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Abstract. We present the propositional fragment CLFy of the Concurrent
Logical Framework (CLF). CLF extends the Linear Logical Framework to
allow the natural representation of concurrent computations in an object
language. The underlying type theory uses monadic types to segregate
values from computations. This separation leads to a tractable notion of
definitional equality that identifies computations differing only in the order
of execution of independent steps. From a logical point of view our type
theory can be seen as a novel combination of lax logic and dual intuitionistic
linear logic. An encoding of a small Petri net exemplifies the representation
methodology, which can be summarized as “concurrent computations as
monadic expressions”.

1 Introduction

A logical framework [Pfe01] is a meta-language for the specification and imple-
mentation of deductive systems, which are used pervasively in logic and the theory
of programming languages. A logical framework is determined by an underlying
meta-logic or type theory and a methodology for representing the judgments and
derivations of interest.

The particular lineage of logical frameworks to which the present paper belongs
started with the Automath languages [dB80] followed by LF [HHP93], crystallizing
the representation principles of “judgments as types” and “deductions as objects”.
LF is based on a minimal type theory with only the dependent function type
constructor II. The representation methodology expresses hypothetical judgments
and hypothetical deductions that formalize reasoning from assumptions can be
expressed concisely and elegantly using the notion of function space provided by
the underlying type theory. In particular, we can achieve a bijection between hy-
pothetical deductions of a judgment and canonical objects of the corresponding
type.

Representations in this style of systems involving state remained cumbersome
until the design of the linear logical framework LLF [CP98] and its close relative
RLF [IP98]. LLF is a conservative extension of LF with selected constructs from
linear logic. The representation principles behind LLF are “state as linear hypothe-
ses” and “imperative computations as linear functions”. Again, we can achieve a
bijection between imperative computations of a program and canonical objects of
the appropriate type.



While LLF solves many problems associated with the representation of imper-
ative computations, in LLF the encoding of concurrent computations remains un-
satisfactory. In particular, there is no bijection between concurrent computations
and canonical objects of appropriate type because the representation inherently
sequentializes the computation steps. In other words, we can only represent all
interleavings of potentially concurrent steps, but not true concurrency [Maz95].

The present paper presents the propositional fragment of CLF, a conservative
extension of LLF with intrinsic support for true concurrency. Expressions repre-
senting concurrent computations are encapsulated in a monad [Mog89], thereby
preserving the desirable properties of LF and LLF. The definitional equality on
expressions inside the monad makes representations of concurrency adequate by
ensuring different interleavings of concurrent steps are indistinguishable. Although
monads have been used to separate pure and effectful computations in functional
programming languages, to the authors’ knowledge this is their first use in a logical
framework or theorem proving environment to separate one logic from another.

The present paper also presents a new methodology for developing the meta-
theory of LF-style logical frameworks. The definition of canonical forms for LF
objects is of paramount importance because encodings are normally proved ade-
quate by establishing a bijection between computations and canonical objects. The
new methodology emphasizes the central role of canonical forms by restricting the
framework’s syntax so that only canonical objects are well-formed. Type-directed
substitution and n-expansion algorithms preserving the canonical forms property
are defined.

Though the dependently typed variant of CLF has already been developed
[WCPWO02], the present discussion is restricted to the propositional fragment
CLFy, which already exhibits the principal phenomena concerning concurrency.
The use of the framework is illustrated by an encoding of Petri-net computations
because of their simplicity, but related representations for the w-calculus, Concur-
rent ML, and other languages with concurrency have also been devised [CPWW02].
The representation technique for all of these examples can be summarized as “con-
current computations as monadic expressions”.

The remainder is organized as follows. Section 2 defines CLFy, including its
syntax and typing rules. It also introduces the Petri-net example and contrasts
encodings in LLFy and CLF, to highlight their strengths and weaknesses. Sec-
tion 3 outlines the most important meta-theoretic properties of CLFy, including
the definitions of type-directed canonizing substitution and 7n-expansion. Finally,
Section 4 presents a more detailed picture of related work in the area.

2 Propositional CLF

We begin by introducing the propositional fragment of the concurrent logical
framework in stages. In the first stage, we briefly review the linear logical frame-
work, its properties, and its shortcomings with respect to concurrency.



2.1 The Linear Fragment

The propositional fragment LLF, of the linear logical framework is based on unre-
stricted and linear hypothetical judgments I'; A b5, M : A where I is a context of
unrestricted hypotheses u: A (subject to exchange, weakening, and contraction),
A is a context of linear hypotheses z> A (subject only to exchange), M is an ob-
ject and A is a type. The signature X' declares the base types and constants from
which objects are constructed. Under the Curry-Howard isomorphism, M can also
be read as a proof term, and A as a proposition of intuitionistic linear logic in its
formulation as DILL [Bar96].

Since the signature is fixed for a given typing derivation, we henceforth suppress
it for the sake of brevity. In addition, syntactic objects are considered only up to
a-equivalence of their bound variables. Exchange is not noted explicitly in the
typing rules, and only instances of the typing rules for which all variables in the
contexts have unique names are allowed.

The LF methodology establishes a bijection between canonical objects of appro-
priate type and the terms and deductions of an object language to be represented.
The appropriate notion of “canonical” turns out to be long Sn-normal forms. In
order to define these inductively, the single typing judgment I'; A F M : A is split
into two:

AN« A N is canonical of type A
I'N'AFR=A R is atomic of type A

A canonical object N is an introduction form or of base type, in which case it
must be atomic. An atomic object R is a sequence of elimination forms applied to
a variable or constant. The basic principles associated with these judgments are
identity and substitution. From the logical point of view, they show that entail-
ment is reflexive and transitive. From the type-theoretic point of view they are
explicit algorithms for n-expansion and canonizing substitution. These principles
are discussed in detail in Section 3. Further judgments check that types, contexts,
and signatures are well-formed; they are omitted, being entirely straightforward
for the propositional fragment.

The types of LLF are freely generated from the constructors —o, —, & and
T and base types. These comprise the largest fragment of intuitionistic linear
logic with traditional connectives based on the above judgments for which unique
canonical forms exist. This property is essential for the use of LLF( as a logical
framework, because of the central role of canonical forms in its representation
methodology. An alternative characterization is that the fragment consists of all
right asynchronous connectives [And92,How98]. The syntax of LLF¢ may be found
as a fragment of the syntax for CLF( presented in Section 2.2. The typing rules
for the canonical variant of LLF( are shown in Figure 1.

An example. A Petri net serves as a running example of the various encoding
techniques used in these frameworks. The representation of Petri nets in linear logic
goes back to Marti-Oliet and Meseguer [MOMO91], but has been treated several
times in the literature. Familiarity with Petri nets is assumed, and their encoding is
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Fig. 1. Typing rules for LLFy

only given by example. Further details may be found in the companion applications
technical report [CPWWO02].

Each place in a Petri net is represented by a type constant p. The state of the
net is represented as a collection of linear hypotheses: there is an assumption x:p
for every token in place p. There is also a separate type constant X representing
an (unspecific) goal state.

For each transition there is an object constant*

ck: (@ —o...—0 g, = X) = (p1 —... 0 py —-X)

expressing that the goal state X can be reached from a state with tokens in
places pi,...,pn, if the goal can be reached from the state with tokens in places
qi,---,qn instead. Such a rule can be read as removing tokens from pi,...,pn
and placing them on ¢y,...,q,. As an example, consider the Petri net shown in
Figure 2 [Cer95].

The initial state of the net is represented by

AO =T /:\I’, ni /:\n, no /:\n, b1 /\b, bg /\b, b3/:\b, ai /:\a
and the transitions are represented by the following signature.

P: (r—oX)—o(p—oX) A:(c—oX)—o(b—ob-—oa—oX)
R:(p—on—-ob-—oX)—o(r—oX) C: (a—oX) —o(c—oX)

The adequacy theorem for this representation states:

Final state qq,...,q, can be reached from initial state pq,...,pm iff there
is a canonical object N such that

5 FN< (g —o...0¢g,—oX)—o(p—o...0py —oX)

Moreover, there is a bijection between sequences of firings of the transition
rules of the Petri net and such canonical objects.

4 We adopt the convention that the connective —o is right associative.
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Fig. 2. An example Petri net

Two examples of such objects are as follows. The first represents the firing of R

following by the firing of A in the shown initial state. The second shows the same
A

firings in the opposite order. Here the abbreviation Azi, z2, ..., z,. M stands for a

curried sequence of linear A-abstractions. The outermost A-abstractions have been
elided.

5 fc—ob—ob—-on—on-on—op-—oX), Ak
A A
R/\()\pl, ns, b4. A/\()\Cl . f/\Cl /\b3 Ab4 Anl /\TLQ A’I’L3 /\pl)/\bl /\b2 Aal)/\rl = X
5 fc—ob—ob—-on—on-on—op-—oX), Ak
AA(&CI . RA(/Xpl, ns, b4. f/\Cl /\b3 /\b4 Anl /\TLQ Ang /\pl)Arl)Abl Ab2 /\al <« X
This adequacy theorem captures interleavings of concurrent executions of the
net, but not true concurrency. For example, in the initial state of the given net,
the R and A transitions can both fire, and do not interfere with each other. We
should not be able to distinguish their temporal order; instead, there should be

a partial order between possible transitions. The extension of LLFy to CLF is
designed to capture this partial order. This issue will be revisited in Section 2.3.

2.2 The Monadic Fragment

It is tempting to think that this issue can be solved by adding more connectives
to the framework. Why not work with a framework containing a full complement
of linear logical operators (including 1, A ® B, !A) and replace

cp:(qn—o...o0¢q, oX)—o(p —o...-0py —oX)
with the apparently more straightforward
PR OPm o ®...Q0¢ 7

The problem is that modeling reachability is not enough; we also want to establish
a bijection between Petri-net computations and appropriately typed objects in the



framework. If LLF, is extended with all connectives of dual intuitionistic linear

logic a number of problems establishing adequate encodings arise. The most imme-

diate is that adding an object with a type given by a right synchronous connective

can destroy the adequacy of completely unrelated encodings in the framework.
Considering the signature

nat : type s : nat — nat
Z : nat c:1

we see that terms such as (let 1 = cin z : nat) destroy the bijective correspondence
of the type nat with the set of natural numbers.’ Similar examples would arise
in the presence of a constant of type A ® B, A, A ® B, or 0. This shows that
while a technical conservativity result might hold for LLFy and such a language,
in practice LLF encodings would be unusable as components of a larger signature
including constants having the new types.

More generally, long Sn-normal forms either would not exist or would not
be unique. At the very least we would be forced to consider a complex set of
commuting conversions. Their interaction with the needed extensionality principles
is poorly understood at present even for the simply-typed A-calculus with a full
set of type constructors, ignoring problems of linearity for the moment. The same
is true of proof nets for classical linear logic in the presence of a complete set of
connectives [And02].

In order to obtain a tractable, yet sufficiently expressive type theory we employ
a technique familiar from functional programming, which does not appear to have
been used in logical frameworks or theorem provers: the effects of concurrency are
encapsulated in a monad [Mog89]. This encapsulation protects the equational the-
ory of LLFq. Moreover, the notion of canonical form outside the monad extends
the prior notions conservatively. This property of the method should not be un-
derestimated, because it means that all encodings already devised for LF or LLF
remain adequate, and their adequacy proofs can remain exactly the same!

We write {A} for the monad type, which in lax logic would be written OA [PD01].
But which types should be available inside the monad? They must be expressive
enough to represent the state after a computation step in the concurrent object
language. This is most naturally represented by the multiplicative conjunction ®.
Then our transition rule can be written

Cpipr—o...opy o{q1®...0¢qn}

where currying eliminates the use of ® on the left-hand side. In order to cover the
case n = 0 the multiplicative unit 1 is included. Though it does not arise in this
example, a transition could also generate an element of persistent (unrestricted)
type, so we also allow types '4.5 We call the new types synchronous, borrowing
terminology from Andreoli [And92], and denote them by S. The full type language
is shown in Figure 3.

5 Examples such as (ﬁx let 1 = z inz: 1—onat) show that the term above cannot simply
be equal to z.

6 A further extension by additive disjunction @ and its unit 0 seems plausible but is left
to future work.
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Fig. 3. The CLFy language

The language of objects is extended accordingly. The synchronous types S
type monadic expressions E. The introduction forms are constructors for multi-
plicative pairs, unit, and unrestricted canonical objects. The elimination form is
a let binding eliminating the monad and matching the synchronous constructors
against a pattern p. To our knowledge, this canonical formulation of the proof
term assignment for lax logic is novel.

Patterns are classified by synchronous types S, which are collected into a con-
text ¥, and there are three typing judgments in addition to the judgments already
noted for LLF:

NAbg E+ S A Es E+ S I''Abs M <S8

Additional substitution principles for these judgments are given in Section 3.

The extended language CLF( inherits all the typing rules already presented
for LLFy. The additional typing rules are shown in Figure 3. First, there are
introduction and elimination rules for {} ({}I {}E). We can see that a monadic
expression is a sequence of let forms, ending in a monadic object. Immediately
after each let the pattern is decomposed into assumptions of the form z?A or
u:A and the body of the let is checked. This is the purpose of the judgment
I';A; S F E < S, defined by the next group of rules (L 1L 'L AL). These
correspond to left rules in a sequent calculus. Finally, there are rules to introduce
the monadic objects at the end of a sequence of {}E eliminations (®I 1T !T).



Our example revisited. The Petri net example is now represented almost as in
dual intuitionistic linear logic [Bar96], except that the right-hand sides of the
linear implications use the monad.

P:p—o{r} A:b-—-ob-oa—o{c}
R:r—o{p®n®b} C:c—o{a}

The monadic encapsulation and the canonical forms of monadic expressions
tightly constrain the form of objects constructed from this signature. Adopting
a-equivalence (denoted Ny =, Ns) as the framework’s definitional equality, there
is an analog of the earlier adequacy theorem.

The example firings are rewritten as follows.

5 Ag F {let {p1 ®n3z ®bs} = Ry inlet {c;} = A%b by ay in
1 ®b3 @by ®n1 @ny @nz @ pr}
<{c@b®b®n®n®n®p}
';AO F {Iet {Cl} =A/\b1/\b2/\a1 in let {p1 ®n3®b4} = R/\T‘l in
c1 Qb3 ®@bs®n1 @ny @nz @ p1}
<{ceb®b®n®n®n®p}

Already an advantage over the first LLF, encoding has been realized in that
the spurious goal state X has been eliminated—one might call this a direct-style
rather than a continuation-passing-style encoding. But the equality =, still dis-
tinguishes the two executions above despite the fact that their R and A transitions
are independent.

2.3 Concurrent Equality

The issue of interleavings of independent computation steps is addressed by a
notion of concurrent equality, denoted by the following judgments.

E __)(R,p) E' El S E2 Nl =c N2 R1 =c R2 El =c E2 M1 =c M2

Concurrent equality is defined by syntax-directed inference rules on untyped
canonical objects. Two expressions F; and F; should be concurrently equal if each
is capable of exhibiting the behavior of the other. In this context “behavior” refers
to a sequence of computation steps determined by let forms. The first judgment
E — (R,p) E' holds when E can perform the computation R, yielding a result
matching the pattern p, followed by the additional computation determined by E’.
This simple concept is defined by two inference rules.

E (R,p) E/

let {p} =RinE-Z E et {p} = Riin E L2 tet {p} = Ry in E/

The second rule is subject to a side condition that the variables bound by the
pattern p; not be free in the conclusion (so in particular the variables bound by
p1 and p are disjoint). This ensures that only independent computations can be



reordered, since the dependence of one computation on another is syntactically
evidenced by the occurence of a variable bound by the first computation in the
second. Next, the judgment F; < FE, expresses that E; can exhibit the behavior
of Fs, characterized as follows.

R )
El M) E{ Rl =c R2 Ei S E2 M1 =c M2 E1 S E2 E2 S E1
E1 S let {pg} = R2 in E2 M1 S M2 E1 =c E2

Again there is a side condition on the first rule that the variables bound by p,
not be free in the conclusion. Finally, the concurrent equality itself can be defined.
The judgments N; =, N, Ry =¢ Rs and M; =, M, are characterized by simple
congruence rules for each syntactic form, not shown here. The judgment E, =, E,
holds just when each expression can exhibit the behavior of the other.” It is then
a simple matter to show that the concurrent equality is an equivalence relation.

Returning to the CLFy Petri-net example developed in Section 2.2, it is easy
to show that the two objects corresponding to the two different interleavings of
the example Petri net execution are concurrently equal. This is crystallized as a
better adequacy theorem:

Final state qq,...,q, can be reached from initial state py,...,pm iff there
is a canonical object N such that

s FN&Epr—o...opm o{@1®...0 ¢}

Moreover, there is a bijection between concurrent executions of the transi-
tion rules of the Petri net and equivalence classes of such canonical objects
modulo =..

While this may seem a minor modification at first, it has far-reaching conse-
quences. Experience with logical frameworks has shown many times that natural
encodings lead to deeper understanding of the underlying logical and computa-
tional principles, while contrived encodings often do not shed much light on the
subject of study. These advantages are multiplied when considering algorithms for
manipulating the representations, for proof search, and for meta-theoretic reason-
ing, because the principles embodied in and provided by the framework have been
factored out and do not need to be re-implemented for each encoding. A further
discussion of these topics, however, is beyond the scope of the present paper.

3 Identity and Substitution Properties

This section sketches the meta-theory of the canonical formulation of CLFy. Ad-
ditional details and a development of the dependent case may be found is the
companion theory technical report [WCPWO02].

" For CLFy it can be shown that the judgment E; < Es is symmetric, hence one premise
of the rule is redundant. However, plausible extensions of the language currently under
investigation do not have this property, so we use the more general form given here.



As discussed in Section 2, the CLFy framework (and full CLF as well) syn-
tactically restrict the form of objects so that they will always be canonical. This
means that the identity and substitution principles for typing must be witnessed
by transformations on canonical objects.

3.1 The n-Expansion Algorithm

In CLFy there is no derivation of I';z%a — b F = < a — b because the variable
rule yields I';z%a — b F = = a — b and the coercion rule =< only applies at
base type. However, an n-expansion puts the term z into canonical form, and the
canonical form does witness the identity principle: I';z%a = b+ Au.2 u <= a — b.
The notation for general 7-expansion is n4(R) = N. We have the following identity
principle (together with others for the other syntactic categories).

IfI'; A+ R= Athen I';AFna(R) < A.

The n-expansion algorithm is specified by the following equations. Fresh vari-
able names are chosen non-deterministically subject to the condition that new
variables introduced on the right-hand side of an equation be distinct from each
other and any free variables on the left-hand side. In particular, the notation v4
generates a fresh pattern of the appropriate form with distinct variables.

Vs @5, = Vs, @ Vs,

n.(R) = R o =1

Macon(B) = Remp(Brma(@) '

nass(R) = Mu.np(R na(u)) i

nagB(R) = (na(m R),np(m2R))

nr(R) = () _

s (B) = (et {5} = Rinus(p)) %0 @ P =000 €m0
ifvg=p. ! N

ma(tu) = na(u)

3.2 The Canonizing Substitution Algorithm

Similarly, in CLF the substitution principle for I'; A; - Ny <= A and I'; Ay, 2% A -
N < B relates two different judgments Ny <= A and z = A, the latter arising at
occurrences of z in the second typing derivation. Since there is no coercion from
< to = (which would essentially be a redex), the substitution algorithm must
locally reduce introduction forms for the first judgment with elimination forms for
the second.

Concretely, substitution is a partial function [No/z:A]*N. It is characterized
by a recurrence, where the recurrence is well-founded for arbitrary (even ill-typed)
terms.® The well-foundedness of the recurrence is with respect to a lexicographic

8 This is critical for the staging of the meta-theory in the dependent case [WCPW02].



subexpression order on the triple (A4, No, N).? For substitution, no distinction is
made between the two classes of variables u and z; x is used indifferently. We also
need the concepts of atomic and principal substitution, discussed below.

The substitution of a canonical object into an atomic object falls into two cases
depending on whether the variable at the head of the atomic object is the substitu-
tion variable, or a different variable. If the latter, the structure of the atomic object
is left in place and the substitution only applies congruences. Otherwise, the elim-
ination forms in the atomic object will be locally reduced with the introduction
forms in the canonical object. We refer to this case as principal substitution. The
result of principal substitution is a canonical object together with its type (used to
enforce termination). Principal substitution is denoted [No/z:AJ°R = (N' : A").
This notation is to be read as a partial function from Ny, A, and R to N’ and A'.
It will fail to be defined unless z is the head variable of R. The following equations
characterize the partial function inductively.

[No/z:A)P(R"N) = ([[JAVO/m:A]“N/y:Al]“N’ 1 Ay)

if [No/:L’:A]BR =(\y.N'": A) 0 Ay) and A; < A.
[No/z:AJP(R N) = ([[No/z: A]°N/u:A;]°N" : As)

if [No/z:AJPR = (MAu.N': A1 — A;) and 4; < A .
[No/z:A)P(mR) = (N; : Ay)

if [No/z:AJPR = ((N1,No) : A; & A») .
[No/z:AJP(maR) = (No : As)

if [No/z:A]JPR = ((N1,Na) : Ay & As) .
[No/z: AP (z) = (N : A)

The threading of the type A through this recurrence is what permits it to be
well-founded even for ill-typed terms. The side conditions A; < A can be proved
redundant once the algorithm has been defined.

Now general substitution into canonical, atomic, and monadic objects can be
characterized.

A

[No/z: A" (Ay. N) = Ay. ([No/z: A]"N)

[No/z:Al*({E}) = {[No/-'v A]°E}

[No/z:A]*(R) = [No/z:AJPR or [No/z:A'R

[No/z: A (c) = ¢

[No/z:A]"(y) =y provided z # y

[No/a: A (R"N) = ([No/: AFR)\([No/: A"N)

[N()/IL'A] (Ml ®M2) ([NO/IL' A]li) ([N(]/.’L’A]mMg)

All these are simple composition laws, except that at the point where an atomic

object is coerced to a canonical object, the algorithm non-deterministically chooses

® That is, (4, No, N) < (A, Nj,N') iff A < A'; or A= A" and Ny < Ny; or (A, No) =
(A’,Ny) and N < N'.



between the principal case [No/z: AJ°R and the non-principal case [No/z: A" R.
At most one of the two will be defined, depending on whether the head variable
of R is or is not x. Cases for some syntactic constructs have been omitted; these
are all given by similar composition laws.

It remains to define the substitution into monadic expressions E. Following
prior work on proof term assignments for the monadic connectives [PD01], we use
“leftist” substitutions which are syntax-directed based on the object at the left of
the substitution, rather than the “rightist” substitutions considered above. The
recurrences for substitution into expressions and the leftist substitutions are as
follows.

if [No/z:AJPR ={E'} : {S'} and S’ < A then
[No/z:Al%(let {p} = Rin E) = (E'[p:S')¢[No/z: A]°E; otherwise,
[No/z:Al%(let {p} = Rin E) = (let {p} = [No/z:A]"Rin [No/z: A]°E) .
[No/z:Al*(M) = [No/z:A™M

(let {po} = Ro in Ey)/p:S)*E = (let {po} = Ry in (Eo/p:S)°E)
Mo/p:S)eE = (Mo /p:S)™E

(

(

(M; @ Ma/p1 @ p2:S1 @ S2)™E = (Ma/pa:S2)™ (M1 /p1:51)"E
(1/1:1)*E=E

(IN/u:'A)"E = [N/u: AI°E

(N/z:AY"E = [N/z: A]°E

Finally, the substitution theorems can be proved. The following are a few linear
cases; there are many more [WCPWO02].

1. fI'; Ay F Nog <= A and F,AQ,.'L'/\A}_N<:C
then F;Al,AQ F [N()/.Z'A]HN¢C
then F, A]_,A2 F [N()/.Z'A]rR=> C or F;AI,AQ F [Ng/.Z’A]BR<= c
as the case may be
3. IfF,Al F Ey + So and F;AQ;p/Z\S() FE+S
then F, Al,AQ F (Eg/p:SO)eE «— S

In each case the theorem asserts that the substitution is defined and has the
proper type. All these can be proved by a simple structural induction on the well-
founded order used to define the algorithm.

Other theorems crucial to the meta-theoretic development include composi-
tion laws for n-expansion and substitution, and a functionality principle show-
ing that substitution lifts to a function on equivalence classes of objects modulo
=, [WCPWO02].

4 Related Work

This section presents a brief sketch of related work.



Past research has identified two main approaches to encoding concurrent com-
putations in linear logic. Abramsky’s proofs-as-processes [BS94] assumes a func-
tional perspective where process interaction is captured by cut-elimination (nor-
malization) steps over linear logic derivations. A second direction, which may be
identified with the slogan proofs-as-traces (and formulas-as-processes), models dy-
namic process behaviors as proof-search, generally in the style of (linear) logic
programming [MOM91,And92,Mil92,K'Y93,Chi95,Cer95].

CLF follows this second path, stressing a one-to-one correspondence between
CLF proof-terms and process executions (traces) [CPWWO02]. CLF differs from
most of these proposals in two respects: first, it is a fully fledged logical framework,
which means that it expresses not only the constructs of an object process calculus
and their behavior, but also executions themselves and meta-reasoning about them.
Second, the concurrent equality natively supports true concurrency; this is essential
for meta-reasoning.

To the authors’ knowledge, Honsell et. al. [HMSO01] describe the most significant
application of a logical framework in the sphere of concurrency. They elegantly en-
code the m-calculus with substantial meta-theory in the calculus of constructions
with inductive/coinductive types (CC(€21nd) However, since the notion of equal-
ity of CC{¢2nd does not identify permutable computations, more advanced meta-
theoretic investigations would require tedious coding of an equivalence similar to
CLEF’s concurrent equality.

The idea of monadic encapsulation goes back to Moggi’s monadic meta-language
[Mog89,Mog91] and is used heavily in functional programming. Qur formulation
follows the judgmental presentation of Pfenning and Davies [PDO01], which com-
pletely avoids the need for commuting conversions, but the latter treats neither
linearity nor the existence of normal forms. The exploration of monads in logic
programming by Bekkers and Tarau [BT95] concentrates on the use of monads for
data structures and all-solution predicate. This is quite different from our applica-
tion and concerned neither with additional logical connectives nor a true extension
of the operational semantics. Benton and Wadler [BW96] explore the relationship
of Moggi’s monadic meta-language and term calculi for linear logic with Benton’s
adjoint calculus, which bears some intriguing similarities with CLF, but is not a
type theory and does not identify the logical connectives inherited from lax logic
and linear logic as we do here.

The method of defining a type theory by a typed operational semantics goes
back to the Automath languages [dB93] and has been applied to LF by Felty [Fel91].
Our canonical formulation significantly extends and streamlines the ideas behind
Felty’s canonical LF and its extension to LLF [CP98]; the need for confluence and
B-normalization results is eliminated.

5 Conclusion

In this paper, we have presented the basic design of a logical framework that in-
ternalizes parametric and hypothetical judgments, linear hypothetical judgments,
and true concurrency. This supports representation of a wide variety of concepts



related to logic and computation in a natural and concise manner. It also poses a
host of new questions.

Operational Semantics of CLF. One of the practically important features of the
linear logical framework is its operational interpretation as a logic programming
language using goal-directed proof search [HM94,Cer96]. We conjecture that CLF
supports a conservative extension of this operational semantics. We have already
constructed a representation of Mini-ML with concurrency and parallelism antic-
ipating such an interpretation [CPWW02].

Properties of Computations. Concurrent computations in an object language are
internalized as monadic expressions in CLF. The framework allows type fami-
lies indexed by objects containing such expressions, which means it is possible
to formulate properties of concurrent computations and relations between them.
Examples are safety and possibly liveness properties, bi-simulations, and other
translations between models of computations.

Case Studies and Applications. Besides the examples presented in this paper, the
applications technical report [CPWWO02] contains many more examples of the use
of the fully dependent framework. We have concluded an encoding of a version of
ML that simultaneously supports functions, recursion, definitions, pairs, unit type,
sum types, void type, recursive types, parametric polymorphic types, intersection
types, suspensions with memoization, mutable references, futures in the style of
Multilisp [Hal85], and concurrency in the style of CML [Rep99]. We further have
a representation of the second author’s security protocol specification framework
MSR [Cer01], and representations of the synchronous and asynchronous w-calculus.
Other targets for case studies in the realm of concurrent and imperative languages
abound and are left to the reader’s imagination.
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