
PolyAML: A Polymorphic Aspect-oriented Functional
Programming Language

Daniel S. Dantas David Walker
Department of Computer Science

Princeton University
{ddantas,dpw}@cs.princeton.edu

Geoffrey Washburn Stephanie Weirich
Department of Computer and Information Science

University of Pennsylvania
{geoffw,sweirich}@cis.upenn.edu

Abstract
This paper defines PolyAML, a typed functional, aspect-oriented
programming language. The main contribution of PolyAML is
the seamless integration of polymorphism, run-time type analysis
and aspect-oriented programming language features. In particular,
PolyAML allows programmers to define type-safe polymorphic
advice using pointcuts constructed from a collection of polymorphic
join points. PolyAML also comes equipped with a type inference
algorithm that conservatively extends Hindley-Milner type inference.
To support first-class polymorphic point-cut designators, a crucial
feature for developing aspect-oriented profiling or logging libraries,
the algorithm blends the conventional Hindley-Milner type inference
algorithm with a simple form of local type inference.

We give our language operational meaning via a type-directed
translation into an expressive type-safe intermediate language. Many
complexities of the source language are eliminated in this transla-
tion, leading to a modular specification of its semantics. One of
the novelties of the intermediate language is the definition of poly-
morphic labels for marking control-flow points. These labels are
organized in a tree structure such that a parent in the tree serves as
a representative for all of its children. Type safety requires that the
type of each child is less polymorphic than its parent type. Similarly,
when a set of labels is assembled as a pointcut, the type of each
label is an instance of the type of the pointcut.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism, control structures; F.3.3 [LOGICS AND
MEANINGS OF PROGRAMS]: Software—type structure, program
and recursion schemes, functional constructs; F.4.1 [MATHE-
MATICAL LOGIC AND FORMAL LANGUAGES]: Mathematical
Logic—Lambda calculus and related systems

General Terms Design, Languages, Theory

Keywords aspects-oriented programming, functional program-
ming, ad-hoc polymorphism, type systems, type inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

1. Introduction
Aspect-oriented programming languages allow programmers to
specify what computations to perform as well as when to perform
them. For example, AspectJ [21] makes it easy to implement a
profiler that records statistics concerning the number of calls to
each method. The what in this example is the computation that
does the recording and the when is the instant of time just prior to
execution of each method body. In aspect-oriented terminology, the
specification of what to do is called advice and the specification
of when to do it is called a pointcut designator. A collection of
pointcut designators and advice organized to perform a coherent
task is called an aspect.

The profiler described above could be implemented without
aspects by placing the profiling code directly into the body of each
method. However, at least four problems arise when the programmer
does the insertion manually.

• First, it is no longer easy to adjust when the advice should
execute, as the programmer must explicitly extract and relocate
calls to profiling functions. Therefore, for applications where
the “when” is in rapid flux, aspect-oriented languages are clearly
superior to conventional languages.

• Second, there may be a specific convention concerning how to
call the profiling functions. When calls to these functions are
spread throughout the code base, it may be difficult to maintain
these conventions correctly. For example, IBM [7] experimented
with aspects in their middleware product line, finding that aspects
aided in the consistent application of cross-cutting features such
as profiling and improved the overall reliability of the system.
Aspect-oriented features added structure and discipline to IBM’s
applications where there previously was none.

• Third, when code is injected directly into the body of each
method, the code becomes “scattered,” in many cases making it
difficult to understand. This problem is particularly relevant to
the implementation of security policies for programs. Many se-
curity experts have argued convincingly that security policies for
programs should be centralized using aspects. Otherwise secu-
rity policy implementations are spread amongst many modules
and it is impossible for a security expert to audit them effec-
tively. Several researchers have implemented security systems
based on this principle (though many of the experts did not use
the term “aspect-oriented”) and presented their ideas at presti-
gious conferences including POPL, PLDI and IEEE Security and
Privacy [16, 22, 23, 6, 14, 15, 3].

• Fourth, in some situations, the source code is unavailable or does
not have the right to modify it and consequently manual insertion
of function calls is out of the question. In these cases, aspects
can be used as a robust form of external software patch [18].



To date there have been much success integrating aspects into
object-oriented languages, but much less research on the interac-
tions between aspects and typed functional languages. One of the
central challenges of developing such a language comes in con-
structing a typing discipline that is safe, yet sufficiently flexible to
fit aspect-oriented programming idioms. In some situations, typing
is straightforward. For instance, when defining a piece of advice for
a single monomorphic function, the type of the argument to, and
result of, the advice is directly connected to the type of the function
being advised. However, many aspect-oriented programming tasks,
including the profiling task mentioned above, are best handled by a
single piece of advice that executes before (or after) many different
function calls. In this case, the type of the advice is not directly
connected with the type of a single function, but with a whole col-
lection of functions. To type check advice in such situations, one
must first determine the type for the collection and then link the type
of the collection to the type of the advice. Normally, the type of the
collection (the pointcut) will be highly polymorphic and the type of
each element will be less polymorphic than the collection’s type.

In addition to finding polymorphic types for pointcuts and advice,
it is important for advice to be able to change its behavior depending
upon the type of the advised function. For instance, the otherwise
generic profiling advice might be specialized so that on any call to a
function with an integer argument, it tracks the distribution of calls
with particular arguments. This and other similar examples require
that the advice can determine the type of the function argument.
In AspectJ, and other object-oriented languages, where subtype
polymorphism is predominant, downcasts are used to determine
types. However, in ML, and other functional languages, parametric
polymorphism is predominant and therefore run-time type analysis
is the appropriate mechanism.

Another central consideration when designing a typed functional
programming language is support for type inference. Here, both
polymorphic pointcuts and run-time type analysis pose serious chal-
lenges to language designers. Polymorphic pointcuts prove difficult
because they include quantified types. To use pointcuts as first-class
objects, an important feature for building effective aspect-oriented
libraries, it is necessary to weaken beyond ML’s restriction on prenex
polymorphism. Likewise, run-time type analysis is challenging be-
cause it refines types in the typing context and because each branch
of a typecase statement may have a different type. Nevertheless, any
extension of an ML-like like language with these features should be
conservative. In other words, type inference should work as usual
for ordinary ML programs; only when aspect-oriented features are
involved should programmers be required to add typing annotations.

In this paper, we develop a typed functional programming lan-
guage with polymorphic pointcuts, run-time type analysis and a
conservative extension of ML’s Hindley-Milner type inference algo-
rithm. The language we define contains before and after advice and
is oblivious [17]. In other words, programmers can add functionality
to a program “after-the-fact” in the typical aspect-oriented style. To
provide support for stack-inspection-like security infrastructure, and
to emulate AspectJ’s CFlow, our language also includes a general
mechanism for analyzing metadata associated with functions on the
current call stack.

To specify the dynamic semantics of our language, we give
a type-directed translation from the source into a type-safe inter-
mediate language with its own operational semantics. This strategy
follows previous work by Walker, Zdancewic and Ligatti (WZL) [39],
who define the semantics of a monomorphic language in this way.
This translation helps to modularize the semantics for the source by
unraveling complex source-language objects into simple, orthogonal
intermediate language objects. Indeed, as in WZL, we have worked
very hard to give a clean semantics to each feature in this language,

and to separate unrelated concerns. We believe this will facilitate
further exploration and extension of the language.

Our core language, though it builds directly on WZL, is itself
an important contribution of our work. One of the novelties of the
core language is its first-class, polymorphic labels, which can be
used to mark any control-flow point in a program. Unlike in WZL,
where labels are monomorphic, polymorphism allows us to structure
the labels in a tree-shaped hierarchy. Intuitively, each internal node
in the tree represents a group of control-flow points whereas the
leaves represent single control-flow points. Depending upon how
these labels are used, there could be groups for all points just before
execution of the function or just after; groups for all labels in a
module; groups for getting or setting references; groups for raising
or catching exceptions, etc. Polymorphism is crucial for defining
these groups since the type of a parent label, which represents a
group, must be a polymorphic generalization of the type of each
member of the group (i.e., child of an internal tree node).

The main contributions of this paper are as follows.

• We formally define a surface language that includes three novel
features essential for aspect-oriented programming in a strongly-
typed functional language: polymorphic pointcuts, polymorphic
advice and polymorphic analysis of metadata on the current call
stack. In addition, we add run-time type analysis, which, though
not a new feature, is seamlessly integrated into the rest of the
language.

• We define a conservative extension of the Hindley-Milner type
inference algorithm for our language. In the absence of aspect-
oriented features and run-time type analysis, type inference
works as usual; inference for aspects and run-time type analysis
is integrated into the system smoothly through a novel form
of local type inference. Additionally, we believe the general
principles behind our type inference techniques can be used in
other settings.

• We define semantics of PolyAML by a translation into a typed
core language, FA. This core language defines primitive new
notions of polymorphic labeled control flow points and poly-
morphic advice. We prove the core language is type safe, that
the translation is type-preserving and therefore that the surface
language is also safe.

• We have a complete prototype implementation that uses our type
inference algorithm to infer types, translates to our intermedi-
ate language, and implements its operational semantics as an
interpreter. This prototype is implemented in Standard ML of
New Jersey and currently stands at approximately  lines of
code 1.

One of the limitations of this paper is that we do not consider
around advice, one of the staples of AspectJ. We have two reasons
for omitting around advice at this time. First, in a companion pa-
per [10], we have defined an extended type system that prevents
advice from interfering with the functional behavior of mainline
code and thereby facilitates reasoning about aspect-oriented pro-
grams. This system of harmless advice is incompatible with around
advice and we plan to merge it with the polymorphic programming
constructs defined here. Second, around advice does not seem im-
portant for the security applications that we are most interested in.
For now, around advice is beyond the scope of our work.

In the remaining sections of this paper, we define and analyze
our new polymorphic, functional and aspect-oriented programming
language PolyAML. Section 2 introduces the PolyAML syntax and
informally describes the semantics through a series of examples.
Section 3 describes the formal semantics of the PolyAML type
system and type inference algorithm. Section 4 introduces the

1 Available at http://www.cs.princeton.edu/∼ddantas/aspectml/

http://www.cs.princeton.edu/~ddantas/aspectml/


(polytypes) s ::= all a.t
(pointcut type) pt ::= (s1,s2)
(monotypes) t ::= a j unit j string j stack j

j t1 -> t2 j pc pt
(trigger time) tm ::= before j after
(terms) e ::= x j () j c j e1e2 j let d in e

j stkcase e1 (p=>e |_=> e2)
j typecase[t] a (t=>e |_=> e)
j {f}:pt j any j e:t

(stack patterns) p ::= x j nil j f::p
(frame patterns) f ::= _ j e(x,y) j e(x:t,y)
(declarations) d ::= rec f x = e

j rec f (x:t1):t2 = e
j advice tm e1 (x,y,z) = e2
j advice tm e1 (x:t,y,z) = e2
j case-advice tm e1 (x:t,y,z) = e2

Figure 1. Syntax of PolyAML

semantics of our polymorphic core calculus, FA. Section 5 shows
have to give a semantics to PolyAML in terms of FA. Finally,
Sections 6 and 7 describe related work and conclusions.

2. Programming with aspects
PolyAML is a polymorphic functional, aspect-oriented language
based on the ML family of languages. Figure 1 presents its syntax.
Here and elsewhere, we use over-bars to denote lists of syntactic
objects: x refers to a sequence x1 : : : xn, and xi stands for an
arbitrary member of this sequence. Bold-faced text is used to
indicate actual syntax, as opposed to meta-variables. We assume the
usual conventions for variable binding and ¸-equivalence of types
and terms.

As in ML, the type structure of PolyAML is divided into polytypes
and monotypes. The polytypes are normally written all a.t where
t is a monotype. However, when the list of binding type variables a
is empty, we may abbreviate all .t as just t.

Here, and unlike in ML, the word “monotype” is a slight mis-
nomer for the syntactic category t. In addition to type variables, a,
simple base types like unit, string and stack, and function
types t1 -> t2, the monotypes include pc pt, the type of a point-
cut, which in turn includes a pair of polytypes. We explain pointcut
types in more detail later.

PolyAML expressions include variables, x, constants like unit,
(), and strings, c, function application and let declarations. New
functions may be declared in a let declaration. These functions may
be polymorphic and they may or may not be annotated with their
argument and result types. When annotations are omitted, PolyAML
will infer these types. We assume it is easy to extend the language
with other simple features such as integers, arithmetic and I/O, and
we will make use of such things in our examples. Note that PolyAML
does not include anonymous functions, a point we will address later.

The most interesting features of our language are pointcuts and
advice. Advice in PolyAML is second-class and includes two parts:
the body, which specifies what to do, and the pointcut designator,
which specifies when to do it. In PolyAML, a pointcut designator has
two parts, a trigger time, which may either be before or after,
and a pointcut proper, which is a set of function names. The set of
function names may be written out verbatim as {f}, or, to indicate
all functions, a programmer may use the set any.

Anonymous functions are nameless so it would be impossible
to write explicit advice for them. It would be reasonable to make
any advice apply to anonymous functions. However, it might also
be useful to write advice that applies just to anonymous functions

using a distinguished pointcut. Finally, it could be argued that advice
simply should not apply to anonymous functions. Because these
design choices do not present any technical difficulties for our
framework, we have chosen to not address anonymous functions
until we have more experience with programming in PolyAML.

In a larger language we would add a greater variety of pointcuts,
including ones that corresponded to different actions in a module
such as reading or writing reference cells and raising or catching
exceptions, or different domains of interest, such as all function
points in a particular module. We would also add a small language
for specifying sets of function names, exceptions, etc., perhaps built
on regular expressions.

Informally, the pointcut type, (s1,s2), describes the I/O behav-
ior of a pointcut. In PolyAML, pointcuts are used to describe sets
of functions, and as such s1 and s2 are conservative estimates of
what the domains and ranges of those functions have in common.
For example, if there are functions f and g with types string ->
string and string -> unit respectively, we could give the
pointcut {f,g} the pointcut type (string,all a.a). This is
because their domains are equal, so the least general polytype that
describes them both is just string. However, they have different
ranges, so the least general polytype that can be used to describe
them both is all a.a. As we mentioned, pointcut types are con-
servative, so it would have also been fine to annotate the pointcut
{f,g} with the pointcut type (all a.a,all a.a). In the ex-
amples that follow, because the polytype all a.a is commonly
used, we abbreviate it to T. The semantics of pointcut types is given
precisely in Section 3.

The pointcut designator before {f}:pt represents the point
in time immediately before executing a call to the function f. Like-
wise after {g,h}:pt represents the point in time immediately
after executing either g or h. In both cases, the set is annotated with
type information pt to aid type checking. First-class pointcuts, such
as {g,h}, require that both their domain and range types be anno-
tated. To make this easier when they appear in a pointcut designator,
we introduce the syntactic sugar dom s and rng s for the pointcut
types (s,T) and (T,s) respectively.

The most basic kind of advice has the form

advice tm e1 (x,y,z) = e2

Here, tm e1 is the pointcut designator. When the pointcut designator
dictates it is time to execute the advice, the variable x is bound
either to the argument (in the case of before advice) or the result
of function execution (in the case of after advice). The variable x
may optionally be annotated with its type. The variable y is bound
to the current call stack. We explain stack analysis in Section 2.2.
The variable z is bound to metadata describing the function that
has been called. For our purposes, we will assume the metadata is a
string corresponding to the function name as written in the source
text. In other situations, it might include security information, such
as the name of the code signer. Since our advice exchanges data
with the designated control flow point, it must return a value with
the same type as the first argument x.

A contrived example of using advice is the following code
fragment for an implementation of factorial.

(* code *)
let rec fact x = if (x = 1) then 1

else x * fact (x-1) in
(* advice *)
let advice before {fact} : dom int

(arg, stk, name) =
if (arg = 0) then 1 else arg

Here advice is used to correct the implementation of factorial, which
did not correctly handle the case for 0! , 1. We do not expect



that advice would be used like this in practice except when more
significant patching is necessary or the source code is unavailable.

A common use of aspect-oriented programming is to add tracing
information to functions. These statements print out information
when certain functions are called or return. For example, we can
advise the program below to display messages before any function
is called and after the functions f and g return. The trace of the
program is shown on the right. The type annotation rng int on
the set {f,g} means that as an argument to a before pointcut
designator it must be able to accept any type of data and as an
argument to an after pointcut designator it may only accept data
of type int.

(* code *) (* trace *)
let f x = x + 1 in entering g
let g x = if x then f 1 entering f

else f 0 in leaving f => 2
let h x = false in leaving g => 2

entering h

(* advice *)
let advice before any (arg, stk, name) =

print "entering "; println name; arg in
let advice after {f,g}: rng int

(arg, stk, name) =
print ("leaving " ˆ name ˆ " => ");
printint arg; println ""; arg

in
h (g true)

Even though some of the functions in this example are monomorphic,
polymorphism is essential. Because the advice can be triggered by
any of these functions and they have different types, the advice must
be polymorphic. Moreover, since the argument types of functions f
and g have no type structure in common, the argument arg of the
before advice must be completely abstract. On the other hand, the
result types of f and g are identical, so we can fix the type of arg
to be int in the after advice. In general, the type of the after
advice argument may be the most specific type t such that the result
types of all functions referenced in the pointcut are instances of t.
Inferring t is not a simple unification problem; quite the opposite,
it is an anti-unification problem. Our type inference algorithm
does not currently does not solve anti-unification problems, so we
must require a typing annotation on pointcuts formed from sets of
functions.

2.1 Run-time type analysis
We might also want the tracing routine to print not only the name
of the function that is called, but also its argument. To do this, we
need to analyze the type of the argument to the function. PolyAML
makes this easy with an alternate form of advice declaration, called
case-advice, that is triggered both by the pointcut designator
and the specific type of the argument. In the code below, the first
piece of advice is always triggered, the second piece of advice is
only triggered when the function argument is an integer, and the
third piece of advice is only triggered when the function argument
is a boolean. (All advice that is applicable to a program point is
triggered in the order in which the advice was declared.)

let advice before any (arg, stk, name) =
print "entering "; println name;
arg

in let case-advice
before any (arg:int, stk, name) =
print " with arg "; println (itos arg);
arg

in let case-advice
before any (arg:bool, stk, name) =
print " with arg ";
println (if arg then "true"

else "false");
arg

in ...

This ability to conditionally trigger advice based on the type
of the argument means that polymorphism is not parametric in
PolyAML—programmers can analyze the types of values at run-
time. However, without this ability we cannot implement this tracing
aspect and other similar examples. For further flexibility, PolyAML
also includes a typecase construct to analyze type variables directly.
Below, to aid type checking, [unit] annotates the return type of
the typecase expression.

let advice before any (arg:a, stk, name) =
print "entering"; print name;
print " with arg ";
(typecase[unit] a of

int => println (itos arg)
| bool => println (if arg then "true"

else "false")
| _ => println " <unprintable>");
arg

in ...

2.2 Reifying the context
When advice is triggered, often not only is the argument to the func-
tion important, but also the context in which it was called. Therefore,
this context information is provided to all advice and PolyAML in-
cludes constructs for analyzing it. For example, below we augment
the tracing aspect so that it displays debugging information for the
function f when it is called directly from g and g’s argument is the
boolean true.

let
advice before {f}: dom T (farg,fstk,fname) =
(stkcase fstk of
_::({g}: dom bool (garg, gname))::rest =>
if garg then
print "entering f from g(true)"

else ()
| other => ()); farg

in ...

A stack is a list of frames describing the execution context. The head
of the stack contains information about the function that triggered
the advice (e.g. f in the example above). Each frame on the stack
describes a function in the context and can be matched by a frame
pattern: either a wild-card _ or the pattern e(x,y). The expression
e in a frame pattern must evaluate to a pointcut—the pattern matches
if any function in the pointcut matches the function that frame
describes. The variable x is the argument of that function, and y is
a string containing the name of the function.

A more sophisticated example of context analysis is to use
an aspect to implement a stack-inspection-like security moni-
tor for the program. If the program tries to call an operation
that has not been enabled by the current context, the security
monitor terminates the program. Below, assume the function
enables:string -> string -> bool determines whether
the first argument (a function name) provides the capability for
the second argument (another function name) to execute. We also
assume abort() terminates the program.



let advice before any (arg1, stk, name1) =
let rec walk y =

stkcase y of
nil => abort()

| any (arg2, name2) :: rest =>
if enables name2 name1 then ()
else walk rest

in walk stk; arg1

However, a subtle point that we caught only we tested this example
with our implementation, is that the any pointcut is very difficult to
use. In particular, the above program will always diverge, because
the function calls in the body of the advice will trigger the advice
itself.

This problem could be solved in a number of ways. One possibil-
ity would be to introduce a primitive, disable e, that will disable
all advice while e is evaluated. The advice could then be rewritten
as

let advice before any (arg1, stk, name1) =
let rec walk y =

stkcase y of
nil => abort()

| any (arg2, name2) :: rest =>
if enables name2 name1 then ()
else walk rest

in disable (walk stk); arg1

Another option would be to introduce subtractive pointcuts, such
as e1 except e2, that behave here like set difference on names of
functions. We could use this to rewrite the advice as

let rec walk name1 y =
stkcase y of
nil => abort()

| any (arg2, name2) :: rest =>
if enables name2 name1 then ()
else walk rest in

let advice before
(any except {walk,enables} : dom T)
(arg1, stk, name1) =

in walk name1 stk; arg1

This extension has the disadvantage that it the author of the advice
must know the entire potential call tree for walk to properly specify
the exception list.

Both of these extensions are straightforward to integrate into our
type system, but the extensions would require some modifications
to the core operational semantics we describe in Section 4.

2.3 First-class pointcuts
The last interesting feature of our language is the ability to use
pointcuts as first-class objects. This facility is extremely useful for
constructing generic libraries of profiling, tracing or access control
advice that can be instantiated with whatever pointcuts are useful for
the application. To give one simple example, consider the “f within
g” pattern presented in one of the previous examples. This is a very
common idiom; in fact, AspectJ has a special pointcut designator for
specifying it. In PolyAML, assuming tuples for the moment, we can
implement the within combinator using a function that takes two
pointcuts—the first for the callee and the second for the caller—as
arguments. Whenever we wish to use the within combinator, we
supply two pointcuts of our choice as shown below.

let rec within
((fpc,gpc,body) : pc (T, T) *

dom bool *
(bool -> a)) =

let advice before fpc (farg,fstk,fname) =
(stkcase fstk of
_ :: gpc (garg, gname) :: rest =>

body garg
| _ => ()); farg

in ()
in let rec entering x =
if x then (println "entering f from g"; x)
else x

in
within ({f}:(T,T), {g}: dom bool, entering)

Notice that we placed a typing annotation on the formal parameter
of within. When pointcuts are used as first-class objects, it is not
always possible to infer types of function arguments and results. The
reason is that pointcut types include polytypes; polytypes cannot be
determined via unification. In the next section, we formally describe
how to reconcile the Hindley-Milner type system with first-class
pointcuts using type annotations.

3. Type inference
The type system of PolyAML is carefully designed to permit efficient
type inference with an algorithm that is an extension of Damas and
Milner’s AlgorithmW [8]. Because the algorithm behaves exactly
the same as ML for ML terms, all terms that do not include aspects
or type analysis will type check without annotation, as they do in
ML.

Type inference for PolyAML is specified by the judgments and
rules that appear in Figure 4. The difficult part in the design of
PolyAML’s type system is reconciling type inference with first-
class pointcuts, polymorphic pointcuts, and run-time type analysis.
In general, we have tried to balance simplicity and the number
of required user annotations. It should be easy for the user to
predict whether an annotation will be necessary. As we gain more
experience with our implementation, we will be able to better gauge
how much of a burden the annotations are. In Section 3.4, we discuss
extensions of the type system that could reduce the number of
required annotations.

3.1 First-class polymorphic pointcuts
First-class polymorphic pointcuts are problematic for type inference
because they inject polytypes in the syntax of monotypes, with
the type pc (s1,s2). Higher-order unification, which is known
to be undecidable, would be necessary to guess the appropriate
polytypes. Instead, whenever two pointcut types are compared by
the unification algorithm, it requires that the polytypes abstract
exactly the same type variables (up to ¸-conversion) [27].

Figure 2 describes our unification algorithm and Figure 3
presents some useful auxiliary definitions. Unification variables
are notated by X; Y; Z; : : : and are only introduced by the type in-
ference algorithm. Unification variables are distinct from (rigid)
programmer-supplied type variables a. Our term annotation rule be-
haves like that of Standard ML [29] rather than Objective Caml [24]:
Type-variables occurring in annotations are assumed to be bound by
their enclosing scope, rather than acting like unification variables.
This design choice is investigated in more detail by Shields and
Peyton-Jones [33].

We use ˆ to refer to an idempotent, ever-growing substitution
of monotypes for unification-variables. Our unification judgment
ˆ ` t1 = t2 ) ˆ ′ is read as



Unification ˆ ` t1 = t2 ) ˆ ′

ˆ ` t = t) ˆ

X ∈ dom(ˆ) ˆ ` ˆ(X) = t) ˆ ′

ˆ ` X = t) ˆ ′

X 6∈ dom(ˆ) X 6∈ FTV(t)
ˆ ` X = t) ˆ;t=X

ˆ ` X = t) ˆ ′

ˆ ` t = X) ˆ ′

ˆ ` t1 = t3 ) ˆ ′ ˆ ′ ` t2 = t4 ) ˆ ′′

ˆ ` t1 -> t2 = t3 -> t4 ) ˆ ′′

ˆ ` t1 = t3 ) ˆ ′ ˆ ′ ` t2 = t4 ) ˆ ′′

ˆ ` pc (all a.t1;all b.t2) = pc (all a.t3;all b.t4)) ˆ ′′

Figure 2. Unification

` ::= · j ;̀x :: t j ;̀x : t
˘ ::= · j˘;x
´ ::= · j ´;a

ı(before;(s1,s2)) , s1
ı(stk;(s1,s2)) , s1

ı(after;(s1,s2)) , s2

X fresh ˆ ` t1[X=a] = t2 ) ˆ ′

ˆ ` all a.t1 � all b.t2 ) ˆ ′

gen( ;̀t) , all a.t[a=X]
where X = FTV(t) - FTV(`)
and a fresh

Figure 3. Auxiliary definitions

“With input substitutionˆ, types t1 and t2 unify producing
the extended substitution ˆ ′.”

That is, the substitution ˆ is extended to produce a new substitution
ˆ ′ so that ˆ ′(t1) = ˆ

′(t2). Furthermore, ˆ ′ is the most general
unifier for these monotypes. In this and in other judgments, we use
the convention that the outputs of the algorithm appear to the right
of) symbol.

To provide flexibility with user annotations, there are two dif-
ferent forms of typing judgment for expressions (see Figure 4). In
these judgements, ˆ is an input substitution, ` the term variable
context, ´ the type variable context, and ˘ the set of function
names currently in scope. The first form is the standard judgment,
ˆ;´;˘; ` ` e) t;ˆ ′, and is read as

“Given the input substitution ˆ and the contexts ´,˘, and ` ,
the term e has type t and produces substitution ˆ ′, possibly
requiring unification to determine t.”

The second judgment is a simple form of local type inference,
ˆ;´;˘; ` `loc e) t;ˆ ′, and is read as

“Given the input substitution ˆ and the contexts ´,˘, and ` ,
the term e has type t, as specified by the programmer, and
produces substitution ˆ ′.”

This judgment holds when either the type of e was annotated in
the source text or when e is an expression whose type is easy
to determine, such as a variable whose (monomorphic) type was
annotated or certain constants. To propagate the type annotation on
variables, the context, ` contains two different assertions depending

Local rules ˆ;´;˘; ` `loc e) t;ˆ ′

´ ` t2 ˆ;´;˘; ` ` e) t1;ˆ ′ ˆ ′ ` t1 = t2 ) ˆ ′′

ˆ;´;˘; ` l̀oc e:t2 ) t2;ˆ ′′

x :: t ∈ `
ˆ;´;˘; ` l̀oc x) t;ˆ ˆ;´;˘; ` l̀oc ()) unit;ˆ

ˆ;´;˘; ` l̀oc c) string;ˆ

ˆ;´;˘; ` l̀oc any) pc (all a.a,all a.a);ˆ

´ ` s1
´ ` s2 ∀i fi ∈ ˘ `(fi) = all a.t1;i -> t2;i

ˆi-1 ` s1 � all a.t1;i ) ˆ ′
i ˆ ′

i ` s2 � all a.t2;i ) ˆi

ˆ0;´;˘; ` l̀oc {f}:(s1,s2)) pc (s1,s2);ˆn

Global rules ˆ;´;˘; ` ` e) t;ˆ ′

ˆ;´;˘; ` l̀oc e) t;ˆ ′

ˆ;´;˘; ` ` e) t;ˆ ′
`(x) = all a.t X fresh

ˆ;´;˘; ` ` x) t[X=a];ˆ

ˆ1;´;˘; ` ` e1 ) t1;ˆ2 ˆ2;´;˘; ` ` e2 ) t2;ˆ3
X fresh ˆ3 ` t1 = t2 -> X) ˆ4

ˆ1;´;˘; ` ` e1e2 ) X;ˆ4

ˆ;´;˘; ` ` e) stack;ˆ0 ˆ0;´;˘; ` ` e ′ ) t;ˆ ′′
0

∀i ˆ ′′
i-1;´;˘; ` ` pi ) ˆi;´i; `i

ˆi;´;´i;˘; ;̀ `i ` ei ) ti;ˆ ′
i ˆ ′

i ` ti = t) ˆ ′′
i

ˆ;´;˘; ` ` stkcase e (p=>e |_=> e ′)) t;ˆ ′′
n

a ∈ ´
´ ` t ˆ;´;˘; ` ` e) t;ˆ0 ∀i ´i = FTV(ti) - ´
a 6∈ FTV(ti) ˆi-1;´;´i;˘; `〈ti=a〉 ` ei[ti=a]) t ′

i;ˆ
′
i

ˆ ′
i ` t ′

i = t[ti=a]) ˆi

ˆ;´;˘; ` ` typecase[t] a (t=>e |_=> e)) t;ˆn

ˆ;´;˘; ` ` d) ˆ ′;˘ ′; ` ′ ˆ ′;´;˘;˘ ′; ;̀ ` ′ ` e) t;ˆ ′′

ˆ;´;˘; ` ` let d in e) t;ˆ ′′

Figure 4. Type inference for expressions

on whether types are inferred via unification (x : s) or known
(x :: s). We use the notation `(x) = s to refer to either x : s ∈ `
or x :: s ∈ ` .

The typing rule for advice declarations (in Figure 5) states that
the type of a pointcut must be determinable using the local type
judgment. That way, the inference algorithm need not use unification
to determine the type pc pt. Note that when the body of the
advice is checked, the parameters are added to the context with
known types, even though they need not be annotated by the user.
Below we use the notation ı(tm;pt) to indicate projecting the
appropriate polytype from the pointcut type. If tm is before the
first component will be projected, if it is after the second will be
projected. There is also special trigger time, stk, used only by the
type inference algorithm that is essentially equivalent to before.
This notation is defined in Figure 3.

The typing rule for case-advice is similar to that for advice.
Note that case-advice requires a typing annotation on x, the
first parameter to the advice. The user employs the annotation to
drive the underlying run-time type analysis.



Declarations ˆ;´;˘; ` ` d) ˆ ′;˘ ′; ` ′

a = (FTV(t1) ∪ FTV(t2)) - ´
ˆ;´;a;˘;f; ;̀f :: t1 -> t2;x :: t1 ` e1 ) t3;ˆ ′

ˆ ′ ` t2 = t3 ) ˆ ′′ s = all a.t1 ! t2

ˆ;´;˘; ` ` rec f (x:t1):t2 = e1 ) ˆ ′′; ·;f; ·;f :: s

X; Y fresh ˆ;´;˘;f; ;̀f : X -> Y;x : X ` e1 ) t;ˆ ′

ˆ ′ ` Y = t) ˆ ′′ s = gen(ˆ ′′(`); ˆ ′′(X -> Y))

ˆ;´;˘; ` ` rec f x = e1 ) ˆ ′′; ·;f; ·;f : s

ˆ;´;˘; ` l̀oc e1 ) pc pt;ˆ ′ ı(tm;pt) = all a.t1
ˆ ′;´;a;˘; ;̀x :: t1;y :: stack;z :: string ` e2 ) t2;ˆ ′′

ˆ ′′ ` t1 = t2 ) ˆ ′′′

ˆ;´;˘; ` ` advice tm e1 (x,y,z) = e2 ) ˆ ′′′; ·; ·

ˆ;´;˘; ` l̀oc e1 ) pc pt;ˆ ′

ı(tm;pt) = all a.t3 a = FTV(t3) - ´
ˆ ′;´;a;˘; ;̀x :: t3;y :: stack;z :: string ` e2 ) t2;ˆ ′′

ˆ ′′ ` t3 = t2 ) ˆ ′′′

ˆ;´;˘; ` ` advice tm e1 (x:t3,y,z) = e2 ) ˆ ′′′; ·; ·

´ ′ = FTV(t1) - ´ ˆ;´;˘; ` l̀oc e1 ) pc pt;ˆ ′

ˆ ′;´;´ ′;˘; ;̀x :: t1;y :: stack;z :: string ` e2 ) t2;ˆ ′′

ˆ ′′ ` t1 = t2 ) ˆ ′′′

ˆ;´;˘; ` ` case-advice tm e1 (x:t1,y,z) = e2 ) ˆ ′′′; ·; ·

Patterns ˆ;´;˘; ` ` p) ˆ ′;´ ′; ` ′

ˆ;´;˘; ` ` nil) ˆ; ·; ·

ˆ;´;˘; ` ` x) ˆ; ·; ·;x :: stack

ˆ;´;˘; ` ` p) ˆ ′;´ ′; ` ′

ˆ;´;˘; ` ` _::p) ˆ ′;´ ′; ` ′

ˆ;´;˘; ` l̀oc e) pc pt;ˆ ′

ı(stk;pt) = all a.t ˆ ′;´;˘; ` ` p) ˆ ′′;´ ′; ` ′

ˆ;´;˘; ` ` e(x,z)::p) ˆ ′′;´ ′;a; ` ′;x:t2;z:string

ˆ;´;˘; ` l̀oc e) pc pt;ˆ ′ ı(stk;pt) = all a.t
a = FTV(t) - ´ ˆ ′;´;˘; ` ` p) ˆ ′′;´ ′; ` ′

ˆ;´;˘; ` ` e(x:t,z)::p) ˆ ′′;´ ′;a; ` ′;x:t;z:string

Figure 5. Type inference for declarations and patterns

3.2 Polymorphic pointcuts
Another tricky part of the type system is the formation of pointcuts
from sets of function names. Only let-bound function names may
be part of a pointcut. To ensure this constraint, the˘ component of
the typing judgments is a set of function names that are currently in
scope. When a pointcut is formed from a set of functions, each of
those functions must be a member of˘.

Now consider the rule for pointcuts constructed from sets of
functions in Figure 4. The domain type of each function in the set
must be at most as polymorphic as the first polytype in the pointcut
type. Similarly, the range type of each function in the set must be
at most as polymorphic as the second polytype in the pointcut type.
The relation ˆ ` s1 � s2 ) ˆ ′ (defined in Figure 3) and is read
as

“Given input substitutionˆ, polytype s1 can be shown to be
more general than polytype s2, by producing an extended
substitution ˆ ′.”

By more general, we mean that there exists an instantiation for
some of the quantified variables inˆ ′(s1) that will make it equal to
ˆ ′(s2). This is the same definition as in ML. To simplify inference,
the polytypes (s1,s2) must be annotated on the set by the user.
Because of this annotation, the expression always has a local type.

3.3 Run-time type analysis
There are two difficulties with combining type inference with run-
time type analysis. First, the return type of a typecase expression
is difficult to determine from the types of the branches. We solve this
first problem by simply requiring an annotation for the result type.
As the rule in Figure 4 shows, if the expression should be of type t
then a branch for type ti may be of type t[ti=a]. This substitution
is sound because if the branch is executed, then the type a is the
same as the type ti. When type checking each branch, types in the
context may also change. Above, the notation `〈ti=a〉 means that
type ti is substituted for the variable a only in local assumptions
x :: s. Other types remain the same.

Note that we must not allow refinement in inferred parts of the
context (assumptions of the form a : s) because, even with the
return type annotation on typecase, there are some expressions
with no principal type. For example, in the following code fragment,

let rec h (x:a) =
let rec g (y) = typecase[int] a of

int => y + 1
| _ => 2

in g
in ...

we can assign the types all a. a -> a -> int or all a.a ->
int -> int to h, and neither is more general than the other. The
problem is that it is equally valid for y to have type int or to have a
type that refines to int. By requiring the user to specify the type of
y for refinement to apply, we eliminate this confusion. This issue has
appeared before in type inference systems for Generalized Algebraic
Datatypes (also called Guarded Recursive Datatypes) [31, 34, 35].

3.4 Extensions to PolyAML

One property of our type system is simplicity. It is easy for the user to
understand where annotations are required. However, practice may
show that this simplicity comes at a price: those annotations may be
burdensome to users. Therefore, we plan to use our implementation
to explore a number of potential extensions and modifications of
our type system. However, none of the following extensions are
currently part of our implementation.

First, a few specialized rules may eliminate a number of user
annotations. For example, if all of the functions in a pointcut have
the same type, no annotation would be necessary.

∀i fi ∈ ˘ `(fi) = all a.t1 -> t2

ˆ;´;˘; ` l̀oc {f}) pc (all a.t1,all a.t2);ˆ

Also, we could always try the type pc (all a.a,all a.a), if
no type has been supplied by the user.

∀i fi ∈ ˘
ˆ;´;˘; ` l̀oc {f}) pc (all a.a,all a.a);ˆ

Looking at advice declarations, if local inference fails, we could
allow unification for the determination of pointcut types by requiring
them to be monomorphic.



ˆ0;´;˘; ` ` e1 ) t0;ˆ1
ˆ1 ` t0 = pc (t1;t2)) ˆ2 ı(tm;(t1;t2)) = t
ˆ2;´;˘; ;̀x :: t;y :: stack;z :: string ` e2 ) t;ˆ3
ˆ0;´;˘; ` ` advice tm e1 (x,y,z) = e2 ) ˆ3; ·; ·

Besides these minor tweaks, we also plan to explore more
significant modifications. First, we may get more mileage out of
our annotations by using a more sophisticated form of local type
inference, such as bidirectional type inference [32, 30] or boxy
types [38].

More ambitiously, if we can reconcile anti-unification constraints
with unification, a number of annotations may be eliminated. Not
only could we drop the annotation on the formation of pointcuts from
sets of function names, but might also be able to drop the annotation
on the return type of typecase. As long as there are multiple
branches, we could use anti-unification to determine the return type
of typecase unambiguously. For example, in the following code
fragment

let rec f (x : a) = typecase a of int => 3

It is impossible to determine whether f should be type all a.a ->
int or all a.a -> a. However, for the following code fragment

let rec g (x : a) = typecase a of int => 3
| _ => 4

We can unambiguously give g the type all a.a -> int.

3.5 Future work: A declarative specification
Some users of ML rely on the declarative nature of the HM type
system, which elides the uses of unification [28]. We are working to
develop a similar declarative specification for our type system.

Unfortunately, the rule for pointcuts has undesirable interactions
with the declarative specification of HM-style type inference. This
rule uses the function fi without instantiation, breaking the follow-
ing property: if ´;˘; ` ` e : t and ` ′ is a more general context
than ` , then ´;˘; ` ′ ` e : t. This property does not hold because
a more general type for a function fi may require a more general
pointcut type annotation when that function appears in a pointcut
set. Because this property fails, our algorithm is not complete with
respect to the standard specification of HM-style inference extended
with our new terms. The reason is that the algorithm always uses the
most general type for let-bound variables, whereas the declarative
system is free to use a less general type.

For example, the following term type checks according to the
rules of such a specification, but not according to our algorithm. The
declarative rules may assign f the type string -> string,
but our algorithm will always choose the most general type,
all a.a -> a

let rec f x = x in {f}:(string,string)

We believe this term should not type check, as, given the definition of
f, the user should expect that it has type all a.a -> a and might
be used at many types. Our type inference algorithm concurs. We
conjecture that if the specification were required to choose the most
general type for let-bound variables, it would correspond exactly
with our algorithm, but we have not proved this fact. Happily, even
though we are changing the specification for pure ML terms, this
change would not invalidate any ML programs. It merely cuts down
the number of alternate typing derivations for terms that use let. The
derivation that uses the most general type is still available.

4. Polymorphic core calculus
In the previous section, we defined the syntax and static semantics
for PolyAML. One might choose to define the operational semantics

for this language directly as a step-by-step term rewriting relation,
as is often done for –-calculi. However, the semantics of certain
constructs is very complex. For example, function call, which is
normally the simplest of constructs in the –-calculus, combines
the ordinary semantics of functions with execution of advice, the
possibly of run-time type analysis and extraction of metadata from
the call stack. Rather than attempt to specify all of these features
directly, creating a horrendous mess, we specify the operational
semantics in stages. First, we show how to compile the high-
level constructs into a core language, called FA. The translation
breaks down complex high-level objects into substantially simpler,
orthogonal core-level objects. This core language is also typed and
the translation is type-preserving. Second, we define an operational
semantics for the core language. Since we have proven that the
FA type system is sound and the translation from the source is
type-preserving, the PolyAML is safe.

Our core language differs from the PolyAML in that it is not
oblivious—control-flow points that trigger advice must be explicitly
annotated. Furthermore, it is explicitly typed—type abstraction
and applications must also be explicitly marked in the program,
as well as argument types for all functions. Also, we have carefully
considered the orthogonality of the core language—for example, not
including the combination of advice and type analysis that is found
in the case-advice construct. For these reasons, one would not
want to program in the core language. However, in exchange, the
core language is much more expressive than the source language.

Because FA is so expressive, we can easily experiment with
the source language, adding new features to scale the language up
or removing features to improve reasoning power. For instance,
by removing the single type analysis construct, we recover a
language with parametric polymorphism. In fact, during the process
of developing our PolyAML, we have made numerous changes.
Fortunately, for the most part, we have not had to make many
changes in FA. Consequently, we have not needed to reprove
soundness of the target language, only recheck that the translation is
type-preserving, a much simpler task. Finally, in our implementation,
the type checker for the FA has caught many errors in the translation
and helped the debugging process tremendously.

The core language FA is an extension of the core language
from WZL with polymorphic labels, polymorphic advice, and run-
time type analysis. It also improves upon the semantics of context
analysis. In this section, we sketch the semantics of FA, but due
to lack of space, the complete semantics appears in the companion
technical report [11]. In Section 5, we sketch the translation from
PolyAML to FA.

4.1 The semantics of explicit join points
For expository purposes, we begin with a simplified version of FA,
and extend it in the following subsections. The initial syntax is
summarized below.

fi ::= 1 j string j fi1 ! fi2 j fi1 × : : :× fin j ¸ j ∀¸:fi j (¸:fi) label
j (¸:fi) pc j advice

e ::= 〈〉 j c j x j –x:fi:e j e1e2 j ˜¸:e j e[fi] j fix x:fi:e
j 〈e〉 j let 〈x〉 = e1 in e2 j new ¸:fi ≤ e j ‘
j feg j e1 ∪ e2 j e1[fi][[e2]] j fe1:¸x:fi! e2g j * e
j typecase[¸:fi1] fi2 (fi3 ) e1; ¸) e2)

The basis of FA is the –-calculus with unit, strings and n-
tuples. If e is a sequence of expressions e1 : : : en for n ≥ 2, then
〈e〉 creates a tuple. The expression let 〈x〉 = e1 in e2 binds
the contents of a tuple to a vector of variables x in the scope of
e2. Unlike WZL, we add impredicative polymorphism to the core
language, including type abstraction (˜¸:e) and type application
(e[fi]). We write 〈〉 for the unit value and c for string constants.



Abstract labels, ‘, play an essential role in the calculus. Labels
are used to mark control-flow points where advice may be triggered,
with the syntax ‘[fi][[e]]. We call such points in the core language
join points. For example, in the addition expression v1 + ‘[fi][[e2]],
after e2 has been evaluated to a value v2, evaluation of the resulting
subterm ‘[fi][[v2]] causes any advice associated with ‘ to be triggered.

Here, unlike in WZL, the labels form a tree-shaped hierarchy.
The top label in the hierarchy is U. All other labels ‘ sit somewhere
below U. If ‘1 ≤ ‘2 then ‘1 sits below ‘2 in the hierarchy. The
expression new ¸:fi ≤ e evaluates e, obtaining a label ‘2, and
generates a new label ‘1 such that ‘1 ≤ ‘2. This label structure
closely resembles the label hierarchy defined by Bruns et al. for
their (untyped) —ABC calculus [4].

Our first class labels can then be grouped into collections using
the label-set expression, feg. Label-sets can then be combined using
the union operation, e1∪e2. Label-sets form the basis for specifying
when a piece of advice applies.

Advice is a computation that exchanges data with a particular
join point, making it similar to a function. Note that advice in
FA (written fe1:¸x:fi ! e2g) is first-class. The type variables ¸
and term variable x are bound in the body of the advice e2, and
the expression e1 is a label-set that describes when the advice is
triggered. For example, the advice ff‘g:x:int! eg is triggered when
control-flow reaches a join point marked with ‘1, provided ‘1 is a
descendent of a label in the set f‘g. If this advice has been installed
in the program’s dynamic environment, v1 + ‘1[][[v2]] evaluates to
v1 + e[v2=x].

When labels are polymorphic, both types and values are ex-
changed between labeled control-flow points and advice. For in-
stance, if ‘1 is a polymorphic label capable of marking a control-
flow point with any type, we might write v1 + ‘1[int][[v2]]. In this
case, if the advice ff‘1g:¸x:¸ ! eg has been installed, then the
previous expression evaluates to v1 + e[int=¸][v2=x]. Since U sits
at the top of the label hierarchy, once installed, advice with the form
ffUg:¸x:¸! eg is executed at every labeled control-flow point.

Advice is installed into the run-time environment with the
expression * e. Multiple pieces of advice may apply to the same
control-flow point, so the order advice is installed in the run-time
environment is important. WZL included mechanisms for installing
advice both before or after currently installed advice, for simplicity
FA only allows advice to be installed after.

Operational semantics The operational semantics must keep track
of both the labels that have been generated and the advice that has
been installed. An allocation-style semantics keeps track of the set
˚ of labels allocated so far (and their associated types) and A, an
ordered list of installed advice. The main operational judgment
has the form ˚;A; e 7! ˚ ′;A ′; e ′. To describe the operational
semantics, we use the following syntax for values v and evaluation
contexts E:
v ::= 〈〉 j –x:fi:e j 〈v〉 j ˜¸:e j ‘ j fv:x:fi! eg
E ::= [ ] j E e j v E j E[fi] j 〈E; : : : ; e〉 j 〈v; : : : ; E〉
j let 〈x〉 = E in e j E[fi][[e]] j v[fi][[E]] j * E j fE:¸x:fi! eg
j new ¸:fi ≤ E

Evaluation contexts give the core aspect calculus a call-by-value,
left-to-right evaluation order, but that choice is orthogonal to the
design of the language. Auxiliary rules with the form ˚;A; e 7!˛
˚ ′;A ′; e ′ give the primitive ˛-reductions for expressions in the
language. The main points of interest have been described informally
through examples in the previous section and are included in the
excerpted rules in Figure 6.

A third judgment form ˚;A; ‘; fi ) v describes, given a
particular label ‘ marking a control-flow point, and type fi for the
object at that point, how to pick out and compose the advice in
context A that should execute at the control-flow point. The result
of this advice composition process is a function v that may be

˛-reduction ˚;A; e 7!˛ ˚ ′;A ′; e ′

˚;A; f‘1g ∪ f‘2g 7!˛ ˚;A; f‘1‘2g

‘ ′ 6∈ dom(˚)
˚;A;new ¸:fi ≤ ‘ 7!˛ ˚; ‘ ′:¸:fi ≤ ‘;A; ‘ ′

˚;A;* v 7!˛ ˚; v;A; 〈〉

∃ˆ:ˆ = MGU(fi2; fi3)

˚;A; typecase[¸:fi1] fi2 (fi3 ) e1; ¸) e2) 7!˛ ˚;A;ˆ(e1)

:∃ˆ:ˆ = MGU(fi2; fi3)

˚;A; typecase[¸:fi1] fi2 (fi3 ) e1; ¸) e2) 7!˛ ˚;A; e2[fi2=¸]

‘:¸:fi ≤ ‘ ′ ∈ ˚ ˚;A; ‘; fi[fi=¸]) v ′

˚;A; ‘[fi][[v]] 7!˛ ˚;A; v ′ v

Advice composition ˚;A; ‘; fi) e

˚; ·; ‘; fi) –x:fi:x

˚;A; ‘; fi2 ) v2 ˚ ` ‘ ≤ ‘i for some i ∃fi:fi2 = fi1[fi=¸]
˚;A; ff‘g:¸x:fi1 ! eg; ‘; fi2 ) –x:fi2:v2(e[fi=¸])

˚;A; ‘; fi2 ) v2 ˚ ` ‘ 6≤ ‘i
˚;A; ff‘g:¸x:fi1 ! eg; ‘; fi2 ) v2

Figure 6. Operational semantics excerpt for FA

applied to a value with type fi. This judgment (advice composition)
is described by three rules shown in Figure 6. The first composition
rule returns the identity function when no advice is available. The
other rules examine the advice at the head of the advice heap. If the
label ‘ is descended from one of the labels in the label set, then that
advice is triggered. The head advice is composed with the function
produced from examining the rest of the advice in the list. Not only
does advice composition determine if ‘ is lower in the hierarchy than
some label in the label set, but it also determines the substitution
for the abstract types ¸ in the body of the advice. The typing rules
ensure that if the advice is triggered, this substitution will always
exist, so the execution of this rule does not require run-time type
information.

Type system The primary judgment of the FA type system, ´; ` `
e : fi, indicates that the term e can be given the type fi, where free
type variables appear in ´ and the types of term variables and labels
appear in ` . The typing rules for this judgment appear in Figure 7.

The novel aspect of the FA type system is how it maintains the
proper typing relationship between labels, label sets and advice.
Because data is exchanged between labeled control-flow points and
advice, these two entities must agree about the type of data that will
be exchanged. To guarantee agreement, we must be careful with
the types of labels, which have the form ¸:fi label. Such labels may
mark control-flow points containing values of any type fi, where
free variables ¸ are replaced by other types fi. For example, a label
‘ with the type ¸:¸ label may mark any control flow point as ¸ may
be instantiated with any type (See Figure 7 for the formal typing
rule.). Here is a well-typed triple in which ‘ marks three different
control flow points, each with different types:

〈˜˛:–x:˛:‘[˛][[x]]; ‘[int][[3]]; ‘[bool][[true]]〉



Well-formed terms ´; ` ` e : fi

‘:¸:fi ∈ `
´; ` ` ‘ : (¸:fi) label

´; ` ` ei : (¸i:fii) label ´ ` ˛:fi � ¸i:fii
´; ` ` feg : (˛:fi) pc

´; ` ` ei : (¸:fii) pc ´ ` ˛:fi � ¸:fii
´; ` ` e1 ∪ e2 : (˛:fi) pc

´; ` ` e : (˛:fi2) label ´ ` ˛:fi2 � ¸:fi1
´; ` ` new (¸:fi1) ≤ e : (¸:fi1) label

´; ` ` e1 : (¸:fi) label ´ ` fii ´; ` ` e2 : fi[fi=¸]
´; ` ` e1[fi][[e2]] : fi[fi=¸]

´; ` ` e : advice

´; ` `* e : 1
´; ` ` e1 : (¸:fi) pc ´;¸; ;̀ x:fi ` e2 : fi

´; ` ` fe1:¸x:fi! e2g : advice

´;¸ ` fi1 ´ ` fi2 ´ ′ = FTV(fi3) - ´
(ˆ = MGU(fi2; fi3) implies ´;´ ′;ˆ(`) ` ˆ(e1) : ˆ(fi1[t3=¸]))

´;´ ′ ` cod(ˆ) ´;¸; ` ` e2 : fi1
´; ` ` typecase[¸:fi1] fi2 (fi3 ) e1; ¸) e2) : fi1[fi2=¸]

Figure 7. Typing rules excerpt for FA

Notice that marking control flow points that occur inside polymor-
phic functions is no different from marking other control flow points
even though ‘’s abstract type variable ¸ may be instantiated in a
different way each time the polymorphic function is called.

Labeling control-flow points correctly is one side of the equation.
Constructing sets of labels and using them in advice safely is the
other. Typing label set construction in the core calculus is quite
similar to typing point cuts in the source. Each label in the set must
be a generic instance of the type of the set. For example, given labels
‘1 of type (1 × 1) label and ‘2 of type (1 × bool) label, a label
set containing them can be given the type (¸:1 × ¸) pc because
¸:1× ¸ can be instantiated to either 1× 1 or 1× bool. The rules
for label sets and label set union ensure these invariants.

When typing advice in the core calculus, the advice body must
not make unwarranted assumptions about the types and values it is
passed from labeled control flow points. Consequently, if the label
set e1 has type ¸:fi label then advice fe1:¸x:fi ′ ! e2g type checks
only when fi ′ is fi. The type fi ′ cannot be more specific than fi. If
advice needs to refine the type of fi, it must do so explicitly with
type analysis. In this respect the core calculus obeys the principle of
orthogonality: advice is completely independent of type analysis.

The label hierarchy is extended with new ¸:fi ≤ e. The
argument e becomes the parent of the new label. For soundness,
there must be a connection between the types of the child and parent
labels: the child label must have a more specific type than its parent
(written ´ ` fi1 � fi2 if fi2 is more specific than fi1). To see how
label creation, labeled control flow points and advice are all used
together in the core calculus, consider the following example. It
creates a new label, installs advice for this label (that is an identity
function) and then uses this label to mark a join point inside a
polymorphic function.

let l = new ¸:¸ ≤ U in
let = * fl:¸x:¸! xg in

˜˛:–x:˛:l[˛][[x]]

The typecase expression is slightly more general in the core
language than in the source language. To support the preservation
theorem, we must allow arbitrary types, not just type variables, to
be the object of scrutiny. In each branch of typecase, we know
that the scrutinee is the same as the pattern. In the source language,
we substituted the pattern for the scrutinized type variable when
typechecking the branches. In the core language, however, we must
compute the appropriate substitution, using the most general unifier
(MGU). If no unifier exists, the branch can never be executed. In that
case, the branch need not be checked.

The typing rules for the other constructs in the language includ-
ing strings, unit, functions and tuples are fairly standard.

4.2 Stacks and stack analysis
Languages such as AspectJ include pointcut operators such as CFlow
to enable advice to be triggered in a context-sensitive fashion. In FA,
we not only provide the ability to reify and pattern match against
stacks, as in PolyAML, but also allow manual construction of stack
frames. In fact, managing the structure of the stack is entirely up to
the program itself. Stacks are just one possible extension enabled by
FA’s orthogonality.

WZL’s monomorphic core language also contained the ability to
query the stack, but the stack was not first-class and queries had to
be formulated as regular expressions. Our pattern matching facilities
are simpler and more general. Moreover, they fit perfectly within
the functional programming idiom. Aside from the polymorphic
patterns, they are quite similar to the stack patterns used by Dantas
and Walker [10].

Below are the necessary new additions to the syntax of FA
for storing type and value information on the stack, capturing and
representing the current stack as a data structure, and analyzing a
reified stack. The operational rules for execution of stack commands
may be found in Figure 8 and the typing rules in Figure 9.

fi ::= : : : j stack
e ::= : : : j stack j • j ‘[fi][[v1]]::v2 j store e1[fi][[e2]] in e3
j stkcase e1 () e2; x) e3)

E ::= : : : j store v[fi][[E]] in e j store v1[fi][[v2]] in E
j stkcase E () e1; x) e2)
j stkcase v (P ) e1; x) e2)

 ::= • j e[¸][[y]]:fi:: j x j ::
’ ::= • j v[¸][[y]]::’ j x j ::’
P ::= E[¸][[y]]::’ j e[¸][[y]]::P j ::P

The operation store e1[fi][[e2]] in e3 allows the programmer to
store data e2 marked by the label e1 in the evaluation context of the
expression e3. Because this label may be polymorphic, it must be
instantiated with type arguments fi. The term stack captures the
data stored in its execution context E as a first-class data structure.
This context is converted into a data structure, using the auxiliary
function data(E). We represent a stack using the list with terms
• for the empty list and cons :: to prefix an element onto the front
of the list. A list of stored stack information may be analyzed with
the pattern matching term stkcase e1 ( ) e2; x ) e3). This
term attempts to match the pattern  against e1, a reified stack. Note
that stack patterns, , include first-class point cuts so they must be
evaluated to pattern values, ’, to resolve these point cuts before
matching.

If, after evaluation, the pattern value successfully matches the
stack, then the expression e2 evaluates, with its pattern variables



data([ ]) = •
data(store ‘[fi][[v]] in E) = data(E)++ ‘[fi][[v]]

data(E[E ′]) = data(E ′) otherwise

˛-reduction ˚;A; e 7!˛ ˚ ′;A ′; e ′

˚;A; store ‘[fi][[v1]] in v2 7!˛ ˚;A; v2

˚ ` v ' ’�ˆ

˚;A; stkcase v (’) e1; x) e2) 7!˛ ˚;A;ˆ(e1)

˚ ` v 6' ’�ˆ

˚;A; stkcase v (’) e1; x) e2) 7!˛ ˚;A; e2[v=x]

Reduction ˚;A; e 7! ˚ ′;A ′; e ′

data(E) = v

˚;A;E[stack] 7! ˚;A;E[v]

Stack-matching ˚ ` v ' ’�ˆ

˚ ` • ' •� ·

˚ ` v2 ' ’�ˆ ‘:˛:fi2 ≤ ‘ ′ ∈ ˚
˚ ` ‘ ≤ ‘i for some i ∃ff:fi2[fi=˛] = fi1[ff=¸]
˚ ` ‘[fi][[v1]]::v2 ' f‘g[¸][[x]]:fi1::’�ˆ;ff=¸; v1=x

˚ ` v ′ ' ’�ˆ

˚ ` ‘[fi][[v]]::v ′ ' ::’�ˆ ˚ ` v ' x� ·; v=x

Figure 8. Stack operational semantics

replaced with the corresponding part of the stack. Otherwise exe-
cution continues with e3. These rules rely on the stack matching
relation ˚ ` v ' ’�ˆ that compares a stack pattern value ’ with
a reified stack v to produce a substitution ˆ.

4.3 Type Safety
We have shown that FA is type sound through the usual Progress
and Preservation theorems. We use the judgment `(˚;A; e) ok to
denote a well-formed abstract machine state. Details may be found
in the companion technical report [11].

THEOREM 4.1 (Progress). If `(˚;A; e) ok then either the config-
uration is finished, or there exists another configuration ˚ ′;A ′; e ′

such that ˚;A; e 7! ˚ ′;A ′; e ′.

THEOREM 4.2 (Preservation). If ` (˚;A; e) ok and ˚;A; e 7!
˚ ′;A ′; e ′, then˚ ′ andA ′ extend˚ andA such that `(˚ ′;A ′; e ′) ok.

5. Interpreting PolyAML in FA
We give an operational semantics to well-typed PolyAML programs
by defining a type-directed translation into the FA language. This
translation is defined by the following mutually recursive judgments
for over terms, types, patterns, declarations and point cut designators.
The translation was significantly inspired by those in found in
WZL [39] and Dantas and Walker [10]. Much of the translation is
straightforward so we only sketch it here. The complete translation
appears in the companion technical report [11].

Well-formed terms ´; ` ` e : fi

´; ` ` e1 : (¸:fi) label
´ ` fii ´; ` ` e2 : fi[fi=¸] ´; ` ` e3 : fi ′

´; ` ` store e1[fi][[e2]] in e3 : fi ′

´; ` ` stack : stack ´; ` ` • : stack

‘:¸:fi ∈ ` ´ ` fii ´; ` ` v1 : fi[fi=¸] ´; ` ` v2 : stack
´; ` ` ‘[fi][[v1]]::v2 : stack

´; ` ` e1 : stack
´; ` `  a ´ ′; ` ′ ´;´ ′; ;̀ ` ′ ` e2 : fi ´; ;̀ x:stack ` e3 : fi

´; ` ` stkcase e1 () e2; x) e3) : fi

Well-formed patterns ´; ` `  a ´ ′; ` ′

´; ` ` • a ·; · ´; ` ` x a ·; ·; x:stack

´; ` `  a ´ ′; ` ′

´; ` ` :: a ´ ′; ` ′

´; ` ` e : (¸:fi) pc ´; ` `  a ´ ′; ` ′

´; ` ` e[¸][[x]]:fi:: a ´ ′; ¸; ` ′; x : fi

Figure 9. Stack typing

´ ` t
type
===) fi ′ Translation of source types

into target types

´;˘; ` ` p
pat
==)  a ´ ′; ` ′;¨

Translation of stack patterns,
producing a mapping between
source and target variables

´;˘; ` `loc e : t
term
===) e ′ Translation of locally-typed

terms
´;˘; ` ` e : t

term
===) e ′ Translation of other terms

´;˘; ` ` d ;e : t decs
===) e ′ Translation of declarations

e : t
prog
===) e ′ Translation of programs

Figure 10. Translation judgments

The basic idea of the translation is that join points must be made
explicit in FA. Therefore, we translate functions so that that they
include explicitly labeled join points at their entry and exit and
so that they store information on the stack as they execute. More
specifically, for each function we create three labels fbefore, fafter
and fstk for these join points. So that source language programs can
refer to the entry point of any function, all labels fbefore are derived
from a distinguished label Ubefore. Likewise, Uafter and Ustk are
the parents of fafter and fstk.

The most interesting part of the encoding is the translation of
pointcuts, functions and advice declarations, shown in Figure 11.
Pointcuts are translated into triples of FA pointcuts. The pointcut
any becomes a triples of pointcuts containing the parents of all
before, after, and stk labels respectively. Sets of functions
are translated into triples of pointcuts containing their associated
before, after, and stk labels.

The translation of functions begins by creating the labels, fbefore,
fafter, and fstk for the functions join points. Inside the body of the
translated function, a store statement marks the function’s stack
frame. Labeled join points are wrapped around the function’s input



´;˘; ` l̀oc any : pc (all a.a,all a.a)
term
====)

〈fUbeforeg; fUstkg; fUafterg〉

∀i fi ∈ ˘ `(fi) = all a.t1;i -> t2;i
´ ` s1 � all a.t1;i ´ ` s2 � all a.t2;i

´;˘; ` l̀oc {f}:(s1,s2) : pc (s1,s2)
term
====)

〈ffbeforeg; ffstkg; ffaftergg〉

a = (FTV(t1) ∪ FTV(t2)) - ´
´;a ` t1 -> t2

type
====) fi ′1 ! fi ′2

´;a;˘;f; ;̀f :: t1 -> t2;x :: t1 ` e1 : t2
term
====) e ′1

´;˘;f; ;̀f :: all a.t1 -> t2 ` e2 : t
term
====) e ′2

´;˘ ; ` ` rec f (x:t1):t2 = e1;e2 : t
decs
====)

let fbefore : (¸:fi
′
1 × stack× string) label =

new (¸:fi ′1 × stack× string) ≤ Ubefore in
let fafter : (¸:fi

′
2 × stack× string) label =

new (¸:fi ′2 × stack× string) ≤ Uafter in
let fstk : (¸:fi

′
1 × string) label =

new (¸:fi ′1 × string) ≤ Ustk in

let f : ∀¸:fi ′1 ! fi ′2 = fix f : ∀¸:fi
′
1 ! fi ′2:

˜¸:–x:fi ′1:store fstk[¸][[〈x; “f”〉]] in
let 〈x; ; 〉 = fbefore[¸][[〈x; stack; “f”〉]] in
let 〈x; ; 〉 = fafter[¸][[〈e ′1; stack; “f”〉]] in x

in e ′2

´;˘; ` l̀oc e1 : pc pt
term
====) e ′1 ı(tm;pt) = all a.t1

ı(tm; e ′1) = e
′′
1 a = FTV(t1) - ´ ´;a ` t1

type
====) fi ′1

´;a;˘; ;̀x:t1;y:stack;z:string ` e2 : t1
term
====) e ′2

´;˘; ` ` e3 : t2
term
====) e ′3

´;˘ ; ` ` advice tm e1 (x:t1,y,z) = e2;e3 : t2
decs
====)

let : 1 =* fe ′′1 :¸x:(fi ′1 × stack× string)!
let 〈x; y; z〉 = x in 〈e ′2; y; z〉g in e

′
3

Figure 11. Translation of pointcuts, functions, and advice

and body respectively to implement for before and after advice.
Because PolyAML advice expects the current stack and a string of
the function name, we also insert stacks and string constants into
the join points.

The most significant difference between advice in PolyAML and
FA is that FA has no notion of a trigger time. Because the pointcut
argument of the advice will translate into a triple of FA pointcuts, the
tm is used to determine which component is used. The translation
also splits the input of the advice into the three arguments that
PolyAML expects and immediately installs the advice.

It is straightforward to show that programs that are well-typed
with respect to our algorithm will produce a translation.

THEOREM 5.1 (Translation defined on well-typed programs). If
·; ·; ·; · ` e) t;ˆ then ˆ(e) : ˆ(t) prog

===) e ′

We have proved that the translation always produces well-formed
FA programs.

THEOREM 5.2 (Translation type soundness). If e : t prog
===) e ′

then ·; · ` e ′ : fi ′ where · ` t
type
===) fi ′.

Furthermore, because we know that FA is a type safe language,
PolyAML inherits safety as a consequence.

THEOREM 5.3 (PolyAML safety). Suppose e : t prog
===) e ′ then

either e ′ fails to terminate or there exists a sequence of reductions
·; ·; e ′ 7!∗ ˚;A; e ′′ to a finished configuration.

Details for the above proofs may be found in the companion
technical report [11].

6. Related work
Over the last several years, researchers have begun to build semantic
foundations for aspect-oriented programming paradigms [40, 12, 5,
19, 20, 26, 39, 13, 4]. As mentioned earlier, our work builds upon
the framework proposed by Walker, Zdancewic, and Ligatti [39],
but extends it with polymorphic versions of functions, labels, label
sets, stacks, pattern matching, advice and the auxiliary mechanisms
to define the meaning of each of these constructs. We also define
a novel type inference algorithm that is conservative over Hindley-
Milner inference, one thing that was missing from WZL’s work.

Our core calculus also has interesting connections to Bruns et
al.’s —ABC calculus in that the structure of labels in the two systems
are similar. However, the connection is not so deep, as —ABC is
untyped. It would be interesting to explore whether the type structure
of our calculus can be used to define a type system for —ABC.

Concurrently with our research,2 Tatsuzawa, Masuhara and
Yonezawa [36] have implemented an aspect-oriented version of
core O’Caml they call Aspectual Caml. Their implementation effort
is impressive and deals with several features we have not considered
here including curried functions and datatypes. Although there are
similarities between PolyAML and Aspectual O’Caml, there are also
many differences:

• Point cut designators in PolyAML can only reference names that
are in scope. PolyAML names are indivisible and ¸-vary as usual.
In Aspectual Caml, programmers use regular expressions to refer
to all names that match the regular expression in any scope. For
instance, get* references all objects with a name beginning
with get in all scopes.

• Aspectual Caml does not check point cut designators for well-
formedness. When a programmer writes the pointcut designator
call f (x:int), the variable f is assumed to be a function
and the argument x is assumed to have type int. There is
some run-time checking to ensure safety, but it is not clear what
happens in the presence of polymorphism or type definitions.
Aspectual Caml does not appear to have run-time type analysis.

• Aspectual Caml point cuts are second-class citizens. It is not
possible to write down the type of a point cut in Aspectual Caml,
or pass a point cut to a function, store it in a tuple, etc.

• The previous two limitations have made it possible to develop a
two-phase type inference algorithm for Aspectual Caml (ordi-
nary O’Caml type inference occurs first and inference for point
cuts and advice occurs second), which bears little resemblance
to the type inference algorithm described in this paper.

• There is no formal description of the Aspectual Caml type
system, type inference algorithm or operational semantics. We
have a formal description of both the static semantics and the
dynamic semantics of PolyAML. PolyAML’s type system has
been proven sound with respect to its operational semantics.

To our knowledge, the only other previous study of the inter-
action between polymorphism and aspect-oriented programming
features has occurred in the context of Lieberherr, Lorenz and
Ovlinger’s Aspectual Collaborations [25]. They extend a variant of
AspectJ with a form of module that allows programmers to choose
the join points (i.e., control-flow points) that are exposed to external
aspects. Aspectual Collaborations has parameterized aspects that

2 We made a preliminary report describing our type system available on the
Web in October , and a technical report with more details in December
. As far as we are aware, Tatsuzawa et al.’s work first appeared in March
.



resemble the parameterized classes of Generic Java. When a pa-
rameterized aspect is linked into a module, concrete class names
replace the parameters. Since types are merely names, the sort of
polymorphism necessary is much simpler (at least in certain ways)
than required by a functional programming language. For instance,
there is no need to develop a generalization relation and type anal-
ysis may be replaced by conventional object-oriented down-casts.
Overall, the differences between functional and object-oriented lan-
guage structure have caused our two groups to find quite different
solutions to the problem of constructing generic advice.

Closely related to Aspectual Collaborations is Aldrich’s notion of
Open Modules [2]. The central novelty of this proposal is a special
module sealing operator that hides internal control-flow points from
external advice. Aldrich used logical relations to show that sealed
modules have a powerful implementation-independence property [1].
In earlier work [9], we suggested augmenting these proposals with
access-control specifications in the module interfaces that allow pro-
grammers to specify whether or not data at join points may be read
or written. Neither of these proposals consider polymorphic types or
modules that can hide type definitions. Building on concurrent work
by Washburn and Weirich [41] and Dantas and Walker [10], we are
working on extending the language defined in this paper to include
abstract types and protection mechanisms that ensure abstractions
are respected, even in the presence of type-analyzing advice.

Tucker and Krishnamurthi [37] developed a variant of Scheme
with aspect-oriented features. They demonstrate the pleasures of
programming with point-cuts and advice as first-class objects. Of
course, Scheme is dynamically typed. Understanding the type
structure of statically-typed polymorphic functional languages with
advice is the main contribution of this paper. In particular, we
develop a type inference algorithm and reconcile the typing of
advice with polymorphic functions.

7. Conclusions
This paper defines PolyAML, a new functional and aspect-oriented
programming language. In particular, we focus on the synergy
between polymorphism and aspect-oriented programming—the
combination is clearly more expressive than the sum of its parts. At
the simplest level, our language allows programmers to reference
control-flow points that appear in polymorphic code. However,
we have also shown that polymorphic point cuts are necessary
even when the underlying code base is completely monomorphic.
Otherwise, there is no way to assemble a collection of joins point
that appear in code with different types. In addition, run-time type
analysis allows programmers to define polymorphic advice that
behaves differently depending upon the type of its argument.

From a technical standpoint, we have defined a type inference al-
gorithm for PolyAML that handles first-class polymorphic pointcuts
in a simple but effective way, allowing programmers to write conve-
nient security, profiling or debugging libraries. We give PolyAML
a semantics by compiling it into a typed intermediate calculus. We
have proven the intermediate calculus is type-safe. The reason for
giving PolyAML a semantics this way is to first decompose com-
plex source-level syntax into a series of simple and orthogonal
constructs. Giving a semantics to the simple constructs of the in-
termediate calculus and proving the intermediate calculus sound is
quite straightforward.

The definition of the intermediate calculus is also an important
contribution of this work. The most interesting part is the definition
of our label hierarchy, which allows us to form groups of related
control flow points. Here, polymorphism is again essential: it is
not possible to define these groups in a monomorphic language.
The second interesting element of our calculus is our support for
reification of the current call stack. In addition to being polymorphic,
our treatment of static analysis is more flexible, simpler semantically

and easier for programmers to use than the initial proposition by
WZL. Moreover, it is a perfect fit with standard data-driven functional
programming idioms.

Acknowledgments
This research was supported in part by ARDA Grant no. NBCHC030106,
National Science Foundation grants CCR-0238328, CCR-0208601,
and 0347289 and an Alfred P. Sloan Fellowship. This work does
not necessarily reflect the opinions or policy of the federal govern-
ment or Sloan foundation and no official endorsement should be
inferred. We also appreciate the insightful comments by anonymous
reviewers on earlier revisions of this work.

References
[1] J. Aldrich. Open modules: A proposal for modular reasoning in

aspect-oriented programming. In Workshop on Foundations of Aspect-
Oriented Languages, Mar. 2004.

[2] J. Aldrich. Open modules: Reconciling extensibility and information
hiding. In Proceedings of the Software Engineering Properties of
Languages for Aspect Technologies, Mar. 2004.

[3] L. Bauer, J. Ligatti, and D. Walker. Composing security policies in
polymer. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2005. To appear.

[4] G. Bruns, R. Jagadeesan, A. S. A. Jeffrey, and J. Riely. muABC: A
minimal aspect calculus. In Concur, pages 209–224, Apr. 2004.

[5] C. Clifton and G. T. Leavens. Assistants and observers: A proposal
for modular aspect-oriented reasoning. In Foundations of Aspect
Languages, Apr. 2002.

[6] T. Colcombet and P. Fradet. Enforcing trace properties by program
transformation. In Twenty-Seventh ACM Symposium on Principles
of Programming Languages, pages 54–66, Boston, Jan. 2000. ACM
Press.

[7] A. Colyer and A. Clement. Large-scale AOSD for middleware. In
Proceedings of the Third International Conference on Aspect-Oriented
Software Development, pages 56–65. ACM Press, 2004.

[8] L. Damas and R. Milner. Principal type schemes for functional
programs. In ACM Symposium on Principles of Programming
Languages, pages 207–212, Albuquerque, New Mexico, 1982.

[9] D. S. Dantas and D. Walker. Aspects, information hiding and
modularity. Technical Report TR-696-04, Princeton University, Nov.
2003.

[10] D. S. Dantas and D. Walker. Harmless advice. In Workshop on
Foundations of Object-Oriented Languages, Jan. 2005.

[11] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML:
A polymorphic aspect-oriented functional programmming language
(extended version). Technical Report MS-CIS-05-07, University of
Pennsylvania, May 2005.

[12] R. Douence, O. Motelet, and M. Südholt. A formal definition
of crosscuts. In Third International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns, volume
2192 of Lecture Notes in Computer Science, pages 170–186, Berlin,
Sept. 2001. Springer-Verlag.

[13] R. Douence, O. Motelet, and M. Südholt. Composition, reuse and
interaction analysis of stateful aspects. In Conference on Aspect-
Oriented Software Development, pages 141–150, Mar. 2004.

[14] Úlfar. Erlingsson and F. B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security
Paradigms Workshop, pages 87–95, Caledon Hills, Canada, Sept.
1999.

[15] Úlfar. Erlingsson and F. B. Schneider. IRM enforcement of Java
stack inspection. In IEEE Symposium on Security and Privacy, pages
246–255, Oakland, California, May 2000.

[16] D. Evans and A. Twyman. Flexible policy-directed code safety. In
IEEE Security and Privacy, Oakland, CA, May 1999.



[17] R. E. Filman and D. P. Friedman. Aspect-Oriented Software
Development, chapter Aspect-Oriented Programming is Quantification
and Obliviousness. Addison-Wesley, 2005.

[18] M. Fiuczynski, Y. Cody, R. Grimm, and D. Walker. Patch(1) considered
harmful. In HotOS, July 2005. To appear.

[19] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed aspect-
oriented programs. Unpublished manuscript., 2003.

[20] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-
oriented programs. In European Conference on Object-Oriented
Programming, Darmstadt, Germany, July 2003.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. In European Conference on
Object-oriented Programming. Springer-Verlag, 2001.

[22] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky. Formally specified monitoring of temporal properties. In
European Conference on Real-time Systems, York, UK, June 1999.

[23] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Run-
time assurance based on formal specifications. In International
Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, June 1999.

[24] X. Leroy. The Objective Caml system: Documentation and user’s
manual, 2000. With Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. Available from http://caml.inria.fr.

[25] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations
– combining modules and aspects. The Computer Journal, 46(5):542–
565, September 2003.

[26] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics
of aspect-oriented programs. In G. T. Leavens and R. Cytron, editors,
Foundations of Aspect-Oriented Languages Workshop, pages 17–25,
Apr. 2002.

[27] D. Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14(4):321–358, 1992.

[28] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3), 1978.

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[30] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
type inference for arbitrary-rank types. Submitted to the Journal of
Functional Programming, 2005.

[31] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: Practical
type inference for generalised algebraic dataypes. Available at
http://www.cis.upenn.edu/‰geoffw/research/, July
2004.

[32] B. C. Pierce and D. N. Turner. Local type inference. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 252–265, San Diego,
CA, 1998.

[33] M. Shields and S. Peyton Jones. Lexically scoped type variables. Mi-
crosoft Research. Available at http://research.microsoft.
com/Users/simonpj/papers/scoped-tyvars, 2002.

[34] V. Simonet and F. Pottier. Constraint-based type inference for guarded
algebraic data types. Technical Report Research Report 5462, INRIA,
Jan. 2005.

[35] P. J. Stuckey and M. Sulzmann. Type inference for guarded recursive
data types. Submitted for publication, Feb. 2005.

[36] H. Tatsuzawa, H. Masuhara, and A. Yonezawa. Aspectual Caml: An
aspect-oriented functional language. In Workshop on Foundations of
Aspect Oriented Languages, pages 39–50, Mar. 2005.

[37] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-
order languages. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development, pages 158–167, 2003.

[38] D. Vytiniotis, S. Weirich, and S. Peyton Jones. Boxy type
inference for higher-rank types and impredicativity. Available at
http://www.cis.upenn.edu/‰dimitriv/boxy/, April
2005.

[39] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
ACM International Conference on Functional Programming, Uppsala,
Sweden, Aug. 2003.

[40] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. TOPLAS, 2003.

[41] G. Washburn and S. Weirich. Generalizing parametricity using
information flow. In The 20th Annual IEEE Symposium on Logic in
Computer Science (LICS 2005), Chicago, IL, June 2005.

$Id: poly-aspect.tex 723 2005-08-27 20:52:38Z geoffw $

http://caml.inria.fr
http://www.cis.upenn.edu/~geoffw/research/
http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars
http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars
http://www.cis.upenn.edu/~dimitriv/boxy/

	Introduction
	Programming with aspects
	Run-time type analysis
	Reifying the context
	First-class pointcuts

	Type inference
	First-class polymorphic pointcuts
	Polymorphic pointcuts
	Run-time type analysis
	Extensions to Polyaml
	Future work: A declarative specification

	Polymorphic core calculus
	The semantics of explicit join points
	Stacks and stack analysis
	Type Safety

	Interpreting Polyaml in FA
	Related work
	Conclusions

