
Concurrent Separation Logic

for Pipelined Parallelization

Christian J. Bell, Andrew W. Appel, and David Walker

Princeton University, Computer Science Department,
35 Olden Drive, 08540-5233 Princeton, New Jersey

{cbell,dpw,appel}@cs.princeton.edu

http://www.cs.princeton.edu/

Abstract. Recent innovations in automatic parallelizing compilers are
showing impressive speedups on multicore processors using shared mem-
ory with asynchronous channels. We have formulated an operational se-
mantics and proved sound a concurrent separation logic to reason about
multithreaded programs that communicate asynchronously through chan-
nels and share memory. Our logic supports shared channel endpoints
(multiple producers and consumers) and introduces histories to over-
come limitations with local reasoning. We demonstrate how to transform
a sequential proof into a parallelized proof that targets the output of the
parallelizing optimization DSWP (Decoupled Software Pipelining).

1 Introduction

We have created an operational semantics and a concurrent separation logic
(CSL) to reason about the correctness of programs that share memory and use
buffered channels to synchronize processes. These channels can be used directly
by the programmer or automatically by a parallelizing compiler and are not re-
stricted to point-to-point communication; multiple producers and multiple con-
sumers may asynchronously access a channel. We have proved our CSL sound1

with respect to the operational semantics. Furthermore, we demonstrate how
certain proofs of correctness for a sequential program can be used to generate
a related proof (that maintains the original specification) for the parallelized
output of an optimization.

CSL [9] is an extension of separation logic (SL), which is an extension of
Hoare logic. SL facilitates local reasoning about resources used by a program, so
that when analyzing a region of code, we may assume that actions made by the
rest of the program cannot interfere. This is encapsulated in the “frame rule”
of SL. Similarly, CSL facilitates local reasoning about resources in a concurrent
program so that we can analyze just one process while assuming that other
processes cannot interfere. CSL has already been used to reason about programs
that use critical sections and locks [9][6].

1 Our proofs can be found at http://www.cs.princeton.edu/~cbell/cslchannels/

2 Christian J. Bell, Andrew W. Appel, and David Walker

Our logic can be used in proofs about compilers. Leroy and others proved
correct compilers for sequential programs; Hobor et al. outlined how such proofs
can be extended to concurrent programs [8][6]. We have designed our logic to be
capable of extending these certified compilers to handle programs that use chan-
nels. Proofs in our logic could also be used in proof-carrying code frameworks.

1.1 Parallelizing transformations

A parallelizing compiler attempts to optimize a program by automatically par-
titioning sequential code into multiple threads. A classic example of this is
the DOALL optimization, which parallelizes while-loops that have no loop-
carried dependencies by distributing the iterations among multiple threads.
While DOALL has had some success, particularly in scientific and numerical
computing, it is common for programs to have loop-carried dependencies, thus
many programs cannot benefit from DOALL.

Core 2

A

B

A

B

Core 1

A

B

A

B

(a) DOACROSS

Core 2

B

B

B

B

Core 1

A

A

A

A

(b) DSWP

Fig. 1: Trace of DOACROSS vs.
DSWP. Arrows depict data flow,
control/data dependencies, and
communication latency.

Another optimization is DOACROSS,
which can handle loop-carried dependen-
cies. This optimization partitions iterations
among several threads, but also transmits
dependencies between the threads with the
hope that there is a significant task within
the loop that can overlap with other iter-
ations regardless of the dependency. Figure
1a shows an example trace of a loop where
each iteration is composed of tasks A and B;
A and B both depend on A, but A and B
do not depend on B. Because the dependen-
cies are transmitted bidirectionally between
threads, any latency in communication or an
iteration stalling will cause the entire compu-
tation to stall. Therefore, DOACROSS often
does not yield significant performance gains.

Pipelined parallelism identifies code that
can be partitioned into tasks that have acyclic dependencies. Tasks that produce
dependencies can run ahead of tasks that consume them, and tasks with no
dependencies between them run in parallel. Such parallelism is often leveraged
at the instruction level in hardware.

Decoupled Software Pipelining (DSWP) is a compiler optimization that lever-
ages pipelined parallelism [15][12], illustrated in Figure 1b. The dependencies are
communicated between threads using asynchronous channels, which can be im-
plemented as a shared queue in memory or in hardware [13]. Unlike DOACROSS,
communication latencies and stalls will only affect consuming threads, allowing
the producing threads to work ahead. DSWP is capable of a significant per-
formance increase: in the SPEC CINT2000 benchmark suite, DSWP yielded a
geometric mean speedup of 5.54 with a geometric mean of 17 threads [1].

Concurrent Separation Logic for Pipelined Parallelization 3

while c(p) (
b(p);
p:= a(p)

)

Fig. 3: Running example

while p 6= nil (
t:= [p.val];
[p.val]:= t + 1;
p:= [p.next]

)

Fig. 4: Instance of running
example

produce d p;

while c(p) (
p:= a(p);
produce d p

)

consume d p’;

while c(p’) (
b(p’);
consume d p’

)

Fig. 5: Parallelized while-program

In Section 2 we will show how to parallelize a wide class of programs. In
Section 4 we will show how to transform SL proofs of sequential programs into
CSL proofs of DSWP-parallelized programs.

2 Parallelizing a Program

a(p) b(p)
p

(a)

(b)

Fig. 2

To illustrate our operational semantics and CSL, we con-
sider the class of programs in Figure 3, where a(p) and b(p)
represent blocks of instructions that use at least variable p.
We assume operation a(p) does not depend on b(p), b(p) de-
pends only on a(p) exactly through variable p, and b(p) may
or may not depend on itself through variables other than
p; illustrated in Figure 2a. Figure 4 is an example of such
a program. The dependencies in Figure 2a also generalize
over more complicated dependencies such as in Figure 2b.
In practice, tasks a(p) and b(p) are significant computations.

This program is not a candidate for DOALL optimization
because of the loop-carried dependencies from a(p) to a(p) and possibly from
b(p) to b(p). However, because the dependency between a(p) and b(p) is in one
direction, we can apply DSWP to generating the program in Figure 5.

This parallelized program, where we have two processes communicating using
instructions produce and consume, computes the same values as Figure 3. To
send the value of expression e through channel d (pushing the value onto the
back of the channel’s queue), we write produce d e. To receive a value (from the
front of the channel’s queue) into variable x, we write consume d x.

3 CSL with Asynchronous Channels

Our logic is an extension of SL with channel endpoints and the heap as resources.
We treat channels as a way to transmit both values and resources. While a low-

4 Christian J. Bell, Andrew W. Appel, and David Walker

level view of a program may simply see integers being sent through a channel,
in our logic those integers may have further meaning. For example, they can be
channel identifiers or pointers. When transmitting a pointer, we can bundle the
knowledge that it is a pointer (with permission to dereference it) as a resource,
and send the resource along with the pointer value.

We do not restrict channels to point-to-point communication; we allow mul-
tiple processes to send or receive values through a channel at the same time. The
order in which the processes access the channel is nondeterministic.

To control how the channels are used, we assign resource invariants to each
channel to act as a protocol to which producing and consuming processes must
adhere. A resource invariant is a predicate that must always hold on the state of
the channel. Resource invariants were introduced to CSL by O’Hearn and have
been used to control how critical sections and locks are used [9][6]. Producers
use the resource invariant to determine which resources they must give up when
sending a value. Consumers use the resource invariant to determine which re-
sources they gain by receiving a value. For example, a resource invariant could
state that each value in the channel points to an integer: producers must show
that each value sent is such a pointer and give up the resource to dereference it,
and consumers use the resource invariant to show that each received value is a
valid pointer that can be dereferenced.

3.1 Channel endpoint histories

A main property of CSL is that we reason about the correctness of a process in-
dependently of all other processes. When a process sends a value to another pro-
cess through a channel, neither knows what the other has or will do to the value
beyond what the resource invariant states. This is enough for memory safety;
access to a shared pointer can be transferred between processes to prevent race
conditions. However, resource invariants cannot show that values transmitted by
a producing process are correctly summed by a consuming process. We also can-
not use them to ensure that every pointer sent through a channel is eventually
deallocated. Local reasoning in CSL prevents us from reasoning about these be-
haviors from the perspective of just one process. To overcome this limitation, we
delay such reasoning, by recording a history of the values transmitted through
each endpoint, until the processes synchronize.

Histories in point-to-point communication. Consider two processes: a pro-
ducer and consumer. The producer sends 1 followed by 2, so its history is [2, 1].
The consumer receives two values and stores them into variable x, then y. Be-
cause the consumer cannot know what the producer sent, its history is simply
[y, x]. When the two processes join, we know that [2, 1] was sent and that [y, x]
was received, so [y, x] = [2, 1], or y = 2 and x = 1.

Histories with multiple producers and consumers. We allow a channel
endpoint to be split among multiple producers or consumers. Each piece of an

Concurrent Separation Logic for Pipelined Parallelization 5

endpoint records its own local history, and when all the pieces of an endpoint are
joined, the history is global. Recording histories through a piece of an endpoint
is trickier than recording the history in the full endpoint because the order in
which the processes send/receive from the channel is nondeterministic. For this
reason, we record sets of possible histories through each endpoint.

Consider the case of multiple processes producing through the same channel.
Each producer records the sequence of the values it sends, but not what other
producers send. When two of the processes join, we do not know the order of
one history with respect to the other. Thus the combined endpoint records all
possible orderings by interleaving the two histories; the actual order in which
the values were sent must be within this set. When a new value is subsequently
produced through the endpoint, it is appended to each history in the set.

When two sets of histories join, we compute the new set of histories by
interleaving every pair of histories from the two sets. We call this operation a
merging of the histories. Every history in a set of histories is a permutation
of all other histories in the set; merging preserves this behavior. For multiple
consumers, we record histories in the same way.

Example 1 (Multiple consumers). Assume we have one producing process and
two consuming processes, each with an initial set of histories equal to {nil} (none
have sent or received any values). The producer sends 1, 2, 3, then 4. Consumer
1 receives two values, w then x; consumer 2 receives one value, y; then they join
and one more value, z, is consumed. The resulting sets of histories are:

Producer Consumer 1 Consumer 2 After C1 & C2 join, then consume z
{[4, 3, 2, 1]} {[x,w]} {[y]} z::({[x,w]} ! {[y]}) =

z::{[x,w, y], [x, y, w], [y, x, w]} =
{[z, x, w, y], [z, x, y, w], [z, y, x, w]}

The merged (!) consume histories cannot exactly reconstruct the order in which
the two consumers received values with respect to each other. They can show,
however, that z = 4 and z > x > w.

3.2 Predicate logic

Figure 6 lists some predicates used in our logic. Metavariable A is a predicate
that ranges over formulae, e is an expression, H is a set of histories (each a list
of values), and d is a channel name. π is a fractional share of a resource that
ranges over [0, 1], where π > 0 grants permission for [shared] use of the resource
and π = 0 does not. A value is either an integer or list of values. The predicates
in the last line are conventional: separating conjunction, separating implication,
implication, expression equality, no share of any resources, and a pure logical
formula. The logic has universal and existential quantification ranging over val-
ues. We use the forcing relation r; s |= A to state that predicate A holds under
environment s and exactly resources r (resources are defined in Section 5.1).
Predicate A1 entails A2 if ∀r, s. r; s |= A1 =⇒ r; s |= A2, written A1 ⊢ A2.

6 Christian J. Bell, Andrew W. Appel, and David Walker

A ::= dπH!
| dπH?
| A[p: d+= v]
| A[c: d+= v]
| PHist d H
| CHist d H
| e⇓v

Share π of the produce endpoint of channel d, with histories H
Share π of the consume endpoint of channel d, with histories H

A holds after appending v to d’s local produce histories
A holds after appending v to d’s local consume histories

The local produce histories of channel d are H
The local consume histories of channel d are H

The expression evaluates to value v
| e1 7→e2 | A1 ∗A2 | A1 −∗ A2 | A1 =⇒ A2 | e1 = e2 | emp | B

Fig. 6: Predicates

Predicates PHist/CHist hold for any resource if the produce/consume history
is exactly H. They are used as side conditions for some of the Hoare rules.

Channel endpoints interact with the separating conjunction as follows:

dπ1
H1! ∗ dπ2

H2! ⇐⇒ dπ1+π2
(H1 ! H2)!

dπ1
H1? ∗ dπ2

H2? ⇐⇒ dπ1+π2
(H1 ! H2)?

Example 2. Assume that Example 1 uses channel d and the two consumers have
permissions π1 and π2. Just before the consumers join, they have resources
dπ1

{[x,w]}? and dπ2
{[y]}? respectively. After joining, their resources are:

dπ1
{[x,w]}? ∗ dπ2

{[y]}? ⊢ dπ1+π2
({[x,w]} ! {[y]})?

⊢ dπ1+π2
{[x,w, y], [x, y, w], [y, x, w]}?

And after consuming into variable z, their resources are:

dπ1+π2
(z::{[x,w, y], [x, y, w], [y, x, w]})?

⊢ dπ1+π2
{[z, x, w, y], [z, x, y, w], [z, y, x, w]}?

3.3 Resource invariants

We use resource invariants to verify that values and resources are transmitted
through each channel according to protocol. The state of a channel is composed of
the resources r stored in the channel, a list of values lq queued in the channel, and
a list of previously consumed values lc (not a set of histories). A resource invariant
R holds on the state (r, lq, lc) of a channel only if r; . |= R(lq, lc). Concatenating
the queue lq and consume values lc of a channel together, written lq@lc, yields
the list of produced values for the channel. Channel resource invariants must
satisfy the predicate ⊢ R R-okay, specified as follows:

emp ⊢ R(nil,nil)

∀lq, lc. R(lq, lc) is closed and precise

∀lc. R(nil, lc) ⊢ emp

⊢ R R-okay
Resource-Okay

Concurrent Separation Logic for Pipelined Parallelization 7

ι ::= ι1; ι2 | x:= e | x:= [e] | [x]:= e | while e ι | assert A

| [Γ1; A1] ι1 ‖ [Γ2; A2] ι2 | produce d e | consume d x | skip

Instruction sequencing, local variable assignment, fetch from heap, store into heap,
repeat ι until e is false, assert that predicate A holds, run two blocks of instructions in
parallel, produce a value, consume a value into a local variable, no-op.

Fig. 7: Instructions

The first premise states that the resource invariant must be satisfied and own
no resources for a channel that has not yet been used. The second ensures that
resources can be transferred between process environments and that the resource
invariant is sufficient to determine exactly what resources are transferred to and
from the channel. Finally, the third premise attaches resources only to values in
the queue and not the consume history to ensure that all resources can eventually
be extracted from the channel by consuming values.

Example 3. A resource invariant that specifies the first value produced/consumed
is 0 and that the values transmitted are strictly increasing:

R , λlq.λlc. match lq, lc with

| nil,nil ⇒ emp

| nil, v::nil ⇒ v = 0 ∧ emp

| nil, v1::v2::lc ⇒ v1 > v2 ∧ R(nil, v2::lc)

| lq@v::nil, lc ⇒ R(lq, v::lc)

Example 4. A resource invariant for the parallelization of Figure 4 in Figure 5.
To pass permission to dereference p.val through the channel:

R , λlq.λlc. match lq, lc with

| nil, ⇒ emp

| v::l′q, ⇒ R(l′q, lc) ∗ v.val 7→

3.4 Instructions

In Figure 7, x is a program variable, ι is an instruction, A is a predicate, Γ is a set
of free variables, and d is the name of a channel. Instruction [Γ1;A1] ι1 ‖ [Γ2;A2] ι2
uses Γ and A to specify how variables and resources are split between processes
ι1 and ι2. We use assert to prove the partial correctness of programs.

3.5 Hoare logic

A Hoare triple describes the precondition and postcondition of executing a com-
mand. If the precondition is met and the command terminates, then the postcon-
dition establishes the new state of the program. We give the Hoare triple rules

8 Christian J. Bell, Andrew W. Appel, and David Walker

l Aπ H ,

{

l ∈ H if π = 1
∃H ′. l ∈ H ! H ′ if π 6= 1

B ⊢ PHist d {nil} A ⊢ PHist d e::H
∀lq, lc. lq@lc Aπ H =⇒ B ∗ R̄[d](lq, lc) ⊢ R̄[d](e::lq, lc)

R̄; Γ ⊢i {dπH! ∗ (dπe::H! −∗ B ∗A)} produce d e {A}
H-Produce

x ∈ Γ ∀v. B(v) ⊢ CHist d {nil} A ⊢ CHist d x::H
∀lq, v, lc. lc Aπ H =⇒

R̄[d](lq@v::nil, lc) ⊢ B(v) ∗ R̄[d](lq, v::lc)

R̄; Γ ⊢i {dπH? ∗ (∀v. (dπH? ∗B(v))[c: d+= v] −∗ A[v/x])}
consume d x
{A}

H-Consume

R̄; Γ1 ⊢i {A1} ι1 {B1} FV (A1) ⊆ Γ1 Γ1#Γ2

R̄; Γ2 ⊢i {A2} ι2 {B2} FV (A2) ⊆ Γ2 Γ1 ∪ Γ2 ⊆ Γ

R̄; Γ ⊢i {A1 ∗A2} [Γ1; A1] ι1 ‖ [Γ2; A2] ι2 {B1 ∗B2}
H-Parallel

x ∈ Γ

R̄; Γ ⊢i {∃v. e 7→v ∗ (e 7→v −∗ A[v/x])} x:= [e] {A}
H-Fetch

R̄; Γ ⊢i {e1 7→− ∗ (e1 7→e2 −∗ A)} [e1]:= e2 {A}
H-Store

R̄; Γ ⊢i {A} assert A {A}
H-Assert

x ∈ Γ

R̄; Γ ⊢i {A[e/x]} x:= e {A}
H-Assign

R̄; Γ ⊢i {A} ι {B} FV (ι) ∩ FV (C) = ∅
∀d ∈ FV (ι). C ⊢ PHist d {nil} ∧ CHist d {nil}

R̄; Γ ⊢i {A ∗ C} ι {B ∗ C}
H-Frame

R̄; Γ ⊢i {A ∧ e} i {A}

R̄; Γ ⊢i {A} while e i {A ∧ ¬e}
H-While

A ⊢ A′ B′ ⊢ B
R̄; Γ ⊢i {A

′} ι {B′}

R̄; Γ ⊢i {A} ι {B}
H-Consequence

R̄; Γ ⊢i {A} ι1 {B}
R̄; Γ ⊢i {B} ι2 {C}

R̄; Γ ⊢i {A} ι1;ι2 {B}
H-Seq

Fig. 8: Inference rules of the Hoare logic

Concurrent Separation Logic for Pipelined Parallelization 9

for our logic in Figure 8. FV (X) denotes the set of free variables in X, where
X ranges over instructions and predicates. The Hoare triple R̄;Γ ⊢i {A} ι {B}
is composed of an instruction ι, precondition A, postcondition B, environment
domain Γ , and a channel-indexed list of resource invariants R̄. We write Γ1#Γ2

if the two domains are disjoint. For any element X in our formal system, we
write X̄ to denote a list of such elements and X̄[i] to access the ith element.

H-Produce. Consider a program that produces pointers to nodes in a linked
list with the intention that the consumer only accesses the val member of each
node, such as in Figure 5. To execute produce d p and express that p.val 7→−
is transferred to the channel (to eventually be transferred to a consumer), that
the produce histories are appended with p, and that the resource p.next 7→− is
retained, we could use the Hoare triple and resource invariant:

R̄;Γ ⊢i {d1H! ∗ p.val 7→− ∗ p.next 7→−} produce d p {d1p::H! ∗ p.next 7→−}

R̄[d] , λlq.λlc. match lq, lc with
| nil, ⇒ emp
| v::l′q, ⇒ R(l′q, lc) ∗ v.val 7→

To prove this triple, we apply rules H-Produce and H-Consequence and prove
these side conditions:

∀lq, lc. lq@lc A1 H =⇒
(

p.val 7→− ∗ R(lq, lc) ⊢ R(p::lq, lc)
)

(1)

p.val 7→− ⊢ PHist d {nil} (2)

d1p::H! ∗ p.next 7→− ⊢ PHist d p::H (3)
(

d1H! ∗ p.val 7→−
∗ p.next 7→−

)

⊢

(

d1H! ∗
(

d1p::H! −∗ (p.val 7→−
∗ d1p::H! ∗ p.next 7→−)

)

)

(4)

These obligations are easy to prove for this example. (The antecedent in obliga-
tion 1 can be ignored because it is not needed to prove the consequent).

Rule H-Produce requires some permission (dπH!) to access the produce end-
point and implies that the post state will have histories H appended with the
value sent. The first judgement in H-Produce, B ⊢ PHist d {nil}, prevents the
resources B that are transferred to the channel from specifying histories for the
same channel. Judgement A ⊢ PHist d e ::H prevents the postcondition from
specifying histories in addition to e ::H. These side conditions involving PHist
and CHist are necessary to prove soundness using our current model of histories.
They do not prevent channels from sending shares of themselves (with histories
{nil}) or shares and histories of other channels.

The third judgement requires that, for any state of the channel (the queue
lq and consumed values lc) such that the resource invariant holds, the invariant
remains satisfied after pushing e onto the back of the queue and adding resources
B to the channel. Its antecedent, lq@lc Aπ H, restricts the set of channel states
to those that support the local histories we have observed.

10 Christian J. Bell, Andrew W. Appel, and David Walker

When π = 1, lq@lc Aπ H simplifies to lq@lc ∈ H (H contains all possible
orderings of produced values), and when π < 1, it implies that every value in H
is present in the list of produced values lq@lc. This constraint, although weak,
still has uses. For example, it allows producing a 0 to a channel with the resource
invariant “all values must be 1 until a 0 is produced, at which point only 0’s can
be produced” if all we know is that a 0 appears in the local produce histories.

H-Consume. Consider the consumer process from the previous example pro-
gram, which consumes values that are pointers to nodes in a linked list, only
to dereference the val member of each node. To execute consume d p’, express
that p’.val 7→− is received from the channel, and that the consume histories are
appended with p’, we could use the Hoare triple:

R̄;Γ, x ⊢i {d1H?} consume d p’ {d1p’::H? ∗ p’.val 7→−}

To prove this triple, we apply rules H-Consume and H-Consequence and prove:

∀lq, v, lc. lc A1 H =⇒
(

R(lq@v::nil, lc) ⊢ v.val 7→− ∗ R(lq, v::lc)
)

(5)

v.val 7→− ⊢ CHist d {nil} (6)

d1p’::H? ∗ p’.val 7→− ⊢ CHist d p’::H (7)

d1H? ⊢

(

d1H? ∗
(

∀v. (d1H? ∗ v.val 7→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val 7→−)[v/p’]

)

)

(8)

These particular obligations are also easy to prove. However, obligation 8 is
convoluted and warrants stepping through:

d1H? ⊢

(

d1H? ∗
(

∀v. (d1H? ∗ v.val 7→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val 7→−)[v/p’]

)

)

emp ⊢

(

∀v. (d1H? ∗ v.val 7→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val 7→−)[v/p’])

)

(d1H? ∗ v.val 7→−)[c: d+= v] ⊢ (d1p’::H? ∗ p’.val 7→−)[v/p’]

d1v::H? ∗ v.val 7→− ⊢ d1v::H? ∗ v.val 7→−

Rule H-Consume requires permission (dπH?) to access the consume endpoint.
The fourth judgement in H-Consume requires that, for all states of the channel
(the queue lq@v :: nil and consumed values lc) such that its resource invariant
holds, the invariant remains satisfied after popping v from the front of the queue,
recording it in the list of consumed values, and removing the resources B(v) tied
to the value. (B is a function from values to predicates). The antecedant, lc Aπ H,
restricts the consumed values to those that are supported by the local consume
histories. Resources B(v) are transferred to the consuming process. Finally, the
local consume histories are appended with the consumed value.

4 Parallelized Program with Proof

Consider proofs of correctness for programs such as Figure 3, and particularly
Figure 4, that follow the schema in Figure 9. Figure 10 defines such a proof

Concurrent Separation Logic for Pipelined Parallelization 11

R̄; Γ ⊢ι

{C(nil, p) ∗ F (p) ∗D(nil)}
{∃h. C(h, p) ∗ F (p) ∗D(h)}

while c(p) (

{C(h, p) ∗ F (p) ∗D(h) ∧ c(p)}

b(p) ;

{C(h, p) ∗D(p::h) ∧ c(p) ∧ p⇓v}

p:= a(p)

{C(v::h, p) ∗ F (p) ∗D(v::h)}
{∃h. C(h, p) ∗ F (p) ∗D(h)}

)

{∃h. C(h, p) ∗ F (p) ∗D(h) ∧ ¬c(p)}
{C(h, p) ∗ F (p) ∗D(h) ∧ ¬c(p)}

Fig. 9: While-program with proof

C(l, v) , plist (reverse l) v ∗ ∃l′. j = l@l′

∧ (v = nil ⇐⇒ l′ = nil)

∧ (F (v) −∗ list l′ nil)

F (v) , if v 6= nil then v.val 7→− else emp

D(l) , vlist l

plist l v , match l with
| nil⇒ emp | x::nil⇒ x.next 7→v
| w::x::l⇒ w.next 7→x ∗ plist x::l v

vlist l , match l with
nil⇒ emp | v::l′ ⇒ v.val 7→−

list l t , vlist l ∗ plist l t

Fig. 10

for Figure 4, which ensures that the shape and order (j) of the linked list is
preserved, by proving the following properties:

R̄;Γ ⊢i {C(h, p) ∧ c(p) ∧ p⇓v} p:= a(p) {F (p) ∗ C(v::h, p) ∧ c(v)} (9)

R̄;Γ ⊢i {F (p) ∗ D(h) ∧ c(p)} b(p) {D(p::h) ∧ c(p)} (10)

Furthermore, if the following dataflow properties hold, then we can construct a
proof for programs characterized by Figure 3 and optimized by DSWP:

FV(b(p)) ∩ MV(p:= a(p)) = p (11)

FV(c(p)) ∩ MV(p:= a(p)) = p (12)

FV(c(p)) ∩ MV(b(p)) = ∅ (13)

Theorem 1. Given any program instance of Figure 3 with a (sequential) Sep-
aration Logic proof given by (9) and (10), and satisfying (11)-(13), there is a
Concurrent Separation Logic proof of the correctness of the parallelized program
instance in Figure 5.

Proof. See Appendix.

The program in Figure 4, using the definitions in Figure 10, satisfies proper-
ties 9-13 and can be transformed into a parallelized proof. Such properties are
fairly typical for programs in the general schema of Figure 3. Our
technique applies to programs with a simple dependency structure,

, which is a generalization of more complicated structures:

5 Model & Operational Semantics

5.1 The Separation Algebra of resources

A standard technique [3] for constructing a SL is to first construct a Separation
Algebra (SA) on the resources. Our CSL is based on the SA of worlds, which

12 Christian J. Bell, Andrew W. Appel, and David Walker

π ∈ Share , [0, 1] u ∈ Location

d ∈ ChannelName H ∈ HistorySet

Endpoint , { (π, H) : Share× HistorySet | π = 0 =⇒ H = {nil}}
r : { m : Location→ option value,

p : ChannelName→ option Endpoint,
c : ChannelName→ option Endpoint}

∀x. f1(x)⊕ f2(x) = f3(x)

f1 ⊕f f2 = f3

Join-Function

π1 ⊕s π2 = π3

H1 ! H2 = H3

(π1, H1)⊕e (π2, H2) = (π3, H3)
Join-Endpoint

r1.m⊕f r2.m = r3.m
r1.p⊕f r2.p = r3.p
r1.c⊕f r2.c = r3.c

r1 ⊕w r2 = r3
Join-World

Fig. 11: Channel Resources

are composed of three kinds of resources: the heap, produce endpoints, and
consume endpoints. Although the heap is not necessary to demonstrate a CSL for
channels, we include it to prove the correctness of parallelized pointer-programs,
where channels are used to synchronize access to shared memory and prevent
race conditions. We have formalized2 our SA following Dockins et al. [2].

A SA is a tuple, 〈E,⊕〉, where E is some type and ⊕ is a “join” relation
that satisfies functionality, associativity, commutativity, cancellation, self-join
(a⊕a = b =⇒ a = b), and existence of units for each element (∀a.∃e e⊕a = a).

We first define worlds, r, as a record of the heap (m), produce endpoints (p),
and consume endpoints (c), and a join relation ⊕w (rule Join-World in Figure
11). We have proved that a world and ⊕w are a SA because each component
of the world is also a SA. Dockins et al. have shown how to construct a SA for
the heap and ⊕f ; we have constructed a SA for channel endpoints p and c using
the same approach, which relies on the fact that 〈Endpoint,⊕e〉 is a SA. Part of
this approach requires that if p(d) = Some (π,H) or c(d) = Some (π,H), then
π > 0; p(d) = None and c(d) = None imply a share equal to 0.

A Share is the set of rationals over [0, 1]. The relation ⊕s is the addition
operator, and share π = 0 is the unit for ⊕s. The produce history of channel d,
in world r, is r.p(d).H; its share is r.p(d).π; the consume history is r.c(d).H; and
the consume share is r.c(d).π. (This notation implies that r.p(d) 6= None and
r.c(d) 6= None). The value at location u in world r is v if r.m(u) = Some v.

A HistorySet is a nonempty set of histories. The merge function (!) satisfies
all the properties of a SA except self-join; any set of histories can merge with
itself. Constructing a SA from the tuple of two SAs is straightforward. Without
the property of self-join for !, however, we must add the condition that for any
Endpoint (π,H), if the share is empty (0), then the set of histories is {nil}.

2 A Coq formalization of our SA is available at http://www.cs.princeton.edu/

~cbell/cslchannels/

Concurrent Separation Logic for Pipelined Parallelization 13

r; s |= dπH! iff r.p(d) = Some (π, JHKs) ∧ ∀d
′ 6= d. r.p(d′) = None

∧ ∀d. r.c(d) = None ∧ ∀l. r.m(l) = None

r; s |= dπH? iff r.c(d) = Some (π, JHKs) ∧ ∀d
′ 6= d. r.c(d′) = None

∧ ∀d. r.p(d) = None ∧ ∀l. r.m(l) = None

r; s |= A[p: d+= v] iff ∃r′. r = r′[p: d+= v] ∧ r′; s |= A

r; s |= A[c: d+= v] iff ∃r′. r = r′[c: d+= v] ∧ r′; s |= A

r; s |= PHist d H iff r.p(d).H = JHKs

r; s |= CHist d H iff r.c(d).H = JHKs

r; s |= e1 7→e2 iff r.m(Je1Ks) = Some Je2Ks ∧ ∀l 6= Je1Ks. r.m(l) = None

∧ ∀d. r.p(d) = None ∧ r.c(d) = None

r; s |= A1 ∗A2 iff ∃r1, r2. r1 ⊕ r2 = r ∧ r1; s |= A1 ∧ r2; s |= A2

r; s |= A1 −∗ A2 iff ∀r1, r2. r1; s |= A1 =⇒ r ⊕ r1 = r2 =⇒ r2; s |= A2

r; s |= A1 =⇒ A2 iff r; s |= A1 =⇒ r; s |= A2

r; s |= e1 = e2 iff Je1Ks = Je2Ks

r; s |= emp iff ∀l. r.m(l) = None ∧ ∀d. r.p(d) = None ∧ r.c(d) = None

Fig. 12: Predicate Formulae

5.2 Predicate formulae

In Figure 12, we write JeKs to evaluate e within environment s, r[p: d+= v] to
append value v to the local produce histories of channel d in r, and r[c: d+= v]
to similarly update the local consume histories. An environment, s, is a finite
partial map from variables to values.

5.3 Operational semantics

The machine state is the tuple S = (c̄, P̄), where c̄ is a channel-indexed list of
tuples which contain information about each channel’s state. Specifically, c̄[d] =
(R, r, lq, lc), where R is the resource invariant, r are the resources contained
within the queue, lq is the queue, and lc is the list of consumed values. P̄ is
a list of processes, where for any process k, P̄ [k] = (r, s, z), r are the process’
resources, s is its environment, and z is the current instruction. Stepping process
k from state S to state S′ is written as S →k S′.

Our operational semantics has an appropriate notion of permissions such that
any process will get stuck if it attempts to access a resource without permission.
Crucially, two processes may not have permission to mutate the same memory
at the same time. This guarantees the absence of race conditions and means
that executions do not depend upon the memory model; both weak and strong
models have equivalent executions.

14 Christian J. Bell, Andrew W. Appel, and David Walker

6 Soundness

We prove soundness for our logic using progress and preservation. In our proofs,
we consider only well-formed machine states S such that ⊢ S well-formed.
A well-formed machine state requires each channel state to satisfy its resource
invariant; that the resource invariant R for each channel is ⊢ R R-okay; that
each process is well-formed; and that no two processes share any of the same
environment variables. A process is well-formed only if its instructions have a
Hoare triple derivation and if the precondition of this triple is exactly satisfied
by the process’ current resources and environment.

For any machine-states S and S′,

Theorem 2 (Preservation). For all processes k, if ⊢ S well-formed and
S →k S′, then ⊢ S′ well-formed.

Theorem 3 (Progress). If ⊢ S well-formed, then for all processes k, there
either exists a state S′ such that S →k S′, or process k in S is halted.

7 Related Work

Ottoni informally proved that when parallelizing a program, if the dependencies
(the Program Dependency Graph) are preserved, then the generated program
is observationally equivalent [10]. Yet this is not enough for a certified compiler
because no particular implementation of the algorithm is proven.

Our CSL with channels was partially modeled after Concurrent C Minor [6];
specifically the style of resource invariants. There are close similarities between
our while-programs with channels and pi-calculus, enough so that our CSL is
similar to the logic proposed by Hoare and O’Hearn [5]. Turon et al. has extended
their work with multiple producers and consumers [14] independently from us.
Neither of these works have shared memory or an equivalent to histories, so are
not applicable to reasoning about the correctness of DSWP.

Hurlin shows how to parallelize a sequential program’s proof, using rewrite
rules on its derivation tree, for the DOALL optimization [7]. We demonstrate
how to prove a DSWP-parallelized program without using the proof’s derivation
tree, but we assume a proof structure that may not characterize all proofs.

8 Future Work & Conclusion

We have developed an operational semantics and CSL for asynchronous channels
and proved the logic sound. This logic features histories that are used to over-
come limitations in local reasoning and to prove the correctness of parallelized
programs in the presence of asynchronous communication. We demonstrated
how an existing proof of correctness (of a particular structure) for a sequen-
tial program can be used to generate a related proof for the parallelized output
of DSWP. By maintaining the preconditions and postconditions, we can prove
partial correctness of the optimization.

Concurrent Separation Logic for Pipelined Parallelization 15

Our CSL is thus a potential target logic for an automatic method of generat-
ing parallelized proofs for parallelizing optimizations. Using such a method, we
could prove that the optimization preserves all specified behaviors of a program.

First class channels are unnecessary for our proofs about DSWP. Some sep-
aration logics have first class objects [4][6], others do not permit passing objects
this way [9]. We would need allocation, deallocation, and a more complicated
definition of histories in order to support first class channels. The first two are
not possible in first-order logic, but we believe it is straightforward to add follow-
ing the approach used by Gotsman et al. and Hobor et al. The more complicated
history model requires histories to have shared pasts that, upon merging, would
retain their original ordering. For example, breaking the history {[123]} into
histories {[12]} and {[3]} would result in {[123]} upon re-merging rather than
{[123], [132], [312]}. (With such histories, side conditions involving PHist and
CHist could be dropped from the Hoare rules).

We are now investigating methods of manipulating an existing arbitrary proof
of a program using facts acquired from shape analysis, with the goal of eventually
proving the correctness of DSWP and other parallelizing optimizations.

References

1. Bridges, M.J., Vachharajani, N., Zhang, Y., Jablin, T., August, D.I.: Revisiting the
Sequential Programming Model for Multi-Core. Proceedings of the 40th IEEE/ACM
International Symposium on Microarchitecture (MICRO), December 2007.

2. Dockins, R., Hobor, A, Appel, A.W.: A Fresh Look at Separation Algebras and
Share Accounting. 7th Asian Symposium on Programming Languages and Systems,
December 2009.

3. Calcagno, C., O’Hearn, P., Yang, H.: Local actions and abstract separation logic.
Proceeding of the 22nd Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 353–367, 2008.

4. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. 5th Asian Symposium on Programming Languages and
Systems (APLAS’07), 2007.

5. Hoare, T., O’Hearn, P.: Separation Logic Semantics for Communicating Processes.
Electronic Notes in Theoretical Computer Science, vol. 212, pp. 3–25, 2008.

6. Hobor, A.: Oracle Semantics. Ph.D. Thesis, Princeton TR-836-08, October 2008.

7. Hurlin, C.: Automatic Parallelization and Optimization of Programs by Proof
Rewriting. Static Analysis Symposium, Lecture Notes in Computer Science.
Springer-Verlag, August 2009.

8. Leroy, X.: Formal certification of a compiler back-end, or: programming a com-
piler with a proof assistant. 33rd ACM symposium on Principles of Programming
Languages (POPL), pp. 42-54. ACM Press, 2006

9. O’Hearn, P.: Resources, Concurrency, and Local Reasoning. Theoretical Computer
Science, 375(1-3), pp. 271–307. Elsevier, 2007.

10. Ottoni, G.: Ph.D. Thesis, Department of Computer Science, Princeton University,
September 2008.

11. Parkinson, M.: Ph.D. Thesis, The Computer Laboratory, University of Cambridge,
2005.

16 Christian J. Bell, Andrew W. Appel, and David Walker

12. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled Software
Pipelining with the Synchronization Array. Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques (PACT), Septem-
ber 2004.

13. Rangan, R.: Pipelined Multithreading Transformations and Support Mechanisms.
Ph.D. Thesis, Department of Computer Science, Princeton University, June 2004.

14. Turon, A., Wand, M.: A separation logic for the pi-calculus. http://www.ccs.neu.
edu/home/turon/pi-sep-logic.pdf

15. Vachharajani, N., Rangan, R., Raman, E., Bridges, M.J., Ottoni, G., August, D.I.:
Speculative Decoupled Software Pipelining. Proceedings of the 16th International
Conference on Parallel Architectures and Compilation Techniques (PACT), Septem-
ber 2007.

Appendix

8.1 Proof of Parallelization

a b

C D

F

The proof in Figure 9 has three separated predicate functions, C, D,
and F to model the resources attached to the dependencies flowing
from a(p) to a(p), b(p) to b(p), and a(p) to b(p), respectively. The
logical variable h is used to reason about past values of p. The asso-
ciation of C to a(p) is supported by property 9, and D to b(p) by property 10.
The resources F are shown to be generated by a(p) and transferred to b(p) by
properties 9 and 10, following the dependence of b(p) on a(p) through variable
p. Property 11 restricts the dependency between a(p) and b(p) to just variable
p, and properties 12 and 13 restrict control flow dependencies to just p. The
notation FV(ι) is the set of free variables in ι and MV(ι) is the set of modified
variables.

Constructing the parallelized proof. Applying the DSWP optimization to
this program results in the program in Figure 5 (for a fresh channel d /∈ R̄). To
construct a proof for the parallelized program, we reuse elements of the original
proof. First, we introduce a predicate to help prove that the consumer will receive
all values sent.

T , λh. match h with

| nil ⇒ true

| v::h′ ⇒ c(v) ∧ T (h′)

Then, we create a new variable context (Γ ′ , Γ, p’, h′) and new resource invari-
ants R̄′ to allow resources F (p) to be produced and consumed through channel
d. The new resource invariant satisfies ∀d′. d 6= d′ =⇒ R̄′[d′] = R̄[d′] and:

R̄′[d] , λlq. λlc. match lq, lc with

| nil, ⇒ emp

| l′q@v::nil, ⇒ F (v) ∗ R̄′[d](l′q, v::lc)

Concurrent Separation Logic for Pipelined Parallelization 17

R̄′; Γ ′ ⊢ι {C(nil, p) ∗ F (p) ∗D(nil) ∗ d1{nil}! ∗ d1{nil}? ∧ T (nil)}
{F (p) ∗A′(nil, p) ∗B′(nil)}

{F (p) ∗A′(nil, p)}
produce d p;

{∃h. A(h, p)}
while c(p) (

{∃h. A(h, p) ∧ c(p)}
{A(h, p) ∧ c(p) ∧ p⇓v}

p:= a(p);
{F (p) ∗A′(v::h, p)}

produce d p

{∃h. A(h, p)}
)
{∃h. A(h, p) ∧ ¬c(p)}

{B′(nil)}
consume d p’;

{F (p’) ∗ ∃h′. B(h′, p’)}
while c(p’) (

{F (p’) ∗ ∃h′. B(h′, p’) ∧ c(p’)}
{F (p’) ∗B(h′, p’) ∧ c(p’)}

b(p’);
{B′(p’::h′) ∧ c(p’)}

consume d p’

{F (p’) ∗ ∃h′. B(h′, p’)}
)
{F (p’) ∗ ∃h′. B(h′, p’) ∧ ¬c(p’)}

;

{A(h, p) ∗ F (p’) ∗B(h′, p’) ∧ ¬c(p’)}
{C(h, p) ∗ F (p) ∗D(h) ∗ d1{p::h}! ∗ d1{p::h}? ∧ ¬c(p)}

assert C(h, p) ∗ F (p) ∗D(h) ∧ ¬c(p)

Fig. 13: Parallelized while-program with proof

We start the parallelized program with the same precondition as the original,
but add produce and consume endpoints d1{nil}! and d1{nil}? to enable access
to the channels. Using rules H-Frame and H-Consequence on property 9, we get:

R̄′;Γ ′ ⊢i {d1{p::h}! ∗ C(h, p) ∧ T (h) ∧ c(p) ∧ p⇓v}
p:= a(p)
{d1{p::h}! ∗ F (p) ∗ C(v::h, p) ∧ T (h) ∧ c(v)}

Which, for brevity, we rewrite as:

R̄′;Γ ′ ⊢i {A(h, p) ∧ c(p) ∧ p⇓v} p:= a(p) {F (p) ∗ A′(v::h, p)}

where:

A(h, p) , d1{p::h}! ∗ C(h, p) ∧ T (h)

A′(h, p) , d1{h}! ∗ C(h, p) ∧ T (h)

We do the same for property 10:

R̄′;Γ ′ ⊢i {dπ{p::h}? ∗ F (p) ∗ D(h) ∧ c(p)}
b(p)
{dπ{p::h}? ∗ D(p::h) ∧ c(p)}

R̄′;Γ ′ ⊢i {F (p) ∗ B(h, p) ∧ c(p)}
b(p)
{B′(p::h) ∧ c(p)}

where:

B(h, p) , d1{p::h}? ∗ D(h)

B′(h) , d1{h}? ∗ D(h)

18 Christian J. Bell, Andrew W. Appel, and David Walker

Next, we prove the hoare triples for producing values, and rewrite the triple
using A and A′ for brevity:

R̄′;Γ ′ ⊢i {F (p) ∗ d1{v::h}! ∗ C(v::h, p) ∧ T (h)}
produce d p

{F (p) ∗ d1{p::v::h}! ∗ C(v::h, p) ∧ T (h)}

R̄′;Γ ′ ⊢i {F (p) ∗ A′(v::h, p))} produce d p {∃h. A(h, p)}

We do the same for consuming values:

R̄′;Γ ′ ⊢i {d1{p’::h
′}? ∗ D(p’::h′)}

consume d p’

{F (p’) ∗ ∃v. d1{p’::v::h′}? ∗ D(v::h′)}

R̄′;Γ ′ ⊢i {B
′(p’::h′)} consume d p’ {F (p’) ∗ ∃h′. B(h′, p’)}

The last step is to prove:

A(h, p) ∗ F (p’) ∗ B(h′, p’) ∧ ¬c(p’)

⊢ C(h, p) ∗ F (p) ∗ D(h) ∗ d1{p::h}! ∗ d1{p::h}? ∧ ¬c(p)

Proof.

A(h, p) ∗ F (p’) ∗ B(h′, p’) ∧ ¬c(p’)

⊢
(

d1{p::h}! ∗ C(h, p) ∧ T (h)
)

∗ F (p’) ∗
(

d1{p’::h
′}? ∗ D(h′)

)

∧ ¬c(p’)

At this point, we know that since all values consumed were produced at some
point, ∃l. p::h = l@p’::h′. (This is encoded in our resources: for all lq, the inter-
section of the global produce histories and global consume histories, appended
with lq, cannot be empty). If l = v ::l′, then T (l′@p’::h′), which implies c(p’).
This is a contradiction, so l = nil and p::h = p’::h′. Thus p = p’ and h = h′

(

d1{p::h}! ∗ C(h, p) ∧ T (h)
)

∗ F (p) ∗
(

d1{p::h}? ∗ D(h)
)

∧ ¬c(p)

⊢ C(h, p) ∗ F (p) ∗ D(h) ∗ d1{p::h}! ∗ d1{p::h}? ∧ ¬c(p)

We add the assert instruction to the end of the program to ensure partial
correctness, encoded as a safety property. If the asserted condition cannot be
proven, then the instruction will get stuck and the program will not be safe.

Figure 13 is the proof for the parallelized program in Figure 5, such that the
preconditions and postconditions (modulo the addition of channel endpoints)
are preserved.

8.2 Operational Semantics

We present the operational semantics in Figure 14. Our machine state is the
tuple S = (c̄, P̄), where c̄ is a channel-indexed list of tuples which contain infor-
mation about each channel’s state. Specifically, c̄[d] = (R, rq, lq, lc), where R is

Concurrent Separation Logic for Pipelined Parallelization 19

x ∈ dom(s) P̄ [k] = (r, s, x:= e;ι)

(c̄, P̄)→k (c̄, P̄ [k = (r, s[x = JeKs], ι)])
S-Assign

x ∈ dom(s) P̄ [k] = (r, s, x:= [e];ι) r.m(JeKs) = Some v

(c̄, P̄)→k (c̄, P̄ [k = (r, s[x = v], ι)])
S-Fetch

P̄ [k] = (r, s, [e1]:= e2;ι) r.m(JeKs) = Some v

(c̄, P̄)→k (c̄, P̄ [k = (r[h : Je1Ks ← Je2Ks], s, ι)])
S-Store

JeKs = true P̄ [k] = (r, s, while e ι;ι′)

(c̄, P̄)→k (c̄, P̄ [k = (r, s, ι;while e ι;ι′)])
S-WhileTrue

JeKs = false P̄ [k] = (r, s, while e ι;ι′)

(c̄, P̄)→k (c̄, P̄ [k = (r, s, ι′)])
S-WhileFalse

P̄ [k] = (r, s, produce d e;ι) c̄[d] = (R, rq, lq, lc)
rq ⊕ r1; . |= R(v::lq, lc) r[p: d+= v] = r1 ⊕ r2 JeKs = v

(c̄, P̄)→k (c̄[d = (R, rq ⊕ r1, v::lq, lc)], P̄ [k = (r2, s, ι)])
S-Produce

r.c(d) = Some
P̄ [k] = (r, s, consume d x;ι) x ∈ dom(s)
c̄[d] = (R, rq ⊕ r′, lq@v::nil, lc) rq; . |= R(lq, v::lc)

(c̄, P̄)→k (c̄[d = (R, rq, lq, v::lc)], P̄ [k = ((r ⊕ r′)[p: d+= v], s[x = v], ι)])
S-Consume

P̄ [k] = (r, s, consume d x;ι) c̄[d] = (R, rq, nil, lc)

(c̄, P̄)→k (c̄, P̄)
S-BlockingConsume

P̄ [k] = (r, s, assert A;ι) r; s |= A ∗ true

(c̄, P̄)→k (c̄, P̄ [k = (r, s, ι)])
S-Assert

P̄ [k] = (r, s, skip;ι)

(c̄, P̄)→k (c̄, P̄ [k = (r, s, ι)])
S-Skip

P̄ [k] = (r, s, [G1; A1] ι1 ‖ [G2; A2] ι2;ι) s1#s2

r = r1 ⊕ r2 s = s1 + s2

G1 = dom(s1) G2 = dom(s2)
r1; s1 |= A1 ∗ true r2; s2 |= A2

k1 = length(P̄) k2 = length(P̄) + 1

(c̄, P̄)→k (c̄, P̄ [k = (., ., wait k1 k2; ι)] + (r1, s1, ι1;exit) + (r2, s2, ι2;exit))
S-Fork

P̄ [k] = (., ., wait k1 k2; ι) P̄ [k1] = (r1, s1, exit) P̄ [k2] = (r2, s2, exit)

(c̄, P̄)→k (c̄, P̄ [k = (r1 ⊕ r2, s1 + s2, ι)][k1 = (., ., halted)][k2 = (., ., halted)])
S-Wait

P̄ [k] = (., ., wait k1 k2; ι)
P̄ [k1] = (r1, s1, ι1) P̄ [k2] = (r2, s2, ι2)
ι1 = exit ∨ ι2 = exit

(c̄, P̄)→k (c̄, P̄)
S-BlockingWait

P̄ [k] = (r, s, (ι1;ι2);ι3)

(c̄, P̄)→k (c̄, P̄ [k = (r, s, ι1;(ι2;ι3))])
S-Seq

P̄ [k] = (r, s, exit)

(c̄, P̄)→k (c̄, P̄)
S-Exit

Fig. 14: Operational Semantics

20 Christian J. Bell, Andrew W. Appel, and David Walker

the channel’s resource invariant, lq is the queue, rq are the resources contained
within the queue, and lc are the consumed values. Both the queue and con-
sumed values are lists of values. P̄ is a list of processes, where for any process
k, P̄ [k] = (r, s, z), r are the process’ resources, s is the environment, and z is
either a block of instructions to execute, halted if the process has terminated, or
wait k1 k2; b if the process is waiting for child processes k1 and k2 to terminate
before continuing to execute instructions b. Stepping process k from state S to
state S′ is written as S →k S′.

To produce a value, we use rule S-Produce. We start by appending the value,
JeKs = v, to the local produce histories of the process’ resources r, which we write
as r[p: d+= v]. Then, we push this value onto the back of the channel’s queue,
lq. Finally, we split r into resources r1 and r2 such that r1 can be transfered to
the channel while satisfying its resource invariant for the updated queue (v::lq),
while the resources r2 remain with the producer.

We append the value to the producer’s initial resources before splitting them
because either r1 or r2 can record the value to its local produce history (although
our Hoare rules currently prevent r1 from containing any history). The channel’s
resource invariant, R̄[d], is enough to determine r1 because we know that the
updated channel is satisfied by rq ⊕ r1; . |= R̄[d](v::lq, lc) and that this resource
invariant is precise (a requirement of ⊢ R̄[d] R-okay).

If consuming from a channel and its queue is empty, the consuming process
will block (S-BlockingConsume). To progress using rule S-Consume, there must
be a value v to receive from the front of the queue (lq@v::nil) and we must show
that the channel’s resource invariant will be satisfied by the channel’s subsequent
state. As a result, the consuming process receives the value and resources r′,
which are tied to the value, from the queue. The value is popped from the front
of the queue and pushed onto the list of consumed values. Finally, the consumer’s
local histories are appended with the value ((r ⊕ r′)[c: d+= v]) and the value is
bound to the program variable x in the environment (s[x = v]).

Note that our operational semantics is not computable because we use logic
formulae in the judgments. We believe that the forcing relationship can eventu-
ally be erased from our operational semantics during compilation.

