
Semantics and Algorithms for Data-dependent Grammars

Trevor Jim
AT&T Labs-Research

tjim@research.att.com

Yitzhak Mandelbaum
AT&T Labs-Research

yitzhak@research.att.com

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract
Traditional parser generation technologies are incapable of han-
dling the demands of modern programmers. In this paper, we
present the design and theory of a new parsing engine, YAKKER,
capable of handling the requirements of modern applications in-
cluding (1) full scannerless context-free grammars with (2) reg-
ular expressions as right-hand sides for defining nonterminals.
YAKKER also includes (3) facilities for binding variables to in-
termediate parse results and (4) using such bindings within arbi-
trary constraints to control parsing. These facilities allow the kind
of data-dependent parsing commonly needed in systems applica-
tions, particularly those that operate over binary data. In addition,
(5) nonterminals may be parameterized by arbitrary values, which
gives the system good modularity and abstraction properties in the
presence of data-dependent parsing. Finally, (6) legacy parsing li-
braries, such as sophisticated libraries for dates and times, may be
directly incorporated into parser specifications. We illustrate the
importance and utility of this rich format specification language by
presenting its use on examples ranging from difficult programming
language grammars to web server logs to binary data specification.
We also show that our grammars have important compositionality
properties and explain why such properties are important in modern
applications such as automatic grammar induction.

In terms of technical contributions, we provide a traditional
high-level semantics for our new grammar formalization and show
how to compile these grammars into nondeterministic automata.
These automata are stack-based, somewhat like conventional push-
down automata, but are also equipped with environments to track
data-dependent parsing state. We prove the correctness of our trans-
lation of data-dependent grammars into these new automata and
then show how to implement the automata efficiently using a vari-
ation of Earley’s parsing algorithm.

1. Introduction
The study of parsing is one of the oldest and most intellectually sat-
isfying areas of programming languages, stretching back decades to
the dawn of computer science. The best work in this field has nearly
universal practical application and yet is based around remarkably
elegant and general automaton theories. More recently, however,
the study of parsing has come to be viewed as a somewhat boring,
largely solved problem. To be honest, using the word parsing in the
introduction of a POPL paper is a bit of a dicey move.

Perhaps one reason the study of parsing in programming lan-
guages circles may have gone out of vogue is that widely-used
tools such as YACC [16] hit a sweet spot in the expressiveness-
performance tradeoff space in the 1970s. YACC and its relatives
were based around the LR fragment of context-free grammars and
hence were powerful enough to express the syntax of many pro-
gramming languages (with only the occasional egregious hack),
and yet also gave linear-time performance. Consequently, in an
era when computational resources were less plentiful than in mod-

ern times, programmer convenience and expressiveness were sacri-
ficed for performance. Since then, for the most part, PL researchers
have hung on to legacy tools because they are well-known, well-
supported, taught in school and universally available, rather than
because they are optimally designed.

On the other hand, programmers outside the minuscule world
of PL implementors almost never use parser generators. Despite
the fact that they are constantly writing parsers—for data formats,
networking protocols, configuration files, web scraping and small
domain-specific languages—they do most of it by hand, often us-
ing regular expression libraries that support context-sensitive fea-
tures like backreferencing and POSIX anchors. This is not because
they are unaware of PL tools, but rather because these tools do not
solve their problems. For example, when Rescorla implemented the
SSL message data format, he “attempted to write a grammar-driven
parser (using YACC) for the language with the aim of mechanically
generating a decoder, but abandoned the project in frustration” [27,
p. 68]. Another highly-visible project, HTML 5.0 [13], has aban-
doned the grammar formulation of previous versions and is essen-
tially specifying the syntax by an imperative program!

Hence, in order to serve programming language researchers
better, and, more importantly, the legions of other programmers
who actually write most of the parser code in the world, we need
substantial improvements in the power and flexibility of parser
generation technology.

1.1 Towards full context-free grammars
There have been a number of recent efforts to build parser genera-
tors that support unrestricted context-free grammars [24, 32, 30, 6].
In particular, McPeak has made a number of convincing arguments
for abandoning the constraints of LR [23]. From a theoretical per-
spective, one central problem with LR is that it has poor compo-
sitionality properties. One cannot necessarily define a first sub-
language A, then a second sublanguage B and take their union:
S = A | B. If A and B overlap then S is ambiguous and is not
LR. Moreover, in order to create a language S containing all of A
and B, one must take the union of A with the asymmetric differ-
ence B/A (or vice versa: take B with the asymmetric difference
A/B). Unfortunately, LR is not closed under set difference [24]
so unifying the two languages by finding the difference could be
impossible! Even when the set difference remains LR, finding the
appropriate way to express it requires digging in to and adjusting
the definitions of A and/or B—these sublanguages cannot be de-
veloped independently in a modular fashion.

In practice, working within the constraints of LR can be very
difficult, as anyone who has attempted to debug a shift-reduce or
shift-shift error can attest. Debugging such errors is not only dif-
ficult for the initial programmer, but the resulting solutions often
involve grammars that are harder to read, understand and maintain.
As such, these grammars lose a great deal of their benefit as doc-
umentation. Moreover, not all practical grammars are amenable to
such techniques. For instance, C and C++ contain a number of in-

herent ambiguities in their grammars. One troublesome example is
that there is no way to determine whether (a)&(b) is a bit-wise
conjunction or if it is a cast of &(b) to the type (a), without know-
ing whether a is a variable name or a type name. Hence, attempting
to parse C using an LR-based parser is only possible by stepping
completely outside the grammar specification mechanism and hav-
ing the parser communicate dynamic information about new type
names back to the lexer. In a full context-free grammar specification
mechanism, such hacks can elegantly be avoided simply by allow-
ing ambiguities at parse time and disambiguating during semantic
analysis [23].

1.2 Beyond context-free grammars
A robust parser generator for full context-free grammars may serve
programming languages researchers well, but if we look beyond
our community, there is a huge market for substantially more so-
phisticated parsing technology.

For example, in the web space, there is no more common task
than matching identical XML or HTML tags, but, of course, this is
not a context-free task. In binary formats, it is extremely common
to use data fields that specify the lengths or sizes of other data fields,
another non-context free feature. In addition, the specifications
of many systems data formats are made simpler by the presence
of constraints, such as bounds on integer ranges, expressed as
arbitrary predicates over parsed data. In summary, without moving
aggressively beyond the bounds of context-free grammars, parser
generators are nearly useless to systems developers, networking
engineers and web programmers.

One final limiting factor of standard parser generators is the in-
ability to incorporate useful legacy code and libraries into parser
definitions. For instance, there are over a hundred commonly used
date and time formats and consequently programmers have devel-
oped sophisticated libraries for dealing with them. It is extremely
useful for programmers to be able to incorporate such libraries di-
rectly into their parser specifications—after all handling dates and
times correctly might well be the most difficult element of parsing
some server log. If programmers cannot incorporate their favourite
libraries, they may well just reject the parser specification mecha-
nism all together.

1.3 YAKKER: A general solution to modern parsing problems
In this paper, we present the theory and design of a new, general-
purpose parsing engine called YAKKER. YAKKER is designed to be
general enough to solve the parsing problems of the modern world,
both inside and outside the programming languages community.
In particular, it combines all of the following key elements in one
universal platform:

• Full, scannerless context-free grammars. Full context-freedom
allows easy expression of complex programming language
grammars such as those for C++. Scannerless parsers reduce
the burden on both parser-generator users and implementors
by avoiding the need for a separate lexing tool and description
language [28], and they make it easier for users to combine sub-
languages with different tokens or whitespace conventions [1].

• Regular right sides. YAKKER uses regular expressions over ter-
minals and nonterminals for the right-hand sides of nontermi-
nal definitions. Regular right sides allow for very concise defi-
nitions in many situations. YAKKER handles regular right sides
directly, rather than desugaring them into a more restricted form
(an inefficient translation).

• Variable binding. Our grammar formalism allows variables to
be bound to data read earlier in the parse and used to direct
parsing that comes later.

• Data-dependent constraints. Our grammar formalism allows
programmers to include arbitrary predicates over parsed data.
When combined with our variable binding functionality, this
feature allows for easy expression of length fields and other
data-dependent parsing idioms.

• Parameterized nonterminals. Parameterized nonterminals allow
users to create libraries of convenient abstractions that are easily
customized and highly reusable.

• Inclusion of parser libraries. Allowing arbitrary parser libraries
to be included in grammar specifications as black boxes enables
reuse of legacy parser libraries.

The central technical contribution of this paper is a comprehen-
sive theory that explains how to combine this powerful set of fea-
tures into a single grammar formalism and to implement that gram-
mar formalism correctly. The implementation strategy is carried
out by translating our grammars into a new kind of automaton, the
data-dependent automaton (DDA). We give a direct, nondetermin-
istic operational semantics to the data-dependent automaton and
prove that it implements our grammars correctly. Like its brethren,
the finite automaton and the pushdown automaton, our new au-
tomaton is an elegant, powerful abstraction in its own right and
a useful implementation-level tool amenable to formal analysis,
transformation and optimization. The last piece of our theory is to
show how to implement the nondeterministic semantics efficiently
by extending the traditional Earley parsing algorithm [5]. We prove
our final parsing algorithm correct with respect to the nondetermin-
istic automaton semantics. By transitivity, we have a proof it imple-
ments our high-level grammar specifications correctly as well.

In addition to these theoretical contributions, we illustrate the
importance, utility and generality of our new design with example
grammar fragments that specify a number of different sorts of lan-
guage paradigms. These paradigms are drawn from a wide variety
of domains ranging from complex programming language syntax
to widely-used systems logs to networking protocols. We have also
implemented a prototype of our system which is able to compile
and run all of these examples.

The rest of the paper is structured as follows. In Section 2, we
introduce the features of YAKKER by example. Then, in Sections 3
and 4, we present the syntax and semantics of grammars and data-
dependent automata, respectively. Section 5 contains a proof that an
automaton soundly and completely implements a grammar, assum-
ing that a small set of conditions relating the grammar and automa-
ton are met. The section concludes with a straightforward compila-
tion of grammars into automata along with a proof that the result-
ing automata satisfy the specified conditions (thus guaranteeing the
correctness of the compilation). Then, in Section 6, we present an
Earley-style algorithm for parsing with data-dependent automata
and prove its correctness. In Section 7 we discuss related work, and
then conclude in Section 8.

2. YAKKER by example
We now illustrate the key features of YAKKER through examples.

Regular right sides In YAKKER, nonterminals are defined by
regular expressions over the terminals and nonterminals of the
grammar. For example, here we define two nonterminals:

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
number = digit digit∗

The first nonterminal, digit, is defined as an alternation of terminals
(in bold), and it denotes the set of ASCII numerical characters. The
second, number, is defined in terms of digit using concatenation
and Kleene-closure. This familiar notation is standard for lexer
generators, but uncommon in parser generators. We allow it for all
language constructs. Thus a list of expressions can be written

expr , expr (, expr)∗

Parser generators that do not support regular right sides force pro-
grammers to define the list as a separate nonterminal, as in this
excerpt from the OCAML implementation [20]:

expr_comma_list : expr_comma_list COMMA expr
| expr COMMA expr

This is more verbose and less readable than the equivalent regular
right side, a fact emphasized by the use of regular right sides to
describe OCAML syntax in the user manual.

When implemented properly, regular right sides are also effi-
cient. Any grammar with regular right sides can be transformed
into a grammar without them, however, this will add many non-
terminals to the language, and thus a great deal of extra structure
to parse trees. Regular expressions are highly ambiguous, e.g., the
expression (x∗)(x∗) can be matched against an input of length n
in n + 1 ways. Compiling away regular right sides therefore re-
sults in highly ambiguous grammars, which are more expensive to
parse. YAKKER handles regular right sides directly and efficiently,
ignoring their ambiguities via determinization, as is traditional with
regular expressions (cf Section 4).

Full context-free grammars We support context-free grammars
without restriction, including ambiguous grammars. For example,
the problem with C’s syntax mentioned in the introduction can be
avoided simply by using an ambiguous grammar:

typename = identifier
expr = & expr ; address-of

| expr & expr ; bitwise conjunction
| (typename) expr ; cast
| (expr)
| identifier
| . . .

(The grammar is ambiguious because typenames and identifiers are
identical.) Of course, ambiguities must be resolved at some point.
One way would be to resolve them during the typechecking phase
of the compiler, when all type names are available [23]; we give
another way later in this section.

Outside of programming languages, ambiguous grammars are
often used as documentation. For example, many network protocol
message formats are specified using grammars (in IETF Request
For Comments, or RFCs), and we have found that these grammars
are almost invariably ambiguous.

Attribute-directed parsing Nonterminals can capture input sub-
strings which the programmer can use to direct the parser’s be-
haviour on the remainder of the input. This is commonly needed
when parsing systems formats, such as network protocol messages.
For example, protocols that need to transfer binary data often do so
using messages consisting of the length of the data followed by the
data. In the IMAP mail protocol [4] these are called literals, and
their syntax is specified in the RFC [25] as follows:

literal8 = "˜{" number ["+"] "}" CRLF *OCTET
;; A string that might contain NULs.
;; <number> represents the number of OCTETs
;; in the response string.

Here number is an ASCII representation of the length of the data,
CRLF is a carriage return and linefeed, and OCTET is any 8-bit
value. We can express the syntax of an IMAP literal directly using
bindings and constraints:

literal8 = ˜{ x=number (+ | ε) } {n=string2int(x)} CRLF
([n > 0] OCTET {n = n − 1})∗ [n = 0]

Here we bind the string parsed by number to a variable x, convert
x to a number n and use constraints (expressions within square

brackets) and value binding (assignments in braces) to express the
RFC’s side condition on the length directly in the grammar.

One way to implement this specification would be to evalu-
ate these bindings and constraints in a semantic analysis following
parsing, as we suggested for the C example, above. However, this
would be very inefficient—our parser would have to treat the length
abstractly, potentially promoting all possible lengths to its output.
Instead, we evaluate constraints during parsing to prune ambigu-
ities as soon as possible. We call this attribute-directed parsing,
following Watt [33]. Notably, attribute-directed parsing subsumes
backreferences, which are commonly used in hand-written parsers
based on regular expression libraries.

Parameterized Nonterminals The length+data idiom of IMAP
literals is used in many systems formats. We have parameterized
nonterminals to support modular reuse of such idioms. For exam-
ple, we could define a fixed-width string nonterminal:

stringFW(n) = ([n > 0] CHAR8 {n = n − 1})∗ [n = 0]

This is an imperative definition, relying on the assignment n =
n − 1. We could alternatively use a functional style:

stringFW(n) = [n = 0] | [n > 0] CHAR8 stringFW(n − 1)

(The [n = 0] case parses the empty string.) Our formalism, in
principle, would allow an optimizing parser generator to convert
tail calls of this form into Kleene-closures of the previous form.

Parameters can be used to thread parsing state through a parse
to aid attribute-directed parsing. For example, ambiguities in the C
grammar can be pruned at parse time by passing a table of type
identifiers to the expr nonterminal:

decls(s) = typedef type-expr x=identifier
decls(insert(s.types,x))

| . . .
typename(s) = x=identifier [member(s.types,x)]

expr(s) = & expr(s) ; address-of
| expr(s) & expr(s) ; bitwise conjunction
| (typename(s)) expr(s) ; cast
| (expr(s))
| x=identifier [not(member(s.types,x))]
| . . .

Scannerless parsing YAKKER does not divide parsing into sepa-
rate scanning (lexing) and parsing phases. Many data formats use
hand-written parsers and were not designed with a two-phase pars-
ing strategy in mind. It would be difficult to write two-phase parsers
for these formats. For example, we have found that many of the for-
mats defined in RFCs using grammars require context-dependent
tokenization.

Scannerless parsers are often also useful in parsing program-
ming languages. One example is Javascript, which sometimes al-
lows semicolons to be omitted at the end of a line, e.g., after a void
return statement. Here is a simplification that illustrates how we
can handle this in YAKKER:

statement = return (SP | TAB)∗ (NL | ; | identifier ;)

Another example is the use of indentation for block structure,
as in Python and Haskell.1 This is context-dependent whitespace:
it must be handled specially by the lexer if it is at the beginning of
a line within a block, and the block structure is only known by the
parser. This forces the lexer and parser to be mutually recursive.

For a final example, consider a template language like PHP,
which mixes the syntax of two languages, HTML and the PHP con-

1 This formatting is known as the “offside rule,” and was first formulated by
Peter Landin [19].

trol language. The languages have different keywords and comment
syntax, which again leads to context-dependent lexing.

Blackbox parsers Support for the full range of context free gram-
mars (and beyond) allows us to seamlessly integrate support for
foriegn parsers, or blackboxes, into our formalism, which can be
essential for parsing real-world languages and data formats. For
example, consider these two sample lines from a web server log,
which include a complex date field (the lines are broken with a “\”
to fit).

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] \
"GET /tk/p.txt HTTP/1.0" 200 30

tj62.aol.com - - [16/Oct/1997:14:32:22 -0700] \
"POST /scpt/dd@grp.org/confirm HTTP/1.0" 200 941

Here is a grammar fragment describing this data, where the date
field is described with a blackbox nonterminal, bbdate. SP is a
nonterminal defined as the space character; we omit the definitions
of the other nonterminals.

blackbox bbdate
entry = client SP auth-id SP auth-id SP [bbdate]

SP request SP response SP length

In our formalism, blackbox nonterminals come from a different
namespace than other nonterminals. We indicate this here with the
“blackbox bbdate” declaration.

Compositionality Our grammars are closed under union, con-
catenation, and Kleene closure. We learned about the importance
of these compositionality properties from our experience with the
PADS family of languages [7, 8, 22]. PADS is a domain-specific
language that interprets specialized type declarations as grammars.
These type declarations can be used to generate parsers and print-
ers as well as a variety of useful end-to-end data processing tools.
PADS grammars are superficially similar to the grammars presented
in this paper—they contain regular expressions, variable binding,
constraints, parameterized definitions and black-box parsers. How-
ever, PADS grammars have a different semantics that makes them
easy and efficient to implement using a top-down, recursive descent
parsing algorithm with limited backtracking. In particular, if, when
parsing the union (A + B), PADS succeeds in parsing an A, it will
commit to that choice and never backtrack, even when downstream
errors arise that could be avoided if the input was interpreted as a
B. PEGS, another related grammar specification language analyzed
by Ford [10, 11], and implemented efficiently by Grimm [12], has
similar expressive power and semantics.

Unfortunately, the PADS semantics has undesirable conse-
quences in certain applications because it causes closure under
union and concatenation to fail:

• L(A + B) 6= L(A) ∪ L(B)
• L(AB) 6= L(A) L(B)

Both of these principles are required for the correct functioning
of divide-and-conquer grammar induction algorithms, including
algorithms designed to infer PADS descriptions [9].2 The PADS
grammar induction algorithms attempt to avoid learning incorrect
grammars by using various heuristics, but the heuristics are not
always successful — the algorithms do fail occasionally on real
data sources.

More generally, these principles are essential for modular gram-
mar design. If they hold, programmers can develop sublanguages A
and B in isolation and then, without further modification, perform
natural operations such as union or concatenation and receive the
expected resulting semantics.

2 Ford [11] proves PEGS, which are related to PADS, are closed under union,
but only under a non-standard definition of what it means for a string to be
in a language (the PEG need only succeed on a prefix of the string).

3. Grammars and languages
We now specify the formal syntax and semantics of grammars.
Grammars refer to a simple, untyped language of expressions (e)
that includes variables (x, y, z, etc.), booleans (true , false), unit
values () and strings of terminal symbols w. An environment E :=
· | E[x = v] is a finite partial map from variables to values. We
write E, E′ for the concatenation of two environments. Bindings
to the right take precedence over bindings to the left (an update
semantics). We write [[e]]E to denote the value v that results from
evaluating e in environment E.

Definition 1
A grammar G is a tuple (Σ, ∆, Φ, A0,R) where

• Σ is a finite set of terminals;
• ∆ is a finite set of nonterminals;
• Φ is a finite set of blackboxes;
• A0 ∈ ∆ is the start nonterminal; and
• R maps nonterminals to parameterized right-hand sides.

We use A, B, C to range over nonterminals, a, b, c to range over
terminals and β to range over blackbox parsers. The empty se-
quence is written ε. We let meta-variable r range over the rules,
which are defined below.

r ::= ε | c // the empty string, terminals
| x = A(e) // nonterminal
| x = e // binding
| r.r | r + r // sequence, alternation
| r∗ // Kleene-closure
| [e] // constraint
| β(e) // blackboxes (foreign functions)
| empty // the empty language

A parameterized right-hand side is a function from values to rules:
λy0.r. We reserve the variable y0 for use as the rule parameter—
other bound variables (i.e., the x in x = A(e) or in x = e) may not
be y0. When x does not appear elsewhere in a right-hand side we
write A(e) in place of x = A(e). When y0 does not appear in A’s
rule, we write A in place of A(e) and call A an unparameterized
nonterminal. The start nonterminal is always unparameterized.

Figure 1 defines the judgment E ` w ∈ r ⇒ E′, which says
that string w belongs to the language of a rule r in environment
E, and produces new bindings E′. One of the simpler rules is
GL-TERM, which states that the character c is in the language of
the rule c in any environment E and produces no new bindings.
A somewhat more interesting rule is GL-A, which states that w
is in the language of x = A(e) provided that e evaluates to v
and w is in the right-hand side of A applied to v. This rule also
produces the binding [x=w]. Rule GL-SEQ shows how to process a
concatenation expression—notice the way it threads environments
through the rule from one part to the next.

The language of a nonterminal A is then defined as follows.

LA = λy.{w | [y0 = y] ` w ∈ r ⇒ E,R(A) = λy0.r}
The language of a grammar G is just the language of its start
nonterminal: LG = LA0(). Then our grammars have the desired
compositionality properties:

Theorem 1 (Compositionality Properties)
Let G1 and G2 be grammars with disjoint variables and nontermi-
nals and let A0,1 and A0,2 be the start nonterminals of G1 and G2.
It is possible to construct three new grammars with the following
properties.

i. If G′ is the union of G1 and G2 with a new start nonterminal
defined as A0,1 + A0,2 then L(G′) = L(G1) ∪ L(G2).

E ` w ∈ r ⇒ E′

GL-EPS
E ` ε ∈ ε ⇒ ·

GL-TERM
E ` c ∈ c ⇒ ·

GL-PRED
[[e]]E = true

E ` ε ∈ [e] ⇒ ·

GL-BIND
[[e]]E = v

E ` ε ∈ x=e ⇒ [x=v]

GL-β
[[e]]E = v w ∈ Φ(β)(v)

E ` w ∈ β(e) ⇒ ·

GL-A
[[e]]E = v R(A) = λy0.r [y0=v] ` w ∈ r ⇒ E′

E ` w ∈ x=A(e) ⇒ [x=w]

GL-SEQ
E ` w1 ∈ r1 ⇒ E1 E, E1 ` w2 ∈ r2 ⇒ E2

E ` w1w2 ∈ r1.r2 ⇒ E1, E2

GL-+L
E ` w1 ∈ r1 ⇒ E1

E ` w1 ∈ r1 + r2 ⇒ E1

GL-+R
E ` w2 ∈ r2 ⇒ E2

E ` w2 ∈ r1 + r2 ⇒ E2

GL-*
E, E1, . . . , Ei−1 ` wi ∈ r ⇒ Ei, for i = 1 to k

E ` w1 . . . wk ∈ r∗ ⇒ E1, . . . , Ek

Figure 1. The string-inclusion judgment for rules.

ii. If G′ is the union of G1 and G2 with a new start nonterminal
defined as A0,1.A0,2 then L(G′) = L(G1).L(G2).

iii. If G′ is G1 with a new start nonterminal defined as A∗
0,1 then

L(G′) = L(G1)
∗.

The compositionality properties follow immediately from the rules
of Figure 1. The following corollary is a direct consequence.

Corollary 2 (Closure Properties)
If L1 and L2 are languages of grammars, then (L1 ∪L2), (L1L2),
and L∗

1 are languages of grammars.

4. Data-dependent Automata
One of the beauties of parsing theory is that high-level grammati-
cal concepts can often be implemented in terms of lower-level au-
tomata, which are themselves useful abstractions for programmers
and compiler implementers. In this section, we present a new kind
of automaton that can implement our data-dependent grammars.

Our new automata are technically transducers – that is, they do
not only recognize an input, but also produce outputs, although only
from final states. They extend the transducers of Jim and Mandel-
baum [15], which were created to parse context-free grammars with
regular right-hand sides. Jim and Mandelbaum’s idea was to encode
regular right sides as subautomata within the transducer, to explic-
itly label calls from one nonterminal’s automaton to another’s, and
to explicitly label final states with the name of the nonterminal be-
ing completed. Constructing transducers in this way gives them
three essential characteristics. First, they allow for left-factoring
of grammar alternatives, which makes it possible to reduce the
nondeterminism that will arise during parsing. Second, they allow

for direct implementation of regular expressions as traditional au-
tomata, rather than through desugaring into a more restricted form
of context-free grammar. Such a direct implementation has a sig-
nificant impact on parsing efficiency by reducing stack activity.
Third, the transducers support left-recursion—programmers are not
forced to write their grammars with repetition operators, as is the
case for PEGs [11] and many parser combinators [14].

In this section, we extend the core ideas found in Jim and Man-
delbaum’s work by showing how to add support for binding, depen-
dency, constraints, parameters and black boxes. We give a nondeter-
ministic operational semantics for transducers containing this rich
set of features. While this semantics could be used to implement
the transducer directly with a backtracking, depth-first parser, we
do not do so—Section 6 presents a breadth-first algorithm based on
ideas drawn from Earley’s parsers for context-free grammars [5].
However, before presenting any of these technical details, we ex-
plain the high-level ideas through the use of several simple exam-
ples.

4.1 Transducers by example
Figure 4.1 shows three example transducers along with their source
grammars. Figure 4.1 (a) defines a fixed-width integer, with the
width specified as a parameter to the nonterminal named int. In
this picture, some edges (such as the edge between states 2 and 3)
are labelled with terminal symbols. These edges can be interpreted
in the ordinary way: a transition is enabled when the current input
symbol may be found on the edge. There are also predicate-labelled
edges (square brackets enclose predicate edges). The edge between
states 1 and 2 is an example of a predicate edge. A transition is en-
abled along a predicate edge when the predicate in question eval-
uates to true in the current environment.3 The edges enclosed in
curly braces are assignment edges — traversing the edge from 3 to
1 assigns n−1 to n. Lastly, notice that the final state for this au-
tomaton (final states are marked by double-circles) is labelled with
the nonterminal int. Final states may, in general, be labelled with
many nonterminals — arrival at such a state signals simultaneous
completion of multiple nonterminal definitions.

Figure 4.1 (b) contains a grammar and transducer for the same
language as Figure 4.1 (a), expressed in a functional style. Whereas
the previous example made no use of the stack, this example will
build a stack of depth equal to the value of the argument of the
nonterminal int. Stack frames are pushed (saving the current en-
vironment and calling state) at each call transition. Stack frames
are popped upon arrival at final states. For instance, imagine the
transducer takes the call transition between states 2 and 5 and then
reads a digit to arrive at the state labelled dig. At this point, control
will return to state 2, pop the stack (reinstalling the saved envi-
ronment) and take the transition between states 2 and 3. The 2-3
transition is taken because it is labelled dig — the same nontermi-
nal as is found in the final state the transducer is returning from.
A slightly more sophisticated call pattern occurs between states 3
and 1. In this case a parameter is passed to the callee. Notice that
the 3-1 edge is matched by another edge leading from 3 labelled
“int(n−1).” The “int” part of the label indicates this edge sup-
ports returns from states labelled with nonterminal int. The “n−1”
part of the label indicates it also requires that the parameter passed
to the call from which a return is made is equal to n−1.

Finally, Figure 4.1 (c) demonstrates the ability to represent left
factoring efficiently and the utility of final states labeled with mul-
tiple nonterminals. In this transducer, the call transition from states
1 to 4 is coupled with two return transitions from 1. One return
transition is labelled with nonterminal B and one with nontermi-

3 Execution of this automaton should begin with environment variable n
bound to some (positive) integer.

1

���
[n = 0]

2
[n > 0]

3

0-9

{n = n-1}

(a) int(n) = ([n > 0] (0 | . . . | 9)
{n = n − 1})∗ [n = 0]

1

2
[n > 0]

���
[n = 0]

3

dig

5����

���������
���

int(n-1)

���
0-9

(b) dig = 0 | 1 | . . . | 9
int(n) = [n = 0] | [n > 0] dig int(n − 1)

1

2
B

3
C

4

����

�
?

�
!

5
x

6-

7

+

�x

���
x

(c) A = (B ?) | (C !) B = x + x
C = (x + x) | (x - x)

Figure 2. Transducers for (a) an imperative specification of a fixed-width integer, (b) a functional specification of a fixed-width integer, and
(c) a (very) simple expression language demonstrating left-factoring. Final states are labeled with nonterminals, rather than state numbers.

nal C. Intuitively, the single call along the 1-4 edge implements a
parser for both B and C. Now, execution of the transducer can, if
the input matches “x−x,” proceed from state 4 to states 5 then 6
and finally to the state labelled C. In this case, we have found a
parse for C only and upon return can transition only from state 1
to state 3. Alternatively, if the input matches “x+x,” execution will
proceed from 4 to 5 to 7 to the B, C state. In this case both B and
C nonterminals have been parsed simultaneously and transitions to
either 2 or 3 may be taken from state 1 upon return. The ability to
optimize automata by merging states and to parse multiple nonter-
minals simultaneously results in substantial practical performance
gains [15]. We retain this important feature despite the extensions
required by data-dependent grammars.

4.2 Trees
Our transducer semantics specifies the construction of parse trees,
so we define them here.

Definition 2 (Parse Trees)
A tree T is a sequence of

• terminals c,
• bindings {x = v},
• blackbox strings 〈w〉, or
• four-tuples x:A(v)〈T ′〉 representing subtrees for nonterminals

A applied to v and with leaves bound to x.

Definition 3 (Subtrees)
T1 is a subtree of T at depth n iff

1. T = T0 T1 T2 and n=1, or
2. T = T0 x:A(v)〈T ′〉 T2, and T1 is a subtree of T ′ at depth

n− 1.

Let m range over (c | {x = v} | 〈w〉)∗. We define an erasure
function,|m|, from strings m to strings w as:

|ε| = ε |cm| = c|m|
|{x = v}m| = |m| |〈w〉m| = w|m|

Definition 4 (Roots and Leaves)
We define two functions on trees, roots(T) and leaves(T).

• roots(m) = m and roots(x:A(v)〈T 〉) = x:A(v).
• leaves(m) = |m| and leaves(x:A(v)〈T 〉) = leaves(T).

When a tree is a sequence of length ≥ 1, we define roots(T) and
leaves(T) in the obvious way.

Finally, we let W range over the range of the roots function,
(c | {x=v} | 〈w〉 | x=A(v))∗, and refer to strings W as abstract
strings. We will discuss abstract strings further in Section 5.

(q, E, T, r)::tl ⇒ (q′, E′, T ′, r′)::tl′

S-TERM
r →c s

(q, E, T, r)::tl ⇒ (q, E, Tc, s)::tl

S-PRED
r

e−→ s [[e]]E = true

(q, E, T, r)::tl ⇒ (q, E, T, s)::tl

S-BIND
r

x=e−→ s [[e]]E = v (x 6= y0)

(q, E, T, r)::tl ⇒ (q, E[x=v], T{x=v}, s)::tl

S-β
r

β(e)−→ s [[e]]E = v w ∈ Φ(β)(v)

(q, E, T, r)::tl ⇒ (q, E, T 〈w〉, s)::tl

S-CALL
r

call(e)−→ s [[e]]E = v

(q, E, T, r)::tl ⇒ (s, [y0=v], ε, s)::(q, E, T, r)::tl

S-RETURN

r 7→ A r′
x=A(e)−→ s

[[e]]E′ = v = E(y0) (x 6= y0)

(q, E, T, r)::(q′, E′, T ′, r′)::tl ⇒
(q′, E′[x=leaves(T)], T ′ x:A(v)〈T 〉, s)::tl

Figure 3. The stack evaluation relation.

4.3 Semantics

A parsing transducer T is a tuple (Σ, ∆, Q, Φ, A0, q0,→,
call(e)−→ , 7→)

where

• Σ is a finite set of terminals;
• ∆ is a finite set of nonterminals;
• Φ is a a finite set of blackboxes;
• Q is a finite set of states;
• A0 ∈ ∆ is the start nonterminal;
• q0 ∈ Q is the initial state;
• → is the transition relation with one of the following forms:

c−→ (terminal), e−→ (constraint), x=e−→ (binding),
β(e)−→ (black-

box),
x=A(e)−→ (nonterminal);

• call(e)−→ ⊆ Q× Ω×Q is the call relation; and
• 7→ ⊆ Q × ∆ is the output relation from final states to nonter-

minals.

We use q, r, s, t, u to range over states and α, β, γ to range over
sequences of states. A configuration is a 5-tuple (q, E, T, r) :: tl
where tl acts as a stack that grows to the left. The first element of
the tuple (q) is the callee at which the parse of the current nonter-
minal(s) began. While the callee does not influence the parsing pro-

cess, its inclusion simplifies the task of proving that the Earley-style
parsing algorithm in Section 6 preserves the semantics of transduc-
ers. The next element of the tuple (E) is the current environment.
It is followed by the parse tree (T) under construction. The last
element of the tuple (r) is the current state.

Figure 3 defines ⇒, a single-step evaluation relation for con-
figurations. One of the simpler rules is S-INPUT, which extends
the current tree with a terminal based on a transition on that ter-
minal appearing in the transducer. Of greater complexity are rules
S-CALL and S-RETURN, which manage the stack. Rule S-CALL
transitions to another state much like a function call. A new stack
tuple is pushed with the callee as the current state, an empty tree,
and an environment that contains only the call argument bound to
y0. To guarantee access to the call argument at any point during
evaluation, we ensure that y0 is not updated with the side condition
x 6= y0 on rules S-BINDING and S-RETURN.

Rule S-RETURN is invoked whenever a final state is reached.
The stack is popped and any transition x = A(e) from the previous
current-state r′ can be followed, as long as e evaluates to the call
argument of the current tuple. Also, the string parsed by A(e),
leaves(T), is bound to x in the environment.

The multi-step evaluation relation, ⇒∗, is defined as usual. No-
tice that the multi-step evaluation relation defines a nondeterminis-
tic algorithm for parsing with the transducer.

We complete this section by noting that just as we can talk about
nonterminal languages in the grammar, we can describe nontermi-
nal languages in the transducer. However, given that the transducer
might have multiple callee states for any given nonterminal, we de-
scribe the nonterminal languages with respect to a particular callee.

Definition 5
We characterize LA(q), the language of A at q, as

LA(q) =λ y.{w | (q, [y0=y], ε, q) ⇒∗ (q, E, T, r),

r 7→ A, w = leaves(T)}
and the language of the transducer LT = LA0(q0)().

5. Grammars and Transducers
Before we present our Earley-style parsing algorithm, we will
prove that data-dependent automata are powerful enough to parse
the languages of data-dependent grammars. We do so in two steps.
First, we identify sufficient conditions for a given transducer to
parse the language of a given grammar. Then, we present a transla-
tion from grammars to transducers that satisfies the conditions.

5.1 Abstract Languages
Our strategy for relating grammars to transducers is to reduce the
problem to one of independently comparing subautomata within
the transducer with right-hand sides in the grammar, without ref-
erence to the remainder of the grammar and transducer. In Sec-
tion 4.2, we defined abstract strings W , which contain symbolic el-
ements, like nonterminals, in addition to terminals. Here, we define
abstract languages – sets of abstract strings – for grammar nonter-
minals and transducer callees. We then compare subautomata with
right-hand sides via their respective abstract languages and show
how equivalence of these abstract languages implies equivalence
between a grammar and transducer.

In essence, abstract languages are defined by symbolic compar-
ison of abstract strings with right-hand sides and transducers. Yet,
there’s a catch: if some x = A(v) appears in an abstract string
W , then symbolicly evaluating W requires a value to be bound to
x for use in evaluating the remainder of W . Moreover, that value
must be a valid member of the language of A(v), which would
seem to break our goal of abstracting over the languages of nonter-
minals. Therefore, in order to recover modularity, we parameterize

Z; E ` W ∈ r ⇒ E′

AGL-EPS
Z; E ` ε ∈ ε ⇒ ·

AGL-TERM
Z; E ` c ∈ c ⇒ ·

AGL-PRED
[[e]]E = true

Z; E ` ε ∈ [e] ⇒ ·

AGL-BIND
[[e]]E = v

Z; E ` {x=v} ∈ x=e ⇒ [x=v]

AGL-β
[[e]]E = v w ∈ Φ(β)(v)

Z; E ` 〈w〉 ∈ β(e) ⇒ ·

AGL-A
[[e]]E = v w ∈ Z(A, v)

Z; E ` x:A(v) ∈ x=A(e) ⇒ [x=w]

AGL-SEQ
Z; E ` W1 ∈ r1 ⇒ E1 Z; E, E1 ` W2 ∈ r2 ⇒ E2

Z; E ` W1W2 ∈ r1.r2 ⇒ E1, E2

AGL-+L
Z; E ` W ∈ r1 ⇒ E1

Z; E ` W ∈ r1 + r2 ⇒ E1

AGL-+R
Z; E ` W ∈ r2 ⇒ E2

Z; E ` W ∈ r1 + r2 ⇒ E2

AGL-*
Z; E, E1, . . . , Ei−1 ` Wi ∈ r ⇒ Ei, for i = 1 to k

Z; E ` W1 . . . Wk ∈ r∗ ⇒ E1, . . . , Ek

Figure 4. String-inclusion rules for abstract languages of nonter-
minals.

our judgments by language-representative maps, Z : ∆ × V →
P(Σ∗), which contain representative sets for each nonterminal in
the grammar. That is, Z maps a pair of a nonterminal (A) and a
value (v) to a set of strings that will represent the language A(v).
Each lemma, theorem, etc. chooses a particular Z appropriate to its
setting. We will discuss our choice of Zs as they arise. The follow-
ing is a particular Z – parameterized by a tree T – which comes
into play frequently in the remainder of this section:

Definition 6 (Tree-specific Language-representative Map)
ZT = λ(A, y).{leaves(T ′) | T = T0 x:A(y)〈T ′〉T1}

Also, we can define an inclusion relation on Zs (needed later in this
section):

Definition 7 (Language-representative Map Inclusion)
Z1 ⊆ Z2 iff ∀A, v ∈ dom(Z1), Z1(A, v) ⊆ Z2(A, v).

In Figure 4, we define the abstract-string inclusion judgment for
grammars. We then define the abstract language of nonterminal A,
given Z, as

GZ
A = λ y.{W | Z; [y0=y] ` W ∈ r ⇒ E,R(A) = λy0.r}

In Figure 5, we present a judgment relating abstract strings
W to paths through the transducer. We also define its reflexive
and transitive closure in the expected way. We can now define the
abstract language of nonterminal A, given Z, at callee q as

T Z
A (q) = λ y.{W | Z; [y0=y] ` W : q →∗ s; E and s 7→ A}

Z; E ` W : q → r; E′

ATL-TERM
q

c−→ r

Z; E ` c : q → r; ·

ATL-PRED
q

e−→ r [[e]]E = true

Z; E ` ε : q → r; ·

ATL-BIND
q

x=e−→ r [[e]]E = v

Z; E ` {x=v} : q → r; [x=v]

ATL-β
q

β(e)−→ r [[e]]E = v w ∈ Φ(β)(v)

Z; E ` 〈w〉 : q → r; ·

ATL-A
q

x=A(e)−→ r [[e]]E = v w ∈ Z(A, v)

Z; E ` x:A(v) : q → r; [x=w]

Z; E ` W : q →∗ r; E′

Z; E ` ε : q →∗ q; ·
Z; E ` W1 : q →∗ r′; E1 Z; E, E1 ` W2 : r′ → r; E2

Z; E ` W1W2 : q →∗ r; E1, E2

Figure 5. Abstract string inclusion for transducers and its reflexive
and transitive closure.

5.2 Transducer Conditions
Perhaps the key element of the proof that transducers implement
grammars properly is the definition of the set of conditions (T0),
(T1), (T2) and (T3) that relates the language of a grammar G to
the language implemented by a transducer T . The intuition for the
conditions is as follows.

• (T0) states that the language of the transducer starting at q0

(the start state) and finishing at a final state for A0 (the start
nonterminal) must be the same as the language of A0 in the
grammar. In a nutshell, this condition states that the transducer
implements the start nonterminal correctly.

• An A(e)-edge is any edge with the form r
x=A(e)−→ s. With this

in mind, (T1) states that any A(e)-edge from a state r must be
coupled with a call edge from r with parameter e. Moreover,
that call edge must transition to a state q that implements the
language of non-terminal A. In a nutshell, this condition states
that the transducer contains some call that implements each
A(e)-edge correctly.

• A callee is either the start state q0 or any other state that has
a call edge leading to it. Hence, (T2) states that for each non-
terminal A, the language of A at every callee is a subset of
the language of A in the grammar. In a nutshell, the transducer
contains no calls that put extra garbage into the language of any
non-terminal.

• (T3) states that the transducer passes parameters in environment
variable y0, but does not otherwise use it. Consequently, return
actions, which check this variable, will be implemented cor-
rectly. (That’s it, in a nutshell.)

Formally, these conditions are specified as follows.

Definition 8
T is a transducer for G iff

(T0) T Z
A0(q0)() = GZ

A0(), for all Z.

(T1) If r
x=A(e)−→ s then r

call(e)−→ q, for some q with T Z
A (q)(v) =

GZ
A(v), forall Z, v.

(T2) If q is a callee, then T Z
A (q)(v) ⊆ GZ

A(v), forall Z, A, v.

(T3) For all transitions of the form x=e−→ and
x=A(e)−→ , x 6= y0.

5.3 Grammar-Transducer Correspondence
We start with some basic properties that relate abstract languages
based on a relationship between their Z parameters.

Lemma 1
a. If Z1 ⊆ Z2 and Z1; E ` W ∈ r ⇒ E′ then Z2; E ` W ∈

r ⇒ E′.
b. If Z1 ⊆ Z2 and Z1; E ` W : q →∗ r; E′ then Z2; E ` W :

q →∗ r; E′.

Corollary 2 (Weakening)
a. If Z1 ⊆ Z2 then ∀A, v. GZ1

A (v) ⊆ GZ2
A (v).

b. If q is a callee and Z1 ⊆ Z2 then ∀A, v. T Z1
A (q)(v) ⊆

T Z2
A (q)(v).

In the next few lemmas, we investigate some properties of
stack executions. The Prefix Lemma, below, shows that trees grow
monotonically, and, therefore, cannot be arbitrarily transformed
during parsing.

Lemma 3 (The Prefix Lemma)
If (q, E0, ε, q) ⇒∗ (q, E, T1T2, r), then
∃ s, E′. (q, E0, ε, q) ⇒∗ (q, E′, T1, s) and dom(E′) ⊆ dom(E).

Proof: by induction on ⇒∗ derivation.
Our next lemma allows results about stack evaluations in one

context to be applied in other contexts. It also provides intuition as
to the extent to which parsing is context sensitive. Specifically, it
shows that the context-sensitivity of a parse is strictly limited to the
environment in the top stack tuple. Anything outside of that envi-
ronment, located in the stack below, cannot affect parsing at higher
stack levels. This lemma plays an important role in the proofs of
nearly all of the lemmas and theorems that follow. Moreover, its
correctness is far from obvious and relies on the fact that if one
were to attempt to pop a series of stack frames and then push them
back on, one would not arrive back in exactly the same state, be-
cause the embedded parse trees would grow.

Lemma 4 (Context Independence)
If (q, E, T, r)::tl ⇒∗ (q, E1, T1, r1)::tl then ∀ tl′. (q, E, T, r)::tl′ ⇒∗

(q, E1, T1, r1)::tl
′

Proof: by induction on ⇒∗ derivation.
Now, we may begin the task of relating the languages of gram-

mars and transducers. In the Roots Lemma below, we demonstrate
that the trees constructed by a stack evaluation correspond to strings
in the abstract language of the transducer. Notice that we choose
ZT for our language-representative map, where T is the tree con-
structed by the stack evaluation of interest.

Lemma 5 (The Roots Lemma)
If q is a callee, (q, [y0=v], ε, q) ⇒∗ (q, E, T, r) and r 7→ A, then
roots(T) ∈ T ZT

A (q)(v).

The proof of Lemma 5 is carried out by strengthening the induction
hypothesis and then performing induction on the ⇒∗ relation.

With this result, together with condition (T2), we can now relate
trees constructed in a stack evaluation directly to the grammar.

Lemma 6 (The Roots-Grammar Lemma)
If T is a transducer for G, q is a callee, (q, [y0=v], ε, q) ⇒∗

(q, E, T, r), and r 7→ A, then roots(T) in GZT
A (v).

The following lemma completes the statement of correspon-
dence between trees and stack evaluations. In essence, it states that
every subtree within the tree produced by an evaluation has some
corresponding sub-evaluation.

Lemma 7 (The Subtree Lemma)
If T is a transducer for G, q is a callee, E0(y0) = v, (q, E0, ε, q) ⇒∗

(q, E1, T, r), and x:A(v1)〈T1〉 is a subtree of T at depth n,
then there exists a stack tl, callee s and state t 7→ A such that
(s, [y0=v1], ε, s)::tl ⇒∗ (s, E2, T1, t)::tl.

Proof: by induction on the depth of T1.
At this point, we are ready to prove our final result, namely, that

the language of a transducer will match the language of a grammar,
assuming our conditions are met. We prove language equality in
two steps, by proving mutual inclusion of the two languages. The
Leaves Lemma will show that the transducer’s language is included
in the grammar’s, and the Callee Correctness Lemma will show the
reverse.

Lemma 8 (The Leaves Lemma)
If T is a transducer for G, q is a callee, (q, [y0=v], ε, q) ⇒∗

(q, E, T, r), and r 7→ A, then leaves(T) ∈ LA(v).

Proof: by induction on height of the tree T .

Lemma 9 (Callee Correctness)
If T is a transducer for G, q is a callee and GZ

A(v) = T Z
A (q)(v),

forall Z, then LA(v) ⊆ LA(q)(v).

Proof: by induction on definition of LA(v) using condition (T1)
before applying the induction hypothesis and condition (T3) for
the bind and nonterminal cases.

Theorem 10 (Transducer for Grammar Correctness)
If T is a transducer for G then LT = LG.

Proof: with the above lemmas and the definitions of LT and LG,
we can directly show that LT ∈ LG and LG ∈ LT , respectively,
with the latter result relying on condition (T0).

5.4 Translation from Grammars to Transducers
The translation from data dependent grammars to transducers, pre-
sented in Figure 6, is an extension of the Thompson translation of
regular expressions into automata. The first judgment, S ` r
(s, F, T), states that right-hand side r is translated into transducer
graph T 4 with start state s and final state F . S is a finite partial map
from nonterminals to the start states for the automata implement-
ing them. The second judgment, G T , uses the first judgment
to build transducer graphs for all right-hand sides of nonterminals
in grammar G and puts the results together to construct a complete
transducer T . These judgments use the following notation.

• [s
z−→ t] is a transducer graph with a single arc of sort z from

states s to t.
• [s −→ t] is a transducer graph with a single epsilon transition

from states s to t. An epsilon transition is an abbreviation for
the predicate transition s

true−→ t.

4 In a slight abuse of notation, we have overloaded meta-variable T so
it represents both transducer graphs (the set of nodes and edges making
up the transducer relations) and full transducers (the graphs plus auxiliary
information such as the black boxes, terminal alphabet, etc.).

• T1; T2 is the transducer graph built by taking the union of nodes
and edges from graphs T1 and T2.

• [s 6→ t] is the transducer graph with disconnected states s and
t.

• Given a transducer graph T , [Σ, ∆, Φ, A0, sA0 , T] builds the
transducer with graph T and other components specified by
Σ, ∆, Φ, A0 and sA0 .

We are able to prove the following lemma establishing the
correctness of the right-hand side translation.

Lemma 11 (Rule Translation Correctness)
i. If S ` r (s, F, T) then the following are true of transducer

graph T :

a. There are no final states in T .

b. If r
x=A(e)−→ t in T then r

call(e)−→ S(A) in T .

c. If r
call(e)−→ s in T then s = S(A) for some A.

d. For all transitions of the form x=e−→ and
x=A(e)−→ , x 6= y0.

ii. If Z; E ` W ∈ r ⇒ E′ and S ` r (s, F, T) then
Z; E ` W : s →∗ F ; E′.

iii. If S ` r (s, F, T) and Z; E ` W : s →∗ F ; E′ then
Z; E ` W ∈ r ⇒ E′.

Proof: Each part is proven independently, by induction on height
of the first derivation. Intuitively, parts (ia) and (ic) help establish
(T2) (no extra garbage in the language). Part (ib) helps establish
(T1) (all A(e) edges are implemented). Part (id) helps establish
(T3). Parts (ii) and (iii) help establish the language equivalence
conditions specified in (T0), (T1) and (T2).

The Rule Translation Correctness Lemma, together with the
definition of the grammar translation and Definition 8 is sufficient
to prove that a transducer produced by the translation implements
its grammar correctly:

Theorem 12 (Grammar Translation Correctness)
If G T then T is a transducer for G.

6. An Earley-style Parsing Algorithm
The stack evaluation relation, while informative as a semantics of
the transducer, does not lend itself to efficient direct implementa-
tion. The nondeterministic nature of the relation could result in an
exponential time bounds for parsing even relatively simple gram-
mars, and nontermination for grammars with left-recursion. There-
fore, in this section, we provide an alternative, Earley-style parsing
algorithm that matches the transducer semantics, while (often) im-
proving execution behavior.

6.1 The Algorithm
The traditional Earley algorithm proceeds by computing a set of
Earley items for each position in the input. These items are com-
puted from left to right: First the Earley set for input position 1 is
computed, then the set for input position 2, etc.. Each item con-
tains information about what grammar rule is being parsed (and
how much of that grammar rule has been parsed) as well as the
position in the input where the parse for that rule started. A key
aspect of the algorithm is that the Earley sets act like a memoiza-
tion table – rather than re-parsing portions of the input multiple
times like an exponential-time back-tracking algorithm would do,
Earley saves work by reusing items from Earley sets. In Earley’s
case, the algorithm works because context-free grammars are, well,
context-free. Intuitively, in our case, an extension of the algorithm

S ` r (s, F, T)

T-EPS
s, F fresh

S ` ε (s, F, [s −→ F])

T-TERM
s, F fresh

S ` c (s, F, [s
c−→ F])

T-PRED
s, F fresh

S ` [e] (s, F, [s
e−→ F])

T-BINDING
s, F fresh x 6= y0

S ` x = e (s, F, [s
x=e−→ F])

T-BLACKBOX
s, F fresh

S ` β(e) (s, F, [s
β(e)−→ F])

T-A
s, F fresh x 6= y0

S ` x=A(e) (s, F, [s
x=A(e)−→ F]; [s

call(e)−→ S(A)])

T-SEQ

s, F fresh

S ` r1 (s1, F1, T1) S ` r2 (s2, F2, T2)

T3 = [s −→ s1]; [F1 −→ s2]; [F2 −→ F]

S ` r1.r2 (s, F, T1; T2; T3)

T-ALT

s, F fresh

S ` r1 (s1, F1, T1) S ` r2 (s2, F2, T2)

T3 = [s −→ s1]; [s −→ s2]; [F1 −→ F]; [F2 −→ F]

S ` r1 + r2 (s, F, T1; T2; T3)

T-*

s, F fresh S ` r1 (s1, F1, T1)

T2 = [s −→ s1]; [F1 −→ F]; [s −→ F]; [F1 −→ s1]

S ` r1∗ (s, F, T1; T2)

T-EMPTY
s, F fresh

S ` empty (s, F, [s 6→ F])

G T

T-G

R = [A0 = λy0.rA0 , . . . , Ak = λy0.rAk]

sA0 , . . . , sAk fresh

S = [A0 = sA0 , . . . , Ak = sAk]

S ` rAi (si, Fi, Ti) (for i = 0, . . . , k)

Tinit = [sA0 −→ s0]; · · · ; [sAk −→ sk]

Tfinal = [F0 7→ A0]; · · · ; [Fk 7→ Ak]

T = T0; · · · ; Tk; Tinit; Tfinal

(Σ, ∆, Φ, A0,R) [Σ, ∆, Φ, A0, sA0 , T]

Figure 6. Translation from grammars to transducers.

ET-INIT
ε ∈ tree(0, 0, q0, [y0=()], q0)

ET-TERM
T ∈ tree(i, j−1, q, E, r) r

cj−→ s

Tcj ∈ tree(i, j, q, E, s)

ET-PRED
T ∈ tree(i, j, q, E, r) r

e−→ s [[e]]E = true

T ∈ tree(i, j, q, E, s)

ET-BIND

T ∈ tree(i, j, q, E, r) r
x=e−→ s

[[e]]E = v (x 6= y0)

T{x=v} ∈ tree(i, j, q, E[x=v], s)

ET-BLACKBOX

T ∈ tree(i, k−1, q, E, r) r
β(e)−→ s

[[e]]E = v ck..cj ∈ Φ(β)(v)

T 〈ck..cj〉 ∈ tree(i, j, q, E, s)

ET-CALL
T ∈ tree(i, j, q, E, r) r

call(e)−→ s [[e]]E = v

ε ∈ tree(j, j, s, [y0=v], s)

ET-RETURN

[[e1]]E2 = [[e2]]E2 = E1(y0) = v (x 6= y0)

r 7→ A t
call(e1)−→ q t

x=A(e2)−→ u

T1 ∈ tree(k, j, q, E1, r) T2 ∈ tree(i, k, s, E2, t)

T2 x:A(v)〈T1〉 ∈ tree(i, j, s, E2[x=leaves(T1)], u)

Figure 7. The Earley Sets

will work because we include the local context E in our modified
Earley sets and, crucially, because, as stated by the Context Inde-
pendence Lemma (Lemma 4), parsing a particular grammar rule
only depends upon that local context, not on the tail of the stack.

With that background in mind, we present our modified Ear-
ley algorithm. The Earley sets involved in our algorithm are in-
dexed sets of parse trees (forests). A tree T belongs to the set
tree(i, j, q, E, r) when that tree is constructed by parsing the in-
put from position i+1 to position j. The parse of this subsequence
must have begun with the transducer in callee state q and ended
with the transducer in state r. Environment E is the environment
that was built during the course of the parse.

Figure 7 gives a declarative presentation of our earley algorithm
by specifying the trees that belong to each earley set. The first five
rules define tree construction when no subtrees are involved and are
quite similar to their counterparts (by name) in the definition of the
stack evaluation relation. Rule ET-TERM refers to character cj —
the jth symbol in the input string.

Rules ET-CALL and ET-RETURN control the construction of
subtrees. ET-CALL adds an empty tree to the forest whose start
index matches the current index of the caller and whose callee is
related to the current state via a call edge.5 ET-RETURN finds a
parse tree for some nonterminal A (that is, the tree is a member
of a forest whose state is a final state for A) and looks for all
the potential parents of that tree. They are found via the following
criteria: their current position is k, their current state calls the callee
state, they transition on A, and the value of A’s argument in the

5 The latter criterion is characteristic of Earley’s algorithm in that it ensures
that a subparse is only attempted if it is “predicted” by the grammar (trans-
ducer).

context of the parent tree’s forest must match the value of the
calling argument recorded in the context of the subtree’s forest.

Based on the tree sets defined in Figure 7, we define Earley
parsing as follows:

Definition 9 (Earley Parsing)
If T ∈ tree(0, j, q0, E, r) and r 7→ A0 then Earley(c1 . . . cj) =
tree(0, j, q0, E, r).

Therefore, we can say that an entire string w = c1 . . . cn is suc-
cesfully parsed if Earley(w) = S 6= ∅. Moreover, S contains all
possible parse trees for w.

We note that our declarative rules do not specify the order
in which to construct the Earley sets, and many different orders
are possible. The simplest order to use is to build the parse trees
in a breadth-first fashion, moving left to right through the input:
initialize tree(0, 0, q0, [y0=()], q0) to ε (as specified by rule ET-
INIT) and then, for each index j from 0 to the size of the input,
apply all rules which add a tree to some forest whose second
index is j, until those forests stop changing. There are a number
of potential optimizations one could apply to this algorithm, but
exploring them is beyond the scope of this paper.

6.2 Correctness
We would like to be sure that our algorithm matches the transducer
semantics defined earlier. We therefore show that for every tree
derivable in one schema, a corresponding tree is derivable in the
other schema. We first show that the Earley algorithm is sound with
respect to the stack semantics.

Theorem 13 (Earley Soundness)
If T ∈ tree(i, j, q, E, r) then there exists tl such that
(q0, [y0=()], ε, q0) ⇒∗ (q, E, T, r)::tl

Proof: by induction on the derivation that T ∈ tree(i, j, q, E, r).
Next, we show that the Earley algorithm is complete. First,

though, we extend the definition of leaves(·) to stacks:

leaves((q, E, T, r)::tl) = leaves(tl) leaves(T)

Theorem 14 (Earley Completeness)
If (q0, [y0=()], ε, q0) ⇒∗ (q, E, T, r)::tl, leaves(tl) = c1..ci,
leaves(T) = ci+1..cj , then T ∈ tree(i, j, q, E, r).

Proof: by induction on height of ⇒∗ derivation.

Corollary 15 (Earley Parsing Simulates Transducer Execution)
T ∈ Earley(w) iff (q0, [y0=()], ε, q0) ⇒∗ (q0, E, T, r) and r 7→
A0.

6.3 Running Time
We now turn to the issue of the running time and termination of
an algorithm implementing the rules of Figure 7, assuming that
such an algorithm does not needlessly revisit elements for which
all possible rules have already been applied. Given an input string
of length n, Earley showed a time bound of O(n3) for his original
algorithm6 [5]. Our extension enjoys a pay-as-you-go property,
with the following consequences:

1. In the case that a context-free grammar is specified, we re-
tain the O(n3) bound, given an efficient representation of tree
sets (for example, the binarised Shared Packed Parse Forests
(SPPFs) used by Scott [29]).

6 Following Earley, we consider the set insertion step in each rule as a
primitive operation, whose complexity is independent of the input [5].

2. In the case that the full features of our system are used, the
algorithm is guaranteed to terminate on all inputs, if (a) all
expressions within the grammar terminate, (b) the size of values
in environments is bounded, (c) all blackboxes terminate, (d)
the size of tree attributes is bounded and (e) tree sets have a
finite representation.

3. In the case that one or more of the above conditions are violated,
no guarantees can be made. Note, though, that those are suffi-
cient, but not necessary conditions, because exact behaviour of
the algorithm will usually depend upon the particular input.

7. Related Work
Throughout the paper, we have mentioned a number of important
related systems — we will not reiterate all of the points of com-
parison with those systems here. However, please recall the major
differences between our system and systems for Generalized LR
(GLR) include our support for direct compilation of regular-right
sides, attribute-directed parsing and blackboxes. Regarding Parsing
Expression Grammars (PEGs), we are additionally distinguished
by the compositionality properties of our formalism. These com-
positionality properties also distinguish us from the various data
description languages such as PADS [7, 22] and the Data Descrip-
tion Calculus formalism [8].

Attribute grammars (AGs) are a very powerful extension of
context-free grammars originally proposed by Knuth for defin-
ing the semantics of programming languages [18]. Much work in
AGs has been devoted to finding tractable and efficient restrictions,
such as those based on LR or LL grammars [17, 26]. Within at-
tribute grammars, our calculus corresponds most closely to the L-
attributed grammars [21]; our nonterminal parameters correspond
to inherited attributes, and our environments and bindings overlap
with synthesized attributes. Watt introduced the idea of directed
parsing [33], and applied it to the LR fragment of context-free lan-
guages. Correa [3] and Tokuda and Watanabe [31] have extended
Earley’s algorithm to L-attributed grammars, though omitting fea-
tures such as our environments, regular right sides, and blackboxes;
Correa implemented attribute-directed parsing.

Woods’ augmented-transition networks (ATNs) [34] are an au-
tomaton formalism closely related to our data-dependent automata.
They support all context-free languages, regular right-hand sides
and attribute-directed parsing. Moreover, Chou and Fu describe an
Earley-style algorithm capable of parsing with ATNs [2]. However,
they differ in a number of subtle, yet important, details. First, ATNs
are lower-level than our transducers (for example, requiring explicit
stack manipulation to handle call arguments and return values) and
are specified directly, rather than with a grammar which can be
compiled into an ATN. Woods does not present any such high-level
grammar formalism, nor state or prove any correspondence to some
existing grammar formalism, as we have. In addition, ATNs do not
support merging the automata of multiple nonterminals, because
final states are not labeled with their corresponding nonterminal.
ATNs do not support blackboxes, although they could be extended
to do so in the same way as we have done in our formalism. Finally,
to the best of our knowledge, the literature on ATNs does not in-
clude proofs of correctness of the Earley algorithm with respect to
a transducer semantics.

Finally, as we have mentioned before in the paper, this pa-
per builds on our previous work on Earley parsing for context-
free grammars with regular right sides [15], extending it to handle
attribute-directed parsing and blackboxes. Also new in this paper is
the presentation of a comprehensive meta-theoretic framework in
which we show how to prove the correspondence between gram-
mars, transducers and Earley parsing.

8. Conclusion
Modern programmers require modern parser generators. Parsing is
still very much an essential element of software systems in nearly
every area of software development, yet the technology underlying
the most common tools is outdated and the tools, therefore, largely
irrelevant. Promising advances are still being made in support of
full context-free grammars, most notably surrounding the GLR al-
gorithm. Yet, we believe, and have attempted to demonstrate with
a number of examples, that even support for all context-free gram-
mars is not enough for many mundane parsing tasks, particularly in
the area of systems programming. Features like scannerless pars-
ing, data-dependence, and blackbox support are crucial to meet the
many and varied demands of modern programmers.

We have presented a concise formalism which incorporates all
of these features into one framework. We have demonstrated the
utility and necessity of its features with a variety of examples and
formalized its syntax and semantics. We have also presented and
formalized the novel data-dependent automata, which are capa-
ble of parsing the languages of data-dependent grammars. We have
specified sufficient conditions under which an automaton can be
said to implement a grammar, proven that under those conditions
the language of the automaton matches the language of the gram-
mar, and presented an example compilation from grammars to au-
tomata that satisfies the sufficient conditions. Finally, we have pre-
sented and proven correct an (often) efficient algorithm for parsing
with data-dependent automata based on Earley’s classic algorithm
for parsing the full range of context-free grammars.

Acknowledgments
This material is based upon work supported by the NSF under
grants 0612147 and 0615062 and by a gift from Google. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the NSF or Google.

References
[1] Martin Bravenboer and Eelco Visser. Concrete syntax for objects:

domain-specific language embedding and assimilation without
restrictions. In Proceedings of the ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2004.

[2] S. M. Chou and K. S. Fu. Transition networks for pattern recognition.
Technical Report TR–EE–75–39, School for Electrical Engineering,
Purdue University, West Lafayette, IN, 1975.

[3] N. Correa. An extension of Earley’s algorithm for S- and L-attributed
grammars. In Proc. IntlĊonf. on Current Issues in Computational
Linguistics, Penang, Malaysia, 1991.

[4] M. Crispin. Internet Message Access Protocol — Version 4rev1.
http://www.ietf.org/rfc/rfc3501.txt, March 2003.

[5] Jay Earley. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94–102, 1970.

[6] Giorgios Economopoulos, Paul Klint, and Jurgen Vinju. Faster
scannerless GLR parsing. In Proceedings of the 18th International
Conference on Compiler Construction (CC). Springer-Verlag, 2009.

[7] Kathleen Fisher and Robert Gruber. PADS: A domain specific
language for processing ad hoc data. In PLDI, pages 295–304, 2005.

[8] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The next
700 data description languages. In ACM Symposium on Principles of
Programming Languages, 2006.

[9] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White.
From dirt to shovels: Fully automatic tool generation from ad hoc
data. In ACM Symposium on Principles of Programming Languages,
pages 421–434, January 2008.

[10] Bryan Ford. Packrat parsing:: simple, powerful, lazy, linear time. In
ACM International Conference on Functional Programming, pages
36–47. ACM Press, October 2002.

[11] Bryan Ford. Parsing expression grammars: a recognition-based syn-
tactic foundation. In ACM Symposium on Principles of Programming
Languages, pages 111–122. ACM Press, January 2004.

[12] Robert Grimm. Practical packrat parsing. Technical Report TR2004–
854, New York University, March 2004.

[13] Ian Hickson and David Hyatt. HTML 5: A vocabulary and associated
APIs for HTML and XHTML. http://dev.w3.org/html5/
spec/Overview.html#parsing.

[14] R. John M. Hughes and S. Doaitse Swierstra. Polish parsers, step by
step. In ACM International Conference on Functional Programming,
pages 239–248, New York, NY, USA, 2003. ACM.

[15] Trevor Jim and Yitzhak Mandelbaum. Efficient earley parsing with
regular right-hand sides. In Workshop on Language Descriptions
Tools and Applications, 2009.

[16] S. C. Johnson. Yacc: Yet another compiler compiler. Technical
Report 32, AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[17] Neil Jones and Michael Madsen. Attribute-influenced LR parsing.
In Semantics-Directed Compiler Generation, volume 94 of Lecture
Notes in Computer Science, pages 393–407. Springer Berlin, 1980.

[18] Donald E. Knuth. Semantics of context-free languages. Theory of
Computing Systems, 2(2):127–145, June 1968.

[19] Peter J. Landin. The next 700 programming languages. Communica-
tions of the ACM, 9(3):157 – 166, March 1966.

[20] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jéróme Vouillon. The Objective Caml system release 3.10:
Documentation and user’s manual, 2007.

[21] P.M. Lewis, D.J. Rosenkrantz, and R.E. Stearns. Attributed
translations. Journal of Computer and System Sciences, 9(3):279–
307, December 1974.

[22] Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernan-
dez, and Artem Gleyzer. PADS/ML: A functional data description
language. In ACM Symposium on Principles of Programming Lan-
guages, 2007.

[23] Scott McPeak. Elkhound: A fast, practical GLR parser generator.
Technical Report UCS/CSD-2-1214, University of California,
Berkeley, 2002.

[24] Scott McPeak and George C. Necula. Elkhound: A fast, practical
GLR parser generator. In Proceedings of Conference on Compiler
Constructor, April 2004.

[25] A. Melnikov. Collected extensions to IMAP4 ABNF. http:
//www.ietf.org/rfc/rfc4466.txt, April 2006.

[26] Karel Müller. Attribute-directed top-down parsing. In Compiler
Construction, volume 641 of Lecture Notes in Computer Science,
pages 37–43. Springer Berlin, 1992.

[27] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley Professional, October 2000.

[28] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of
programming languages. In PLDI, pages 170–178, 1989.

[29] Elizabeth Scott. SPPF-style parsing from Earley recognisers. In
Proceedings of the Seventh Workshop on Language Descriptions,
Tools, and Applications (LDTA), March 2007.

[30] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers.
ACM Trans. Program. Lang. Syst., 28(4):577–618, 2006.

[31] Takehiro Tokuda and Yoshimichi Watanabe. An attribute evaluation
of context-free languages. Information Processing Letters, 52(2):91–
98, October 1994.

[32] Eelco Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[33] David Watt. Rule splitting and attribute-directed parsing. In
Semantics-Directed Compiler Generation, Lecture Notes in Com-
puter Science, pages 363–392. Springer Berlin, 1980.

[34] W. A. Woods. Transition network grammars for natural language
analysis. Communications of the ACM, 13(10):591–606, 1970.

