
Enforcing Non-safety Security Policies with

Program Monitors

Jay Ligatti1, Lujo Bauer2, and David Walker1

1 Princeton University
2 Carnegie Mellon University

Princeton University
Department of Computer Science

Technical Report TR-720-05
January 31, 2005

Abstract. We consider the enforcement powers of program monitors,
which intercept security-sensitive actions of a target application at run
time and take remedial steps whenever the target attempts to execute a
potentially dangerous action. A common belief in the security commu-
nity is that program monitors, regardless of the remedial steps available
to them when detecting violations, can only enforce safety properties. We
formally analyze the properties enforceable by various program monitors
and find that although this belief is correct when considering monitors
with simple remedial options, it is incorrect for more powerful monitors
that can be modeled by edit automata. We define an interesting set of
properties called infinite renewal properties and demonstrate how, when
given any reasonable infinite renewal property, to construct an edit au-
tomaton that provably enforces that property. We analyze the set of
infinite renewal properties and show that it includes every safety prop-
erty, some liveness properties, and some properties that are neither safety
nor liveness.

1 Introduction

A ubiquitous technique for enforcing software security involves dynamically mon-
itoring the behavior of programs and taking remedial actions when the programs
behave in a way that violates a security policy. Firewalls, virtual machines, and
operating systems all act as program monitors to enforce security policies in this
way. We can even think of any application containing security code that dy-
namically checks input values, queries network configurations, raises exceptions,
warns the user of potential consequences of opening a file, etc. as containing a
program monitor inlined into the application.

Because program monitors, which react to the potential security violations
of target programs, enjoy such ubiquity, it is important to understand their capa-
bilities as policy enforcers. Having well-defined boundaries on the enforcement
powers of security mechanisms allows security architects to determine exactly



when certain mechanisms are needed and saves the architects from attempting
to enforce policies with insufficiently strong mechanisms.

Schneider discovered one particularly useful boundary on the power of certain
program monitors [Sch00]. He defined a class of monitors that respond to po-
tential security violations by halting the target application, and he showed that
these monitors can only enforce safety properties—security policies that specify
that “nothing bad ever happens” in a valid run of the target [Lam77]. When
a monitor in this class detects a potential security violation (i.e., “something
bad”), it must halt the target.

Although Schneider’s result applies only to a particular class of program
monitors, it is generally believed that all program monitors, even ones that
have greater abilities than just to halt the target, are able to enforce only safety
properties. The main result of the present paper is to prove that certain program
monitors can enforce non-safety properties. These monitors are modeled by edit
automata, which have the power to insert actions on behalf of and suppress
actions attempted by the target application. We prove an interesting lower bound
on the properties enforceable by such monitors: a lower bound that encompasses
strictly more than safety properties.

1.1 Related Work

A rich variety of security monitoring systems has been implemented [JZTB98]
[EAC98,ES99,ET99,KVBA+99,BLW03,Erl04,BLW05]. In general, these systems
allow arbitrary code to be executed in response to potential security violations,
so they cannot be modeled as monitors that simply halt upon detecting a vio-
lation. In most cases, the languages provided by these systems for specifying
policies can be considered domain-specific aspect-oriented programming lan-
guages [KHH+01].

Theoretical efforts to describe security monitoring have lagged behind the
implementation work, making it difficult to know exactly which sorts of security
policies to expect the implemented systems to be able to enforce. After Schneider
made substantial progress by showing that safety properties are an upper bound
on the set of policies enforceable by simple monitors [Sch00], Viswanathan, Kim,
and others tightened this bound by placing explicit computability constraints on
the safety properties being enforced [Vis00,KKL+02]. Viswanathan also demon-
strated that these computable safety properties are equivalent to CoRE proper-
ties [Vis00]. Fong then formally showed that placing limits on a monitor’s state
space induces limits on the properties enforceable by the monitor [Fon04]. Re-
cently, Hamlen, Schneider, and Morrisett compared the enforcement power of
static analysis, monitoring, and program rewriting [HMS03]. They showed that
the set of statically enforceable properties equals the set of recursively decidable
properties of programs, that monitors with access to source program text can
enforce strictly more properties than can be enforced through static analysis,
and that program rewriters do not correspond to any complexity class in the
arithmetic hierarchy.



In earlier theoretical work, we took a first step toward understanding the en-
forcement power of monitors that have greater abilities than simply to halt the
target when detecting a potential security violation [LBW05]. We introduced edit
automata, a new model that captured the ability of program monitors to insert
actions on behalf of the target and to suppress potentially dangerous actions.
Edit automata are semantically similar to deterministic I/O automata [LT87]
but have very different correctness requirements. The primary contribution of
our earlier work was to set up a framework for reasoning about program monitors
by providing a formal definition of what it even means for a monitor to enforce a
property. Although we also proved the enforcement boundaries of several types of
monitors, we did so in a model that assumed that all target programs eventually
terminate. Hence, from a practical perspective, our model did not accurately
capture the capabilities of real systems. From a theoretical perspective, only
modeling terminating targets made it impossible to compare the properties en-
forceable by edit automata to well-established sets of properties such as safety
and liveness properties.

1.2 Contributions

This paper presents the nontrivial generalization of earlier work on edit au-
tomata [LBW05] to potentially nonterminating targets. This generalization al-
lows us to reason about the true enforcement powers of an interesting and real-
istic class of program monitors, and makes it possible to formally and precisely
compare this class to previously studied classes.

More specifically, we extend previous work in the following ways.

– We refine and introduce formal definitions needed to understand exactly
what it means for program monitors to enforce policies on potentially non-
terminating target applications (Section 2). A new notion of enforcement
(called effective= enforcement) enables the derivation of elegant lower bounds
on the sets of policies monitors can enforce.

– We show why it is commonly believed that run-time monitors enforce only
computable safety properties (Section 3). We show this by revisiting and
extending earlier theorems that describe the enforcement powers of simple
monitors. The earlier theorems are extended by considering nonterminating
targets and by proving that exactly one computable safety property—that
which considers everything a security violation—cannot be enforced by pro-
gram monitors.

– We define an interesting set of properties called infinite renewal properties
and demonstrate how, when given any reasonable infinite renewal property,
to construct an edit automaton that provably enforces that property (Sec-
tion 4).

– We prove that program monitors modeled by edit automata can enforce
strictly more than safety properties. We demonstrate this by analyzing the
set of infinite renewal properties and showing that it includes every safety
property, some liveness properties, and some properties that are neither
safety nor liveness (Section 5).



2 Technical Apparatus

This section provides the formal framework necessary to reason precisely about
the scope of policies program monitors can enforce.

2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly
countably infinite set of program actions A (also referred to as program events).
An execution is simply a finite or infinite sequence of actions. The set of all finite
executions on a system with action set A is notated as A?. Similarly, the set of
infinite executions is Aω , and the set of all executions (finite and infinite) is A∞.
We let the metavariable a range over actions, σ and τ over executions, and Σ

over sets of executions (i.e., subsets of A∞).
The symbol · denotes the empty sequence, that is, an execution with no

actions. We use the notation τ ; σ to denote the concatenation of two finite se-
quences. When τ is a (finite) prefix of (possibly infinite) σ, we write τ�σ or,
equivalently, σ�τ . If σ has been previously quantified, we often use ∀τ�σ as an
abbreviation for ∀τ ∈ A? : τ�σ; similarly, if τ has already been quantified, we
abbreviate ∀σ ∈ A∞ : σ�τ simply as ∀σ�τ .

2.2 Policies and Properties

A security policy is a computable predicate P on sets of executions; a set of
executions Σ ⊆ A∞ satisfies a policy P if and only if P (Σ). For example, a
set of executions satisfies a nontermination policy if and only if every execution
in the set is an infinite sequence of actions. A key uniformity policy might be
satisfied only by sets of executions where the cryptographic keys used in all the
executions forms a uniform distribution over the universe of key values.

Following Schneider [Sch00], we distinguish between properties and more gen-
eral policies as follows. A security policy P is a property if and only if there exists
a decidable characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞, the
following is true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

Hence, a property is defined exclusively in terms of individual executions
and may not specify a relationship between different executions of the program.
The nontermination policy mentioned above is therefore a property, while the
key uniformity policy is not. The distinction between properties and policies is
an important one to make when reasoning about program monitors because a
monitor sees individual executions and thus can only enforce security properties
rather than more general policies.

There is a one-to-one correspondence between a property P and its charac-
teristic predicate P̂ , so we use the notation P̂ unambiguously to refer both to a
characteristic predicate and the property it induces. When P̂ (σ), we say that σ



satisfies or obeys the property, or that σ is valid or legal. Likewise, when ¬P̂ (τ),
we say that τ violates or disobeys the property, or that τ is invalid or illegal.

Properties that specify that “nothing bad ever happens” are called safety
properties [Lam77]. No finite prefix of a valid execution can violate a safety
property; stated equivalently: once some finite execution violates the property,
all extensions of that execution violate the property. Formally, P̂ is a safety
property on a system with action set A if and only if the following is true.

∀σ ∈ A∞ : (¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety prop-
erties where security violations cannot be “undone” by extending a violating
execution.

Dually to safety properties, liveness properties [AS85] state that nothing ex-
ceptionally bad can happen in any finite amount of time. Any finite sequence of
actions can always be extended so that it satisfies the property. Formally, P̂ is
a liveness property on a system with action set A if and only if the following is
true.

∀σ ∈ A? : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution
can be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying
and violating the property. Such properties are neither safety nor liveness but
instead a combination of a single safety and a single liveness property [AS87].
We show in Section 4 that edit automata effectively enforce an interesting new
sort of property that is neither safety nor liveness.

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted
target application at run time to ensure that all observable executions satisfy
some property [LBW05]. We model a program monitor formally by a security
automaton S, which is a deterministic finite or countably infinite state machine
(Q, q0, δ) that is defined with respect to some system with action set A. The set
Q specifies the possible automaton states, and q0 is the initial state. Different
automata have slightly different sorts of transition functions (δ), which accounts
for the variations in their expressive power. The exact specification of a transition
function δ is part of the definition of each kind of security automaton; we only
require that δ be complete, deterministic, and Turing Machine computable. We
limit our analysis in this work to automata whose transition functions take the
current state and input action (the next action the target wants to execute) and
return a new state and at most one action to output (make observable). The
current input action may or may not be consumed while making a transition.



We specify the execution of each different kind of security automaton S

using a labeled operational semantics. The basic single-step judgment has the
form (q, σ)

τ
−→S (q′, σ′) where q denotes the current state of the automaton, σ

denotes the sequence of actions that the target program wants to execute, q ′ and
σ′ denote the state and action sequence after the automaton takes a single step,
and τ denotes the sequence of at most one action output by the automaton in
this step. The input sequence σ is not observable to the outside world whereas
the output, τ , is observable.

We generalize the single-step judgment to a multi-step judgment using stan-
dard rules of reflexivity and transitivity.

Definition 1 (Multi-step). The multi-step relation (σ, q)
τ

=⇒S (σ′, q′) is in-
ductively defined as follows (where all metavariables are universally quantified).

1. (q, σ)
·

=⇒S (q, σ)

2. If (q, σ)
τ1−→S (q′′, σ′′) and (q′′, σ′′)

τ2=⇒S (q′, σ′) then (q, σ)
τ1;τ2

=⇒S (q′, σ′)

In addition, we extend previous work [LBW05] by defining what it means for
a program monitor to transform a possibly infinite-length input execution into
a possibly infinite-length output execution. This definition is essential for un-
derstanding the behavior of monitors operating on potentially nonterminating
targets.

Definition 2 (Transforms). A security automaton S = (Q, q0, δ) on a system
with action set A transforms the input sequence σ ∈ A∞ into the output sequence
τ ∈ A∞, notated as (q0, σ) ⇓S τ , if and only if the following two constraints are
met.

1. ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A? : ((q0, σ)
τ

′

=⇒S (q′, σ′)) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ)
τ

′

=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ

outputs only prefixes of τ , while the second constraint ensures that S outputs
every prefix of τ .

2.4 Property Enforcement

Several authors have noted the importance of monitors obeying two abstract
principles, which we call soundness and transparency [LBW03,HMS03,Erl04].
A mechanism that purports to enforce a property P̂ is sound when it ensures
that observable outputs always obey P̂ ; it is transparent when it preserves the
semantics of executions that already obey P̂ . We call a sound and transparent
mechanism an effective enforcer. Because effective enforcers are transparent, they
may transform valid input sequences only into semantically equivalent output
sequences, for some system-specific definition of semantic equivalence. When
two executions σ, τ ∈ A∞ are semantically equivalent, we write σ ∼= τ . We
place no restrictions on a relation of semantic equivalence except that it actually



be an equivalence relation (i.e., reflexive, symmetric, and transitive), and that
properties should not be able to distinguish between semantically equivalent
executions.

∀ P̂ : ∀σ, τ ∈ A∞ : σ ∼= τ ⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)

When acting on a system with semantic equivalence relation ∼=, we will call
an effective enforcer an effective∼= enforcer. The formal definition of effective∼=

enforcement is given below. Together, the first and second constraints in the
following definition imply soundness; the first and third constraints imply trans-
parency.

Definition 3 (Effective∼= Enforcement). An automaton S with starting state
q0 effectively∼= enforces a property P̂ on a system with action set A and semantic
equivalence relation ∼= if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ ∼= τ

In some situations, the system-specific equivalence relation ∼= complicates our
theorems and proofs with little benefit. We have found that we can sometimes
gain more insight into the enforcement powers of program monitors by limiting
our analysis to systems in which the equivalence relation (∼=) is just syntactic
equality (=). We call effective∼= enforcers operating on such systems effective=

enforcers. To obtain a formal notion of effective= enforcement, we first need to
define the “syntactic equality” of executions. Intuitively, σ=τ for any finite or
infinite sequences σ and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective∼= enforcer where the system-
specific equivalence relation (∼=) is the system-unspecific equality relation (=).

Definition 4 (Effective= Enforcement). An automaton S with starting state
q0 effectively= enforces a property P̂ on a system with action set A if and only
if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ=τ

Because any two executions that are syntactically equal must be semantically
equivalent, any property effectively= enforceable by some security automaton is
also effectively∼= enforceable by that same automaton. Hence, an analysis of the
set of properties effectively= enforceable by a particular kind of automaton is



conservative; the set of properties effectively∼= enforceable by that same sort of
automaton must be a superset of the effectively= enforceable properties.

Past research has considered alternative definitions of enforcement [LBW05].
Conservative enforcement allows monitors to disobey the transparency require-
ment, while precise enforcement forces effective monitors to obey an additional
timing constraint (monitors must accept actions in lockstep with their produc-
tion by the target). Because these definitions do not directly match the intuitive
soundness and transparency requirements of program monitors, we do not study
them in this paper.

3 Truncation Automata

This section demonstrates why it is often believed that run-time monitors en-
force only safety properties: this belief is provably correct when considering a
common but very limited type of monitor that we model by truncation au-
tomata. A truncation automaton has only two options when it intercepts an
action from the target program: it may accept the action and make it ob-
servable, or it may halt (i.e., truncate the actions of) the target program al-
together. This model is the primary focus of most of the theoretical work on
program monitoring [Sch00,Vis00,KKL+02]. Truncation-based monitors have
been used successfully to enforce a rich set of interesting safety policies includ-
ing access control [ET99], stack inspection [ES00,AF03], software fault isola-
tion [WLAG93,ES99], Chinese Wall [BN89,Erl04,Fon04], and one-out-of-k au-
thorization [Fon04] policies.3

Truncation automata have been widely studied, but revisiting them here
serves several purposes. It allows us to extend to potentially nonterminating
targets previous proofs of their capabilities as effective enforcers [LBW05], to
uncover the single computable safety property unenforceable by any sound pro-
gram monitor, and to provide a precise comparison between the enforcement
powers of truncation and edit automata (defined in Section 4).

3.1 Definition

A truncation automaton T is a finite or countably infinite state machine (Q, q0, δ)
that is defined with respect to some system with action set A. As usual, Q speci-
fies the possible automaton states, and q0 is the initial state. The complete func-
tion δ : Q × A → Q ∪ {halt} specifies the transition function for the automaton
and indicates either that the automaton should accept the current input action
and move to a new state (when the return value is a new state), or that the
automaton should halt the target program (when the return value is halt). For
the sake of determinacy, we require that halt 6∈ Q. The operational semantics of
truncation automata are formally specified by the following rules.

3 Although some of the cited work considers monitors with powers beyond truncation,
it also specifically studies many policies that can be enforced by monitors that only
have the power to truncate.



(q, σ)
τ

−→T (q′, σ′)

(q, σ)
a

−→T (q′, σ′) (T-Step)

if σ = a; σ′

and δ(q, a) = q′

(q, σ)
·

−→T (q, ·) (T-Stop)

if σ = a; σ′

and δ(q, a) = halt

As described in Section 2.3, we extend the single-step relation to a multi-step
relation using standard reflexivity and transitivity rules.

3.2 Enforceable Properties

Let us consider a lower bound on the effective∼= enforcement powers of trun-
cation automata. Any property that is effectively= enforceable by a truncation
automaton is also effectively∼= enforceable by that same automaton, so we can
develop a lower bound on properties effectively∼= enforceable by examining which
properties are effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automa-
ton that effectively= enforces P̂ must output σ. However, the automaton must
also truncate every invalid input sequence into a valid output. Any truncation
performed to an invalid input prevents the automaton from accepting all the
actions in a valid extension of that input. Therefore, truncation automata can-
not effectively= enforce any property where an invalid execution can be a prefix
of a valid execution. This is exactly the definition of safety properties, so it is
intuitively clear that truncation automata effectively= enforce only safety prop-
erties.

Past research has presented results equating the enforcement power of trunca-
tion automata with the set of computable safety properties [Vis00,KKL+02,LBW05].
We extend the precision of previous work by showing that there is exactly one
computable safety property unenforceable by any sound security automaton: the
unsatisfiable safety property where ∀σ ∈ A∞ : ¬P̂ (σ). A monitor could never
enforce such a property because there is no valid output sequence that could
be produced in response to an invalid input sequence. To prevent this case and
to ensure that truncation automata can behave correctly on targets that gen-
erate no actions, we require that the empty sequence satisfies any property we
are interested in enforcing. We often use the term reasonable to describe com-
putable properties P̂ such that P̂ (·). Previous work simply assumed P̂ (·) for
all P̂ [LBW05]; we now show this to be a necessary assumption. The following
theorem states that truncation automata effectively= enforce exactly the set of
reasonable safety properties.



Theorem 1 (Effective= T ∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

2. P̂ (·)

Proof. Please see Appendix A for the proof. We omit it here due to its length.

We next delineate the properties effectively∼= enforceable by truncation au-
tomata. As mentioned above, the set of properties truncation automata effectively=

enforce provides a lower bound for the set of effectively∼= enforceable properties;
a candidate upper bound is the set of properties P̂ that satisfy the following
extended safety constraint.

∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ∼= σ′) (T-Safety)

This is an upper bound because a truncation automaton T that effectively∼=

enforces P̂ must halt at some finite point (having output σ′) when its input (σ)
violates P̂ ; otherwise, T would accept every action of the invalid input. When T

halts, all extensions (τ) of its output must either violate P̂ or be equivalent to
its output; otherwise, there is a valid input sequence for which T fails to output
an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight.
We simply have to add computability restrictions on the property to ensure that
a truncation automaton can decide when to halt the target.

Theorem 2 (Effective∼= T ∞-Enforcement). A property P̂ on a system with
action set A can be effectively∼= enforced by some truncation automaton T if
and only if there exists a decidable predicate D over A? such that the following
constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : D(σ′)

2. ∀(σ′; a) ∈ A? : D(σ′; a) ⇒ (∀τ�(σ′; a) : P̂ (τ) ⇒ τ ∼= σ′)

3. ¬D(·)

Proof. See Appendix A.

On practical systems, it is likely uncommon that the property requiring en-
forcement and the system’s relation of semantic equivalence are so broad as to
consider some valid execution equivalent to all valid extensions of that execution.
We therefore consider the set of properties detailed in the theorem of Effective=

T ∞-Enforcement (i.e., reasonable safety properties) more indicative of the true
enforcement power of truncation automata.



4 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security au-
tomaton called the edit automaton [LBW05]. We refine previous work by pre-
senting a more concise formal definition of edit automata. More importantly, we
analyze the enforcement powers of edit automata on possibly infinite sequences,
which allows us to prove that edit automata can effectively= enforce an inter-
esting, new class of properties that we call infinite renewal properties.

4.1 Definition

An edit automaton E is a triple (Q, q0, δ) defined with respect to some system
with action set A. As with truncation automata, Q is the possibly countably
infinite set of states, and q0 is the initial state. In contrast to truncation au-
tomata, the complete transition function δ of an edit automaton has the form
δ : Q × A → Q × (A ∪ {·}). The transition function specifies, when given a cur-
rent state and input action, a new state to enter and either an action to insert
into the output stream (without consuming the input action) or the empty se-
quence to indicate that the input action should be suppressed (i.e., consumed
from the input without being made observable). We previously defined edit au-
tomata that could also perform the following transformations in a single step:
insert a finite sequence of actions, accept the current input action, or halt the
target [LBW05]. However, all of these transformations can be expressed in terms
of suppressing and inserting single actions. For example, an edit automaton can
halt a target by suppressing all future actions of the target; an edit automaton
accepts an action by inserting and then suppressing that action (first making the
action observable and then consuming it from the input). Although in practice
these transformations would each be performed in a single step, we have found
the minimal operational semantics containing only the two rules shown below
more amenable to formal reasoning. Explicitly including the additional rules in
the model would not invalidate any of our results.

(q, σ)
τ

−→E (q′, σ′)

(q, σ)
a

′

−→E (q′, σ) (E-Ins)

if σ = a; σ′

and δ(q, a) = (q′, a′)

(q, σ)
·

−→E (q′, σ′) (E-Sup)

if σ = a; σ′

and δ(q, a) = (q′, ·)

As with truncation automata, we extend the single-step semantics of edit
automata to a multi-step semantics with the rules for reflexivity and transitivity.



4.2 Enforceable Properties

Edit automata are powerful property enforcers because they can suppress a
sequence of potentially illegal actions and later, if the sequence is determined to
be legal, just re-insert it. Essentially, the monitor feigns to the target that its
requests are being accepted, although none actually are, until the monitor can
confirm that the sequence of feigned actions is valid. At that point, the monitor
inserts all of the actions it previously feigned accepting. This is the same idea
implemented by intentions files in database transactions [Pax79]. Monitoring
systems like virtual machines can also be used in this way, feigning execution
of a sequence of the target’s actions and only making the sequence observable
when it is known to be valid.

As we did for truncation automata, we develop a lower bound on the set of
properties that edit automata effectively∼= enforce by considering the properties
they effectively= enforce. Using the technique described above of suppressing
invalid inputs until the monitor determines that the suppressed input obeys a
property, edit automata can effectively= enforce any reasonable infinite renewal
(or simply renewal) property. A renewal property is one in which every valid
infinite-length sequence has infinitely many valid prefixes, and conversely, every
invalid infinite-length sequence has only finitely many valid prefixes. For exam-
ple, a property P̂ may be satisfied only by executions that contain the action a.
This is a renewal property because valid infinite-length executions contain an in-
finite number of valid prefixes (in which a appears) while invalid infinite-length
executions contain only a finite number of valid prefixes (in fact, zero). This
P̂ is also a liveness property because any invalid finite execution can be made
valid simply by appending the action a. Although edit automata cannot enforce
this P̂ because ¬P̂ (·), in Section 5.2 we will recast this example as a reasonable
“eventually audits” policy and show several more detailed examples of renewal
properties enforceable by edit automata.

We formally deem a property P̂ an infinite renewal property on a system
with action set A if and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

It will often be easier to reason about renewal properties without relying
on infinite set cardinality. We make use of the following equivalent definition in
formal analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit
automaton that effectively= enforces P̂ using the technique of feigning accep-
tance (i.e., suppressing actions) until the automaton has seen some legal prefix



of the input (at which point the suppressed actions can be made observable).
This technique ensures that the automaton eventually outputs every valid prefix,
and only valid prefixes, of any input execution. Because P̂ is a renewal prop-
erty, the automaton therefore outputs all prefixes, and only prefixes, of a valid
input while outputting only the longest valid prefix of an invalid input. Hence,
the automaton correctly effectively= enforces P̂ . The following theorem formally
states this result.

Theorem 3 (Lower Bound Effective= E∞-Enforcement). A property P̂

on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)
2. P̂ (·)

Proof. See Appendix A.

It would be reasonable to expect that the set of renewal properties also
represents an upper bound on the properties effectively= enforceable by edit
automata. After all, an effective= automaton cannot output an infinite number
of valid prefixes of an invalid infinite-length input σ without in fact transforming
the invalid σ into σ. In addition, on a valid infinite-length input τ , an effective=

automaton must output infinitely many prefixes of τ , and whenever it inputs
an action, its output must be a valid prefix of τ because there may be no more
input (i.e., the target may not generate more actions). However, there is a corner
case in which an edit automaton can effectively= enforce a valid infinite-length
execution τ that has only finitely many valid prefixes—when the automaton can
input only finitely many actions of τ it need only output finitely many valid
prefixes of τ . This requires the automaton to decide at some finite point when
processing τ that τ is the only valid extension of its current input. At that point,
the automaton can cease receiving input and enter an infinite loop to insert the
actions of τ .

The following theorem presents the tight boundary for effective= enforce-
ment of properties by edit automata, including the corner case described above.
Because we believe that the corner case adds relatively little to the enforcement
capabilities of edit automata, we only sketch the proof in Appendix A.

Theorem 4 (Effective= E∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only
if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒













∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)

∨ P̂ (σ) ∧

∃σ′�σ : ∀τ�σ′ : P̂ (τ) ⇒ τ=σ ∧
the existence and actions of σ

are computable from σ′













2. P̂ (·)



Proof sketch. See Appendix A.

We have found it difficult to delineate the precise boundary of properties
that are effectively∼= enforceable by edit automata. Unfortunately, the simplest
way to specify this boundary appears to be to encode the semantics of edit
automata into recursive functions that operate over streams of actions. Then,
we can reason about the relationship between input and output sequences of such
functions just as the definition of effective∼= enforcement requires us to reason
about the relationship between input and output sequences of automata. Our
final theorem takes this approach; we present it for completeness.

Theorem 5 (Effective∼= E∞-Enforcement). Let D be a decidable function
D : A? ×A? →A∪{·}. Then R?

D
is a decidable function R?

D
: A? ×A? ×A? →A?

parameterized by D and inductively defined as follows, where all metavariables
are universally quantified.

– R?

D
(·, σ, τ) = τ

– (D(σ; a, τ) = ·) ⇒ R?

D
(a; σ′, σ, τ ′) = R?

D
(σ′, σ; a, τ ′)

– (D(σ; a, τ) = a′) ⇒ R?

D
(a; σ′, σ, τ ′) = R?

D
(a; σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively∼= enforced by
some edit automaton E if and only if there exists a decidable D function (as
described above) such that for all (input sequences) σ ∈ A∞ there exists (output
sequence) τ ∈ A∞ such that the following constraints are met.

1. ∀σ′�σ : ∀τ ′ ∈ A? : (R?
D

(σ′, ·, ·) = τ ′) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃σ′�σ : R?

D
(σ′, ·, ·) = τ ′

3. P̂ (τ)
4. P̂ (σ) ⇒ σ ∼= τ

Proof sketch. See Appendix A.

As with truncation automata, we believe that the theorems related to edit
automata acting as effective= enforcers more naturally capture their inherent
power than the theorem of effective∼= enforcement. Effective= enforcement pro-
vides an elegant lower bound for what can be effectively∼= enforced in practice.

Limitations In addition to standard assumptions of program monitors, such
as that a target cannot circumvent or corrupt a monitor, our theoretical model
makes assumptions particularly relevant to edit automata that are sometimes vi-
olated in practice. Most importantly, our model assumes that security automata
have the same computational capabilities as the system that observes the moni-
tor’s output. If an action violates this assumption by requiring an outside system
in order to be executed, it cannot be “feigned” (i.e., suppressed) by the monitor.
For example, it would be impossible for a monitor to feign sending email, wait
for the target to receive a response to the email, test whether the target does
something invalid with the response, and then decide to “undo” sending email



in the first place. Here, the action for sending email has to be made observable
to systems outside of the monitor’s control in order to be executed, so this is an
unsuppressible action. A similar limitation arises with time-dependent actions,
where an action cannot be feigned (i.e., suppressed) because it may behave dif-
ferently if made observable later. In addition to these sorts of unsuppressible
actions, a system may contain actions uninsertable by monitors because, for ex-
ample, the monitors lack access to secret keys that must be passed as parameters
to the actions. In the future, we plan to explore the usefulness of including sets
of unsuppressible and uninsertable actions in the specification of systems. We
might be able to harness earlier work [LBW05], which defined security automata
limited to inserting (insertion automata) or suppressing (suppression automata)
actions, toward this goal.

5 Infinite Renewal Properties

In this section, we examine some interesting aspects of the class of infinite re-
newal properties. We compare renewal properties to safety and liveness proper-
ties and provide several examples of useful renewal properties that are neither
safety nor liveness properties.

5.1 Renewal, Safety, and Liveness

The most obvious way in which safety and infinite renewal properties differ is
that safety properties place restrictions on finite executions (invalid executions
have some prefix after which all extensions are invalid), while renewal properties
place no restrictions on finite executions. The primary result of the current work,
that edit automata can enforce any reasonable renewal property, agrees with the
finding in earlier work that edit automata can enforce every reasonable property
on systems that only exhibit finite executions [LBW05]. Without infinite-length
executions, every property is a renewal property.

Moreover, an infinite-length renewal execution can be valid even if it has
infinitely many invalid prefixes (as long as it also has infinitely many valid pre-
fixes), but a valid safety execution can contain no invalid prefixes. Similarly,
although invalid infinite-length renewal executions can have prefixes that alter-
nate a finite number of times between being valid and invalid, invalid safety
executions must contain some finite prefix before which all prefixes are valid
and after which all prefixes are invalid. Hence, every safety property is a renewal
property. Given any system with action set A, it is easy to construct a non-safety
renewal property P̂ by choosing an element a in A and letting P̂ (·), P̂ (a; a), but
¬P̂ (a).

There are renewal properties that are not liveness properties (e.g., the prop-
erty that is only satisfied by the empty sequence), and there are liveness prop-
erties that are not renewal properties (e.g., the nontermination property only
satisfied by infinite executions). Some renewal properties, such as the one only
satisfied by the empty sequence and the sequence a; a, are neither safety nor



liveness. Although Alpern and Schneider [AS85] showed that exactly one prop-
erty is both safety and liveness (the property satisfied by every execution), some
interesting liveness properties are also renewal properties. We examine examples
of such renewal properties in the following subsection.

5.2 Example Properties

We next present several examples of renewal properties that are not safety prop-
erties, as well as some examples of non-renewal properties. By the theorems in
Sections 3.2 and 4.2, the non-safety renewal properties are effectively= enforce-
able by edit automata but not by truncation automata. Moreover, the proof of
Theorem 3 in Appendix A shows how to construct an edit automaton to enforce
any of the renewal properties described in this subsection.

Renewal properties Suppose we wish to constrain the behavior of a graphics
program to window-configuration and window-display actions on a system with
many possible actions. Moreover, we want to place an ordering constraint on
the graphics software: a window is configured using any number of actions and
then displayed before another window is configured and displayed. This process
may repeat indefinitely, so we might write the requisite property P̂ more specif-
ically as (a1

?; a2)
∞, where a1 ranges over all actions that configure windows, a2

over actions that display configured windows, and a3 over actions unrelated to
configuring or displaying windows. As noted by Alpern and Schneider [AS85],
this sort of P̂ might be expressed with the (strong) until operator in temporal
logic [Pnu77]; event a1 occurs until event a2. This P̂ is not a safety property
because a finite sequence of only a1 events disobeys P̂ but can be extended (by
appending a2) to obey P̂ . Our P̂ is also not a liveness property because there
are finite executions that cannot be extended to satisfy P̂ , such as the sequence
containing only a3. However, this non-safety, non-liveness property is a renewal
property because infinite-length executions are valid if and only if they contain
infinitely many (valid) prefixes of the form (a1

?; a2)
?
.

Interestingly, if we enforce the policy described above on a system that only
has actions a1 and a2, we remove the safety aspect of the property to obtain a
liveness property that is also a renewal property. On the system {a1, a2}, the
property satisfied by any execution matching (a1

?; a2)
∞ is a liveness property

because any illegal finite execution can be made legal by appending a2. The
property is still a renewal property because an infinite execution is invalid if and
only if it contains a finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For
example, consider a property P̂ specifying that an execution that does anything
must eventually perform an audit by executing some action a. This is similar to
the example renewal property given in Section 4.2. Because we can extend any
invalid finite execution with the audit action to make it valid, P̂ is a liveness
property. It is also a renewal property because an infinite-length valid execution
must have infinitely many prefixes in which a appears, and an infinite-length



invalid execution has no valid prefix (except the empty sequence) because a

never appears. Note that for this “eventually audits” renewal property to be
enforceable by an edit automaton, we have to consider the empty sequence valid.

As briefly mentioned in Section 4.2, edit automata derive their power from
being able to operate in a way similar to intentions files in database transac-
tions. At a high-level, any transaction-based property is a renewal property. Let
τ range over finite sequences of single, valid transactions. A transaction based
policy could then be written as τ∞; a valid execution is one containing any
number of valid transactions. Such transactional properties can be non-safety
because executions may be invalid within a transaction but become valid at the
conclusion of that transaction. Transactional properties can also be non-liveness
when there exists a way to irremediably corrupt a transaction (e.g., every trans-
action beginning with start ;self-destruct is illegal). Nonetheless, transactional
properties are renewal properties because infinite-length executions are valid if
and only if they contain an infinite number of prefixes that are valid sequences of
transactions. The renewal properties described above as matching sequences of
the form (a1

?; a2)
∞ can also be viewed as transactional, where each transaction

must match a1
?; a2.

Non-renewal properties An interesting example of a liveness property that
is not a renewal property is general availability. Suppose that we have a system
with actions oi for opening (or acquiring) and ci for closing (or releasing) some
resource i. Our policy P̂ is that for all resources i, if i is opened, it must eventually
be closed. This is a liveness property because any invalid finite sequence can be
made valid simply by appending actions to close every open resource. However,
P̂ is not a renewal property because there are valid infinite sequences, such as
o1; o2; c1; o3; c2; o4; c3; ..., that do not have an infinite number of valid prefixes.
An edit automaton can only enforce this sort of availability property when the
number of resources is limited to one (in this case, the property is transactional:
valid transactions begin with o1 and end with c1). Even on a system with two
resources, infinite sequences like o1; o2; c1; o1; c2; o2; c1; o1; ... prevent this resource
availability property from being a renewal property.

Of course, there are many non-renewal, non-liveness properties as well. We
can arrive at such properties by combining a safety property with any property
that is a liveness but not a renewal property. For example, termination is not
a renewal property because invalid infinite sequences have an infinite number
of valid prefixes. Termination is however a liveness property because any finite
execution is valid. When we combine this liveness, non-renewal property with a
safety property, such as that no accesses are made to private files, we arrive at
the non-liveness, non-renewal property where executions are valid if and only if
they terminate and never access private files. The requirement of termination
prevents this from being a renewal property; moreover, this property is outside
the upper bound of what is effectively= enforceable by edit automata.



All Properties

Renewal

Safety Liveness

1

2

3

4

5

6

7
8

9

Nontermination

Resource availability

Stack inspection

Configure window until�
displaying window

Property 4 on system with only 

configure and display actions

Eventually audits

Transaction property

Termination + 

file access control

Trivial

1

2

3

4



5



6

7

8



9

Legend:

Fig. 1. Relationships between safety, liveness, and renewal properties.

Figure 1 summarizes the results of the preceding discussion and that of Sec-
tion 5.1. The Trivial property considers all executions legal and is the only
property in the intersection of safety and liveness properties.

6 Conclusions

When considering the space of security properties enforceable by monitoring po-
tentially nonterminating targets, we have found that a simple variety of monitor
enforces exactly the set of computable and satisfiable safety properties while
a more powerful variety can enforce any computable infinite renewal property
that is satisfied by the empty sequence. Because our model permits infinite se-
quences of actions, it is compatible with previous research on safety and liveness
properties.

Awareness of formally proven bounds on the power of security mechanisms
facilitates our understanding of policies themselves and the mechanisms we need
to enforce them. For example, observing that a stack inspection policy is really
just an access-control property (where access is granted or denied based on the
history of function calls and returns), which in turn is clearly a safety prop-
erty, makes it immediately obvious that simple monitors modeled by truncation
automata are sufficient for enforcing stack inspection policies. Similarly, if we
can observe that infinite executions in a property specifying how windows must
be displayed are valid if and only if they contain infinitely many valid prefixes,
then we immediately know that monitors based on edit automata can enforce
this property. We hope that with continued research into the formal enforcement
bounds of various security mechanisms, security architects will be able to pull
from their enforcement “toolbox” exactly the right sorts of mechanisms needed
to enforce the policies at hand.



Acknowledgments

We wish to thank Ed Felten for pointing out the operational similarity be-
tween edit automata and database intentions files. ARDA grant NBCHC030106,
DARPA award F30602-99-1-0519, and NSF grants CCR-0238328 and CCR-
0306313 have provided support for this research.

References

[AF03] M. Abadi and C. Fournet. Access control based on execution history. In
10th Annual Network and Distributed System Symposium (NDSS’03), Feb
2003.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[AS87] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2:117–126, 1987.

[BLW03] Lujo Bauer, Jarred Ligatti, and David Walker. Types and effects for
non-interfering program monitors. In M. Okada, B. Pierce, A. Scedrov,
H. Tokuda, and A. Yonezawa, editors, Software Security—Theories and
Systems. Mext-NSF-JSPS International Symposium, ISSS 2002, Tokyo,
Japan, November 8-10, 2002, Revised Papers, volume 2609 of Lecture
Notes in Computer Science. Springer, 2003.

[BLW05] Lujo Bauer, Jay Ligatti, and David Walker. Composing security poli-
cies with polymer. In ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), Chicago, June 2005.

[BN89] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In
IEEE Symposium on Security and Privacy, pages 206–214, 1989.

[EAC98] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access
control for mobile code. In ACM Conference on Computer and Commu-
nications Security, pages 38–48, 1998.

[Erl04] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. PhD thesis, Cornell University, January 2004.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Canada, September 1999.

[ES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In IEEE Symposium on Security and Privacy, pages 246–255,
Oakland, California, May 2000.

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In IEEE Security and Privacy, Oakland, CA, May 1999.

[Fon04] Philip W. L. Fong. Access control by tracking shallow execution history.
In Proceedings of the 2004 IEEE Symposium on Security and Privacy,
Oakland, California, USA, May 2004.

[HMS03] Kevin Hamlen, Greg Morrisett, and Fred Schneider. Computability classes
for enforcement mechanisms. Technical Report TR2003-1908, Cornell Uni-
versity, August 2003.

[JZTB98] Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michael Brazell. A
lightweight architecture for program execution monitoring. In PASTE ’98:
Proceedings of the 1998 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 67–74. ACM Press, 1998.



[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William Griswold. An overview of AspectJ. In European Conference
on Object-oriented Programming. Springer-Verlag, 2001.

[KKL+02] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Ma-
hesh Viswantathan. Computational analysis of run-time monitoring—
fundamentals of Java-MaC. In Run-time Verification, June 2002.

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In European Conference on Real-time Systems,
York, UK, June 1999.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions of Software Engineering, 3(2):125–143, 1977.

[LBW03] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement
mechanisms for run-time security policies. Technical Report TR-681-03,
Princeton University, May 2003.

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement
mechanisms for run-time security policies. International Journal of Infor-
mation Security, Feb 2005.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In PODC ’87: Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, pages 137–151.
ACM Press, 1987.

[Pax79] William H. Paxton. A client-based transaction system to maintain data
integrity. In SOSP ’79: Proceedings of the seventh ACM symposium on
Operating systems principles, pages 18–23. ACM Press, 1979.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS), pages 46–57, 1977.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30–50, February 2000.

[Vis00] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software
Systems. PhD thesis, University of Pennsylvania, 2000.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas Anderson, and Susan Graham. Ef-
ficient software-based fault isolation. In Fourteenth ACM Symposium on
Operating Systems Principles, pages 203–216, Asheville, December 1993.

A Proofs of Theorems

Theorem 1 (Effective= T ∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)
2. P̂ (·)

Proof. (If Direction) We construct a truncation automaton T that effectively=

enforces any such P̂ as follows.

– States: Q = A? (the sequence of actions seen so far)
– Start state: q0 = · (the empty sequence)



– Transition function: δ(σ, a) =

{

σ; a if P̂ (σ; a)
halt otherwise

This transition function is (Turing Machine) computable because P̂ is com-
putable.

T maintains the invariant I
P̂

(q) on states q = σ that exactly σ has been

output from T , (q0, σ) ⇓T σ, and ∀σ′�σ : P̂ (σ′). The automaton can initially
establish I

P̂
(q0) because q0 = ·, (q0, ·) ⇓T ·, and P̂ (·). A simple inductive argu-

ment on the length of σ suffices to show that the invariant is maintained for all
(finite-length) prefixes of all inputs.

Let σ ∈ A∞ be the input to T . If ¬P̂ (σ) then by the safety condition in the
theorem statement, ∃σ′�σ.¬P̂ (σ′). By I

P̂
(σ′), T can never enter the state for

this σ′ and must therefore halt on input σ. Let τ be the final state reached on
input σ. By I

P̂
(τ) and the fact that T halts (ceases to make transitions) after

reaching state τ , we have P̂ (τ) and (q0, σ) ⇓T τ .
If, on the other hand, P̂ (σ) then suppose for the sake of obtaining a contra-

diction that T on input σ does not accept and output every action of σ. By the
definition of its transition function, T must halt in some state σ′ when examin-
ing some action a (where σ′; a�σ) because ¬P̂ (σ′; a). Combining this with the
safety condition given in the theorem statement implies that ¬P̂ (σ), which is a
contradiction. Hence, T accepts and outputs every action of σ when P̂ (σ), so
(q0, σ) ⇓T σ. In all cases, T effectively= enforces P̂ .

(Only-If Direction) Consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for
the sake of obtaining a contradiction that ∀σ′�σ : ∃τ�σ′ : P̂ (τ). Then for all
prefixes σ′ of σ, T must accept and output every action of σ′ because σ′ may be
extended to the valid input τ , which must be emitted verbatim. This implies by
the definition of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T ), which is
a contradiction because T cannot effectively= enforce P̂ on σ when ¬P̂ (σ) and
(q0, σ) ⇓T σ. Hence, our assumption was incorrect and the first constraint given
in the theorem must hold.

Also, if ¬P̂ (·) then T cannot effectively= enforce P̂ because (q0, ·) ⇓T · for
all T . Therefore, P̂ (·).

Theorem 2 (Effective∼= T ∞-Enforcement). A property P̂ on a system with
action set A can be effectively∼= enforced by some truncation automaton T if
and only if there exists a decidable predicate D over A? such that the following
constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : D(σ′)
2. ∀(σ′; a) ∈ A? : D(σ′; a) ⇒ (∀τ�(σ′; a) : P̂ (τ) ⇒ τ ∼= σ′)
3. ¬D(·)

Proof. (If Direction) We first note that the first and third constraints imply
that P̂ (·), as there can be no prefix σ′ of the empty sequence such that D(σ′).
We next construct a truncation automaton T that, given decidable predicate D

and property P̂ , effectively∼= enforces P̂ when the constraints in the theorem
statement are met.



– States: Q = A? (the sequence of actions seen so far)
– Start state: q0 = · (the empty sequence)

– Transition function: δ(σ, a) =

{

σ; a if P̂ (σ; a) ∧ ¬D(σ; a)
halt otherwise

This transition function is (Turing Machine) computable because P̂ and D

are computable.

T maintains the invariant I
P̂

(q) on states q = σ that exactly σ has been

output from T , (q0, σ) ⇓T σ, and ∀σ′�σ : P̂ (σ′) ∧ ¬D(σ′). The automaton can
initially establish I

P̂
(q0) because q0 = ·, (q0, ·) ⇓T ·, P̂ (·), and ¬D(·). A simple

inductive argument on the length of σ suffices to show that the invariant is
maintained for all (finite-length) prefixes of all inputs.

Let σ ∈ A∞ be the input to T . We first consider the case where ¬P̂ (σ)
and show that T effectively∼= enforces P̂ on σ. By constraint 1 in the theorem
statement, ∃σ′�σ : D(σ′), so I

P̂
ensures that T must halt when σ is input (before

entering state σ′). Let τ be the final state T reaches on input σ. By I
P̂

(τ) and

the definition of ⇓T , we have (q0, σ) ⇓T τ and P̂ (τ).
We split the case where P̂ (σ) into three subcases. If T never truncates input

σ then T outputs every prefix of σ and only prefixes of σ, so by the definition
of ⇓T , (q0, σ) ⇓T σ. Because P̂ (σ) and σ ∼= σ, T effectively∼= enforces P̂ in this
subcase. On the other hand, if T truncates input σ, it does so in some state σ′

while making a transition on action a (hence, σ′; a�σ) either because D(σ′; a)
or ¬P̂ (σ′; a). In both of these subcases, I

P̂
(σ′) implies P̂ (σ′), and combining

I
P̂

(σ′) with the definition of ⇓T and the fact that T halts in state σ′, we have
(q0, σ) ⇓T σ′. If D(σ′; a) then σ′ ∼= σ by the second constraint given in the theo-
rem statement, so T effectively∼= enforces P̂ in this subcase. Otherwise, ¬D(σ′; a)
and ¬P̂ (σ′; a), implying by the first constraint in the theorem statement that
∃τ ′�σ′; a : D(τ ′). This violates either the assumption that ¬D(σ′; a) or that
∀τ ′�σ′ : ¬D(τ ′) (which is implied by I

P̂
(σ′)), so the final subcase cannot occur.

Therefore, T correctly effectively∼= enforces P̂ in all cases.

(Only-If Direction) Given some truncation automaton T , we define D over A?.
Let D(·) be false, and for all (σ; a) ∈ A? let D(σ; a) be true if and only if T

outputs exactly σ on input σ; a (when run to completion). Because the transition
function of T is computable and D is only defined over finite sequences, D is a
decidable predicate. Moreover, because T effectively∼= enforces P̂ , if it outputs
exactly σ on input σ; a then the fact that T halts rather than accepting a,
combined with the definition of effective∼= enforcement, implies that ∀τ�σ; a :
P̂ (τ) ⇒ τ ∼= σ. Our definition of D therefore satisfies the second constraint
enumerated in the theorem.

Finally, consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the sake of
obtaining a contradiction that ∀σ′�σ : ¬D(σ′). Then by our definition of D, T

cannot halt on any prefix of σ, so it must accept every action in every prefix.
This implies by the definition of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial
state of T ), which is a contradiction because T cannot effectively∼= enforce P̂ on



σ when ¬P̂ (σ) and (q0, σ) ⇓T σ. Hence, our assumption was incorrect and the
first constraint given in the theorem must also hold.

Theorem 3 (Lower Bound Effective= E∞-Enforcement). A property P̂

on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)
2. P̂ (·)

Proof. We construct an edit automaton E that effectively= enforces any such P̂

as follows.

– States: Q = A? × A? × {0, 1} (the sequence of actions output so far, the
sequence of actions currently suppressed, and a flag indicating whether the
suppressed actions need to be inserted)

– Start state: q0 = (·, ·, 0) (nothing has been output or suppressed)
– Transition function:

δ((τ, σ, f), a) =















((τ, σ; a, 0), ·) if f = 0 ∧ ¬P̂ (τ ; σ; a)

((τ ; a′, σ′, 1), a′) if f = 0 ∧ P̂ (τ ; σ; a) ∧ σ; a=a′; σ′

((τ ; a′, σ′, 1), a′) if f = 1 ∧ σ=a′; σ′

((τ, ·, 0), ·) if f = 1 ∧ σ=·

This transition function is (Turing Machine) computable because P̂ must by
definition be computable.

E maintains the invariant I
P̂

(q) on states q = (τ, σ, 0) that exactly τ has
been output, τ ; σ is the input that has been processed, (q0, τ ; σ) ⇓E τ , and τ is
the longest prefix of τ ; σ such that P̂ (τ). Similarly, E maintains I

P̂
(q) on states

q = (τ, σ, 1) that exactly τ has been output, all of τ ; σ except the action on
which E is currently making a transition is the input that has been processed,
P̂ (τ ; σ), and E will finish processing the current action when all of τ ; σ has been
output, the current action has been suppressed, and E is in state (τ ; σ, ·, 0). The
automaton can initially establish I

P̂
(q0) because q0 = (·, ·, 0), (q0, ·) ⇓E ·, and

P̂ (·). A simple inductive argument on the transition relation suffices to show
that E maintains the invariant in every state it reaches.

Let σ ∈ A∞ be the input to the automaton E. If ¬P̂ (σ) and σ ∈ A? then
by the automaton invariant, E consumes all of input σ and halts in some state
(τ, σ′, 0) such that (q0, σ) ⇓E τ and P̂ (τ). Hence, E effectively= enforces P̂ in
this case. If ¬P̂ (σ) and σ ∈ Aω then by the renewal condition in the theorem
statement, there must be some prefix σ′ of σ such that for all longer prefixes τ

of σ, ¬P̂ (τ). Thus, by the transition function of E, the invariant of E, and the
definition of ⇓E , E on input σ outputs only some finite τ ′ such that P̂ (τ ′) and
(q0, σ) ⇓E τ ′ (and E suppresses all actions in σ after outputting τ ′).

Next consider the case where P̂ (σ). If σ ∈ A? then by the automaton in-
variant, E on input σ must halt in state (σ, ·, 0), where (q0, σ) ⇓E σ. E thus
effectively= enforces P̂ in this case. If P̂ (σ) and σ ∈ Aω then the renewal con-
straint and the automaton invariant ensure that E on input σ outputs every
prefix of σ and only prefixes of σ. Hence, (q0, σ) ⇓E σ. In all cases, E correctly
effectively= enforces P̂ .



Theorem 4 (Effective= E∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only
if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒













∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)

∨ P̂ (σ) ∧

∃σ′�σ : ∀τ�σ′ : P̂ (τ) ⇒ τ=σ ∧
the existence and actions of σ

are computable from σ′













2. P̂ (·)

Proof sketch. (If Direction) We sketch the construction of an edit automaton E

that effectively= enforces any such P̂ as follows.

– States: Q = A? × A? (the sequence of actions output so far paired with
the sequence of actions suppressed since the previous insertion)

– Start state: q0 = (·, ·) (nothing has been output or suppressed)
– Transition function (for simplicity, we abbreviate δ):

Consider processing the action a in state (τ ′, σ′).
(A) If we can compute from τ ′; σ′ the existence and actions of some σ ∈ Aω

such that ∀τ�(τ ′; σ′) : P̂ (τ) ⇒ τ=σ, enter an infinite loop that inserts
one by one all actions necessary to output every prefix of σ.

(B) Otherwise, if P̂ (τ ′; σ′; a) then insert σ′; a (one action at a time), sup-
press a, and continue in state (τ ′; σ′; a, ·).

(C) Otherwise, suppress a and continue in state (τ ′, σ′; a).

This automaton is an informal version of the one constructed in the “if”
direction of the proof of Lower Bound Effective= E∞-Enforcement, except for
the addition of transition (A), and E effectively= enforces P̂ for the same reasons
given there. The only difference is that E can insert an infinite sequence of actions
if it computes that only that sequence of actions can extend the current input to
satisfy P̂ . In this case, E continues to effectively= enforce P̂ because its output
satisfies P̂ and equals any valid input sequence.

(Only-If Direction) Consider any σ ∈ Aω such that P̂ (σ). By the definition of
effective= enforcement, (q0, σ) ⇓E σ, where q0 is the initial state of E. By the
definitions of ⇓E and =, E must output all prefixes of σ and only prefixes of
σ when σ is input. Assume for the sake of obtaining a contradiction that the
renewal constraint is untrue for σ. This implies that there is some valid prefix σ′

of σ after which all longer prefixes of σ violate P̂ . After outputting σ′ on input
σ′, E cannot output any prefix of σ without outputting every prefix of σ (if it
did, its output would violate P̂ ). But because the renewal constraint does not
hold on σ by assumption, either (1) more than one valid execution will always
extend the automaton’s input or (2) E can never compute or emit all prefixes of
σ. Therefore, E cannot output any prefixes of σ after outputting σ′, so E fails to
effectively= enforce P̂ on this σ. Our assumption was incorrect and the renewal
constraint must hold.



Next consider any σ ∈ Aω such that ¬P̂ (σ). The extended portion of the
renewal constraint trivially holds because ¬P̂ (σ). Assume for the sake of obtain-
ing a contradiction that the rest of the renewal constraint does not hold on σ,
implying that there are an infinite number of prefixes of σ that satisfy P̂ . Be-
cause E is an effective= enforcer and can only enforce P̂ on sequences obeying
P̂ by emitting them verbatim, E must eventually output every prefix of σ and
only prefixes of σ when σ is input. Hence, (q0, σ) ⇓E σ, which is a contradiction
because E effectively= enforces P̂ and ¬P̂ (σ). Our assumption that the renewal
constraint does not hold is therefore incorrect.

Finally, P̂ (·) because E could otherwise not effectively= enforce P̂ when input
the empty sequence.

Theorem 5 (Effective∼= E∞-Enforcement). Let D be a decidable function
D : A? ×A? →A∪{·}. Then R?

D
is a decidable function R?

D
: A? ×A? ×A? →A?

parameterized by D and inductively defined as follows, where all metavariables
are universally quantified.

– R?

D
(·, σ, τ) = τ

– (D(σ; a, τ) = ·) ⇒ R?

D
(a; σ′, σ, τ ′) = R?

D
(σ′, σ; a, τ ′)

– (D(σ; a, τ) = a′) ⇒ R?

D
(a; σ′, σ, τ ′) = R?

D
(a; σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively∼= enforced by
some edit automaton E if and only if there exists a decidable D function (as
described above) such that for all (input sequences) σ ∈ A∞ there exists (output
sequence) τ ∈ A∞ such that the following constraints are met.

1. ∀σ′�σ : ∀τ ′ ∈ A? : (R?

D
(σ′, ·, ·) = τ ′) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃σ′�σ : R?

D
(σ′, ·, ·) = τ ′

3. P̂ (τ)
4. P̂ (σ) ⇒ σ ∼= τ

Proof sketch. Intuitively, D(σ, τ) = a (or ·) iff a is the next action to be output
(or suppressed) by an edit automaton when σ is the automaton input and τ is
the automaton output so far. Also, R?

D
(σ, σ′, τ ′) = τ iff the overall output of an

edit automaton whose transition function is guided by D is τ when σ remains
to be processed, σ′ has already been processed, and τ ′ has already been output.

(If Direction) Given D, we construct an edit automaton E that effectively∼=

enforces any such P̂ as follows.

– States: Q = A? × A? (the input processed and the output emitted so far)
– Start state: q0 = (·, ·) (nothing processed or output)

– Transition function: δ((σ, τ), a) =

{

((σ, τ ; a′), a′) if D(σ; a, τ) = a′

((σ; a, τ), ·) otherwise

For all prefixes σ′ of the input σ to E, E emits a τ ′ such that R?

D
(σ′, ·, ·) = τ ′.

The proof is by induction on the length of σ′, using the definition of R?

D
. Then, by

the constraints in the theorem statement and the definitions of ⇓E and effective∼=

enforcement, E effectively∼= enforces P̂ .



(Only-If Direction) Define D(σ, τ) as follows. Run E on input σ until τ is output,
and then continue running E until either all input is consumed (i.e., suppressed)
or another action a′ is output. In the former case, let D(σ, τ) = · and in the
latter case D(σ, τ) = a′. D is decidable because σ and τ have finite lengths and
the transition function of E is computable.

By the definitions of D and R?

D
, we have ∀σ, τ ∈ A? : (R?

D
(σ, ·, ·) = τ) ⇐⇒

(∃q′ : (q0, σ)
τ

=⇒E (q′, ·)), where q0 is the initial state of E. Combining this with
the definition of ⇓E and the fact that E effectively∼= enforces P̂ ensures that all
of the constraints given in the theorem statement are satisfied.


