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1. THE CHALLENGE OF AD HOC DATA FORMATS

XML. HTML. CSV. JPEG. MPEG. These data formats represent vast quantities of in-
dustrial, governmental, scientific, and private data. Because they have been standardized
and are widely used, many reliable, efficient, and convenient tools for processing data in
these formats are readily available. For instance, your favorite programming language un-
doubtedly has libraries for parsing XML and HTML as well as reading and transforming
images in JPEG or movies in MPEG. Query engines are available for querying XML doc-
uments. Widely-used applications like Microsoft Word and Excel automatically translate
documents between HTML and other standard formats. In short, life is good when work-
ing with standard data formats. In an ideal world, all data would be in such formats. In
reality, however, we are not nearly so fortunate.

An ad hoc data format is any non-standard data format. Typically, such formats do
not have parsing, querying, analysis, or transformation tools readily available. Every day,
network administrators, financial analysts, computer scientists, biologists, chemists, as-
tronomers, and physicists deal with ad hoc data in a myriad of complex formats. Figure 1
gives a partial sense of the range and pervasiveness of such data. Since off-the-shelf tools
for processing these ad hoc data formats do not exist or are not readily available, talented
scientists, data analysts, and programmers must waste their time on low-level chores like
parsing and format translation to extract the valuable information they need from their data.
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Name & Use Representation

Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
AT&T provisioning data: Variable-width ASCII records
Monitor service activation
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Medical diagnoses Floating point numbers
SnowMed: Medical clinic notes keyword tags

Fig. 1. Selected ad hoc data sources.

Though the syntax of everyday programming languages might be considered “ad hoc,” we
explicitly exclude programming language syntax from our domain of interest.

In addition to the inconvenience of having to build custom processing tools from scratch,
the nonstandard nature of ad hoc data frequently leads to other difficulties for its users.
First, documentation for the format may not exist, or it may be out of date. For example, a
common phenomenon is for a field in a data source to fall into disuse. After a while, a new
piece of information becomes interesting, but compatibility issues prevent data suppliers
from modifying the shape of their data, so instead they hijack the unused field, often failing
to update the documentation in the process.

Second, such data frequently contain errors, for a variety of reasons: malfunctioning
equipment, programming errors, non-standard values to indicate “no data available,” hu-
man error in entering data, and unexpected data values caused by the lack of good docu-
mentation. Detecting errors is important, because otherwise they can corrupt “good” data.
The appropriate response to such errors depends on the application. Some applications re-
quire the data to be error free: if an error is detected, processing needs to stop immediately
and a human must be alerted. Other applications can repair the data, while still others can
simply discard erroneous or unexpected values. For some applications, errors in the data
can be the most interesting part because they can signal where two systems are failing to
communicate.

Today, many programmers tackle the challenge of ad hoc data by writing scripts in a lan-
guage like PERL. Unfortunately, this process is slow, tedious, and unreliable. Error check-
ing and recovery in these scripts is often minimal or nonexistent because when present,
such error code swamps the main-line computation. The program itself is often unreadable
by anyone other than the original authors (and usually not even them in a month or two)
and consequently cannot stand as documentation for the format. Processing code often
ends up intertwined with parsing code, making it difficult to reuse the parsing code for dif-
ferent analyses. Hence, in general, software produced in this way is not the high-quality,
reliable, efficient and maintainable code one should demand.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Fig. 2. Architecture of PADS system.

1.1 Promising Solutions

To address these challenges, researchers have begun to develop high-level languages for
describing and processing ad hoc data. For instance, McCann and Chandra introduced
PACKETTYPES [McCann and Chandra 2000], a specification language designed to help
programmers process the binary data associated with networking protocols. Godmar Back
developed DATASCRIPT [Back 2002], a scripting language with explicit support for speci-
fying and parsing binary data formats. DATASCRIPT has been used to manipulate Java jar
files and ELF object files. The developers of Erlang have also introduced language exten-
sions that they refer to as binaries [Wikström and Rogvall 1999; Gustafsson and Sagonas
2004] to aid in packet processing and protocol programming. Finally, we are part of a
group developing PADS, another system for managing ad hoc data. PADS focuses on ro-
bust error handling and tool generation. It is also unusual in that it supports a variety of
data encodings: ASCII formats used by financial analysts, medical professionals and sci-
entists, EBCDIC formats used in Cobol-based legacy business systems, binary data from
network applications, and mixed encodings as well. PADS comes with not one but two
specification languages: PADS/C [Fisher and Gruber 2005] generates libraries and tools for
C programmers while PADS/ML [Mandelbaum et al. 2007] generates O’Caml code.

Although these languages differ in many details, they both derive their power from a
remarkable insight: Types can describe data in both its external (on-disk) and internal
(programmatic) forms. Figure 2 illustrates how systems such as PADS, DATASCRIPT, and
PACKETTYPES exploit this dual interpretation of types. In the diagram, the data consumer
constructs a type T to describe the syntax and semantic properties of the format in ques-
tion. A compiler converts this description into parsing code, which maps raw data into a
canonical in-memory representation. This canonical representation is guaranteed to be a
data structure that itself has type T, or perhaps T’, the closest relative of T available in the
host programming language being used. In the case of PADS, the parser also generates a
parse descriptor (PD), which describes the errors detected in the data. A host language
program can then analyze, transform or otherwise process the data representation and PD.

This architecture helps programmers take on the challenges of ad hoc data in multiple
ways. First, format specifications in these languages serve as high-level documentation that

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



4 · K. Fisher, Y. Mandelbaum and D. Walker

is more easily read and maintained than the equivalent low-level PERL script or C parser.
Importantly, DATASCRIPT, PACKETTYPES, and PADS all allow programmers to describe
both the physical layout of data as well as its deeper semantic properties such as equality
and range constraints on values, sortedness, and other forms of dependency. The intent is
to allow analysts to capture all they know about a data source in a data description. If a
data source is changed, as data sources frequently are, by the extension of a record with an
additional field or new variant, one often only needs to make a single local change to the
declarative description to keep it up to date.

Second, basing the description language on type theory is especially helpful as ordinary
programmers have built up strong intuitions about types. The designers of data description
languages have been able to exploit these intuitions to make the syntax and semantics of
descriptions particularly easy to understand, even for beginners. For instance, an array
type is used to describe sequences of data objects, while union types are used to describe
alternatives.

Third, programmers can write generic, type-directed programs that produce tools for
purposes other than just parsing. For instance, McCann and Chandra suggest using PACK-
ETTYPES specifications to generate packet filters and network monitors automatically.
Back used DATASCRIPT to generate infrastructure for visitor patterns over parsed data.
PADS generates a statistical data analyzer, a pretty printer, an XML translator and an aux-
iliary library that enables XQueries using the Galax query engine[Fernández et al. 2003].
It is the declarative, domain-specific nature of these data description languages that makes
it possible to generate all these value-added tools for programmers. The suite of tools,
all of which can be generated from a single description, provides additional incentive for
programmers to keep documentation up-to-date.

Fourth, these data description languages facilitate insertion of error handling code. The
generated parsers check all possible error cases: system errors related to the input file,
buffer, or socket; syntax errors related to deviations in the physical format; and seman-
tic errors in which the data violates user constraints. Because these checks appear only
in generated code, they do not clutter the high-level declarative description of the data
source. Moreover, since tools are generated automatically by a compiler rather than writ-
ten by hand, they are far more likely to be robust and far less likely to have dangerous
vulnerabilities such as buffer overflows.

In summary, data description languages such as DATASCRIPT, PACKETTYPES, Erlang,
and PADS meet the challenge of processing ad hoc data by providing a concise and pre-
cise form of “living” data documentation and producing reliable tools that handle errors
robustly.

1.2 The Next 700 Data Description Languages

The languages people use to communicate with computers differ in their in-
tended aptitudes, towards either a particular application area, or a particu-
lar phase of computer use (high level programming, program assembly, job
scheduling, etc). They also differ in physical appearance, and more impor-
tant, in logical structure. The question arises, do the idiosyncrasies reflect
basic logical properties of the situations that are being catered for? Or are they
accidents of history and personal background that may be obscuring fruitful
developments? This question is clearly important if we are trying to predict or
influence language evolution.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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To answer it we must think in terms, not of languages, but of families of lan-
guages. That is to say we must systematize their design so that a new language
is a point chosen from a well-mapped space, rather than a laboriously devised
construction.

— P. J. Landin, The Next 700 Programming Languages, 1966 [Landin
1966].

Landin asserts that principled programming language design involves thinking in terms
of “families of languages” and choosing from a “well-mapped space.” However, so far,
when it comes to the domain of processing ad hoc data, there is no well-mapped space and
no systematic understanding of the family of languages one might be dealing with.

The primary goal of this paper is to begin to understand the family of ad hoc data pro-
cessing languages. We do so, as Landin did, by developing a semantic framework for
defining, comparing, and contrasting languages in our domain. This semantic framework
revolves around the definition of a data description calculus (DDCα). This calculus uses
types from a dependent type theory to describe various forms of ad hoc data: base types to
describe atomic pieces of data and type constructors to describe richer structures. We show
how to give a denotational semantics to DDCα by interpreting types as parsing functions
that map external representations (bits) to data structures in a typed lambda calculus. More
precisely, these parsers produce both internal representations of the external data and parse
descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of what makes a “reason-
able” or “unreasonable” language. For instance, a reasonable typed language is one in
which values of a given type have a well-defined canonical form and “programs don’t go
wrong.” On the other hand, when we began this research, it was not at all clear how to
decide whether our data description language and its interpretation were “reasonable” or
“unreasonable.” A conventional sort of canonical forms property, for instance, is not rel-
evant as the input data source is not under system control, and, as mentioned above, is
frequently buggy. Consequently, we have had to define and formalize a new correctness
criterion for the language. In a nutshell, rather than requiring input data be error-free,
we require that the internal data structures produced by parsing satisfy their specification
whereever the parse descriptor says they will. Our invariant allows data consumers to rely
on the integrity of the internal data structures marked as error-free.

To study and compare PADS/C, PADS/ML, PACKETTYPES, DATASCRIPT, and/or some
other data description language, we advocate translating the language into DDCα. The
translation decomposes the relatively complex, high-level descriptions of the language in
question into a series of lower-level DDCα descriptions, which have all been formally de-
fined. We have done this decomposition for IPADS, an idealized version of the PADS/C
language that captures the essence of the actual implementation. We have also analyzed
many of the features of PADS/ML, PACKETTYPES and DATASCRIPT using our model. The
process of giving semantics to these languages highlighted features that were ambiguous
or ill-defined in the documentation that we had available to us.

To our delight, the process of giving PADS/C a semantics in this framework has had ad-
ditional benefits. In particular, since we defined the semantics by reviewing the existing
implementation, we found (and fixed!) a couple of subtle bugs. The semantics has also
raised several design questions that we are continuing to study. It has also helped us explore
important extensions. In particular, driven by examples found in biological data [Consor-
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tium ; Newick ], we decided to add recursion to PADS/C. We used our semantic framework
to study the ramifications of this addition.

Finally, DDCα has been instrumental in the development of our latest data description
language, PADS/ML. Unlike PADS/C, which was created prior to our semantic analysis,
PADS/ML was defined with DDCα already in hand. The semantics was a useful guide
in all aspects of the PADS/ML implementation, but particularly so in the development of
polymorphic descriptions, a new feature in PADS/ML. The compilation invariants required
for correct code generation in the presence of polymorphism are quite subtle. However,
using DDCα, we were able to workout the details in an clean, elegant setting and prove our
implementation technique was correct.

In summary, this article makes the following theoretical and practical contributions:

—We define a semantic framework for understanding and comparing data description lan-
guages such as PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT. No one has previ-
ously given a formal semantics to any of these languages. In fact, as far as we are aware,
no one has developed a general and complete “theory of front-ends” that encompasses
both a semantics for recognition of concrete, external syntax and a semantics for internal
representation of this data within a rich, strongly-typed programming language.

—At the center of the framework is DDCα, a calculus of data descriptions based on a
polymorphic, dependent type theory. We give a denotational semantics to DDCα by
interpreting types both as parsers and, more conventionally, as classifiers for parsed
data.

—We define an important correctness criterion for our language, stating that all errors in
the parsed data are reported in the parse descriptor. We prove DDCα parsers maintain
this property.

—We define IPADS, an idealized version of the PADS/C data description language that
captures its essential features, and show how to give it a semantics by translating it into
DDCα. The process of defining the semantics led to the discovery of several bugs in the
actual implemention.

—We have given semantics to features from several other data description languages in-
cluding PACKETTYPES and DATASCRIPT. As Landin asserts, this process helps us un-
derstand the families of languages in this domain and the totality of their features, so that
we may engage in principled language design as opposed to falling prey to “accidents
of history and personal background.”

—We use IPADS and DDCα to experiment with a definition and implementation strategy
for recursive data types. Recursive types are essential for representing tree-shaped hier-
archical data [Consortium ; Newick ]. We have integrated recursion into PADS/C, using
our theory as a guide.

—We also used IPADS and DDCα as a guide for the implementation of PADS/ML, a new
data description language for O’Caml. The chief difficulty in the design involved under-
standing how to compile polymorphic descriptions into O’Caml. Polymorphism allows
for effective “description reuse” and fits elegantly in the context of typed functional pro-
gramming languages like O’Caml. DDCα served as a simple formal framework in which
we could work out and prove the correctness of our implementation strategy.

Most of the basic ideas mentioned above were presented at the ACM Symposium on
Principles of Programming Languages in 2006, in a paper with the same title [Fisher et al.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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2006]. However, there are two important differences. First, we have found several ways
to improve the structure of the semantics of the DDCα since we first introduced it in 2006.
In particular, we were able to eliminate the “contractiveness” constraint, which allowed
us to simplify our earlier kinding rules substantially. They now take on a much more
standard format. Second, we have added polymorphism to the calculus so that we may use
it to understand the semantics of PADS/ML’s polymorphic, recursive and dependent data
types. The addition of polymorphism led to a number of technical challenges in the proof
of correctness of our system. Finally, this article differs from our previously published
work as it explains the proof techniques and all intermediate lemmas needed to achieve
our formal results. We have omitted the line-by-line details of the proofs, but key cases of
the most challenging lemmas may be found in Mandelbaum’s Ph.D. thesis [Mandelbaum
2006].

The rest of the paper describes our contributions in detail. Section 2 gives a gentle in-
troduction to data description languages by introducing IPADS. Sections 3, 4 and 5 explain
the syntax, semantics and metatheory of DDCα. Section 6 discusses encodings of IPADS,
PADS/ML, PACKETTYPES and DATASCRIPT in DDCα and Section 7 explains how we have
already made use of our semantics in practice. Sections 8 and 9 discuss related work and
conclude. We have explicitly excluded discussion of a variety of practical considerations
concerning the engineering of either the PADS/C or PADS/ML systems from this article so
we may focus specifically on the semantics of data description languages. We consider en-
gineering concerns, system performance and the architecture of the PADS tool generation
system beyond the scope of this article.

2. IPADS: AN IDEALIZED DDL

In this section, we define IPADS, an idealized data description language. IPADS captures
the essence of PADS/C in a fashion similar to the way that MinML [Harper 2005] captures
the essence of ML or Featherweight Java [Igarashi et al. 1999] captures the essence of Java.
The main goal of this section is to introduce the reader to the form and function of IPADS
by giving its syntax and walking through a couple of examples. Though the syntax differs,
the structure of PADS/C’s relatives PADS/ML, PACKETTYPES, and DATASCRIPT are similar.
Later sections will show how to give a formal semantics to IPADS.

Preliminary Concepts. Like PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT, IPADS
data descriptions are types. These types specify both the external data format (a sequence
of bits or characters) and a mapping into a data structure in the host programming lan-
guage. In PADS/C, the host language is C; in IPADS, the host language is an extension of
the polymorphic lambda calculus. For the most part, however, the specifics of the host
language are unimportant.

A complete IPADS description is a sequence of type definitions terminated by a single
type. This terminal type describes the entirety of a data source, making use of the previous
type definitions to do so. IPADS type definitions can have one of two forms. The form
(α = t) introduces the type identifier α and binds it to IPADS type t. The type identifier
may be used in subsequent types. The second form (Prec α = t) introduces a recursive
type definition. In this case, α may appear in t.

Complex IPADS descriptions are built by using type constructors to glue together a col-
lection of simpler types. In our examples, we assume IPADS contains a wide variety of base
types including integers (Puint32 is an ASCII representation of an unsigned integer that
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may be represented internally in 32 bits), characters (Pchar), strings (Pstring), dates
(Pdate), IP addresses (Pip), and others. In general, these base types may be param-
eterized. For instance, we will assume Pstring is parameterized by an argument that
signals termination of the string. For example, Pstring(" ") describes any sequence
of characters terminated by a space. (Note that we do not consider the space to be part
of the parsed string; it will be part of the next object.) Similarly, Puint16 FW(3) is an
unsigned 16-bit integer described in exactly 3 characters in the data source. In general, we
write C(e) for a base type parameterized by a (host language) expression e.

When interpreted as a parser, each of these base types reads the external data source
and generates a pair of data structures in the host language. The first data structure is the
internal representation and the second is the parse descriptor, which contains metadata
collected during parsing. For instance, Puint32 reads a series of digits and generates an
unsigned 32-bit integer as its internal representation. Pstring generates a host-language
string. Pdate might read dates in a multitude of different formats, but always generates
a tuple with time, day, month, and year fields as its internal representation. Whenever
an IPADS parser encounters an unexpected character or bit-sequence, it sets the internal
representation to none (i.e. null) and notes the error in the parse descriptor.

An IPADS Example. IPADS contains a rich collection of type constructors for creating
sophisticated descriptions of ad hoc data. We present these constructors through a series
of examples. The first example, shown in Figure 3, describes the Common Web Log
Format [Krishnamurthy and Rexford 2001], which web servers use to log the requests they
receive. Figure 4 shows two sample records. Briefly, each line in a log file represents one
request; a complete log may contain any number of requests. A request begins with an IP
address followed by two optional ids. In the example, the ids are missing and dashes stand
in for them. Next is a date, surrounded by square brackets. A string in quotation marks
follows, describing the request. Finally, a pair of integers denotes the response code and
the number of bytes returned to the client.

The IPADS description of web logs is most easily read from bottom to top. The termi-
nal type, which describes an entire web log, is an array type. Arrays in IPADS take three
arguments: a description of the array elements (in this case, entry t), a description of
the separator that appears between elements (in this case, a newline marker Pnl), and
a description of the terminator (in this case, the end-of-file marker). PADS/C itself pro-
vides a much wider selection of separators and termination conditions, but these additional
variations are of little semantic interest so we omit them from IPADS. The host language
representation for an array is a sequence of elements. We do not represent separators or
terminators internally.

We use a Pstruct to describe the contents of each line in a web log. Like an array,
a Pstruct describes a sequence of objects in a data source. We represent the result of
parsing a Pstruct as a tuple in the host language. The elements of a Pstruct are either
named fields (e.g. client : Pip) or anonymous fields (e.g. " ["). The Pstruct
entry t declares that the first thing on the line is an IP address (Pip) followed by a space
character (" "). Next, the data should contain an authid t followed by another space,
etc.

The last field of entry t is quite different from the others. It has a Pcompute type,
meaning it does not match any characters in the data source, but it does form a part of the
internal representation used by host programs. The argument of a Pcompute field is an
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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authid_t = Punion {
unauthorized : "-";
id : Pstring (" ");

};

response_t =
Pfun(x:int) =
Puint16_FW(x) Pwhere y.100 <= y and y < 600;

entry_t = Pstruct {
client : Pip; " ";
remoteid : authid_t; " ";
localid : authid_t; " [";
date : Pdate("]"); "] \"";
request : Pstring("\""); "\" ";
response : response_t 3; " ";
length : Puint32;
academic : Pcompute (getdomain client) == "edu" : bool;

};

entry_t Parray(Pnl, Peof)

Fig. 3. IPADS Common Web Log Format Description

arbitrary host language expression (and its type) that determines the value of the associated
field. In the example, the field academic computes a boolean that indicates whether the
web request came from an academic site. Notice that the computation depends upon a
host language value constructed earlier — the value stored in the client field. IPADS
structs are a form of dependent record and, in general, later fields may refer to the values
contained in earlier ones.

The entry t description uses the type authid t to describe the two fields remoteid
and localid. The authid t type is a Punion with two branches. Unions are repre-
sented internally as sum types. If the data source can be described by the first branch (a
dash), then the internal representation is the first injection into the sum. If the data source
cannot be described by the first branch, but can be described by the second branch then the
internal representation is the second injection. Otherwise, there is an error.

Finally, the response t type is a Pfun, a user-defined parameterized type. The pa-
rameter of response t is a host language integer. The body of the Pfun expression
is a Puint16 FW where x, the fixed width, is the argument of the function. In addition,
the value of the fixed-width integer is constrained by the Pwhere clause. In this case,
the Pwhere clause demands that the fixed-width integer y that is read from the source lie
between 100 and 599. Any value outside this range will be considered a semantic error.
In general, a Pwhere clause may be attached to any type specification. It closely resem-
bles the semantic constraints found in practical parser generators such as ANTLR [Parr and
Quong 1995].

A Recursive IPADS Example. Figure 5 presents a second IPADS example. In this exam-
ple, IPADS describes the Newick Standard format, a flat representation of tree-structured
data. The leaves of the trees are names that describe an “entity”. In our variant of Newick

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



10 · K. Fisher, Y. Mandelbaum and D. Walker

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30
tj62.aol.com - - [16/Oct/1997:14:32:22 -0700]
"POST /scpt/confirm HTTP/1.0" 200 941

Fig. 4. Sample Common Web Log Data. Each record is broken with a newline to format it on this page.

node_t = Popt Pstruct {
name : Pstring(":"); ":";
dist : Puint32;

};

Prec tree_t = Punion {
internal : Pstruct {

"("; branches : tree_t Parray(",",")");
"):"; dist : Puint32;

};
leaf : node_t;

};

Pstruct { body : tree_t; ";"; }

(* Example: (B:3,(A:5,C:10,E:2):12,D:0):32; *)

Fig. 5. IPADS Newick Format Description

Standard, leaf names may be omitted. If the leaf name does appear, it is followed by a
colon and a number. The number describes the “distance” from the parent node. Micro-
biologists often use distances to describe the number of genetic mutations that have to
occur to move from the parent to the child. An internal tree node may have any number of
(comma-separated) children within parentheses. Distances follow the closed-paren of the
internal tree node.

The Newick Standard format and other formats that describe tree-shaped hierarchies [Con-
sortium ; Newick ; ] provide strong motivation for including recursion in IPADS. We have
not been able to find any useable description of Newick data as simple sequences (structs
and arrays) and alternatives (unions); some kind of recursive description appears essential.
The definition of the type tree t introduces recursion. It also uses the type Popt t, a
trivial union that either parses t or nothing at all.

Formal Syntax. Figure 6 summarizes the formal syntax of IPADS. Expressions e and
types σ are taken from the host language, described in Section 3.2. Notice, however, that
we use x for host language expression variables and α for IPADS type variables. In the
examples, we have abbreviated the syntax in places. For instance, we omit the operator
“Plit” and formal label x when specifying constant types in Pstructs, writing “c;”
instead of “x : Plit c;”. In addition, all base types C formally have a single parameter,
but we have omitted parameters for base types such as Puint32. Finally, the type Palt,
which did not appear in the examples, describes data that is described by all the branches
simultaneously and produces a set of values - one from each type. Intuitively, Palt is a
form of intersection type.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Types t ::= C(e) | Plit c | Pfun(x : σ) = t | t e

| Pstruct{−→x:t} | Punion{−→x:t} | Palt{−→x:t} | t Pwherex.e
| Popt t | t Parray(t, t) | Pcompute e:σ | α | Prec α.t

Programs p ::= t | α = t; p | Prec α = t; p

Fig. 6. IPADS Syntax

3. A DATA DESCRIPTION CALCULUS

At the heart of our work is a data description calculus (DDCα), containing simple, orthog-
onal type constructors designed to capture the core features of data description languages.
Consequently, the syntax of DDCα is at a significantly lower level of abstraction than that of
PADS/C, PADS/ML or IPADS. Like any of these languages, however, the form and function
of DDCα features are directly inspired by type theory.

Informally, we may divide the features that make up DDCα into types and type opera-
tors. Each DDCα type describes the external representation of a piece of data and implicitly
specifies how to transform that external representation into an internal one. The internal
representation includes both the transformed value and a parse descriptor that character-
izes the errors that occurred during parsing. Type operators provide for description reuse
by abstracting over types.

Syntactically, the primitives of the calculus are similar to the types found in many de-
pendent type systems, with a number of additions specific to the domain of data descrip-
tion. The types are dependent because data parsed earlier often guides parsing of later
data (i.e.the form of the later data depends on the earlier data). In addition, parsing ad
hoc formats correctly often involves checking constraints phrased as expressions in some
conventional programming language. Data description languages tend to draw their ex-
pressions from their host language – the programming language in which their generated
software artifacts are encoded. The host language of PADS/C, for example, is C and there-
fore the PADS/C constraint language is also C. We mimic this design in DDCα and choose a
single language – a variant of Fω– for expressing both the expressions embedded in types
and the interpretations of DDCα. This host language is discussed further in Section 3.2.

3.1 DDCα Syntax

Figure 7 shows the syntax of DDCα. Expressions e and types σ belong to the host language.
We use kinds κ to classify types so that we can ensure their well-formedness. Kind T
classifies types that describe data. Kinds σ → κ and T → κ describe functions from
values to types and type to types, respectively.

The most basic types are unit and bottom. The former describes the empty string while
the latter describes no string, failing on all input. The syntax C(e) denotes a base type C
parameterized by expression e.

We provide abstraction λx.τ and application τ e so that we may parameterize types by
expressions. Dependent sum types Σ x:τ1.τ2 describe a sequence of values in which the
second type may refer to the value of the first. Sum types τ1 + τ2 express flexibility in
the data format, as they describe data matching either τ1 or τ2. Unlike regular expressions
or context-free grammars, which allow nondeterministic choice, sum-type parsers are de-
terministic, transforming the data according to τ1 when possible and only attempting to
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Kinds κ ::= T | σ → κ | T → κ
Types τ ::= unit | bottom | C(e) | λx.τ | τ e

| Σ x:τ.τ | τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| α | µα.τ | λα.τ | τ τ
| compute(e:σ) | absorb(τ) | scan(τ)

Fig. 7. DDCα syntax

use τ2 if there is an error in τ1. Intersection types τ1 & τ2 describe data that match both
τ1 and τ2. They transform a single set of bits to produce a pair of values, one from each
type. Constrained types {x:τ | e} transform data according to the underlying type τ and
then check that the constraint e holds when x is bound to the parsed value.

The type τ seq(τs, e, τt) represents a sequence of values of type τ . The type τs specifies
the type of the separator found between elements of the sequence. For sequences without
separators, we use unit as the separator type. Expression e is a boolean-valued function
that examines the parsed sequence after each element is read to determine if the sequence
has completed. For example, a function that checks if the sequence has 100 elements would
terminate a sequence when it reaches length 100. The type τt is used when data following
the array will signal termination. Commonly, constrained types are used to specify that
a particular value terminates the sequence. For example, the type {x:Pchar |x =′;′ }
specifies that a semicolon terminates the array. However, if no particular value or set of
values terminates the array, then a type that never succeeds (like bottom) could be used to
ensure that the array is not terminated based on τt.

Type variables α are abstract descriptions; they are introduced by recursive types and
type abstractions. Recursive types µα.τ describe recursive formats, like lists and trees.
Type abstraction λα.τ and application τ τ allow us to parameterize types by other types.
Type variables α always have kind T. Note that we call functions from types to types type
abstractions in contrast to value abstractions, which are functions from values to types.

DDCα also has a number of “active” types. These types describe actions to be taken
during parsing rather than strictly describing the data format. Type compute(e:σ) allows us
to include an element in the parsed output that does not appear in the data stream (although
it is likely dependent on elements that do), based on the value of expression e. In contrast,
type absorb(τ) parses data according to type τ but does not return its result. This behavior
is useful for data that is important for parsing, but uninteresting to users of the parsed data,
such as a separator. The last of the “active” types is scan(τ), which scans the input for
data that can be successfully transformed according to τ . This type provides a form of
error recovery as it allows us to discard unrecognized data until the “synchronization” type
τ is found.

3.2 Host Language

In Figure 8, we present the host language of DDCα, a straightforward extension of Fω

with recursion1 and a variety of useful constants and operators. We use this host language
both to encode the parsing semantics of DDCα and to write the expressions that can appear
within DDCα itself.

1The syntax for fold and unfold, particularly the choice of annotating unfold with a type, is based on the
presentation of recursive types in Pierce [Pierce 2002]
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Bits B ::= · | 0 B | 1 B
Constants c ::= () | true | false | 0 | 1 | −1 | . . .

| none | B | ω | ok | err | fail | . . .
Values v ::= c | fun f x = e | (v, v)

| inl v | inr v | [~v]
Operators op ::= = | < | not | . . .
Expressions e ::= c | x | op(e) | fun f x = e | e e

| Λα.e | e [τ ]
| let x = e in e | if e then e else e
| (e, e) | πi e | inl e | inr e
| case e of (inlx ⇒ e | inrx ⇒ e)
| [~e] | e @ e | e [e]
| fold[µα.τ ] e | unfold[µα.τ ] e

Base Types a ::= unit | bool | int | none
| bits | offset | errcode

Types σ ::= a | α | σ → σ | σ ∗ σ | σ + σ
| σ seq | ∀α.σ | µα.σ | λα.σ | σ σ

Kinds κ ::= T | κ → κ

Fig. 8. The syntax of the host language, an extension of Fω with recursion and a variety of useful constants and
operators.

As the calculus is largely standard, we highlight only its unusual features. The constants
include bitstrings B; offsets ω, representing locations in bitstrings; and error codes ok,
err, and fail, indicating success, success with errors, and failure, respectively. We use
the constant none to indicate a failed parse. Because of its specific meaning, we forbid
its use in user-supplied expressions appearing in DDCα types. Our expressions include
arbitrary length sequences [~e], sequence append e @ e′, and sequence indexing e [e′].

The type none is the singleton type of the constant none. Types errcode and offset
classify error codes and bit string offsets, respectively. The remaining types have standard
meanings: function types, product types, sum types, sequence types (τ seq), type variables
(α), polymorphic types (∀α.σ), and recursive types (µα.σ).

We extend the formal syntax with some syntactic sugar for use in the rest of the pa-
per: anonymous functions λx.e for fun f x = e, with f 6∈ FV(e); function bindings
letfun f x = e in e′ for let f = fun f x = e in e′; span for offset ∗ offset. We
often use pattern-matching syntax for pairs in place of explicit projections, as in λ(B,ω).e
and let (ω, r, p) = e in e′. Although we have no formal records with named fields, we
use a (named) dot notation for commonly occuring projections. For example, for a pair x
of representation and parse descriptor, we use x.rep and x.pd for the left and right pro-
jections of x, respectively. Also, sums and products are right-associative. Hence, for
example, a ∗ b ∗ c is shorthand for a ∗ (b ∗ c).

The static semantics (Γ ` e : σ), operational semantics (e → e′), and type equivalence
(σ ≡ σ′) are those of Fω extended with recursive functions and iso-recursive types and are
entirely standard. See, for example, Pierce [Pierce 2002].

We only specify type abstraction over terms and application when we feel it will clarify
the presentation. Otherwise, the polymorphism is implicit. We also omit the usual type
and kind annotations on functions, with the expectation the reader can construct them from
context.
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3.3 Example

As an example, we present an abbreviated description of the common log format as it might
appear in DDCα. For brevity, this description does not fully capture the semantics of the
IPADS description from Section 2. Additionally, we use the standard abbreviation τ ∗ τ ′

for products and introduce a number of type abbreviations in the form name = τ before
giving the type that describes the data source.

S = λstr.{s:Pstring FW(1) | s = str}

authid t = S(“− ”) + Pstring(“ ”)

response t = λx.{y:Puint16 FW(x) | 100 ≤ y and y < 600}

entry t =
Σ client:Pip. S(“ ”) ∗
Σ remoteid:authid t. S(“ ”) ∗
Σ response:response t 3.
compute(getdomain client = “edu”:bool)

entry t seq(S(“\n”), λx.false, bottom)

In the example, we define type constructor S to encode literals with a constrained type.
We also use the following informal translations: Pwhere becomes a set-type, Pstruct
a series of dependent sums, Punion a series of sums, and Parray a sequence. As the
array terminates at the end of the file, we use λx.false and bottom to indicate the absence
of termination condition and terminator, respectively.

4. DDCα SEMANTICS

At first glance, the primitives of DDCα are deceptively simple. However, deeper thought
reveals that their semantics is multifaceted. For example, each basic type simultaneously
describes a collection of valid bit strings, two datatypes in the host language – one for the
data representation itself and one for its parse descriptor – and a transformation from bit
strings, including invalid ones, into data and corresponding metadata.

We give semantics to DDCα types using three primary semantic functions, each of which
precisely conveys a particular facet of a type’s meaning. The functions [[ · ]]rep and [[ · ]]PD
describe the representation semantics of DDCα, detailing the types of the data’s in-memory
representation and parse descriptor. The function [[ · ]]P describes the parsing semantics of
DDCα, defining a host language function for each type that parses bit strings to produce a
representation and parse descriptor. We define the set of valid bit strings for each type to be
those strings for which the PD indicates no errors when parsed. In addition to these three
semantic functions, we define a normalization relation, which facilitates reasoning about
parameterized descriptions.

We begin the technical discussion by describing a kinding judgment that checks if a
type is well formed — the other semantic functions should only be applied to well-formed
DDCα types. We then specify the normalization relation after which we formalize the three-
fold semantics of DDCα types. For reference, Table I lists all the functions and judgments
defined in this section and a brief description of each. Additionally, Table II lists all of the
Fω judgments that we reference.
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∆; Γ ` τ : κ type kinding

τ → τ ′ type normalization

[[τ ]]rep = σ representation-type interpretation of DDCα

[[τ ]]PD = σ parse-descriptor type interpretation of DDCα

[[τ ]]PDb = σ pd-body type interpretation of DDCα

[[τ ]]P = e parsing semantics of DDCα

[[τ :κ]]PT = σ Fω type of specified type’s parsing function (parser-type)

[[∆]]PT = Γ parser-type interpretation lifted to entire context

[[∆]]Fω
= Γ Fω image of DDCα type context

[[∆]]rep = Γ representation-type variables in [[∆]]Fω

[[∆]]PD = Γ parse-descriptor type variables in [[∆]]Fω

Table I. DDCα functions and judgments defined in this section.

` Γ ok well-formed contexts

Γ ` σ :: κ well-formed types

σ ≡ σ′ type equivalence

Γ ` e : σ expression typing

e → e′ expression evaluation

Table II. Fω judgments referenced in this section.

4.1 DDCα Kinding

The kinding judgment defined in Figure 9 determines well-formed DDCα types. We use
two contexts to express our kinding judgment:

Γ ::= · | Γ, x:σ
∆ ::= · | ∆, α:T

Context Γ is a finite partial map that binds expression variables to their types. When
appearing in Fω judgments, such contexts may also contain type-variable bindings of the
form α::κ. Context ∆ is a finite partial map that binds type variables to their kinds. We
provide the following mappings from DDCα contexts ∆ to Fω contexts Γ.

[[ · ]]rep = · [[ · ]]PD = ·
[[∆, α:T]]rep = [[∆]]rep, αrep::T [[∆, α:T]]PD = [[∆]]PD, αPDb::T

Translation [[∆]]Fω
simply combines the two ([[∆]]Fω

= [[∆]]rep, [[∆]]PD). These translations
are used when checking the well-formedness of contexts Γ and types σ with open type
variables.

As the rules are mostly straightforward, we highlight just a few of them. In rule BASE,
we use the function Bkind to assign kinds to base types. Base types must be fully applied
to arguments of the right type. Once fully applied, all base types have kind T. Rule
DEPSUM, for dependent sums, shows that the name of the first component is bound to a
pair of a representation and corresponding PD. The semantic functions defined in the next
section determine the type of this pair. Type abstractions and recursive types (rules TYABS
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∆; Γ ` τ : κ

` [[∆]]Fω
, Γ ok

∆; Γ ` unit : T
UNIT

` [[∆]]Fω
, Γ ok

∆; Γ ` bottom : T
BOTTOM

` [[∆]]Fω
, Γ ok [[∆]]Fω

, Γ ` e : σ

Bkind(C) = σ → T

∆; Γ ` C(e) : T
CONST

∆; Γ, x:σ ` τ : κ

∆; Γ ` λx.τ : σ → κ
ABS

∆; Γ ` τ : σ → κ [[∆]]Fω
, Γ ` e : σ

∆; Γ ` τ e : κ
APP

∆; Γ ` τ : T ∆; Γ, x:[[τ ]]rep ∗ [[τ ]]PD ` τ ′ : T

∆; Γ ` Σ x:τ.τ ′ : T
DEPSUM

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ + τ ′ : T
SUM

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ & τ ′ : T
INTERSECTION

∆; Γ ` τ : T [[∆]]Fω
, Γ, x:[[τ ]]rep ∗ [[τ ]]PD ` e : bool

∆; Γ ` {x:τ | e} : T
CON

∆; Γ ` τ : T ∆; Γ ` τs : T ∆; Γ ` τt : T
[[∆]]Fω

, Γ ` e : [[τm]]rep ∗ [[τm]]PD → bool (τm = τ seq(τs, e, τt))

∆; Γ ` τ seq(τs, e, τt) : T
SEQ

` [[∆]]Fω
, Γ ok α:T ∈ ∆

∆; Γ ` α : T
TYVAR

∆, α:T; Γ ` τ : T

∆; Γ ` µα.τ : T
REC

∆, α:T; Γ ` τ : κ

∆; Γ ` λα.τ : T → κ
TYABS

∆; Γ ` τ1 : T → κ ∆; Γ ` τ2 : T

∆; Γ ` τ1 τ2 : κ
TYAPP

` [[∆]]Fω
, Γ ok [[∆]]Fω

, Γ ` e : σ [[∆]]rep ` σ :: T

∆; Γ ` compute(e:σ) : T
COMPUTE

∆; Γ ` τ : T

∆; Γ ` absorb(τ) : T
ABSORB

∆; Γ ` τ : T

∆; Γ ` scan(τ) : T
SCAN

Fig. 9. DDCα kinding rules

and REC) restrict their type variable to kind T. This restriction simplifies the metatheory
of DDCα with little practical impact. Finally, with the introduction of potentially open host
types, we must now check in rule COMPUTE that the only (potentially) open type variables
in σ are the representation-type variables bound (implicitly) in ∆.

At the beginning of this chapter, we mentioned that DDCα is an extension and improve-
ment of our prior work on DDC. The improvements relate to changes in the kinding rules.
In particular, we have replaced the context M of DDC, which mapped recursive-type vari-
ables to their definitions, with a simpler context ∆ which merely assigns a kind (always
T) to open type variables. The type variables bound by recursive types are now treated as
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Normal
Types

ν ::= unit | bottom | C(e) | λx.τ | Σ x:τ.τ
| τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| µα.τ | λα.τ
| compute(e:σ) | absorb(τ) | scan(τ)

Types τ ::= ν | τ e | τ τ | α

Fig. 10. Revised DDCα Syntax

τ → τ ′

τ e → τ ′ e

e → e′

ν e → ν e′ (λx.τ) v → τ [v/x]

τ1 → τ ′1

τ1 τ2 → τ ′1 τ2

τ → τ ′

ν τ → ν τ ′ (λα.τ) ν → τ [ν/α]

Fig. 11. DDCα weak-head normalization

abstract, just like the type variables bound by type abstractions. Correspondingly, the rule
for type variables (TYVAR) now has a standard form, and the premise of the rule for re-
cursive types (REC) is now nearly identical to the premise of the rule for type abstractions
(TYABS).

4.2 DDCα Normalization

To specify the rules of normalization, we must first refactor the syntax of DDCα by distin-
guishing the subset of weak-head normal types (ν) from all types τ , as shown in Figure 10.
In addition, we must define type and value substitution for DDCα. The notation τ ′[τ/α]
denotes standard capture-avoiding substitution of types into types, except for constructs
that contain an Fω expression e or type σ. For those constructs, the alternative substi-
tution [[[τ ]]rep/αrep][[[τ ]]PDb/αPDb] is applied to the subcomponent expression or type. For
example,

compute(e:σ)[τ/α] = compute(e[[[τ ]]rep/αrep][[[τ ]]PDb/αPDb] : σ[[[τ ]]rep/αrep][[[τ ]]PDb/αPDb]).

This definition of substitution derives from the kinding rules of DDCα. In a judgment
∆, α:T; Γ ` τ : κ, the DDCα type variable α implicitly binds the Fω type variables αrep

and αPDb for any types in Γ. Therefore, when replacing α in a DDCα type, we must also
make sure to replace all type variables αrep and αPDb in constituent Fω expressions and
types in a consistent manner. We denote standard capture-avoiding substitution of terms in
DDCα types with τ [v/x]. Similarly, κ[σ/α] denotes standard capture-avoiding substitution
of Fω types into DDCα kinds.

Normalization of DDCα is based on a standard call-by-value small-step semantics of the
lambda calculus. We present the rules of the normalization judgment in Figure 11.

4.3 Representation Semantics

In Figure 12, we present the representation type of each DDCα primitive. While the prim-
itives are dependent types, the host does not have such types, so the translation erases all
dependency. Removing expressions from the types renders variable binding and applica-
tion useless, so we drop those forms as well. Consequently, we translate abstraction and
application according to their underlying types.
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[[τ ]]rep = σ

[[unit]]rep = unit

[[bottom]]rep = none

[[C(e)]]rep = Btype(C) + none

[[λx.τ ]]rep = [[τ ]]rep
[[τ e]]rep = [[τ ]]rep
[[Σ x:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep
[[τ1 & τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[{x:τ | e}]]rep = [[τ ]]rep + [[τ ]]rep
[[τ seq(τsep, e, τterm)]]rep = int ∗ ([[τ ]]rep seq)

[[α]]rep = αrep

[[µα.τ ]]rep = µαrep.[[τ ]]rep
[[λα.τ ]]rep = λαrep.[[τ ]]rep
[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep
[[compute(e:σ)]]rep = σ

[[absorb(τ)]]rep = unit + none

[[scan(τ)]]rep = [[τ ]]rep + none

Fig. 12. Representation-type interpretation function.

In more detail, the DDCα type unit consumes no input and produces only the unit
value. Correspondingly, bottom consumes no input, but uniformly fails, producing the
value none. The function Btype maps each base type to a representation for successfully
parsed data. Note that this representation does not depend on the argument expression. As
base type parsers can fail, we sum this type with none to produce the actual representa-
tion type. Intersection types produce a pair of values, one for each sub-type, because the
representations of the subtypes need not be identical nor even compatible. Constrained
types produce sums, where a left branch indicates the data satisfies the constraint and the
right indicates it does not. In the latter case, the parser returns the offending data rather
than none because the error is semantic rather than syntactic. Sequences produce a host
language sequence paired with its length.

A type variable α in DDCα is mapped to a corresponding type variable αrep in Fω.
Recursive types generate recursive representation types with the type variable named ap-
propriately. Polymorphic types and their application become Fω type constructors and
type application, respectively. The output of a compute is exactly the computed value,
and therefore shares its type. The output of absorb is a sum indicating whether parsing
the underlying type succeeded or failed. The type of scan is similar, but also returns an
element of the underlying type in case of success.

In Figure 13, we give the parse descriptor type for each DDCα type. Each PD type has
a header and body. This common shape allows us to define functions that polymorphically
process PDs based on their headers. Each header stores the number of errors encountered
during parsing, an error code indicating the degree of success of the parse – success, suc-
cess with errors, or failure – and the span of data described by the descriptor. Formally, the
type of the header (pd hdr) is int∗errcode∗span. Each body consists of subdescriptors
corresponding to the subcomponents of the representation and any type-specific metadata.
For types with neither subcomponents nor special metadata, we use unit as the body type.
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[[τ ]]PD = σ

[[unit]]PD = pd hdr ∗ unit
[[bottom]]PD = pd hdr ∗ unit
[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ ]]PD = [[τ ]]PD
[[τ e]]PD = [[τ ]]PD
[[Σ x:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)
[[τ1 & τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[{x:τ | e}]]PD = pd hdr ∗ [[τ ]]PD
[[τ seq(τsep, e, τterm)]]PD = pd hdr ∗ ([[τ ]]PD arr pd)
[[α]]PD = pd hdr ∗ αPDb

[[µα.τ ]]PD = pd hdr ∗ µαPDb.[[τ ]]PD
[[λα.τ ]]PD = λαPDb.[[τ ]]PD
[[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb
[[compute(e:σ)]]PD = pd hdr ∗ unit
[[absorb(τ)]]PD = pd hdr ∗ unit
[[scan(τ)]]PD = pd hdr ∗ ((int ∗ [[τ ]]PD) + unit)

[[τ ]]PDb = σ

[[τ ]]PDb = σ where [[τ ]]PD ≡ pd hdr ∗ σ

Fig. 13. Parse-descriptor type interpretation function

We discuss a few of the more complicated parse descriptors in detail. The parse de-
scriptor body for sequences contains the parse descriptors of its elements, the number of
element errors, and the sequence length. Note that the number of element errors is distinct
from the number of sequence errors, as sequences can have errors that are not related to
their elements (such as errors reading separators). We introduce an abbreviation for array
PD body types, arr pd σ = int ∗ int ∗ (σ seq). The compute parse descriptors have no
subelements because the data they describe is not parsed from the data source. The absorb
PD type is unit as with its representation. We assume that just as the user does not want
the representation to be kept, so too the parse descriptor. The scan parse descriptor is
either unit, in case no match was found, or records the number of bits skipped before the
type was matched along with the type’s corresponding parse descriptor.

Like other types, DDCα type variables α are translated into a pair of a header and a
body. The body has abstract type αPDb. This translation makes it possible for polymorphic
parsing code to examine the header of a PD, even though it does not know the DDCα type
it is parsing. DDCα abstractions are translated into Fω type constructors that abstract the
body of the PD (as opposed to the entire PD) and DDCα applications are translated into Fω

type applications where the argument type is the PD-body type.
It is important to note that the PD interpretation is not defined for all types. The problem

lies with the interpretation of type application ([[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb). The interpre-
tation requires that [[τ2]]PDb be defined, which, in turn, requires that [[τ2]]PD ≡ pd hdr ∗ σ,
for some σ. Yet, this requirement is not met by all types; for example, λα.τ .
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[[τ :κ]]PT = σ

[[τ :T]]PT = bits ∗ offset→ offset ∗ [[τ ]]rep ∗ [[τ ]]PD

[[τ :σ → κ]]PT = σ → [[τe:κ]]PT, for any e.

[[τ :T → κ]]PT = ∀αrep.∀αPDb.[[α:T]]PT → [[τα:κ]]PT

(αrep, αPDb 6∈ FTV(κ) ∪ FTV(τ))

Fig. 14. Fω types for parsing functions.

4.4 Parsing Semantics of the DDCα

The parsing semantics of a type τ with kind T is a function that transforms some amount
of input into a pair of a representation and a parse descriptor, the types of which are deter-
mined by τ . The parsing semantics for types with higher kind are functions that construct
parsers, or functions that construct functions that construct parsers, and so forth. Figure 14
specifies the host-language types of the functions generated from well-kinded DDCα types.
For each (unparameterized) type, the input to the corresponding parser is a bit string to
parse and an offset at which to begin parsing. The output is a new offset, a representation
of the parsed data, and a parse descriptor.

Figure 15 shows the parsing semantics function. For each type, the input to the corre-
sponding parser is a bit string and an offset which indicates the point in the bit string at
which parsing should commence. The output is a new offset, a representation of the parsed
data, and a parse descriptor. As the bit string input is never modified, it is not returned as
an output. In addition to specifying how to handle correct data, each function describes
how to transform corrupted bit strings, marking detected errors in a parse descriptor. The
semantics function is partial, applying only to well-formed DDCα types.

For any type, there are three steps to parsing: parse the subcomponents of the type (if
any), assemble the resultant representation, and tabulate metadata based on subcomponent
metadata (if any). For the sake of clarity, we have factored the latter two steps into separate
representation and PD constructor functions which we define for many of the types. For
some types, we additionally factor the PD header construction into a separate function. For
example, the representation and PD constructors for unit are Runit and Punit, respectively,
and the header constructor for dependent sums is HΣ. The constructor functions are shown
in Figure 17 and Figure 18. We have also factored out some commonly occuring code into
auxiliary functions, explained as needed and defined formally in Figure 16.

The PD constructors determine the error code and calculate the error count. There are
three possible error codes: ok, err, and fail, corresponding to the three possible results of
a parse: it can succeed, parsing the data without errors; it can succeed, but discover errors
in the process; or, it can find an unrecoverable error and fail. Note that the purpose of the
fail code is to indicate to any higher level elements that some form of error recovery is
required. Hence, the whole parse is marked as failed exactly when the parse ends in failure.
The error count is determined by subcomponent error counts and any errors associated
directly with the type itself. If a subcomponent has errors then the error count is increased
by one; otherwise it is not increased at all. We use the function pos, which maps all positive
numbers to 1 (leaving zero as is), to assist in calculating the contribution of subcomponents
to the total error count. Errors at the level of the element itself - such as constraint violation
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[[τ ]]P = e

[[unit]]P = λ(B, ω).(ω, Runit(), Punit(ω))

[[bottom]]P = λ(B, ω).(ω, Rbot(), Pbot(ω))

[[C(e)]]P = λ(B, ω).Bimp(C) (e) (B, ω)

[[λx.τ ]]P = λx.[[τ ]]P

[[τ e]]P = [[τ ]]P e

[[Σ x:τ.τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
if isOk(p) then

(ω′, R+left(r), P+left(p))
else let (ω′, r, p) = [[τ ′]]P (B, ω) in
(ω′, R+right(r), P+right(p))

[[τ & τ ′]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω) in
(max(ω′, ω′′), R&(r, r′), P&(p, p′))

[[{x:τ | e}]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
let x = (r, p) in
let c = e in

(ω′, Rcon(c, r), Pcon(c, p))

[[τ seq(τs, e, τt)]]P =
λ(B, ω).
letfun isDone (ω, r, p) =
EoF(B, ω) or e (r, p) or
let (ω′, r′, p′) = [[τt]]P(B, ω) in
isOk(p′)

in

letfun continue (ω, ω′, r, p) =
if ω = ω′ or isDone (ω′, r, p) then (ω′, r, p)
else let (ωs, rs, ps) = [[τs]]P (B, ω′) in
let (ωe, re, pe) = [[τ ]]P (B, ωs) in
continue (ω, ωe, Rseq(r, re), Pseq(p, ps, pe))

in

let r = Rseq init() in
let p = Pseq init(ω) in
if isDone (ω, r, p) then (ω, r, p)
else let (ωe, re, pe) = [[τ ]]P (B, ω) in
continue (ω′, ωe, Rseq(r, re), Pseq(p, Punit(ω), pe))

[[α]]P = parseα

[[µα.τ ]]P =
fun parseα (B:bits, ω:offset) :

offset ∗ [[µα.τ ]]rep ∗ [[µα.τ ]]PD =

let (ω′, r, p) =
[[τ ]]P[[[µα.τ ]]rep/αrep][[[µα.τ ]]PDb/αPDb] (B, ω)

in

(ω′, fold[[[µα.τ ]]rep] r, (p.h, fold[[[µα.τ ]]PDb] p))

[[λα.τ ]]P = Λαrep.ΛαPDb.λparseα.[[τ ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P
[[compute(e:σ)]]P =

λ(B, ω).(ω, Rcompute(e), Pcompute(ω))

[[absorb(τ)]]P =
λ(B, ω).
let (ω′, r, p) = [[τ ]]P (B, ω) in
(ω′, Rabsorb(p), Pabsorb(p))

[[scan(τ)]]P =
λ(B, ω).
letfun try i =
let (ω′, r, p) = [[τ ]]P (B, ω + i) in
if isOk(p) then

(ω′, Rscan(r), Pscan(i, sub(B, ω, i + 1), p))
else if EoF(B, ω + i) then

(ω, Rscan err(), Pscan err(ω))
else try (i + 1)

in try 0

Fig. 15. DDCα parsing semantics
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Eof : bits ∗ offset→ bool

scanMax : int

fun max (m, n) = if m > n then m else n

fun pos n = if n = 0 then 0 else 1

fun isOk p = pos(p.h.nerr) = 0

fun isErr p = pos(p.h.nerr) = 1

fun max ec (ec1, ec2) =
if ec1 = fail or ec2 = fail then fail

else if ec1 = err or ec2 = err then err

else ok

Fig. 16. Auxiliary functions. The type of PD headers is int ∗ errcode ∗ span. We refer to the projections
using dot notation as nerr, ec and sp, respectively. A span is a pair of offsets, referred to as begin and end,
respectively.

fun Runit () = ()

fun Punit ω = ((0, ok, (ω, ω)), ())

fun Rbot () = none

fun Pbot ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)

fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h2.ec = fail then fail

else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, h2.sp.end) in
(nerr, ec, sp)

fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

fun R+left r = inl r

fun R+right r = inr r

fun H+ h = (pos(h.nerr), h.ec, h.sp)

fun P+left p = (H+ p.h, inl p)

fun P+right p = (H+ p.h, inr p)

fun R& (r, r′) = (r, r′)

fun H& (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = if h1.ec = fail and h2.ec = fail then fail

else max ec h1.ec h2.ec in

let sp = (h1.sp.begin, max(h1.sp.end, h2.sp.end)) in
(nerr, ec, sp)

fun P& (p1, p2) = (H& (p1.h, p2.h), (p1, p2))

Fig. 17. Constructor functions, part 1. The type of parse descriptor headers is int ∗ errcode ∗ span. We refer
to the projections using dot notation as nerr, ec and sp, respectively. A span is a pair of offsets, referred to as
begin and end, respectively.
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fun Rcon (c, r) = if c then inl r else inr r

fun Pcon (c, p) =
if c then ((pos(p.h.nerr), p.h.ec, p.h.sp), p)
else ((1 + pos(p.h.nerr), max ec err p.h.ec, p.h.sp), p)

fun Rseq init () = (0, [])

fun Pseq init ω = ((0, ok, (ω, ω)), (0, 0, []))

fun Rseq (r, re) = (r.len + 1, r.elts @ [re])

fun Hseq (h, hs, he) =
let eerr = if h.neerr = 0 and he.nerr > 0

then 1 else 0 in

let nerr = h.nerr + pos(hs.nerr) + eerr in

let ec = if he.ec = fail then fail

else max ec h.ec he.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (p, ps, pe) =
(Hseq (p.h, ps.h, pe.h),
(p.neerr + pos(pe.h.nerr), p.len + 1, p.elts @ [pe]))

fun Rcompute r = r

fun Pcompute ω = ((0, ok, (ω, ω)), ())

fun Rabsorb p = if isOk(p) then inl () else inr none

fun Pabsorb p = (p.h, ())

fun Rscan r = inl r

fun Pscan (i, p) =
let nerr = pos(i) + pos(p′.h.nerr) in
let ec = if nerr = 0 then ok else err in

let hdr = (nerr, ec, (p.sp.begin− i, p.sp.end)) in
(hdr, inl (i, p))

fun Rscan err () = inr none

fun Pscan err ω = let hdr = (1, fail, (ω, ω)) in
(hdr, inr ())

Fig. 18. Constructor functions, part 2.

in constrained types - are generally counted individually.
With this background, we can now discuss the semantics. The unit and bottom de-

scriptions do not consume any input. Hence, the output offset is the same as the input
offset in the parsers for these constructs. A look at their constructors shows that the parse
descriptor for unit always indicates no errors and a corresponding ok code, while that of
bottom always indicates failure with an error count of one and the fail error code. The
semantics of base types applies the implementation of the base type’s parser, provided by
the function Bimp, to the appropriate arguments. Abstraction and application are defined
directly in terms of host language abstraction and application. Dependent sums read the
first element at ω and then the second at ω′, the offset returned from parsing the first ele-
ment. Notice that we bind the pair of the returned representation and parse descriptor to
the variable x before parsing the second element, implicitly mapping the DDCα variable x
to the host language variable x in the process. Finally, we combine the results using the
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constructor functions, returning ω′′ as the final offset of the parse.
Sums first attempt to parse according to the left type, returning the resulting value if it

parses without errors. Otherwise, they parse according to the right type. Intersections read
both types starting at the same offset. They advance the stream to the maximum of the
two offsets returned by the component parsers. The construction of the parse descriptor
is similar to that of products. For constrained types, we call the parser for the underlying
type τ , bind x to the resulting rep and PD, and check whether the constraint is satisfied.
The result indicates whether the data has a semantic error and is used in constructing the
representation and PD. For example, the PD constructor will add one to the error count if
the constraint is not satisfied. Notice that we advance the stream independent of whether
the constraint was satisfied.

Sequences have the most complicated semantics because the number of subcomponents
depends upon a combination of the data, the termination predicate, and the terminator
type. Consequently, the sequence parser uses the function isDone and the recursive func-
tion continue to implement this open-ended semantics. Function isDone determines if
the parser should terminate by checking whether the end of the source has been reached,
the termination condition e has been satisfied, or the terminator type can be read from
the stream without errors at ω. Function continue takes four arguments: two offsets, a
sequence representation, and a sequence PD. The two offsets are the starting and ending
offset of the previous round of parsing. They are compared to determine whether the parser
is progressing in the source, a check that is critical to ensuring that the parser terminates.
Next, the parser checks whether the sequence is finished, and if so, terminates. Otherwise,
it attempts to read a separator followed by an element and then continues parsing the se-
quence with a call to continue. Then, the body of the parser creates an initial sequence
representation and parse descriptor and then checks whether the sequence described is
empty. If not, it reads an element and creates a new rep and PD for the sequence. Note that
it passes the PD for unit in place of a separator PD, as no separator is read before the first
element. Finally, it continues reading the sequence with a call to continue.

Because of the iterative nature of sequence parsing, the representation and PD are con-
structed incrementally. The parser first creates an empty representation and PD and then
adds elements to them with each call to continue. The error count for an array is the sum
of the number of separators with errors plus one if there were any element errors. There-
fore, in function Hseq we first check if the element is the first with an error, setting eerr
to one if so. Then, the new error count is a sum of the old, potentially one for a separator
error, and eerr. In Pseq we calculate the element error count by unconditionally adding
one if the element had an error.

A type variable translates to an expression variable whose name corresponds directly to
the name of the type variable. These expression variables are bound in the interpretations
of recursive types and type abstractions. We interpret each recursive type as a recursive
function whose name corresponds to the name of the recursive type variable. For clarity,
we annotate the recursive function with its type.

We interpret type abstraction as a function over other parsing functions. Because those
parsing functions can correspond to arbitrary DDCα types (of kind T), and, therefore, can
have different Fω types, the interpretation must be a polymorphic function, parameterized
by the representation and PD-body type of the DDCα type parameter. For clarity, we present
this type parameterization explicitly. Type application τ1 τ2 becomes the application of
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the interpretation of τ1 to the representation-type, PD-body type, and parsing-function
interpretations of τ2.

The scan type attempts to parse the underlying type from the stream at an increasing
offset i from the original offset ω, until success is achieved or the end of the file is reached.
In the semantics we give here, offsets are incremented one bit at a time – a practical im-
plementation would choose some larger increment (for example, 32 bits at a time). Note
that, upon success, i is passed to the PD constructor function, which both records it in the
PD and sets the error code based on it. It is considered a semantic error for the value to be
found at a positive i, whereas it is a syntactic error for it not to be found at all.

Notice that the upper-bound on the running time of scan is at least linear in the size of
the data, depending on the particular argument type. More precisely, if the running time
of a type τ is O(f(n)), where n is the size of the data, then the running time of scan(τ)
is O(nf(n)). While such a running time is potentially high, it is reasonable if it is only
incurred for erroneous data, in which case the cost is not incurred on the “fast path” of
processing good data; or, if f(n) is 1 and scan consumes all of the scanned data, in which
case the total running time of the parser is linear in the amount of data consumed, which is
the best running time achievable without skipping data. However, we cannot guarantee that
either of these conditions are met. The scan type can legally appear in branches of sums,
in which case the cost could be incurred for valid data (that matches a different branch)
without consuming any of the data scanned.

In PADS/C and PADS/ML, we control the potentially high cost of scan in two ways. First,
we only scan for literals, thereby bounding the running time to linear in the size of the data
source. Second, we set a data-source independent maximum on the number of bits scanned
for any particular instance of scan, rather than potentially scanning until end of the data
source. Together, these factors reduce the running time of scanning to O(1). However, the
second factor implies that PADS/C and PADS/ML, unlike DDCα, do not guarantee to find the
targets of scans, even if they are present in the data source. This difference between DDCα

and the PADS languages could have a significant impact an any guarantees we might make
about error recovery based on DDCα alone. We leave for future work the development of
a more sophisticated semantics for scan that accounts for the unreliable nature of scans in
PADS/C and PADS/ML.

Returning to our discussion of the semantics of DDCα, we note that compute only calls
the compute constructors without performing any parsing. The representation constructor
returns the value computed by e, while the PD records no errors and reports a span of
length 0, as no data is consumed by the computation. The absorb parser first parses
the underlying type and then calls the absorb constructors, passing only the PD, which
is needed by the rep constructor to determine whether an error occured while parsing the
underlying type. If so, the value returned is a none. Otherwise, it is unit. The absorb
parse descriptor duplicates the error information of its underlying type.

5. METATHEORY

One of the most difficult, and perhaps most interesting, challenges of our work on DDCα

was determining what properties we wanted to hold. What are the “correct” invariants
of data description languages? While there are many well-known desirable invariants for
programming languages, the metatheory of data description languages has been uncharted.

We present the following two properties as critical invariants of our theory. Just like
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τ →0 τ

τ → τ ′ τ ′ →k τ ′′

τ →k+1 τ ′′

e →0 e

e → e′ e′ →k e′′

e →k+1 e′′

Fig. 19. K-steps normalization and evaluation judgments

the classic Progress and Preservation theorems should hold for any conventional typed
programming language, we feel that the following properties should hold, in some form,
for any data description language.

—Parser Type Correctness: For a DDCα type τ , the representation and PD output by the
parsing function of τ will have the types specified by [[τ ]]rep and [[τ ]]PD, respectively.

—Canonical Forms of Parsed Data: We give a precise characterization of the results of
parsers by defining the canonical forms of representation-parse descriptor pairs associ-
ated with a dependent DDCα type. Of particular relevance to data description, we show
that the errors reported in the parse descriptor will accurately reflect the errors present
in the representation.

The aim of this section is to formally state and prove that these critical properties hold
for our DDCα theory. However, before we can do so, we must establish some basic prop-
erties of our semantics. We begin with a number of properties that we expect to hold for
variable names. First, all variable names introduced by the parsing semantics function
should be considered taken from a separate syntactic domain than variables that may ap-
pear in ordinary expressions. Therefore, they are by definition “fresh” with respect to any
expressions that can be written by the user. Second, for those types with bound variables,
the potential alpha-conversion when performing a substitution on the type exactly parallels
any alpha-conversion of the same variable where it appears in the translation of the type.
Last, all constructors, support functions and base-type parsers are closed with respect to
user-defined variable names.

Next, we require that DDCα base types satisfy the properties that we desire to hold of
the rest of the calculus. Below is a formal statement of these requirements. Note that by
condition 3, base type parsers must be closed.

Condition 1 (Conditions on Base-types)
(1 ) dom(Bkind) = dom(Bimp).
(2 ) If Bkind(C) = σ → T then Bopty(C) = σ → [[C(e):T]]PT (for any e of type σ).
(3 ) ` Bimp(C) : Bopty(C).

The evaluation of Fω terms and the normalization of DDCα types are both defined with
a small-step semantics. However, it is useful to be able to reason about terms and types
that are related by arbitrarily many (k) steps in these semantics, rather than just one. To
this end, in Figure 19, we define two judgments that respectively generalize evaluation and
normalization to k steps. Next, we state some properties of these judgments.

Lemma 2 (Properties of K-step Evaluation)
(1 ) If e1 →k e′1 then e1 e2 →k e′1 e2.
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(2 ) If e2 →k e′2 then v e2 →k v e′2.
(3 ) If e →k e′ then e [σ] →k e′ [σ].
(4 ) If e1 →i e2 and e2 →j e3 then e1 →(i+j) e3.

PROOF. By induction on the number of steps in evaluation relation.

Lemma 3 (Properties of K-step Normalization)
(1 ) If τ1 →k τ ′1 then τ1 τ2 →k τ ′1 τ2.
(2 ) If τ2 →k τ ′2 then ν τ2 →k ν τ ′2.
(3 ) If τ1 →k τ ′1 then τ1 e →k τ ′1 e.
(4 ) If e →k e′ then ν e →k ν e′.
(5 ) If τ1 →i τ2 and τ2 →j τ3 then τ1 →(i+j) τ3.

PROOF. By induction on the number of steps in evaluation relation.

Lemma 4 (K-step Evaluation Inversion)
(1 ) If e1 e2 →k v then k > 0 and ∃ i, j, v1, v2 s.t. e1 →i v1 and e2 →j v2, with i+j < k.
(2 ) If e [σ] →k v then ∃ i, v′ s.t. e →i v′, with i < k.
(3 ) If (fun f x = e) v →k v′ then e[(fun f x = e)/f ][v/x] →k−1 v′.
(4 ) If let x = e in e′ →k v then ∃ i, v′ s.t. e →i v′ with i < k.
(5 ) If if e then e1 else e2 →k v and e →∗ true then ∃ i s.t. e1 →i v with i < k.
(6 ) If if e then e1 else e2 →k v and e →∗ false then ∃ i s.t. e2 →i v with i < k.

PROOF. By induction on the number of steps in the evaluation relation.

Lemma 5 (Confluence of Evaluation)
If e →k v and e →i e′ then e′ →k−i v.

PROOF. By induction on the height of the first derivation, using determinacy of single-
step evaluation as needed.

A number of DDCα properties involve reasoning about terms that are equivalent up-to
equivalent typing annotations. Therefore, we now define this equivalence and state some
of its properties.

Definition 6 (Expression Equivalence)
e ≡ e′ iff e is syntactically equal to e′ modulo alpha-conversion of bound variables and
equivalence of typing annotations.

Lemma 7 (Properties of Expression Equivalence)
(1 ) If e ≡ e′ and e →k e1 then ∃ e′1 s.t. e′ →k e′1 and e1 ≡ e′1.
(2 ) If e ≡ e′ then e1[e/x] ≡ e1[e′/x].
(3 ) If σ ≡ σ′ then e[σ/α] ≡ e[σ′/α].
(4 ) e ≡ e.
(5 ) If e ≡ e′ then e′ ≡ e.
(6 ) If e ≡ e′ and e′ ≡ e′′ then e ≡ e′′ .
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PROOF. Part 1. By induction on the number of steps in the evaluation relation. Note that
evaluation in Fω is not influenced by typing annotations. Part 2: By induction on size of
e1. Part 3: By induction on size of e and definition of expression equivalence. Parts 4, 5, 6:
By reflexivity, symmetry and transitivity of expression equality and type equivalence.

Next, we state two properties of Fω type equivalence that are needed later.

Lemma 8 (Properties of Fω Type Equivalence)
(1 ) If Γ ` σ :: κ and σ ≡ σ′ then Γ ` σ′ :: κ.
(2 ) If Γ, x:σ,Γ′ ` e : σ1 and σ ≡ σ′ then Γ, x:σ′,Γ′ ` e : σ1.

Next, we show that substitution commutes with all of the semantic interpretations of
DDCα. For clarity, we first introduce two substitution-related abbreviations:

〈τ/α〉 = [[[τ ]]rep/αrep][[[τ ]]PDb/αPDb]
{τ/α} = [[[τ ]]rep/αrep][[[τ ]]PDb/αPDb][[[τ ]]P/parseα]

Lemma 9 (Commutativity of Substitution and Semantic Interpretation)
(1 ) [[τ [τ ′/α]]]rep = [[τ ]]rep〈τ ′/α〉.
(2 ) If ∆; Γ ` τ : κ then [[τ [τ ′/α]]]rep = [[τ ]]rep[[[µα.τ ]]rep/αrep].

(3 ) If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]PD ≡ [[τ ]]PD〈τ ′/α〉 =
[[τ ]]PD[[[τ ]]PDb/αPDb].

(4 ) If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]P ≡ [[τ ]]P{τ ′/α}.
(5 ) [[τ [v/x]]]rep = [[τ ]]rep.

(6 ) [[τ [v/x]]]PD = [[τ ]]PD.
(7 ) [[τ [v/x]]]P = [[τ ]]P[v/x].

PROOF. Parts 1,3-7: By induction on structure of types. Part 2 is proven by induction
on the height of the kinding derivation. The most interesting case is compute, as it is the
only construct in which a variable of the form αPDb might appear. However, as the type is
well-formed, we know from the kinding rules that the only type variables allowed in σ are
of the form αrep. For part 4, note that variables of the form parserep cannot appear in any
τ – they can only be introduced by the parsing semantics function. For part 6, note that the
open variables in [[τ ]]P are exactly those that are open in τ itself, as none are introduced in
the translation.

Next, we prove a similar commutativity result for the [[ · : · ]]PT function.

Lemma 10
If ∃σ s.t. [[τ ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]:κ〈τ ′/α〉]]PT =
[[τ :κ]]PT〈τ ′/α〉.

PROOF. By induction on the size of the kind, using Lemma 9 for T case.

Lemma 11
The function [[ · ]]rep is total.

PROOF. By induction on the structure of types.
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Next we present some standard type-theoretic results for DDCα kinding and normaliza-
tion.

Lemma 12 (DDCα Preservation)
If ` τ : κ and τ →∗ ν then ` ν : κ.

PROOF. By induction on the kinding derivation.

Lemma 13 (DDCα Inversion)
All kinding rules are invertable.

PROOF. By inspection of the kinding rules.

Lemma 14 (DDCα Canonical Forms)
If ` ν : κ then either

—κ = T, or
—κ = σ → κ and τ = λx.τ ′, or
—κ = T → κ and τ = λα.τ ′.

PROOF. By kinding rules and grammar of normalized types ν.

Finally, we state the substitution lemmas that we assume to hold of the various underly-
ing Fω judgments followed by a substitution lemma for DDCα.

Lemma 15 (Fω Substitution)
(1 ) If ` Γ, α::T,Γ′ ok and Γ ` σ :: T then ` Γ,Γ′[σ/α] ok.
(2 ) If Γ, α::T ` σ :: κ and Γ ` σ1 :: T then Γ ` σ[σ1/α] :: T.
(3 ) If Γ, α::T,Γ′ ` e : σ and Γ ` σ1 :: T then Γ,Γ′[σ1/α] ` e[σ1/α] : σ[σ1/α].
(4 ) If Γ, x:σ′ ` e : σ and Γ ` v : σ′ then Γ ` e[v/x] : σ

PROOF. These are standard properties of Fω. They are all proven by induction on the
height of the first derivation.

Lemma 16 (DDCα Substitution)
(1 ) If ∆; Γ, x:σ ` τ : κ and [[∆]]Fω

; Γ ` v : σ then ∆; Γ ` τ [v/x] : κ.
(2 ) If ∆, α:T; Γ,Γ′ ` τ : κ and ∆; Γ ` τ ′ : T then ∆; Γ,Γ′[τ ′/α] ` τ [τ ′/α] : κ[τ ′/α].

PROOF. For both parts, by induction on the first derivation, using Lemma 15 as needed.

Finally, we state another commutativity property for the semantic functions. In essence,
it says that evaluation (aka. normalization, type equivalence) commutes with semantic in-
terpretation. This result has inherent value for reasoning about DDCα, as it allows one to
reason about the semantics of DDCα functions directly in terms of the stated normalization
rules, rather than indirectly through semantic interpretation and the evaluation/equivalence
rules of the semantic domain. Note that the premise of the lemma involves parser evalua-
tion because that is what is needed for later use. We posit without proof that this lemma
would be equally true if the second premise were switched with the first conclusion.
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Lemma 17 (Commutativity of Evaluation and Semantic Interpretation)
If ` τ : κ and [[τ ]]P →∗ v then ∃ ν such that

(1 ) τ →∗ ν,
(2 ) v ≡ [[ν]]P,
(3 ) [[τ ]]rep ≡ [[ν]]rep, and
(4 ) [[τ ]]PD ≡ [[ν]]PD.

PROOF. By induction on the number of steps in the evaluation. Within the induction,
we proceed using a case-by-case analysis of the possible structures of type τ .

5.1 Type Correctness

Our first key theoretical result is that the various semantic functions we have defined are
coherent. In particular, we show that for any well-kinded DDCα type τ , the correspond-
ing parser is well typed, returning a pair of the corresponding representation and parse
descriptor.

Demonstrating that generated parsers are well formed and have the expected types is
nontrivial primarily because the generated code expects parse descriptors to have a par-
ticular shape, and it is not completely obvious they do in the presence of polymorphism.
Hence, to prove type correctness, we first need to characterize the shape of parse descrip-
tors for arbitrary DDCα types.

The particular shape required is that every parse descriptor be a pair of a header and an
(arbitrary) body. The most straightforward characterization of this property is too weak to
prove directly, so we instead characterize it as a logical relation in Definition 18. Lemma 22
establishes that the logical relation holds of all well-formed DDCα types by induction on
kinding derivations, and the desired characterization follows as a corollary.

Definition 18
—H(τ : T) iff ∃σ s.t. [[τ ]]PD ≡ pd hdr ∗ σ.
—H(τ : T → κ) iff ∃σ s.t. [[τ ]]PD ≡ σ and whenever H(τ ′ : T), we have H(τ τ ′ : κ).
—H(τ : σ → κ) iff ∃σ′ s.t. [[τ ]]PD ≡ σ′ and H(τ e : κ) for any expression e.

Lemma 19
If H(τ : T) then ∃σ s.t.[[τ ]]PD = σ.

PROOF. Follows immediately from definition of H(τ : T).

Note that we implicitly demand that [[τ ]]PD is well defined in the hypothesis of the lemma.
We cannot assume that it is well-defined, even for well-formed τ , as that is part of what we
are trying to prove.

Lemma 20
If [[τ ]]PD ≡ [[τ ′]]PD then H(τ : T) iff H(τ ′ : T).

PROOF. By induction on the structure of the kind.

Lemma 21
If H(τ : κ) and H(τ ′ : T) then H(τ [τ ′/α] : κ).
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PROOF. By induction on the structure of the kind.

Lemma 22
If ∆; Γ ` τ : κ then H(τ : κ).

PROOF. By induction on the height of the kinding derivation.

Corollary 23
—If ∆; Γ ` τ : κ then ∃σ.[[τ ]]PD = σ.
—If ∆; Γ ` τ : T then ∃σ.[[τ ]]PD ≡ pd hdr ∗ σ.

PROOF. Immediate from definition of H(τ : κ) and Lemma 22.

We can now prove a general result stating that if a type is well formed, then its type
interpretations will be well formed, and that the kind of the type will correspond to the
kinds of its interpretations. We first state this correspondence formally and then state and
prove the lemma.

Definition 24 (DDCα Kind Interpretation in Fω)
—K(T) = T

—K(σ → κ) = K(κ)
—K(T → κ) = T → K(κ)

Lemma 25 (Representation-Type Well Formedness)
If ∆; Γ ` τ : κ then

—[[∆]]rep ` [[τ ]]rep :: K(κ)

—[[∆]]PD ` [[τ ]]PD :: K(κ)
—If κ = T then [[∆]]PD ` [[τ ]]PDb :: T.

PROOF. By induction using Lemma 22 and Lemma 8, part 1.

We continue by stating and proving that parsers are type correct. However, to do so,
we must first establish some typing properties of the representation and parse-descriptor
constructors, as at least one of them appears in most parsing functions. In particular, we
prove that each constructor produces a value whose type corresponds to its namesake DDCα

type. For clarity, we abbreviate pd hdr ∗ σ as σ pd.

Lemma 26 (Types of Constructors)
—Runit : unit→ unit

—Punit : offset→ pd hdr ∗ unit
—Rbottom : unit→ none

—Pbottom : offset→ pd hdr ∗ unit
—RΣ : ∀α, β.α ∗ β → α ∗ β

—PΣ : ∀α, β.α pd ∗ β pd→ (α pd ∗ β pd) pd
—R+left : ∀α, β.α → α + β

—R+right : ∀α, β.β → α + β
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—P+left : ∀α, β.α pd→ pd hdr ∗ (α pd + β pd)
—P+right : ∀α, β.β pd→ pd hdr ∗ (α pd + β pd)
—R& : ∀α, β.α ∗ β → α ∗ β

—P& : ∀α, β.α pd ∗ β pd→ pd hdr ∗ (α pd ∗ β pd).
—Rcon : ∀α.bool ∗ α → α + α

—Pcon : ∀α.bool ∗ α pd→ pd hdr ∗ α pd

—Rseq init : ∀α.unit→ int ∗ α seq

—Pseq init : ∀α.offset→ pd hdr ∗ (α pd arr pd)
—Rseq : ∀α.(int ∗ α seq) ∗ α → int ∗ α seq

—Pseq : ∀αelt, αsep.(pd hdr ∗ (αelt pd arr pd)) ∗ αsep pd ∗ αelt pd→
pd hdr ∗ (αelt pd arr pd)

—Rcompute : ∀α.α → α

—Pcompute : offset→ pd hdr ∗ unit
—Rabsorb : ∀α.α pd→ unit + none

—Pabsorb : ∀α.α pd→ pd hdr ∗ unit
—Rscan : ∀α.α → α + none

—Pscan : ∀α.int ∗ α pd→ pd hdr ∗ ((int ∗ α pd) + unit)
—Rscan err : ∀α.unit→ α + none

—Pscan err : ∀α.offset→ pd hdr ∗ ((int ∗ α) + unit)

PROOF. By typing rules of Fω.

With our next lemma, we establish the type correctness of the generated parsers. We
prove the lemma using a general induction hypothesis that applies to open types. This
hypothesis must account for the fact that any free type variables in a DDCα type τ will
become free function variables in [[τ ]]P. To that end, we define the function [[∆]]PT which
maps the set of type-variable bindings in a DDCα context ∆ to a corresponding set of
function-variable bindings in an Fω context Γ.

[[ · ]]PT = · [[∆, α:T]]PT = [[∆]]PT, parseα:[[α:T]]PT

Lemma 27 (Type Correctness Lemma)
If ∆; Γ ` τ : κ then [[∆]]Fω

,Γ, [[∆]]PT ` [[τ ]]P : [[τ :κ]]PT

PROOF. By induction on the height of the kinding derivation.

Theorem 28 (Type Correctness of Closed Types)
If ` τ : κ then ` [[τ ]]P : [[τ :κ]]PT.

A practical implication of this theorem is that it is sufficient to check data descriptions
(i.e., DDCα types) for well-formedness to ensure that the generated types and functions are
well formed. This property is sorely lacking in many common implementations of Lex
and YACC, for which users must examine generated code to debug compile-time errors in
specifications.
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5.2 Canonical Forms

DDCα parsers generate pairs of representations and parse descriptors designed to satisfy
a number of invariants. Of greatest importance is the fact that when the parse descriptor
reports that there are no errors in a particular substructure, the programmer can count on
the representation satisfying all of the syntactic and semantic constraints expressed by
the dependent DDCα type description. When a parse descriptor and representation satisfy
these invariants and correspond properly, we say the pair of data structures is canonical or
in canonical form.

For each DDCα type, its canonical forms are defined via two (mutually recursive) rela-
tions. The first, Canonν(r, p), defines the canonical form of a representation r and a parse
descriptor p at normal type ν. It is defined for all closed normal types ν with base kind
T. Types with higher kind such as abstractions are excluded from this definition as they
cannot directly produce representations and PDs.

A second definition, Canon∗τ (r, p) normalizes τ to a ν, thereby eliminating outermost
type and value applications. Then, the requirements on ν are given by Canonν(r, p). For
brevity, we write p.h.nerr as p.nerr and use pos to denote the function that returns zero
when passed zero and one when passed another natural number.

Definition 29 (Canonical Forms I)
Canonν(r, p) iff exactly one of the following is true:

—ν = unit and r = () and p.nerr = 0.
—ν = bottom and r = none and p.nerr = 1.
—ν = C(e) and r = inl c and p.nerr = 0.
—ν = C(e) and r = inr none and p.nerr = 1.
—ν = Σ x:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon∗τ1(r1, p1) and Canon∗τ2[(r,p)/x](r2, p2).

—ν = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and h.nerr = pos(p′.nerr) and
Canon∗τ1(r

′, p′).
—ν = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and h.nerr = pos(p′.nerr) and

Canon∗τ2(r
′, p′).

—ν = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon∗τ1(r1, p1) and Canon∗τ2(r2, p2).

—ν = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr = pos(p′.nerr), Canon∗τ ′(r′, p′)
and e[(r′, p′)/x] →∗ true.

—ν = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1 + pos(p′.nerr),
Canon∗τ ′(r′, p′) and e[(r′, p′)/x] →∗ false.

—ν = τe seq(τs, e, τt, ), r = (len, [~ri]), p = (h, (neerr, len′, [~pi])), neerr =
∑len

i=1 pos(pi.nerr),
len = len′, Canon∗τe(ri, pi) (for i = 1 . . . len), and h.nerr ≥ pos(neerr).

—ν = µα.τ ′, r = fold[[[µα.τ ′]]rep] r
′, p = (h, fold[[[µα.τ ′]]PD] p′), p.nerr = p′.nerr

and
Canon∗τ ′[µα.τ ′/α](r′, p′).

—ν = compute(e:σ) and p.nerr = 0.
—ν = absorb(τ ′), r = inl (), and p.nerr = 0.
—ν = absorb(τ ′), r = inr none, and p.nerr > 0.
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—ν = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr = pos(i) + pos(p′.nerr), and
Canon∗τ ′(r′, p′).

—ν = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr = 1.

Definition 30 (Canonical Forms II)
Canon∗τ (r, p) iff τ →∗ ν and Canonν(r, p).

We first prove that the representation and parse-descriptor constructors, under the ap-
propriate conditions, produce values in canonical form.

Lemma 31 (Constructors Produce Values in Canonical Form)
—Canonunit(Rtrue(), Ptrue(ω)).
—Canonbottom(Rfalse(), Pfalse(ω)).
—If Canon∗τ1(r1, p1) and Canon∗τ2[(r,p)/x](r2, p2) then

CanonΣ x:τ1.τ2(RΣ(r1, r2), PΣ(p1, p2)).
—If Canon∗τ (r, p) then Canonτ+τ ′(R+left(r), P+left(p)).
—If Canon∗τ (r, p) then Canonτ ′+τ (R+right(r), P+right(p)).
—If Canon∗τ1(r1, p1) and Canon∗τ2(r2, p2) then

Canonτ1 & τ2(R&(r1, r2), P&(p1, p2)).
—If Canon∗τ (r, p) and e[(r, p)/x] →∗ c then

Canon{x:τ | e}(Rset(c, r), Pset(c, p))
—Canonτ seq(τs,e,τt)(Rseq init(), Pseq init(ω)).
—If Canonτ seq(τs,e,τt)(r, p) and Canon∗τ (r′, p′) then, for any p′′,

Canonτ seq(τs,e,τt)(Rseq(r, r
′), Pseq(p, p′′, p′)).

—Canoncompute(e:σ)(Rcompute(e), Pcompute(ω)).
—Canonabsorb(τ)(Rabsorb(p), Pabsorb(p)).
—If Canon∗τ (r, p) then Canonscan(τ)(Rscan(r), Pscan(i, p)).
—Canonscan(τ)(Rscan err(), Pscan err(ω)).

PROOF. By inspection of the constructor functions.

In addition, we require that base-type parsers produce values in canonical form:

Condition 32 (Base Type Parsers Produce Values in Canonical Form)
If ` v : σ, Bkind(C) = σ → T and Bimp(C) v (B,ω) →∗ (ω′, r, p) then CanonC(v)(r, p).

Lemma 33 states that the parsers for well-formed types (of base kind) will produce a
canonical pair of representation and parse descriptor, if they produce anything at all.

Lemma 33 (Parsing to Canonical Forms)
If ` τ : T and [[τ ]]P (B,ω) →∗ (ω′, r, p) then Canon∗τ (r, p).

PROOF. By induction on the height of the second derivation – that is, the number of
steps taken to evaluate. Within the induction, we proceed using a case-by-case analysis of
the possible structures of type τ .
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prog ⇓ τ prog

t ⇓ τ

t ⇓ τ prog
PROG-ONE

p[t/α] ⇓ τ prog
α = t; p ⇓ τ prog

PROG-DEF
p[Prec α.t/α] ⇓ τ prog
Prec α = t; p ⇓ τ prog

PROG-RECDEF

t ⇓ τ

C(e) ⇓ C(e)
BASE

t ⇓ τ

Pfun(x : σ) = t ⇓ λx.τ
PFUN

t ⇓ τ

t e ⇓ τ e
APP

ti ⇓ τi

Pstruct{x1:t1 . . . xn:tn} ⇓
Σ x1:τ1. · · ·Σ xn−1:τn−1.τn

PSTRUCT
ti ⇓ τi

Punion{x1:t1 . . . xn:tn} ⇓
τ1 + · · ·+ τn + bottom

PUNION

ti ⇓ τi

Palt{x1:t1 . . . xn:tn} ⇓ τ1& . . . &τn
PALT

t ⇓ τ

Popt t ⇓ τ + unit
POPT

t ⇓ τ

t Pwherex.e ⇓ {x:τ | if isOk(x.pd) then e else true}
PWHERE

t ⇓ τ tsep ⇓ τs tterm ⇓ τt (f = λx.false)

t Parray(tsep, tterm) ⇓ τ seq(scan(τs), f, τt)
PARRAY

Pcompute e:σ ⇓ compute(e:σ)
PCOMPUTE

Ty(c) = τ

Plit c ⇓ scan(absorb({x:τ |x = c})) PLIT
α ⇓ α

VAR
t ⇓ τ

Prec α.t ⇓ µα.τ
PREC

Fig. 20. Encoding IPADS in DDCα

Corollary 34
If Canon∗τ (r, p) and p.h.nerr = 0 then there are no syntactic or semantic errors in the
representation data structure r.

This corollary is important as it ensures that a single check is sufficient to verify the
validity of a data structure. Only if the data structure is not valid will further checking of
substructures be required.

6. ENCODING DDLS IN DDCα

We can better understand data description languages by elaborating their constructs into
the types of DDCα. We start by specifying the complete elaboration of IPADS into DDCα.
We then discuss other features of PADS/C, PADS/ML, DATASCRIPT, and PACKETTYPES
that are not found in IPADS. Finally, we briefly discuss some limitations of DDCα.

6.1 IPADS Elaboration

We specify the elaboration from IPADS to DDCα with two judgments: p ⇓ τ prog indicates
that the IPADS program p is encoded as DDCα type τ , while t ⇓ τ does the same for IPADS
types t. These judgments are defined in Figure 20.

As much of the elaboration is straightforward, we mention only a few important points.
Notice we add bottom as the last branch of the DDCα sum when elaborating Punion
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so that the parse will fail if none of the branches match rather than returning the result
of the last branch. We base this behavior directly on the actual PADS/C language. In the
elaboration of Pwhere, we only check the constraint if the underlying value parses with
no errors. For Parrays, we add simple error recovery by scanning for the separator type.
This behavior allows us to easily skip erroneous elements. We use the scan type in the
same way for Plit, as literals often appear as field separators in Pstructs. We also
absorb the literal, as its value is known statically. We use the function Ty(c) to determine
the correct type for the particular literal. For example, a string literal would require a
Pstring type.

6.2 Beyond IPADS

We now give semantics to four features not found in IPADS: PADS/C switched unions,
PADS/ML polymorphic, recursive datatypes, DATASCRIPT arrays, and PACKETTYPES over-
lays.

PADS/C switched unions. A switched union, like a Punion, indicates variability in the
data format with a set of alternative formats (branches). However, instead of trying each
branch in turn, the switched union takes an expression that determines which branch to
use. Typically, this expression depends upon data read earlier in the parse. Each branch
is preceded by a tag, and the first branch whose tag matches the expression is selected.
If none match then the default branch tdef is chosen. The syntax of a switched union is
Pswitch e {−−−−−→e ⇒ x:t tdef}.

To aid in our elaboration of Pswitch, we define a type if e then t1 else t2 that
allows us to choose between two types conditionally:

t1 ⇓ τ1 t2 ⇓ τ2 (c = compute(if e then 1 else 2 :Pint))

if e then t1 else t2 ⇓ c ∗ ({x:unit | not e}+ τ1)& ({x:unit | e}+ τ2)

The computed value c records which branch of the conditional is selected. If the condition
e is true, c will be 1, the left-hand side of the intesection will parse τ1 and the right will
parse nothing. Otherwise, c will be 2, the left-hand side will parse nothing and the right τ2.

Now, we can encode Pswitch as syntactic sugar for a series of cascading conditional
types.

Pswitch e {
e1 ⇒ x1:t1
. . .
en ⇒ xn:tn

tdef}

=

if e = e1 then t1 else

. . .
if e = en then t1 else

tdef

Note that we can safely replicate e as the host language is pure.

PADS/ML polymorphic, recursive datatypes. We have also developed an encoding of
PADS/ML’s polymorphic, recursive datatypes. We present this encoding in two steps. First,
we extend IPADS with type abstraction and application, and specify their elobaration into
DDCα. Notice that IPADS type abstractions can have multiple parameters.

Types t ::= ... | PFun (−→α ) = t | t (
−→
t )
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t ⇓ τ

PFun(−→α ) = t ⇓
−−→
λ α.τ

t ⇓ τ
−−→
t ⇓ τ

t (
−→
t ) ⇓ τ −→τ

Next, we extend IPADS programs to include datatype bindings. Datatype bindings in-
clude the name of the type, α, a list of type parameters (−→α ), a single value parameter x,
and a body that consists of a list of named variants. As with Prec bindings, we do not
specify the meaning of datatype bindings in DDCα directly. Rather, we decompose a given
datatype into a compound IPADS type, which is then substituted into the remainder of the
program.

Programs p ::= ... | Pdatatype α (−→α )(x : σ) = {−→x:t}; p

p[t′/α] ⇓ τ prog (t′ = PFun (−→α ) = Pfun(x : σ) = Prec α.Punion{−→x:t})
Pdatatype α (−→α ) (x : σ) = {−→x:t}; p ⇓ τ prog

There are two important points to notice about the decomposition. First, a datatype is
decomposed into no less than four IPADS (and, by extension, DDCα) types. Second, and
more subtly, the recursive type is nested inside of the abstractions, thereby preventing the
definition of nonuniform datatypes. Indeed, the name of the bound datatype, α, plays two
distinct roles – within the recursive type, it is a monomorphic type referring only to the
recursive type itself, while within the rest of the program it is a polymorphic type referring
to the entire type abstraction.

DATASCRIPT arrays. Next, we introduce DATASCRIPT-style arrays t [length], used to
describe binary data. They are parameterized by an optional length field, instead of a
separator and terminator. If the user supplies the length of the sequence, the array parser
reads exactly that number of elements. Arrays with the length field specfied can be encoded
in a straightforward manner with DDCα sequences:

t ⇓ τ (f = λ((len, elts), p).len = length)
t [length] ⇓ τ seq(unit, f, bottom)

As these arrays have neither separators nor terminators, we use unit (always succeeds,
parsing nothing) and bottom (always fails, parsing nothing), respectively, for separator
and terminator. The function f takes a pair of array representation and PD and compares
the sequence length recorded in the representation to length .

Arrays of unspecified length are more difficult to encode as they must check the next el-
ement for parse errors without consuming it from the data stream. A termination predicate
cannot encode this check as they cannot perform lookahead. Therefore, we must use the
terminator type to look ahead for an element parse error. For this purpose, we construct a
type which succeeds where τ fails and fails where τ succeeds:

{x:τ + unit | case x.rep of (inl ⇒ false | inr ⇒ true)}

Abbreviated not(τ), this type attempts to parse a τ . On success, the representation will be
a left injection. The constraint in the constrained type will therefore fail. If a τ cannot be
parsed, the sum will default to unit, the rep will be a right injection, and the constraint will
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succeed. The use of the sum in the underlying type is critical as it allows the constrained
type to be error free even when parsing τ fails.

With not, we can encode the unbounded DATASCRIPT array as follows:

t ⇓ τ

t [] ⇓ τ seq(unit, λx.false, not(τ))

Note that the termination predicate is trivially false, as we use the lookahead-terminator
exclusively to terminate the array.

PACKETTYPES overlays. Finally, we consider the overlay construct found in PACKET-
TYPES. An overlay allows description authors “to merge two type specifications by em-
bedding one within the other, as is done when one protocol is encapsulated within another.
Overlay[s] introduce additional substructure to an already existing field.” [McCann and
Chandra 2000]. For example, consider a network packet from a fictional protocol FP,
where the packet body is represented as a simple byte-array.

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray(Pnosep,Peof);

}
IPinFP = Poverlay FPPacket.body with IPPacket

Type Pnosep indicates that there are no separators between elements of the byte array and
type Peof indicates that the array is terminated by the end-of-file. They can be encoded
in DDCα using unit and bottom, respectively. The overlay creates a new type IPinFP
where the body field is an IPPacket rather than a simple byte array.

We have developed an elaboration of the overlay syntax into DDCα. In essence, overlays
are syntactic sugar: overlaying a subfield of a given type replaces the type of that subfield
with a new type. However, despite the essentially syntactic nature of overlays, we dis-
covered a critical subtlety of semantic significance, not mentioned by the PACKETTYPES
authors. Any expressions in the original type that refer to the overlayed field may no longer
be well typed after applying the overlay. For example, consider extending FPPacketwith
a field that is constrained to be equal to the checksum of the body:

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray(Pnosep,Peof);
checksum : Pint Pwhere cs.cs = checksum(body);

}

The checksum function requires that body be a byte array. Therefore, if we overlay
body with a structured type like IPPacket, then body will no longer be a byte array
and, so, the application of checksum to body will be ill-formed. We thought to disallow
such expressions in the overlayed type. However, we found this to be a difficult, if not
impossible task. More importantly, such a restriction is unnecessary. Instead, the new type
can be checked for well formedness after the overlay process, an easy task in the DDCα

framework.
At this point, we have described the elaborations of some of the more interesting features

of the languages that we have studied. However, to give a fuller sense of what is possible,
we briefly list additional features of DATASCRIPT and PACKETTYPES for which we have
found encodings in DDCα:
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—PACKETTYPES: arrays, where clauses, structures, overlays, and alternation.
—DATASCRIPT: constrained types (enumerations and bitmask sets), value-parameterized

types (which they refer to as “type parameters”), arrays, constraints, and (monotonically
increasing) labels. These labels allow users to specify the location of a data element
within the data source. They can be used, for example, to describe a data source that
begins with a header specifying the location of the remaining data elements in the data
source.

We know of a couple of features from data description languages that we cannot imple-
ment in DDCα as it stands. First, we cannot support a label construct that permits the user
to rewind the input. Second, DATASCRIPT allows the element type of an array to reference
the representation of the array itself [Back 2002] (see, in particular, the example in Figure
5). This feature can be useful, for example, if the element type needs the index of the array
element that is currently being processed. DDCα does not support this kind of element-type
parameterization. However, we do not view such limitations as particularly troublesome.
Like the λ-calculus or π-calculus, DDCα is intended to capture many common language
features, while providing a convenient and effective basis for extension with new features.

7. APPLICATIONS OF THE SEMANTICS

The development of DDCα and definition of a semantics for IPADS has had a substantial
impact on the PADS/C and PADS/ML implementations. It has helped improve the imple-
mentations in a number of distinct ways, which we now discuss.

7.1 Bug Hunting

The DDCα was developed, in part, through a line-by-line analysis of key portions of the
PADS/C implementation, to uncover implicit invariants in the code. In the process of trying
to understand and formalize these invariants we realized that our error accounting method-
ology was inconsistent, particularly in the case of arrays. When we realized the problem,
we were able to formulate a clear rule to apply universally: each subcomponent adds 1 to
the error count of its parent if and only if it has errors. If we had not tried to formalize our
semantics, it is unlikely we would have made the error accounting rule precise, leaving our
implementation buggy and inconsistent.

The semantics also helped us avoid potential nontermination of array parsers. In the
original implementation of PADS/C arrays, it was possible to write nonterminating arrays,
a bug that was only uncovered when it hung a real program. We have fixed the bug and
used the semantics to verify our fix. 2

7.2 Principled Language Implementation

Unlike the rest of PADS/C, the semantics of recursive types preceded the implementa-
tion. We used the semantics to guide our design decisions in the implementation. Perhaps
more significantly, the semantics was used in its entirety to guide the implementation of
PADS/ML. The semantics of type abstractions were particularly helpful, as they are a new
feature not found in PADS/C. Before working through the formal semantics, we struggled

2The type nothing array(nothing,eof) where type nothing consumes no input, would not terminate
in the orignal system. A careful read of the DDCα semantics of arrays, which has now been implemented in
PADS/C, shows that array parsing terminates after an iteration in which the array parser reads nothing.
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to disentangle the invariants related to polymorphism. After we had defined the calcu-
lus, we were able to implement type abstractions as O’CAML functors in approximately a
week. We hope the calculus will serve as a guide for implementations of PADS in other
host languages.

7.3 Distinguishing the Essential from the Accidental

In his 1965 paper, P.J. Landin asks “Do the idiosyncracies [of a language] reflect basic
logical properties of the situations that are being catered for? Or are they accidents of
history and personal background that may be obscuring fruitful developments?”

The semantics helped us answer this question with regard to the Pomit and Pcompute
qualifiers of PADS/C. Originally, these qualifiers were only intended to be used on fields
within Pstructs. By an accident of the implementation, they appeared in Punions as
well, but spread no further. However, when designing DDCα, we followed the principle of
orthogonality, which suggests that every linguistic concept be defined independently of ev-
ery other. In particular, we observed that “omitting” data from, or including (“computing”)
data in, the internal representation is not dependent upon the idea of structures or unions.
Furthermore, we found that developing these concepts as first-class constructors absorb
and compute in DDCα allowed us to encode the semantics of other PADS/C features ele-
gantly (literals, for example). In this case, then, the DDCα highlighed that the restriction of
Pomit and Pcompute to mere type qualifers for Punion and Pstruct fields was an
“accident of history,” rather than a “basic logical property” of data description.

We conclude with an example of another feature to which Landin’s question applies,
but for which we do not yet know the answer. The Punion construct chooses between
branches by searching for the first one without errors. However, this semantics ignores
situations in which the correct branch in fact has errors. Often, this behavior will lead to
parsing nothing and flagging a failure, rather than parsing the correct branch to the best of
its ability. The process of developing a semantics brought this fact to our attention and it
now seems clear we would like a more robust Punion, but we are not currently sure how
to design one.

8. RELATED WORK

The primary purpose of this article is to describe the semantic theory of type-based data
description languages. However, in the following paragraphs, we give an overview both of
research in related theoretical topics and in implementation of practical technologies for
managing ad hoc data.

Ad Hoc Data Description Languages. Clearly, the most closely related language de-
signs are PADS/C [Fisher and Gruber 2005], which has data descriptions based on the type
structure and syntax of the C programming language, and PADS/ML [Mandelbaum et al.
2007], which has data descriptions based on the type structure and syntax of O’Caml. As
discussed in previous sections, PADS/C was first developed prior to the theory described in
this paper, but then vetted and improved using the theory as a guide. On the other hand,
PADS/ML was developed later, and the implementation built relatively directly by transcrip-
tion from the formal inference rules. Both languages are capable of generating parser and
printer libraries as well as a number of useful stand-alone tools for query support, format
translation, and analysis of statistical properties.

The networking community has developed a number of domain-specific languages that
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use a type-based model for describing data much like PADS/C, PADS/ML, and DDCα.
These include PACKETTYPES [McCann and Chandra 2000], DATASCRIPT [Back 2002]
and Bro’s [Paxson 1999]. These languages only handle binary data as they are primarily
aimed at packet processing applications. As we suggested earlier in this article, DDCα will
serve as a useful platform for studying many of the features of these languages.

A somewhat different class of languages includes ASDL [ASDL ] and ASN.1 [Dubuis-
son 2001] . Both of these systems specify the logical in-memory representation of data and
then automatically generate a physical on-disk representation. Although useful for many
purposes, this technology does not help process data that arrives in predetermined, ad hoc
formats. Another language in this category is the Hierarchical Data Format 5 (HDF5) [Hi-
erarchical Data Format 5 ]. This file format allows users to store scientific data, but it does
not help users deal with legacy ad hoc formats.

At the other end of the spectrum, some of the oldest tools for describing data formats
are parser generators for compiler construction such as LEX and YACC. While excellent
for parsing programming languages, LEX and YACC are too heavyweight for parsing many
of the simpler ad hoc data formats that arise in areas like networking, the computational
sciences and finance. The user must learn both the lexer generator and the parser generator,
and then specify the lexer and the parser separately, in addition to the glue code to use
them together. In addition, LEX and YACC do not support data-dependent parsing, do not
generate internal representations automatically, and do not supply a collection of value-
added tools.

Grammar-based Parser Generators. More modern parser generators alleviate several
of the problems of LEX and YACC by providing more built-in programming support. For
instance, the ANTLR parser generator [Parr and Quong 1995] allows the user to add annota-
tions to a grammar to direct construction of a parse tree. However, all nodes in the abstract
syntax tree have a single type, hence the guidance is rather crude when compared with
the richly-typed structures that can be constructed using typed languages such as PADS/C,
PADS/ML, DATASCRIPT or DDCα. The SABLE/CC compiler construction tool [Agnon
1998] goes beyond ANTLR by producing LALR(1) parsers along with richly-typed ASTs
quite similar to those of PADS/C. Also like PADS/C or PADS/ML, descriptions do not con-
tain actions. Instead, actions are only performed on the generated ASTs.

DEMETER [Lieberherr 1988] is another parser generator in the same general tradition as
Lex, Yacc, ANTLR and SABLE/CC in that it is based on context-free grammars. However,
DEMETER’s class dictionaries are even more powerful than previous systems as they au-
tomatically generate “visitor” functions that traverse the internal representation of parsed
data.

Despite their many benefits, all of the context-free grammar-based tools — LEX, YACC,
ANTLR, SABLE/CC, and DEMETER — have some deficiencies when compared with tools
built on the type theory described by DDCα. In particular, none of them include depen-
dent or polymorphic data descriptions directly in their specification language (though some
forms of dependency can likely be “hacked,” at least in LEX and YACC, by programming
arbitrary host language code in the semantic actions). Moreover, while the semantics of
context-free grammars are obviously well understood, the semantics of the tools them-
selves, including the semantic actions that generate internal data structures, have not been
as thoroughly studied. For instance, we know of no proof that ANTLR or SABLE/CC gen-
erated parsers are type safe. Finally, the error handling strategies for conventional parser
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generators are different than those of PADS/ML. They do not provide the programmer with
programmatic access to errors, as PADS/ML does with parse descriptors. That said, such a
laundry list of differences risks obscuring the more essential difference – that these tools
are targeted at a different domain. The type-based tools such as PADS, DATASCRIPT, and
PACKETTYPES generate tools specificly suited to processing ad hoc data (both binary and
ASCII) whereas the others generate tools suited to the processing and analysis of programs.

Modern Programming Technologies. There are many parallels between DDCα and parser
combinators [Burge 1975; Hutton and Meijer 1998]. In particular, DDCα’s dependent sum
construct is reminiscent of the bind operator in the monadic formulation of parser combi-
nators. Indeed, we can model DDCα’s dependent sums in Haskell as follows.

sigma :: P s -> (s->P t) -> P (s,t)
sigma m q = do {x <- m; y <- q x; return (x,y)}

However, there are a number of deeper differences between parser combinators and DDCα

descriptions:

—As a language of types, DDCα, and related languages such as PADS/C and PADS/ML,
exploit programmer intuitions concerning the meaning of types directly, and has a com-
pletely different “look and feel” from Haskell combinator libraries.

—DDCα, with its parse descriptors, has quite a different error reporting mechanism from
parser combinator libraries.

—The multi-faceted, nonstandard semantics of dependent DDCα types is structured en-
tirely differently from the semantics of parser generators given in the literature.

—A parser combinator library is specifying a parser, while a term in DDCα is describing
a data format, which means that the DDCα term can be used to generate a printer and
other analysis tools in addition to a parser.

Another related technology is type-directed or generic programming [Jeuring and Jans-
son 1996; Hinze 2000; Lämmel and Peyton Jones 2003]. Type-directed programming
techniques allow users to define algorithms based on induction over the structure of a type
rather than induction (or recursion) over the structure of a value. Clearly, the parsers de-
fined by DDCα are defined by induction over the structure of types and hence may be
thought of as type-directed programs. However, most of the general-purpose research
on type-directed programming gives little or no insight into the specific problem of how
one defines parsers from a language of dependent types. Likewise, the semantics of
generic programming languages clearly does not directly serve as a semantics for PADS/C
or PADS/ML.

The closest connection between DDCα and research in type-directed programming can
likely be found in the work of van Weelden et al [van Weelden et al. 2005]. These au-
thors investigated the use of polytypic programming to produce a parser for a language
based only on the specification of its AST type(s). In this way, the AST types themselves
serve as the grammar for the language. They also investigate applying this approach to
other compiler-related analyses, like scope checking and type inference. However, while
their “types-as-grammar” approach is clearly related to PADS/ML, they use standard (non-
dependent) types as parser specifications, and they study parsing techniques for program-
ming languages, not ad hoc data. Dependent types are very important in the domain of
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



The Next 700 Data Description Languages · 43

ad hoc data, where it is very common for a tag early in data to determine later parsing
behavior or an integer to determine the length of some future array.

XML-based tools. Rather than programming directly with data in its ad hoc format, it
may be useful to first convert it to XML. Once in XML, any one of hundreds of XML-based
tools may be used to manipulate the data. XSugar [Brabrand et al. 2005] is one tool that
allows users to specify an alternative non-XML syntax for XML languages using a context-
free grammar. This tool automatically generates conversion tools between XML and non-
XML syntax. Another such tool is the Binary Format Description language (BFD) [Myers
and Chappell 2000]. BFD is able to convert the raw binary or ASCII data into XML-tagged
data where it can then be processed using XML-processing tools. While both these tools
are useful for many tasks, conversion to XML is not always the answer. Such conversion
often results in an 8-10 times blowup in data size over the native form. Moreover, when
the programmer is not familiar with XML, there is a high barrier to entry — not only does
the programmer have to learn the ad hoc format, but they must also learn XML and the
XML conversion tool. Altogether, this is too heavyweight for many simple data processing
tasks.

DFDL is a data format specification language with an XML-based syntax and type struc-
ture [DFDL 2005; Beckerle and Westhead 2004]. DFDL is a language specification, not
an entire system or an implementation – PADS/ML could, perhaps, serve as the basis of
a robust DFDL implementation. Like the PADS/ML language, DFDL has a rich collection
of base types and supports a variety of ambient codings. In terms of expressiveness, we
believe the DFDL consortium has added dependency and semantic constraints to match the
expressiveness of PADS/C. However, because the specification is still under development,
we cannot give a more detailed comparison at this point.

XDTM [Moreau et al. 2005; Zhao et al. 2005] uses XML Schema to describe the loca-
tions of a collection of sources spread across a local file system or distributed across a net-
work of computers. However, XDTM has no means of specifying the contents of files, so
XDTM and PADS/ML solve complementary problems. The METS schema [METS 2003]
is similar to XDTM as it describes metadata for objects in a digital library, including a
hierarchy such objects.

Databases. Commercial database products provide support for parsing data in external
formats so the data can be imported into their database systems, but they typically support
a limited number of formats. Also, no declarative description of the original format is ex-
posed to the user for their own use, and they have fixed methods for coping with erroneous
data. For these reasons, PADS/ML is complementary to database systems. We strongly be-
lieve that in the future, commercial database systems could and should support a PADS-like
description language that allows users to import information from almost any format.

Parsing Theory. To the best of our knowledge, our work on DDCα is the first to provide
a formal interpretation of dependent types as parsers and to study the properties of these
parsers including error correctness and type safety. Of course, there are other formalisms
for defining parsers, most famously, regular expressions and contex-free grammars. In
terms of recognition power, these formalisms differ from our type theory in that they have
nondeterministic choice, but do not have dependency or constraints. We have found that
dependency and constraints are absolutely essential for describing most of the ad hoc data
sources we have studied. Perhaps more importantly though, unlike standard theories of
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context-free grammars, we do not treat our type theory merely as a recognizer for a col-
lection of strings. Our type-based descriptions define both external data formats and rich
invariants on the internal parsed data structures. This dual interpretation of types lies at the
heart of tools such as PADS, DATASCRIPT and PACKETTYPES.

Parsing Expression Grammars (PEGs), studied in the early 70s [Birman and Ullman
1973] and revitalized more recently by Ford [Ford 2004], evolved from context-free gram-
mars but have deterministic, prioritized choice like DDCα as opposed to nondeterministic
choice. Though PEGs have syntactic lookahead operators, they may be parsed in linear
time through the use of “packrat parsing” techniques [Ford 2002; Grimm 2004]. Once
again, our multiple interpretations of types in DDCα makes our theory substantially differ-
ent from the theory of PEGs.

9. CONCLUSION

Ad hoc data is pervasive and valuable: in industry, in medicine, and in scientific research.
Such data tends to have poor documentation, to contain various kinds of errors, and to be
voluminous. Unlike well-behaved data in standardized relational or XML formats, such
data has little or no tool support, forcing data analysts and scientists to waste valuable
time writing brittle custom code, even if all they want to do is convert their data into a
well-behaved format. To improve the situation, various researchers have developed data
description languages such as PADS, DATASCRIPT, and PACKETTYPES. Such languages
allow analysts to write terse, declarative descriptions of ad hoc data. A compiler then
generates a parser and customized tools. Because these languages are tailored to their
domain, they can provide useful services automatically while a more general purpose tool,
such as LEX/YACC or PERL, cannot.

In the spirit of Landin, we have taken the first steps toward specifying a semantics for this
class of languages by defining the data description calculus DDCα. This calculus, which is
a dependent type theory with a simple set of orthogonal primitives, is expressive enough
to describe the features of PADS, DATASCRIPT, and PACKETTYPES. In keeping with the
spirit of the data description languages, our semantics is transformational: instead of sim-
ply recognizing a collection of input strings, we specify how to transform those strings
into canonical in-memory representations annotated with error information. Furthermore,
we prove that the error information is meaningful, allowing analysts to rely on the error
summaries rather than having to re-vet the data by-hand.

We have already used the semantics to identify bugs in the implementation of PADS/C
and to highlight areas where PADS/C sacrifices safety for speed. We have also used the se-
mantics as a guide for the design of a whole new language, PADS/ML, designed specifically
for functional programmers. In the future, we hope DDCα will serve as a solid foundation
for the next 700 data description languages.
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