in while loops to reference the store. In order
to generate verification conditions properly from the expressions, we require them to be in A-Normal form.
Naturally, all implementations would allow programmers to write ordinary expressions and then unwind them
to A-Normal form for verification. We do not show this simple unwinding process. Commands are in A normal
form too. We have commands for allocation, deallocation, variable binding, dereference, assignment, function
call, sequencing, while loop, if branching, skip, and return. We assume that the while loop is annotate with loop
invariant I . We use Crt to range over commands that can appear in function body. The major difference between
ordinary commands and function bodies is that function body includes a return command as the last command.
We use ι to range over condition expressions and commands. A program is composed of a sequence of mutually
recursive function declarations followed by a command. Here the functions only take one argument, but it is
fairly easy to extend the language to allow functions to take multiple arguments.

Int Exps E : : = n | x | E + E | −E
Boolean Exps B : : = true | false | E1 = E2 | E1 < E2 | B1 ∧ B2 | ¬B | B1 ∨ B2

Condition Exps R : : = B | let x = !E in R end

Command C : : = let x = new(E) in C end | free(E)
| let x = E in C end | let x = !E in C end

| E1 := E2 | let x = f( E ) in C end | C1 ; C2

| while[I] R do C | if B then C1 else C2 | skip | returnE
Instructions ι : : = C | R
Fun Dec fd : : = fun f( x ) = Crt

Program p : : = fd . . . fd in C

We also need the following runtime structures for defining operational semantics for this language.

Instructions ι : := · · · | •
Code Context Ψ : := · | Ψ, f 7→ ( a ) Crt [∆] {Pre} {∀ret.Post}
Evaluation Context ctx : := [ ] ; C | let x = [ ] in C end | while[I] [ ] R do C
Control Stack S : := Sc | Swhile

Command Control Stack Sc : := Sseq | Sfuncall

Seq Control Stack Sseq : := · | ([ ] ; C) . Sc

Fun call Control Stack Sfuncall : := (let x = [ ] in C end) . Sc

While Control Stack Swhile : := (while[I] [ ] R do C) . Sc

First, we extend the instructions with a runtime empty instruction •. It indicates the termination of certain
commands. Code context Ψ maps function name to its parameter name, function body, its precondition Pre,
and postcondition ∀ret.Post. All the free variables in Pre and ∀ret.Post are in ∆. The variable ret in
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(S, h, ι)
Ψ
7−→ (S′, h′, ι′)

(S, h, let x = new(E) in C end)
Ψ
7−→ (S, h ] (` 7→ [[E]]), C[`/x]) ` /∈ dom(h)

(S, h, let x = E in C end)
Ψ
7−→ (S, h, C[[[E]]/x])

(S, h, E := E′)
Ψ
7−→ (S, h[ [[E]] := [[E′]] ], •) if [[E]] ∈ dom(h)

(S, h, free(E))
Ψ
7−→ (S, h′, •) where h = h′ ] ([[E]] 7→ v)

(S, h, let x = !E in ι end)
Ψ
7−→ (S, h, ι[h([[E]])/x]) if [[E]] ∈ dom(h)

(S, h, let x = f( E ) in C end)
Ψ
7−→ (let x = [ ] in C end . S, h, Crt[[[E]]/a])
where Ψ(f) = ( a ) Crt [∆] {Pre} {∀ret.Post}

(let x = [ ] in C end . S, h, returnE)
Ψ
7−→ (S, h, C[[[E]]/x])

(S, h, (C ; C ′))
Ψ
7−→ (([ ] ; C ′) . S, h, C)

(([ ] ; C) . S, h, •)
Ψ
7−→ (S, h, C)

(S, h, if B then C1 else C2)
Ψ
7−→ (S, h, C1) if [[B]] = true

(S, h, if B then C1 else C2)
Ψ
7−→ (S, h, C2) if [[B]] = false

(S, h, while[I] R do C)
Ψ
7−→ (while[I] [ ] R do C . S, h, R)

((while[I] [ ] R do C) . S, h, B)
Ψ
7−→ (S, h, •) if [[B]] = false

((while[I] [ ] R do C) . S, h, B)
Ψ
7−→ (S, h, (C ; while[I] R do C)) if [[B]] = true

Figure 4. Operational Semantics

the postcondition is a special variable referring to the return value of the function. The precondition of a
function describes the state where the function is safe to be called, and the postcondition specifies the state
after the function returns. The evaluation context ctx specifies the order of evaluation. The hole [ ] in an
evaluation context is the place holder for the instruction currently being evaluated. An evaluation context
can be a sequencing context waiting for the result of its first instruction, or a function call context waiting
for the return from a function call, or a while loop context waiting for the the evaluation of the condition
expression. A control stack is a sequence of evaluation contexts (also called frames). A control stack can
either be a while control stack, or a command control stack. A command control stack is a sequence
of function call and sequence evaluation contexts. A while control stack is a while evaluation context on top
of a command control stack.

3.2 Operational Semantics

First, we define the denotation of integer expressions and boolean expressions, and they are used in the definition
of the operational semantics of our language. The denotation of the integer expressions is the same as the one
defined in Section 2.3. The denotation of a boolean expression B is:

[[B]] = true iff M � B [[B]] = false iff M 2 B where M is the arithmetic model.
A program state consists of a control stack S, a store (or a heap) h, and an instruction ι that is being evaluated2 .

We use (S, h, ι)
Ψ
7−→ (S′, h′, ι′) to denote the small step operational semantics. The operational semantics rules

are listed in Figure 4. The rules are straightforward. One thing is worth mentioning is the evaluation of function
calls and returns. When we see a function call, we put the function call context on top of the control stack,
look up the function body from the code context Ψ, then substitute the real argument E for a in the function
body, and start evaluating the function body. Upon function return, we pop one frame off the control stack, and
substitute the return value for x in the rest of the instruction, and continue the evaluation.

2 Because the variables are bound in our language, and there is no imperative assignment to variables, we do not need a stack to map
variables to values.
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3.3 Verification Condition Generation

We explain the proof rules of our extended Hoare logic in this section. We assume that all the functions are
annotate with preconditions and postconditions, and while loops are annotated with the loop invariants. We
verify an entire program as follows: first we verify the specification of each function, assuming the assertions
on all other functions are valid. Second, we verify that the command in the main program complies with its
specifications. In verifying each function, we use backward-reasoning. As we go through the function body
bottom up, we build a verification condition from the postcondition along the way. When we reach the first
command of the function body, we need to prove that the precondition given in the function specification
can logically entail the verification condition we generated. If that is the case and our verification condition
generation rules are sound, then whenever the function is called in a state described by the precondition of
the function, upon returning from this function, the postcondition will be established. We have not tackled the
question of whether or not our verification conditions are weakest preconditions. Weakest preconditions are
neither necessary (many program properties can be verified without weakest preconditions) nor sufficient (the
logical proof theory must still be strong and programmers must be able to specify their requirements concisely)
for practical program verification. However, it would be a nice theoretical property to have. We collect all the
function specifications into the code context Ψ, and Ψ is always available when we analyze the program. There
are four judgments involved in verification:

∆ ` (∃x1 . . . ∃xn, F,A)R There exists values for variable x1 · · · xn such that
the precondition of executing R is F ,
and the core boolean expression in R is A

∆ `Ψ {P } C {Q } The precondition of C is P , and the postcondition is Q.
` Ψ ok The code context is well formed.

Condition Expressions Intuitively, we can interpret the judgment ∆ ` (∃x1 . . . ∃xn, F,A)R as such: if the
current state satisfies F , then it is safe to execute R, and eventually R is evaluated to boolean expression A.
Variables x1 · · · xn are free in F and A, and ∆ contains all the other free variables in R, F , and A. The inference
rules for condition expressions are listed below:

∆ ` (·, >, B) B
boolean exp

∆, x ` (∃x1 . . . ∃xn, F, A) R

∆ ` (∃x0.∃x1 . . . ∃xn, ( (E ⇒ x0) ⊗ >) & F [x0/x], A[x0/x]) let x = !E in R end
bind

The judgment is inductively defined over the structure of the condition expression. If the condition expression
is a boolean expression B already, then the precondition is >, meaning no condition is needed, and the resulting
boolean expression is B itself. When the condition expression R is let x = !E in R ′ end, we first derive that
the condition expression R′ has precondition F , its core boolean expression is A. The precondition of R has to
make sure that E is a valid location in the store (E ⇒ x0) , where x0 is a fresh existentially quantified variable.
After dereferencing location E, x is bound to the contents of E. The precondition of R also needs to guarantee
that R′[x0/x] is safe to execute, in other words F [x0/x] holds. Finally, the boolean expression is A[x0/x]. For
example, a ` (∃x0, ( (a ⇒ x0) ⊗ >)&>, x0 > 0)let x = !a in x > 0 end

Commands The verification condition generation rules are backward reasoning rules. Given postconditions,
we will calculate verification conditions for the commands. We explain each rule in detail. Note that all the
rules are syntax directed. The pre- and post-conditions in the function specification must be in D l (defined in
Section 2.6). If each postcondition Q is in ILC− and the loop invariant is in ILC− then each rule generates a
precondition in ILC−. Most of the rules are identical to O’Hearn’s weakest precondition generation [10] except
that ∗ is replaced by ⊗, −∗ by (, and ∧ by &.

• Variable Binding
∆, x ` { P } C { Q } x /∈ FV (Q)

∆ ` { P [E/x] } let x = E in C end { Q }
bind
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Variable x is bound to E in command C , so the precondition of this bind command is the precondition of C
with x substituted with E.

• Allocation ∆, x ` { P } C { Q } x /∈ FV (Q)

∆ ` { ∀y. (y ⇒ E) ( P [y/x] } let x = new(E) in C end { Q }
new

The new command allocates a new cell on the heap, stores E into the new cell, and binds x to the address
of the new cell. The precondition describes a heap that is waiting for the new piece. After merging with the
newly allocated piece, it satisfies the precondition of C with x substituted with the address of the new cell.

• Deallocation
∆ ` {∃y. (E ⇒ y) ⊗ Q} free(E) {Q}

free

The free command deallocates the cell whose address is E. Before executing free, we assert that E indeed is
an allocated cell on the heap (∃y. (E ⇒ y) ), and is separate from the rest of the heap described by Q.

• Dereference ∆, x ` { P } C { Q } x /∈ FV (Q)

∆ ` { ∃y.( (E ⇒ y) ⊗ >) & P [y/x] } let x = !E in C end { Q }
deref

The dereference command looks up the contents of address E in the heap and binds x to it. Similar to the free
command, (E ⇒ y) proves that E is an allocated location on the heap. After dereferencing E, we execute
command C in the same heap; the additive conjunction & conveys the idea of sharing.

• Assignment
∆ ` { ∃y. (E1 ⇒ y) ⊗ ( (E1 ⇒ E2) ( Q) } E1 := E2 { Q }

assignment

The assignment command updates the cell at address E1 with the value of E2. The precondition of this
command asserts that the heap comprises of two separate parts: one that contains cell E1, the other that waits
for the update.

• Sequencing
∆ ` { P } C1 { P ′ } ∆ ` { P ′ } C2 { Q }

∆ ` { P } C1 ; C2 { Q }
Seq

• If Statement ∆ ` { P1 } C1 { Q } ∆ ` { P2 } C2 { Q }

∆ ` { ( ! # B ( P1) & ( ! # ¬B ( P2) } if B then C1 else C2 { Q }
if

The if instruction branches on boolean expression B. The precondition for if says that if B is true then the
precondition of the true branch holds; otherwise the precondition of the false branch holds. The additive
conjunction demonstrates the sharing of two possible descriptions of the same heap. Note that before the
execution of the if statement either B is true or B is false, so the precondition of the branch that is not taken
is proved using the absurdity rule. We will give a concrete example in the next section.

• While Loop

∆ ` { P } C { I } ∆ ` (∃x1 . . . ∃xn, F, B) R

∆ ` {
(∃x1 . . . ∃xn.F&(!# ¬B ( Q)&(!# B ( P ))
⊗ ! (I ( (∃x1 . . . ∃xn.F&(!# B ( P )&(!# ¬B ( Q))

} while[I] R do C { Q }

while

The while loop is annotated with the loop invariant I . A while loop either executes the loop body or exits
the loop depending on the condition expression R. There are two parts in the precondition of a while loop.
The first part ∃x1 . . . ∃xn.F&(!# ¬B ( Q)&(!# B ( P ) asserts that when we execute the loop for the
first time, the precondition for evaluating the condition expression, F , must hold, and if the condition is not
true, then the postcondition Q must hold, otherwise we will execute the loop body, so the precondition P for
C must hold. The second part ! (I ( (∃x1 . . . ∃xn.F&(!#B ( P )&(!#¬B ( Q)) asserts that each time
we re-enter the loop, the condition for entering the loop holds. Notice that the second formula is wrapped
by an unrestricted connective ! . This implies that this invariant cannot depend upon the current heap state.
This is a critical criterion as the heap state may be different each time around the loop. Notice also that !

WXYZ ’05 14 2005/4/20



surrounds a formula that falls in ILC−. We have not actually seen O’Hearn gave a verification condition for
while loops. We assume that it would be similar to the one we present here.

• Function Call
∆, x ` { P } C { Q } x /∈ FV (Q) Ψ(f) = ( a ) Crt [∆f ] {Pre} {∀ret.Post}

∆ `
{ ∃∆f .P re[E/a] ⊗ (∀ret.Post[E/a] ( P [ret/x]) }
let x = f( E ) in C end { Q }

fun call

The verification condition of the function call has similar formulation as the assignment command. The dif-
ference is that we are not just updating one cell on the heap; we are updating the footprint of the function. First
we look up the specification of f in the code context Ψ. The specification ( a ) Crt [∆f ] {Pre} {∀ret.Post}
tells us that a is the parameter name, Pre is the precondition for executing the function body, ∀ret.Post is
the postcondition, and ∆f contains all the free variables in Pre and ∀ret.Post.

The verification condition asserts that the heap consists of two separate sub-heaps. One sub-heap satisfies
the precondition of the function Pre[E/a], for we are calling f with real argument E. We assume that the
specs of f is valid, so we believe that the postcondition ∀ret.Post holds after f returns. After we update the
heap with the heap described by the postcondition, the precondition for the next command C should hold.

• Function Return
∆ ` { Q[E/ret] } returnE { ∀ret.Q }

return

Code Context The code context is well formed if all the function specifications in the code context is well
formed.

∀f ∈ dom(Ψ), Ψ(f) = ( a ) Crt [∆] {Pre} {∀ret.Post},
∆ ` { Pre } Crt { ∀ret.Post } ∆ /∈ FV (Crt)

` Ψ ok

3.4 Examples

In this section, we will give three examples to demonstrate how we verify programs using the verification
condition generation rules defined in the previous section. Notice that in all three examples, our invariants fall
into ILC− so verification is decidable.

If Branching This example illustrates how the rules of dereference, assignment, and if branching work. It also
gives hints about how to verify tagged unions, a datastructure that appears frequently in imperative code and in
code generated for ML datatypes.

The store is illustrated in Figure 5. Location a contains 0 independent of the contents of x. Depending on the
contents of location x, there are two possibilities of the store. If x contains integer 0, then the location next to
x contains integer 3; if x contains an integer other than 0, then the location next to x contains another location
y, and y contains integer 3. The first case is illustrated by the picture above the dashed line, and the second case
is illustrated by the picture below the line. Formula F describes the store h. We use addictive disjunction to
describe the two cases.

The following piece of code branches on the contents of x. The true branch looks up the value stored in
location x+1, and stores it into a; the false branch looks up the value stored in location y, which is the contents
of x + 1, and stores the value into a. At the merge point of the branch, a should contains 3. The postcondition
Q of this code is (a ⇒ 3) ⊗ > where > describes other store states that we don’t care about.

0

a x

0 3

0000

a x

1 y 3

y

F = (a ⇒ 0)⊗
(( (x ⇒ 0) ⊗ (x + 1 ⇒ 3) )
⊕( (x ⇒ 1) ⊗ ∃y. (x + 1 ⇒ y) ⊗ (y ⇒ 3) ))

Figure 5. Example1
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{F = (a ⇒ 0) ⊗ (( (x ⇒ 0) ⊗ (x + 1 ⇒ 3) ) ⊕ ( (x ⇒ 1) ⊗ ∃ y. (x + 1 ⇒ y) ⊗ (y ⇒ 3) ))}
let t = !x in

if (t = 0)
then let s = !(x + 1) in a := s end

else let s = !(x + 1) in

let r = !s in

a := r end

end

end

{ (a ⇒ 3) ⊗ >}

We annotate the code with the verification conditions we generate according to our rules.

{Pre = ∃ z. ( (x ⇒ z) ⊗ >) & ( ! # (z = 0) ( P1) & ( ! # ¬(z = 0) ( P2)}
let t = !x in

{( ! # (t = 0) ( P1) & ( ! # ¬(t = 0) ( P2)}
if (t = 0)
then

{ P1 = ∃ u.( (x + 1 ⇒ u) ⊗ >)&∃ w. (a ⇒ w) ⊗ ( (a ⇒ u) ( ( (a ⇒ 3) ⊗ >))}
let s = !(x + 1) in

{∃ w. (a ⇒ w) ⊗ ( (a ⇒ s) ( ( (a ⇒ 3) ⊗ >))}
a := s end

else

{P2 = ∃ u.( (x + 1 ⇒ u) ⊗ >)&∃ v.( (u ⇒ v) ⊗ >)&∃ w. (a ⇒ w) ⊗ ( (a ⇒ v) ( ( (a ⇒ 3) ⊗ >))}
let s = !(x + 1) in

{∃ v. ( (s ⇒ v) ⊗ >) & ∃ w. (a ⇒ w) ⊗ ( (a ⇒ v) ( ( (a ⇒ 3) ⊗ > )) }
let r = !s in

{∃ w. (a ⇒ w) ⊗ ( (a ⇒ r) ( ( (a ⇒ 3) ⊗ >))}
a := r end end

end

{ (a ⇒ 3) ⊗ >}

In order to prove that this code is correct, we need to prove that the verification condition we generated can
be derived from the describing formula of the current state: x, a | ·; ·;F =⇒ Pre.

According to our sequent rules, after we apply left rules, we need to prove the following two subgoals:

x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ Pre
x, a, y | ·; ·; (a ⇒ 0) , (x ⇒ 1) , (x + 1 ⇒ y) , (y ⇒ 3) =⇒ Pre

Let us examine the proof of first subgoal, the second one is very similar.

x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ ∃z.( (x ⇒ z) ⊗ >)&( ! # (z = 0) ( P1)&( ! # ¬(z = 0) ( P2)

It is obvious that the existential variable z is instantiated by 0. After we apply the &R rule twice, we obtain the
following three subgoals:

x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ ( (x ⇒ 0) ⊗ >)
x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ ( ! # (0 = 0)) ( P1

x, a | ·; ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ ( ! # ¬(0 = 0)) ( P2

The interesting one is the last one. After applying ! # L rule, we have

x, a | ¬(0 = 0); ·; (a ⇒ 0) , (x ⇒ 0) , (x + 1 ⇒ 3) =⇒ P2

Obviously, the resources in the linear context is not enough to prove P2, which requires x + 1 to contain
another location. However, we have a contradiction in the classical context ¬(0 = 0). We prove the above
subgoal using the absurdity rule. This is the situation where the false branch is not taken, so we cannot establish
the precondition required by that branch. Instead, we prove the precondition of the false branch by contradiction.
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While Loop The second example involves a simple while loop that computes the sum between integer 1
and 5 inclusive. The sum is stored in location s, and the loop induction variable is stored in location a.
The post condition of this code is (s ⇒ 15) ⊗ (a ⇒ 0) . The precondition for this program requires
that s and a are allocated on the heap: F = ∃u.∃v. (a ⇒ u) ⊗ (s ⇒ v) . The loop invariant I is
∃x.∃y. (s ⇒ x) ⊗ (a ⇒ y)⊗ ! # (x =

∑5
i=y+1 i) ⊗ ( ! # (y ≥ 0)) ⊗ ( ! # (y ≤ 5)).

while [ I ] (let x = !a in x > 0 end)
do let x = !a

in let y = !s
in s := y + x
end;
a := x − 1

end

Function Interfaces The last example involves function calls. In the previous examples, the heap is the only
state we keep track of. In this example, we show that we can keep track of other linear resources such as file
handles and sockets as well. This example comes from Vault [6]. Vault uses a linear type system to keep track
of program states. The basic idea of Vault is that each resource is guarded with a unique key, and the state of the
key is tracked linearly. Here, we use Hoare Logic to verify safety properties of the program as opposed to a type
system. We take the headers of the functions in the socket library and annotate them with pre/postconditions,
and we show how to verify programs that call into the library. We don’t consider how to verify the library
implementation in this example. In order to write this example, we extend our logic with the following syntactic
constructs:

Keys K : : = K1 | · · ·
Types τ : : = socket(K)
Socket States st : : = raw | named | listening | ready
State Predicates Ps : : = · · · | K@st
Heap Free Predicates P : : = E : socket(K)

We assume that there is a pool of unique keys to guard the resources. We use K to range over the keys. We use
τ to range over types. For this example sockets are the only type of resource. Each socket is guarded by a key
K . st ranges over socket states. We add a new state predicate K@st, which describes that key K currently has
state st. We also add a new heap free predicate (E : socket(K)), which means that expression E is a socket
and guarded by key K . The theorem prover need not be informed in advance the special semantics properties
of (E : socket(K)) (i.e. the fact it is heap free). It is syntactically obvious since it is surrounded by ! .

This is a simplified example. We focus on the state changes of the sockets and omit details like error handling.
We annotate the functions as below. All the free variables in the pre- and post-condition are in ∆. Function
socket creates and returns a new raw socket. Function bind, listen changes the state of a socket from “raw”
to “named”, from “named” to “listening” respectively. Function accept creates a new socket at “ready” states.
Function receive receives data from a socket in “ready” state. Function close disposes the key guarding the
socket, so it can never be used again.

∆ Precondition fun name, args Postcondition
[·] { 1 } socket(d, c, i) { ∀ret.∃K.K@raw⊗ ! (ret : socket(K)) }
[K] { K@raw} bind(sk, sa) { K@named}
[K] { K@named⊗ ! (sk : socket(S)) } listen(sk, i) { K@listening}
[K] { K@listening⊗ ! (sk : socket(K)) } accept(sk, sa) { ∀ret.∃N. ! (ret : socket(N))

⊗N@ready⊗ K@listening}
[K] { K@ready⊗ ! (sk : socket(K)) } receive(sk, b) { K@ready}
[K, s] { K@s⊗ ! (sk : socket(K)) } close(sk) { 1 }
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The following code is not correct because we cannot accept connections on a raw socket. We can detect this
error by computing (decidable) verification condition and finding it unprovable.

let mysocket = socket(’UNIX, ’INET, 0) in

let y = listen(mysocket, 0) in ...

Let’s try to verify this code. The postcondition is ∃k. ! (mysocket : socket(k)) ⊗ k@listening.

{Pre = 1 ⊗ (∀ ret.((∃ k′′.(k′′@raw)⊗ ! (ret : socket(k′′))) ( F [ret/mysocket]))}
let mysocket = socket(’UNIX, ’INET, 0) in

{F = ∃ k′. (k′@named ⊗ ! (mysocket : socket(k′))) ⊗ (k′@listening ( Q)}
let y =listen(mysocket, 0) in

{Q = ∃ k. ! (mysocket : socket(k)) ⊗ k@listening}

When attempting to prove · | ·; ·; 1 =⇒ Pre. The proof will fail because the following goal is unprovable.

ret, k | ·; ret : socket(k); k@raw =⇒ k@listening

.

3.5 Soundness of Verification Generation

We say a control stack S and a heap h is safe for an instruction ι for n steps, if the program state (S, h, ι) can
take n steps:

(S, h) is safe for ι for n steps iff there exist S ′, h′, and ι′ such that (S, h, ι)
Ψ n
7−→ (S′, h′, ι′).

We proved the monotonicity lemma and the frame lemma. The Monotonicity lemma means that if an
instruction is safe on a smaller heap, then it is safe on a larger heap. The Frame Property shows that a program’s
footprint is local.

Lemma 12 (Monotonicity)
For all n, n ≥ 0, if (S, h) is safe for ι for n steps, then (S, h ] h′) is safe for ι for n steps.

Lemma 13 (Frame Property)
For all n, n ≥ 0, if (S, h) is safe for ι for n steps, and (S, h ] h1, ι)

Ψ n
7−→ (S′, h′, ι′), then h′ = h′′ ] h1, and

(S, h, ι)
Ψ n
7−→ (S′, h′′, ι′) .

Finally, we proved the Safety Theorem. It shows that the rules for verification generation are sound with re-
gard to the semantics of the language. In order to prove this theorem, we need verification condition for the inter-
nal state of the machine. This is defined by a judgment with the form: ∆ ` {P } S prop, where prop = seq | funcall

which is simple and is omitted from the main text.

Corollary 18 (Safety)
If ` Ψ ok, ∆ ` {P } C {Q }, and σ is a substitution of integers for all the variables in ∆, and h � σP , then

• either for all n ≥ 0, there exist S ′, h′, and ι such that (·, h, C)
Ψ n
7−→ (S′, h′, ι).

• or there exists a k ≥ 0 such that (·, h, C)
Ψ k
7−→ (·, h′, •).

4. Related Work

The most closely related work to our own is O’Hearn, Reynolds and Yang’s separation logic [10, 20]. The idea of
using a general-purpose substructural logic as the assertion language in a Hoare logic was theirs. Moreover, most
of our Hoare rules are derived directly from O’Hearn’s. One contribution of the current paper is the observation
that ILC, a combination of intuitionistic linear logic and classical arithmetic, can serve as a foundation for
reasoning about pointers instead of O’Hearn and Pym’s bunched implications (BI). So far research by O’Hearn
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et al. has focused exclusively on using BI as the underlying logic. As O’Hearn [19] effectively explains, despite
their similarities, BI and linear logic are also different in many nontrivial ways. We wish to more fully understand
the strengths and weaknesses of using each logic to reason about pointer programs automatically.

In this paper, we have exploited past research on the complexity of different fragments of linear logic. For
propositional linear logic, Lincoln et al. [12] give a nice survey of results. Later, Lincoln and Scedrov [13] prove
first-order linear logic (without !) is nondeterministic exponential time hard. Our idea for the decidable fragment
of ILC comes directly from these results.

From early on in the development of separation logic, Calcagno et al. [5] began to study the complexity
of validity for various fragments. They found that the validity problem for a simple first-order logic (equality,
points to, false, classical ⊃, ∀) was undecidable. On the other hand, removing first-order quantifiers and adding
back separating conjunction and linear implication gives a logic in which validity is decidable. Unfortunately,
from the perspective of program verification, this result did not lead to any immediate gains as it was difficult
to see how to do without first-order quantifiers.

More recently, Berdine, Calcagno and O’Hearn [4] have investigated another fragment of separation logic,
this time with equality, separating conjunction and lists. They show that validity for this fragment is decidable.
It is interesting to note that Berdine’s fragment is separated into two parts, the pure formulas and the heap
formulas. Therefore, at least superficially, it appears that Berdine et al. are moving away from the logic of
bunched implications as a foundation for logical reasoning and towards linear logic with its tell-tale dual zones,
though they do not call out this fact in their paper. Another interesting point is that they restrict negation to
appearing over pure formulas as we do: allowing a more general form of negation increases the complexity
of their decision procedure to PSpace from linear time. The main contribution of the current paper over this
previous work is to lay out the syntactic proof theory surrounding a closely related fragment: we do not deal
with list predicates, but we do consider the proof theory for the additives (conjunction and disjunction), classical
arithmetic, and first-order quantifiers. In addition, we show how to exploit our fragment of the logic for program
verification. Berdine et al. are also currently investigating how to use their fragment of the logic for program
verification — a nontrivial task as it does not have quantifiers — but as far as we are aware, their results are
not publicly available. on the other hand, Berdine’s decision procedure is complete with respect to the storage
model. Our proof theory is not complete with respect to the storage model. Therefore, programmers must reason
syntactically in our system.

At the same time as these researchers have been investigating new program logics, the designers of advanced
type systems have been using similar techniques to check programs for safety [22, 6, 9, 14, 15]. For instance,
DeLine and Fähndrich’s Vault programming language [6] uses a variation of alias types [22] to reason about
memory management and software protocols for device drivers. Alias types very much resemble the fragment of
separation logic containing the empty formula, the points-to predicate and separating conjunction. In addition,
alias types have a second points-to predicate that can be used to represent shared parts of the heap, an idea that
is not directly present in separation logic. We believe it is straightforward to add this second form of points-to
predicate to ILC and include it under Girard’s modality. In fact, the main reason that we separated ! from ◦ in
the logic was to allow this extension. This a second predicate could be included in separation logic, if it was
declared another form of “pure formula.” The main difference between the program logics and the type systems
is that the type systems do not include arithmetic and therefore, overall, are much less expressive.

More recently, Zhu and Xi [25] have shown how to blend the idea of alias types with Xi’s previous work on
Dependent ML [24] to produce a type system with “stateful views.” The common link between this work and
our own is that they both allow a mixture of linear and unrestricted reasoning. There are also many differences.
Zhu and Xi define a type system to check for safety whereas we define a program logic with verification
condition generation. Zhu and Xi’s type checking algorithm appears to require quite a number of annotations
— in general, when a programmer gets or sets a reference, they must bind a new proof variable, though in some
cases these annotations can be inferred.3 On the other hand, Zhu and Xi define facilities for handling recursive

3 The full type checking algorithm is not presented in their paper, so a precise assessment is difficult.
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data structures, something we do not attempt in this paper. The definition of the underlying logic used by Zhu
and Xi is closely tied to the programming language and its data types. Consequently, it is difficult to extract the
logic alone and compare it in detail to our own. Zhu and Xi do not investigate meta-theoretic properties of their
logic such as cut elimination nor do they discuss decidability.

Together with Ahmed, Glew and Spalding [2, 1, 11], we have recently been exploring ways to use substruc-
tural logics to create richer forms of Typed Assembly Language. We are particularly interested in reasoning
about the safety of assembly language programs that explicitly allocate and deallocate data on the stack, in the
heap, or in user-defined memory regions [23]. None of the type systems we have defined have syntax-directed
typing rules. In theory, when dealing with Typed Assembly Language [16] or Proof-Carrying Code [17], this
is irrelevant — the compiler can generate explicit proofs or typing derivations when necessary. In practice,
however, it is very difficult and time-consuming to implement a certifying compiler without automated type-
or proof-reconstruction. We believe the current research brings us a step closer to implementing a certifying
compiler for these memory management properties.

5. Future Work and Conclusions

In future work, we plan to implement ILC by extending an existing linear logic theorem prover with decision
procedures for classical arithmetic. We are interested in using the theorem prover both to support source-level
reasoning about safety properties of pointer programs and to support generation of Typed Assembly Language.

Also high on our list of priorities is support for recursive data structures. There are many ways to approach
this problem. On the one hand, we could proceed as O’Hearn et al. do and simply add general-purpose recursive
definitions to the logic. This approach would immediately lead to an undecidable system. On the other hand,
to retain decidable checking, we believe we can take the approach used in Vault [6] and other type systems,
which do not reason precisely about data structures with complex shapes and do not reason about properties of
individual cells in a list or tree. We believe there may also be a range of interesting choices in between the two
extremes.

To conclude, we developed a sequent calculus for a new logic, which we call ILC (Intuitionistic Linear logic
with Classical arithmetic) and proved a cut elimination theorem for our logic. We also defined verification
condition generation rules for a simple imperative language that produce assertions in ILC. We have proven
the soundness of verification condition generation. Finally, we identify a fragment of ILC, ILC−, that is both
decidable and closed under generation of verification conditions. If loop invariants are specified in ILC−, then
the resulting verification conditions are also in ILC−. Since verification condition generation is syntax-directed,
we obtain a decidable procedure for checking properties of pointer programs.
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A. Appendix

A.1 Sequent Calculus Rules

Sequent rules for classical logic: Γ # Γ′

Γ, A # A,Γ′ Contra

Γ # A,A ∧ B,Γ′ Γ # B,A ∧ B,Γ′

Γ # A ∧ B,Γ′ ∧F

Γ, A,A ∧ B # Γ′

Γ, A ∧ B # Γ′ ∧T1
Γ, B,A ∧ B # Γ′

Γ, A ∧ B # Γ′ ∧T2

Γ # true,Γ′ trueF

Γ # A,A ∨ B,Γ′

Γ # A ∨ B,Γ′ ∨F1
Γ # B,A ∨ B,Γ′

Γ # A ∨ B,Γ′ ∨F2

Γ, A,A ∨ B # Γ′ Γ, B,A ∨ B # Γ′

Γ, A ∨ B # Γ′ ∨T

Γ, false # Γ′ falseT

Γ, A # ¬A,Γ′

Γ # ¬A,Γ′ ¬F
Γ,¬A # A,Γ′

Γ,¬A # Γ′ ¬T

A.2 Decidability of ILC−

The definitions and proofs in the section are very similar to the residuation calculus in Chapter 4 in Frank
Pfenning’s Notes on Automated Theorem Proving4. We use Rs to denote the residuation formulas.

Residuation Formulas Rs : : = A | Rs1 ∧ Rs2 | ∃x.Rs | ∀x.Rs

Proof rules

Ω |Γ ; Θ ; ·
r

=⇒ #A\ (
∧

Γ ⊃ A)
#R

Ω |Γ ; Θ ; ∆
r

=⇒ F\ (
∧

Γ ⊃ false)
absurdity

Claim 4
The validity of residual formulas is decidable.

PROOF. The residual formulas are Presburger Arithmetic.

Theorem 5 (Soundness of Residuation)
If Ω |Γ ; Θ ; ∆

r
=⇒ F\Rs and for any ground substitution ρ for Ω, M � ρRs then Ω |Γ ; Θ ; ∆

−
=⇒ F .

PROOF. By induction on the depth of derivation Γ ; Θ ; ∆
r

=⇒ F\Rs.

case Ω |Γ ; Θ ; ·
r

=⇒ #A\ (
∧

Γ ⊃ A)
#R

(1) M � ρ(
∧

Γ ⊃ A) Premise
(2) Ω |Γ # A (1)

(3) Ω |Γ ; Θ ; ∆
−

=⇒ #A (2) and #R
case The absurdity case is similar to the #R case

4 Available at http://www.cs.cmu.edu/ fp/coursed/atp
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Lemma 6 (Completeness of Residuation)
If Ω |Γ ; Θ ; ∆

−
=⇒ F where F = σF ′, Γ = σΓ′, Θ = σΘ′, ∆ = σ∆′ and ρ is a ground substitution for Ω

then Ω |Γ′ ; Θ′ ; ∆′ r
=⇒ F ′\Rs for some Rs and M � ρσRs

PROOF. By induction on the depth of Γ ; Θ ; ∆ =⇒ F .

case

Ω |Γ # A

Ω |Γ ; Θ ; ·
−

=⇒ #A
#R

(1) Ω |Γ′ ; Θ′ ; ·
r

=⇒ #A′\ (
∧

Γ′ ⊃ A′) #R(in the residuation seq rules)
(2) Ω |Γ # A by premise
(3) F = σF ′, Γ = σΓ′, Θ = σΘ′ Premise
(4) � ρσ(

∧
Γ′ ⊃ A′) by (2) and (3)

case The absurdity case is similar to the #R case

Theorem 7 (Completeness of Residuation)
If Ω |Γ ; Θ ; ∆

−
=⇒ F , and ρ is a ground substitution for Ω then Ω |Γ ; Θ ; ∆

r
=⇒ F\Rs for some Rs and

M � ρRs

PROOF. By Lemma 6

Lemma 8
Residuation calculus is decidable.

PROOF. By examination of the proof rules. The premise of each rule is strictly smaller than its conclusion, so
there are finite number of possible proof trees altogether (a similar argument was made in Lincoln’s paper on
the decidability properties of propositional linear logic [12]).

Theorem 9 (Decidability)
ILC− is Decidable

PROOF. By the result of the completeness and soundness of residuation calculus, the provability of ILC− is
reduced to the validity of the residual formula and the decidability of the residuation calculus. By Claim 4 and
Lemma 8, the validity of the residual formula and the decidability of the residuation calculus are both decidable,
so ILC− is Decidable.

A.3 Verification Condition Generation Rules

∆ ` (∃x1 . . . ∃xn, F1& . . . &Fn, A)R

∆ ` (·,>, B) B
boolean exp

∆, x ` (∃x1 . . . ∃xn, F,A) R

∆ ` (∃x0.∃x1 . . . ∃xn, ( (E ⇒ x0) ⊗ >)&F [x0/x], A[x0/x]) let x = !E in R end
bind

∆ ` {P } C {Q }

∆, x ` {P } C {Q } x /∈ FV (Q)

∆ ` {P [E/x] } let x = E in C end {Q }
bind

∆, x ` {P } C {Q } x /∈ FV (Q)

∆ ` {∀y. (y ⇒ E) ( P [y/x] } let x = new(E) in C end {Q }
new

∆ ` {∃y. (E ⇒ y) ⊗ Q} free(E) {Q}
free
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∆, x ` {P } C {Q } x /∈ FV (Q)

∆ ` {∃y.( (E ⇒ y) ⊗ >)&P [y/x] } let x = !E in C end {Q }
deref

∆ ` {∃x. (E1 ⇒ x) ⊗ ( (E1 ⇒ E2) ( Q) } E1 := E2 {Q }
assignment

∆, x ` {P } C {Q } x /∈ FV (Q) Ψ(f) = ( a ) Crt [∆] {Pre} {[ret]Post}

∆ `
{∃∆.P re[E/a] ⊗ (∀ret.Post[E/a] ( P [ret/x]) }
let x = f(E ) in C end {Q }

fun call

∆ ` {P } C1 {P ′ } ∆ ` {P ′ } C2 {Q }

∆ ` {P } C1 ; C2 {Q }
Seq

∆ ` {P1 } C1 {Q } ∆ ` {P2 } C2 {Q }

∆ ` { ( ! # B ( P1)& ( ! # ¬B ( P2) } if B then C1 else C2 {Q }
if

∆ ` {P } C { I } ∆ ` (∃x1 . . . ∃xn, F,B) R

∆ ` {
(∃x1 . . . ∃xn.F&(!# ¬B ( Q)&(!# B ( P ))
⊗ ! (I ( (∃x1 . . . ∃xn.F&(!# B ( P )&(!# ¬B ( Q))

} while[I] R do C {Q }

while

∆ ` {Q[E/ret] } returnE { ∀ret.Q }
return

` {P } S prop, where prop = seq | funcall

∆ ` {Q } · seq

∆ ` {P } C {Q } ∆ ` {Q } Sc seq

∆ ` {P } [ ] ; C . Sc seq

∆ ` {P } Crt {Q } ∆ ` {Q } Sc funcall

∆ ` {P } [ ] ; Crt . Sc seq

∆, x ` {P [x/ret] } C {Q } ∆ ` {Q } Sc seq

∆ ` {∀ret.P } let x = [ ] in C end . Sc funcall

∆, x ` {P [x/ret] } Crt {Q } ∆ ` {Q } Sc funcall

∆ ` {∀ret.P } let x = [ ] in Crt end . Sc funcall

` Ψ ok

∀f ∈ dom(Ψ),Ψ(f) = ( a ) Crt [∆] {Pre} {∀ret.Post},

∆ `Ψ {Pre } Crt { ∀ret.Post } ∆ /∈ FV (Crt)

` Ψ ok

A.4 Soundness of Verification Condition Generation

Here C refers to the ordinary commands that don’t contain return command.

Definition

• �
n {P } C {Q } iff for all h, Ψ, such that h � P , and � Ψ ok,

either there exists k, 0 ≤ k ≤ n such that (S, h,C)
Ψ k
7−→ (S, h′, •), and h′

� Q

or there exists S ′, h′, and ι, and (S, h,C)
Ψ n
7−→ (S′, h′, ι)

• �
n {P } Crt { ∀ret.Q } iff for all h, Ψ, such that h � P , and � Ψ ok,

either there exists k, 0 ≤ k ≤ n such that (S, h,Crt)
Ψ k
7−→ (S, h′, returnE), and h′

� Q[E/ret]
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or there exists S ′, h′, and ι, and (S, h,Crt)
Ψ n
7−→ (S′, h′, ι)

• � {P } C {Q } iff for all n ≥ 0, �
n {P } C {Q }

• � {P } Crt { ∀ret.Q } iff for all n ≥ 0, �
n {P } Crt { ∀ret.Q }

• � Ψ ok iff ∀f ∈ dom(Ψ),Ψ(f) = ( a ) Crt [∆] {Pre} {∀ret.Post}, and for all substitution σ for ∆, and σa

for a, � {σσaPre } σσaCrt {σσa∀ret.Post }

• � {Q } S seq iff for all Ψ, C , and h, such that � Ψ ok, � {P } C {Q }, and h � P ,

either for all n ≥ 0, there exist S ′, h′, and ι such that (S, h,C)
Ψ n
7−→ (S′, h′, ι).

or exists k ≥ 0, h′ such that (S, h,C)
Ψ k
7−→ (·, h′, •).

• � { ∀ret.Q } S funcall iff for all Ψ, Crt, and h, such that � Ψ ok, � {P } Crt { ∀ret.Q }, and h � P ,

either for all n ≥ 0, there exist S ′, h′, and ι such that (S, h,Crt)
Ψ n
7−→ (S′, h′, ι).

or exists k ≥ 0, h′ such that (S, h,Crt)
Ψ k
7−→ (·, h′, •).

Lemma 10
if ∆ ` (∃x1 · · · ∃xn, F1& . . . &Fn, A)R, and σx is a substitution for x1, · · · xn, and σ is a substitution for ∆,

and h � σσx(F1& . . . &Fn), then (S, h,R)
Ψ n
7−→ (S, h,B), such that · �!# (σσxA) iff [[B]] = true, and

· �!# ¬(σσxA) iff [[B]] = false.

PROOF. By induction on the structure of R

Defs

• (S, h) is safe for ι for n steps iff (S, h, ι)
Ψ n
7−→ (S′, h′, ι′)

• dangle(h) is the set of dangling pointers that heap h points to.
• f̂(x) = f(x)ifx ∈ dom(f)xotherwise

• We treat f̂ as a substitution of the location values in h to location values in h1.

• (S, h, ι)
f
∼ (S1, h1, ι1) iff f is a bijection from dom(h) ∪ dangle(h) to dom(h1) ∪ dangle(h1), and

∀` ∈ dom(h) ∪ dangle(h), f̂(S) = S1, f̂(ι) = ι1, and for all ` ∈ dom(h), f̂(h(`)) = h1(f(`)).

Lemma 11 (Monotonicity)
1. If (S, h, ι)

f
∼ (S1, h1, ι1), and (S, h, ι)

Ψ
7−→ (S′, h′, ι′), and (S1, h1 ] h2, ι1)

Ψ
7−→ (S′

1, h
′
1 ] h2, ι

′
1), then

(S′, h′, ι′)
f
∼ (S′

1, h
′
1, ι

′
1).

2. For all n, n ≥ 0, if (S, h) is safe for ι for n steps, then (S, h ] h′) is safe for ι for n steps.

PROOF. 1. By examine all the cases in operational semantics.

2. Follows 1.

Lemma 12 (Frame Property)

For all n, n ≥ 0, if (S, h) is safe for ι for n steps, and (S, h ] h1, ι)
Ψ n
7−→ (S′, h′, ι′), then h′ = h′′ ] h1, and

(S, h, ι)
Ψ n
7−→ (S′, h′′, ι′) .

PROOF. By indution on n.

Lemma 13
If ∆ `Ψ {P } C {Q } then for all substitution σ for ∆, for all n ≥ 0, �

n {σP } σC {σQ }.
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PROOF. By induction on n, call upon Lemma 10, Lemma 14, and Lemma 11.

Lemma 14
If ∆ `Ψ {P } C { ∀ret.Q } then for all substitution σ for ∆, for all n ≥ 0, �

n {σP } σC {σ∀ret.Q }.

PROOF. By induction on n, call upon Lemma 13, and Lemma 11.

Lemma 15
If ∆ ` {P } Sc prop then for all substitution σ for ∆, � {σP } σSc prop.

PROOF. By induction on the structure of Sc, and call upon Lemma 13 and Lemma 14.

Lemma 16
if ` Ψ ok then � Ψ ok

PROOF. By Lemma 14.

Theorem 17 (Safety)
If ` Ψ ok, ∆ ` {P } C {Q }, and ∆ ` {Q } S, and σ is a substitution for ∆, and h � σP , then

• either for all n ≥ 0, there exist S ′, h′, and ι such that (S, h,C)
Ψ n
7−→ (S′, h′, ι).

• or there exists a k ≥ 0 such that (S, h,C)
Ψ k
7−→ (·, h′, •).

PROOF. By Lemma 13, Lemma 15, and Lemma 16

Corollary 18 (Safety)
If ` Ψ ok, ∆ ` {P } C {Q }, and σ is a substitution for ∆, and h � σP , then

• either for all n ≥ 0, there exist S ′, h′, and ι such that (·, h, C)
Ψ n
7−→ (S′, h′, ι).

• or there exists a k ≥ 0 such that (·, h, C)
Ψ k
7−→ (·, h′, •).

PROOF. Follows from Theorem 17.
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