
Aspects, Information Hiding and Modularity

Daniel S. Dantas
Princeton University

ddantas@cs.princeton.edu

David Walker
∗

Princeton University

dpw@cs.princeton.edu

ABSTRACT
Aspect-oriented programming languages such as AspectJ
provide a new way to separate out and consolidate code for
debugging, profiling, distribution and other tasks that would
otherwise become tangled with the main-line computation.
Without aspects, this code can be difficult to understand
and maintain. Unfortunately, while aspects purport to pro-
vide a new form of modularity, they also defeat the purpose
of existing information hiding and modularity mechanisms.

We have developed a new aspect-oriented programming
language, AspectML, that allows programmers to control
information hiding and access to the internals of a module
through a simple static type system. Using our mechanisms,
programmers can prevent aspects from interfering with local
invariants or reading information that should be kept private
to a module. Consequently, AspectML is the first aspect-
oriented language that interoperates safely and effectively
with rich module systems.

1. INTRODUCTION
Aspect-oriented programming languages (AOPL) such as

AspectJ [6] allow programmers to specify both what compu-
tation to perform as well as when to perform it. For example,
AspectJ makes it easy to implement a profiler that records
statistics concerning the number of calls to each method:
The what in this case is the computation that does the
recording and the when is the instant of time just prior to
execution of each method body. In aspect-oriented termi-
nology, the specification of what to do is called advice and
the specification of when to do it is called a point cut. A
collection of point cuts and advice organized to perform a
coherent task is called an aspect.

The profiler described above could be implemented with-
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out aspects by inserting the profiling code into the body of
each method directly. However, when the programmer does
the insertion manually, at least two problems can occur.
First, it is no longer easy to adjust when the appropriate
advice should be run, requiring the programmer to explic-
itly relocate the profiling code. Second, the profiled code
becomes “tangled.” In other words, the main computation
source code is interleaved with profiling code, making the
program difficult to read and maintain. The problem gets
much worse when code for several different tasks such as
profiling, debugging, distribution, access control and others
is all mixed together in the same place. Aspects allow main-
taining program code with debugging, profiling, and other
extensions late in the development cycle with less risk of
entanglement.

Aspect-oriented programming already has a significant
following in software engineering circles, has recently been
featured in Communications of the ACM [2], has its own an-
nual conference (AOSD), a workshop on foundations (FOAL),
and is a significant new focus of a variety of traditional
object-oriented programming language conferences includ-
ing ECOOP and OOPSLA. However, despite the recent pop-
ular success of AOPL, they suffer from some very serious
drawbacks. In fact, some researchers feel that aspects may
end up costing the software industry millions of dollars if
they become widely used in their current form. The cen-
tral problem is that although AOPL like AspectJ purport
to deliver a new form of modularity, they also undermine
existing modularity and abstraction mechanisms. For in-
stance, AspectJ allows aspects, through the use of the priv-
ileged keyword, to access the private components of a class
or package with potentially destructive consequences. More
specifically:

• A client can determine the existence of fields and meth-
ods in an implementation that would otherwise be kept
private. Using this information, the client can develop
code with unwanted dependencies on the underlying
implementation. If the implementation changes, the
client code may break. In short, it becomes impossi-
ble for a implementation to establish and enforce rep-
resentation independence properties.

• Clients can also read fields of objects and data that
flows between methods in an otherwise private imple-
mentation. Not only are there ramifications for repre-
sentation independence as above, but also for security
as no data value can be kept secret.

• Most dangerous of all, client code can make arbitrary



changes to the fields of objects, as well as the argu-
ments to and results from methods. Such changes can
disrupt any and all local invariants a programmer may
try to maintain. The result is that client code and im-
plementation code can become too closely coupled to
be maintained as separate abstractions.

In summary, current aspect-oriented programming lan-
guages do not provide sufficient mechanisms to protect one
piece of code from another. Consequently, debugging and
maintaining aspect-oriented code can be extraordinarily dif-
ficult and extremely costly. Moreover, current aspect-oriented
programming languages are a threat to software security,
and particularly insider attacks, as it is trivial for malicious
components to subvert trusted ones.

The goal of our research is to develop aspect-oriented pro-
gramming mechanisms that provide support for representa-
tion independence and information hiding, the fundamental
mechanisms necessary for reliable and secure programming-
in-the-large. In order to achieve this goal, we are develop-
ing a new functional, aspect-oriented programming language
called AspectML. AspectML is a conservative extension of
SML/NJ [1] with features that allow programmers to de-
fine point cuts and advice. As in other aspect-oriented pro-
gramming languages, these tools can be used to separate
out orthogonal concerns from the main-line computation
and thereby untangle code. However, unlike other aspect-
oriented languages, AspectML programmers have fine-grained
control over access to their data. Access rights, including the
ability to determine the existence of module components and
to read or write data that flows between functions, are spec-
ified through a convenient syntax. AspectML propagates
these access rights through its type system and prevents
client code from violating the information hiding and ab-
straction policy established by the implementer. When the
core language is combined with ML’s rich module system,
the programmer has tight control over which regions of code
have access to which set of rights.

In the next section of this paper, we describe the main
features of AspectML through a series of examples. First,
we cover the basic mechanisms for defining AspectML’s ver-
sion of point cuts and advice. Many of these basic design
points are inspired by earlier work by Walker, Zdancewic
and Ligatti [9], although the specifics of our design are new.
Next, we introduce mechanisms for specifying access rights
and explain how to integrate access rights into the ML type
system. In addition, we show how to use the ML module
system to help control propagation of access rights. Finally,
we summarize our design philosophy and discuss some of the
trade-offs of our design with respect to AspectJ. In section 3,
we specify the semantics of a simplified and idealized core
language, including typing rules and execution behavior. We
have proven our idealization is sound. Section 4 discusses
our implementation. As of writing this paper, we have im-
plemented a type checker for the language and are working
on completing the back end. Section 4 also mentions future
and related work.

2. ASPECTML

2.1 Preliminary Concepts
AspectML extends Standard ML with two central fea-

tures, first-class control-flow pairs and first-class advice, that

work together to allow programmers to untangle code.

First-class Control-flow Pairs.AspectML allows program-
mers to declare, store and manipulate data structures that
represent pairs of program control-flow points. These control-
flow pairs, or CFPs, are created whenever a programmer de-
clares a function in AspectML. The first control-flow point
in the CFP represents the instant in time just prior to execu-
tion of the function body. The second in the pair represents
the instant in time just after execution of the function body
but before the return of its result.

Specifically, when a programmer declares the function fun

f x = ..., they implicitly declare a CFP that is bound to
the variable $f. The variable $f may be used in the scope
following the function declaration and follows all of the or-
dinary scoping rules for ML variables. For instance, after
defining functions fact and double, we might collect the
CFPs for these two functions together in a list called pts:

fun fact x = if x <= 1 then 1 else fact (x-1) * x

fun double x = x * 2

val pts = [$fact, $double]

The CFPs in the example above will later be used to specify
when advice is triggered.

First-class Advice.AspectML allows programmers to de-
fine several different forms of advice, but the simplest has
this shape: advice t pat = e. The expression e is the body
of the advice. It is ordinary ML code that will execute when
the advice is triggered. The first two parameters of the dec-
laration, t and pat, collaborate to specify when the advice
will be run. The time t is either before or after. It spec-
ifies which of the control-flow points in the CFP should be
selected–the point before or after the function body is exe-
cuted. The pattern pat specifies which CFPs will trigger the
advice.

For example, suppose we wanted to add some debugging
support to the program we began above. If we decided to
print out some information both before and after the func-
tion fact, we would declare two pieces of advice:

val traceEntry =

advice before <| pts as p(arg) |> @ _ = ...

val traceExit =

advice after <| pts as p(res) |> @ _ = ...

The two patterns specify that advice will be triggered
when execution reaches any of the CFPs designated by the
list pts defined earlier (i.e. when control reaches the func-
tions fact or double). When the advice is triggered, the
particular CFP that triggered it ($fact or $double) is bound
to the variable p, which may be used in the body of the ad-
vice. Moreover, in the traceEntry advice, the variable arg

is bound to the argument of the function that is being ad-
vised and in the traceExit advice, the variable res is bound
to the result of the function that is being advised.

As mentioned above, the body of advice is ordinary ML
code. Hence, to complete our tracing advice we might write
the following.



fun fact x = if x <= 1 then 1 else fact (x-1) * x

fun double x = x * 2

val pts = [$fact, $double]

val traceEntry =

advice before <| pts as p(arg) |> @ _ =

print ("enter:" ^ (label p) ^ ":"

^ (Int.toString arg))

val traceExit =

advice after <| pts as p(res) |> @ _ =

print ("leave:" ^ (label p) ^ ":"

^ (Int.toString res))

val runTrace =

fn _ => traceEntry >> traceExit >> ()

Figure 1: A simple AspectML program

val traceEntry =

advice before <| pts as p(arg) |> @ _ =

print ("enter:" ^ (label p) ^ ":"

^ (Int.toString arg))

val traceExit =

advice after <| pts as p(res) |> @ _ =

print ("leave:" ^ (label p) ^ ":"

^ (Int.toString res))

The only element of these definitions we have not seen before
is the function label, which is a built-in AspectML operator
that extracts a string from a CFP. Currently, the string is
the name of the function that corresponds to the CFP.

The above declarations introduce our first-class advice,
but that advice has no effect until it is installed. The expres-
sion e1 >> e2 installs advice e1 after any other advice that
has already been installed and then executes the expression
e2. The expression e1 << e2 installs e1 before other ad-
vice. For instance, if we write e1 >> e2 >> () then when-
ever both e1 and e2 are triggered by the same control-flow
point, the effects of e2 will occur after the effects of e1. On
the other hand, if we write e1 >> e2 << () then the effects
of e1 will occur after the effects of e2.

In the current example, both pieces of advice operate over
disjoint sets of control-flow points. Therefore it does not
matter whether we use >> or <<. Figure 1 presents our en-
tire AspectML program in one piece, including the function
runTrace that can be called to install the tracing advice.

2.2 Advanced Advice
In addition to the simple before and after advice described

in the previous section, AspectML provides facilities that
allow programmers to write context-sensitive advice that can
takes the calling context of a function into consideration, a
mechanism that allows programmers to create advice with
similar functionality to AspectJ’s around advice, and volatile
advice that can modify function arguments and results.

Context-sensitive Advice.As we have already seen, the
body of an advice expression may reference the CFP asso-

fun fact x = ...

val unwindPts = ...

fun unwind stack =

scase stack of

NilStack =>

print "done"

| <| unwindPts as f(_) |> @ stack’ =>

print ((label f) ^ ":");

unwind stack’

| _ @ stack’ =>

unwind stack’

val traceStack =

fn pts condition =>

advice before <| pts as f(x) |> @ stack =

if condition (f,x) then

(print ((label f) ^ ":");

unwind stack)

else

()

val _ =

(traceStack [$fact] (fn (_,x) => x < 0)) >> ()

Figure 2: Context-sensitive advice

ciated with the function that triggered it. This feature was
used above to print the label of the function that was called.
In addition, advice may also depend upon the CFPs associ-
ated with the functions on the current control stack. Follow-
ing the tradition of functional programming, CFP stacks are
first-class, immutable data structures like any other. Pro-
grammers may analyze them and extract their components
through pattern matching.

Figure 2 presents an example of debugging advice to il-
lustrate the concept. In this example, the function unwind

prints the labels on a CFP stack one by one. The main ele-
ment of interest is the scase, or stack-case, statement, which
uses three patterns to match a CFP stack. The first pattern
matches the empty stack and the next two match non-empty
stacks involving a “head” (at the top of the stack) and, af-
ter the “@”, a “tail” that matches the rest of the stack. The
head of the second pattern is a CFP pattern, similar to the
ones we saw in the previous subsection.

Continuing with the example in Figure 2, the function
traceStack takes two arguments, a list of CFPs and a pred-
icate, and generates advice to print the stack of CFPs when
the predicate holds. The initial pattern in this advice decla-
ration binds the variable stack to the CFP stack at the time
the advice is triggered. The last declaration in the figure ap-
plies the function to the specified CFP list and predicate and
finally installs the generated advice.

Around Advice.AspectJ allows users to declare advice around
a function f. The body of this sort of advice has the effect of
entirely replacing the body of the function f. AspectML in-
cludes an alternative mechanism, the command return e1

to e2, that supports around advice.
The returnto expression evaluates its arguments e1 and



e2 to obtain values v1 and v2. It then crawls down the
call stack to the nearest enclosing activation record for the
function associated with the CFP v2. At this point, the
value v1 is substituted for what would have been the result
of the function and execution continues. To simulate around
advice using this mechanism, the programmer writes before
advice that terminates with the use of returnto:

advice before <| pts as p(x) |> @ _ =

... return e to p ...

Volatile Advice.Stable advice is advice executed exclu-
sively for its effect; it does not modify function arguments
or results when it is invoked. Our previous tracing and de-
bugging examples have been stable advice.

Volatile advice, on the other hand, does modify function
arguments or results. Using returnto results in one form of
volatile advice since the value returned replaces a function
result. Programmers can also add the keyword volatile

to before and after advice to allow them to modify argu-
ments and results respectively. For instance, to modify the
argument to the fact function, one may write the following.

advice before volatile <| [$fact] as p(x) |> @ _ =

if x < 0 then 0 else x

The default volatility for advice is stable. Optionally, the
programmer can add the keyword stable to before or af-
ter advice to emphasize that the advice will not change the
argument (or result).1

2.3 Typing and Access Control
The various sorts of advice provided by AspectML allow a

client component written by a programmer A to determine
all kinds of information about an implementation compo-
nent written by another programmer B: Stable advice writ-
ten by A can determine the existence of functions written
by B; stable advice written by A can read data that flows
between functions written by B; and volatile advice writ-
ten by A can modify the data that flows between functions
written by B. In the first two cases, A’s code will depend di-
rectly upon code written by B, and if B wishes to change her
code, the changes may break A’s code. In the last case, the
code written by A can disrupt local invariants that are im-
portant to the proper functioning of B’s code. The bottom
line is that without protection mechanisms that can create
a boundary between A and B, AspectML code can become
conceptually entangled even if it is not physically entangled,
and conceptually entangled code is at least as difficult to
debug as physically entangled code.

In order to protect their code from outside interference,
AspectML programmers decorate their function declarations
with access controls. For instance, if we wish to restrict
access to our familiar fact and double functions, we might
declare them as follows.

fun[r,n] fact x =

if x <= 0 then 1 else fact (x-1) * x

fun[r,n] double x = x * 2

1If the argument or result of a function is ordinarily a mu-
table object (a reference or array), the advice will be able
to assign to the object, changing the value it points to, even
in stable advice.

The access control specification [r,n] decorating both
function declarations specifies that the argument of the func-
tion is readable but not writeable (designated by r) and the
result of the function is neither readable nor writeable (des-
ignated by n). The two other access controls, not used in
this example, are writeable (w) and read-write (rw).

A readable argument or result can be bound to a pattern
and used within stable advice. A writable argument or result
can be computed by invoking volatile advice or (in the case
of a result) a returnto expression. For instance, reconsider
our two declarations of advice from above:

val pts = [$fact, $double]

val traceEntry =

advice before <| pts as p(arg) |> @ _ =

print ("enter:" ^ (label p) ^ ":"

^ (Int.toString arg))

val traceExit =

advice after <| pts as p(res) |> @ _ =

print ("leave:" ^ (label p) ^ ":"

^ (Int.toString res))

With the new access controls, traceEntry is well typed,
but traceExit is not. In the latter case, the advice accesses
the result of the function, which is not allowed. To obtain a
type-correct program we must modify traceExit so that it
uses the wildcard pattern:

val traceExit =

advice after <| pts as p(_) |> @ _ =

print ("leave:" ^ (label p))

Notice that the declarations above implicitly permit pro-
grammers to use the label operation on the respective CFPs.
To deny client code any access whatsoever to a CFP, one
simply uses an ordinary ML function declaration: fun f x

= .... Our default access control choice is one that favors
safety and is faithful to ML semantics.

Types.To integrate access control checking smoothly with
the rest of ML typechecking, we include access control spec-
ifications in the types of CFPs. In general, these types re-
semble record types and have the form

{{arg:a1 τ1,res:a2 τ2,lab:a3}}

where a1, a2, and a3 are the access control specifications,
and τ1 and τ2 are the types of the arguments and results
of the respective functions. When no access is allowed for
one of the components, the component is dropped from the
collection.

As an example, consider the declaration of the factorial
function (fun[r,n] fact x = ...) given above. The type
of the related CFP $fact is {{arg:r int,lab:r}}. This
type allows the argument of fact, which is an integer, to be
read within stable before advice. It also allows the label

operation to be applied to $fact. If we extended the priv-
ileges for $fact by declaring it with privileges [r,rw] then
$fact would have the type

{{arg:r int,res:rw int,lab:r}}

and we would be able to write volatile after advice for $fact
and use the operation return e to $fact provided that e

has integer type.



Subtyping.The types of CFPs are ordered by a natural
subtyping relation: a CFP with more access rights is a sub-
type of a CFP with fewer access rights. For instance, the
type that does allow access to the result of fact is a subtype
of the type that does not allow access to the result of fact:

{{arg:r int,res:rw int,lab:r}} ≤
{{arg:r int,lab:r}}

This subtyping relation is extremely useful to program-
mers who wish to provide different sets of rights to different
client components. For instance, a programmer may allow
his or her own local code to have quite liberal access rights
and then to reduce access rights to ensure that external com-
ponents do not depend on or interfere with local invariants.

AspectML programmers manage subtyping through ex-
plicit coercions. For instance, if e is an expression with a
CFP type, then the expression e <- τ is an upcast that can
reduce the access rights associated with e. We do not sup-
port coercions for higher types (pairs, functions, lists) as
they are not particularly useful in our context.2

Although explicit coercions have more syntactic overhead
than implicit subtyping, we have chosen the former as it
is simpler to integrate with (Standard) ML type inference.
However, we could have used row polymorphism and its as-
sociated type inference techniques.3

2.4 Aspects and Modules
AspectML makes no changes to ML’s rich module system.

However, the core language was carefully designed with this
module system in mind. In particular, AspectML program-
mers are expected to use the module system in conjunc-
tion with access controls and subtyping to raise abstraction
boundaries within their programs where appropriate.

The code below presents an open implementation of an
arithmetic structure containing our familiar fact and double

functions. The signature ARITHOPEN is sufficiently liberal
that clients may write any sort of advice, stable or volatile,
to manipulate these operations.

signature ARITHOPEN =

sig

val fact : int -> int

val double : int -> int

val $fact : {{arg:rw int,res:rw int,lab:r}}
val $double : {{arg:rw int,res:rw int,lab:r}}

end

structure arithopen :> ARITHOPEN =

struct

fun[rw,rw] fact = ...

fun[rw,rw] double = ...

end

The ML module system makes it easy to create differ-
ent interfaces to the arithmetic package that vary the access

2In the uncommon case a programmer needs coercions for
higher types, they may build them explicitly For instance, a
programmer may coerce a function f through the standard
eta-expansion trick: fn x:τ1.(f (x <- τ2)) <- τ3. This
coercion will have some non-zero run-time overhead.
3As you will see, our formal CFP types are very similar to
records, with each field a single access control right. Sub-
typing for CFP types is width subtyping, and therefore row
polymorphism applies directly.

rights provided to different components of the system. For
instance, in the code below, we define two additional struc-
tures arith, which provides no CFPs that can be used to
create advice, and arithProf, which summarizes the CFPs
important for profiling and limits the rights associated with
these CFPs to label-only status. Now, debugging infrastruc-
ture, which requires liberal access to the underlying rep-
resentations in order to be effective, can be defined over
the arithopen structure; profiling infrastructure, which only
needs access to the names of functions to construct and print
profiling data, can be defined over arithProf; and the bulk
of the code can be defined over arith and its purely func-
tional interface.

signature ARITH =

sig

val fact : int -> int

val double : int -> int

end

structure arith :> ARITH = arithopen

signature PROF =

sig

val profilePts : {{lab:r}} list

end

structure arithProf :> PROF =

struct

type t = {{lab:r}}
val profilePts =

[arithopen.$fact<-t, arithopen.$double<-t]

end

2.5 Summary of Design Philosophy
One of AspectML’s design goals is to provide program-

mers with as much choice as possible concerning the degree
of abstraction and information hiding in their programs.
Just as ordinary ML allows programmers to declare types
transparent, translucent or abstract, AspectML allows pro-
grammers to create modules in which all functions are com-
pletely open to modification, some functions are partially
open, or no functions are open at all. When programming a
more open style, one can simulate the features of more tradi-
tional aspect-oriented programming languages. Such a style
can be useful in smaller systems or in localized regions of a
larger system. At the same time, traditional ML program-
mers can transition to AspectML without fear that any of
the properties of their programs will be disrupted. In other
words, unlike any other aspect-oriented design proposal that
we are aware of, our proposal is a conservative extension of
a language with strong modularity properties.

While AspectML admits many choices, it encourages safer,
more modular aspect-oriented programming through careful
construction and a choice of the defaults. For instance, by
default, function declarations are closed, and when they are
left open, a concise local annotation reminds programmers
that they may be modified. Similarly, when CFPs are left
out of an interface, access is denied. In order to provide ex-
ternal access, a programmer must explicitly include a CFP
in an interface, and as above, the interface documents the
possibility that external components may influence internal
semantics.

The fundamental trade-off between a language like As-
pectJ and a language like AspectML is whether or not the
implementer of a module is allowed to set an access control



types τ ::= string | unit | τ1 → τ2 | τ list

| stack | advice | {ai∈1..n
i }

ctxts Γ ::= · | Γ, x :τ

ac
specs a ::= labr | argr : τ | argw : τ

| resr : τ | resw : τ

terms e ::= x | s | ()
| let ds in e | λx :τ.e | e1 e2

| nil | cons(e1, e2)
| lcase e(nil ⇒ e1|cons(x, y) ⇒ e2)

| scase e(nils ⇒ e1|pt @ x ⇒ e2| @ y ⇒ e3)

| return e1 to e2 | label e
| advice t vol(pt @ y)= e
| e1 >> e2 | e1 << e2

decls ds ::= ·
| (valx = e) ds
| (fun f(p :{ai∈1..n

i })(x :τ1):τ2 = e) ds

times t ::= before | after

vol’s vol ::= stable | volatile

cfp
pats pt ::= e as p(x)

Figure 3: Formal Syntax

policy for the module. AspectML allows implementers to
set policy; AspectJ does not, allowing unrestricted access
using the privileged keyword.. The primary disadvantage of
AspectML’s design choice is that programmers might dis-
allow access and later wish they had not, forcing them to
restructure their interfaces. The primary disadvantage of
AspectJ’s design choice is that to understand the seman-
tics of any method, programmers must always examine all
of their code. We believe the latter disadvantage outweighs
the former, particularly since in AspectML, there is a simple
way to correct an overly restrictive design, but in AspectJ,
there are no mechanisms to build and check abstractions.

AspectML also has more notational overhead than As-
pectJ as programs must specify CFPs and their types in sig-
natures. This overhead may be viewed as an inconvenience
to programmers. However, we believe that it provides an
important form of machine-checkable documentation that
specifies access points and privileges and that it will help
make aspect-oriented programs more reliable.

3. CORE LANGUAGE SEMANTICS

3.1 Syntax
The formal syntax is presented in figure 3. For the most

part, it resembles the examples given in previous sections.
One minor difference appears in the syntax of access con-
trol specifications (a). Rather than allowing composite ac-
cess controls such as the rw designator, every privilege is
split out into its own individual specifications. These spec-
ifications are then collected together in a type for CFPs

({ai∈1..n
i }). Presence of a particular specification within a

CFP type grants access; absence of a specification prevents
access. Types for CFPs that differ only in the order of their
access control specifications are considered to be identical.
Otherwise, type equality is purely syntactic. Type contexts
(Γ) are finite partial maps used for type checking.

The syntax of terms is largely self-explanatory. We use
metavariables x, y, z, f and p to range over variables. We
use f to emphasize that the variable has function type and
p to emphasize that the variable has CFP type. The meta-
variable s ranges over strings. There are two forms of func-
tion in the calculus. The first (λx : τ.e) is an anonymous
function that has no associated CFP. The second (fun f(p :
{ai∈1..n

i })(x : τ1): τ2 = e) is a combined declaration for both
a recursive function f and its associated CFP p with ac-
cess rights {ai∈1..n

i }. In the previous section’s examples, the
CFP p was always implicitly defined as $f where f was the
name of the function.

The lcase operation destructs a list whereas the scase

operation destructs a stack. We will use the abbreviation
e1; e2 for let(valx = e1)in e2 when x is not free in e2.
We also write [e1, . . . , en] for cons(e1, · · · cons(en, nil)). As
usual, we treat objects that only differ in the names of their
bound variables as identical.

3.2 Static Semantics
The rules for typechecking terms are presented in Fig-

ure 4. Most of the rules should be familiar: unit, strings,
(anonymous) functions and lists all have standard typing
rules. In the rules for checking functions and elsewhere, we
implicitly alpha-convert bound variables where necessary to
be sure they do not overlap with variables in the domain of
the typechecking context.

The rules for scase must determine how the informa-
tion in a CFP pattern (e as p(x)) should be extracted and
used. The first step in the process is to find the type of e,
which must have the form {ai∈1..n

i } list. Then, a function
ctxt(t, {ai∈1..n

i }, p, x)⇒ Γ constructs Γ based upon a time
t and access controls {ai∈1..n

i } (as well as p and x). The
idea is that Γ will assign p the given access rights and it will
only contain x if permitted by those access rights. The ctxt

function for constructing Γ given arguments t, {ai∈1..n
i }, p

and x follows.

• p :{ai∈1..n
i } ∈ Γ

• If t = before and argr :τ ∈ {ai∈1..n
i } then x :τ ∈ Γ

• If t = after and resr :τ ∈ {ai∈1..n
i } then x :τ ∈ Γ

• No other assumptions appear in Γ

When ctxt is used in checking stack pattern matching, its
temporal argument is before since the objects on the stack
are function arguments not results.

The two operations, returnto and label, have simple
typing rules. Importantly, each rule checks to make sure
that the appropriate access rights are available.

The rules for typechecking advice use the ctxt function,
just as in the rules for typechecking the stack-case operation.

Checking advice also requires a second function,
body(t, vol, {ai∈1..n

i })⇒ τ , to determine the expected type
of the body of advice. The partial function body is defined
as follows:

• If vol = stable then τ = unit



• If vol = volatile and t = before and argw : τ ′ ∈
{ai∈1..n

i } then τ ′ = τ

• If vol = volatile and t = after and resw : τ ′ ∈
{ai∈1..n

i } then τ ′ = τ

If the advice body type checks appropriately, the advice is
given type advice. The elimination forms for advice, <<

and >> , expect objects with type advice as the primary
arguments.

The last rule in the first group in Figure 4 is the stan-
dard subsumption rule. We use implicit subtyping in our
formal work rather than the explicit coercions of the imple-
mentation. There are only two rules for subtyping in our
calculus:

{ai∈1..n+k
i } ≤ {ai∈1..n

i } τ ≤ τ

The first rule allows access control rights to be dropped,
thereby tightening control over access to a CFP. The second
rule simply states that equal types are subtypes of one an-
other. Transitivity of subtyping can easily be derived from
these two rules.

The bottom section of Figure 4 presents three rules for
checking a sequence of declarations followed by an expres-
sion. The first rule checks the empty sequence. The second
rule checks a value declaration followed by a sequence. The
last rule checks the combined function and CFP declara-
tion. The subtyping judgment in that last rule checks that
the access control specification is compatible with the type
of the function. For instance, it prevents a programmer from
granting the {argr : bool} access right when the argument
type of the function is int.

3.3 Operational Semantics
This section describes the abstract machine that executes

AspectML programs. Figure 5 introduces the additional
syntactic elements we need. At the bottom of the figure
is the schema for machine states M . They are constructed
from a code store C, advice store A and term to be evaluated
e. The code store is a finite partial map from locations l to
pairs of code and access control specification for that code.
The advice store is a sequence of advice declarations (order
is important).

In order to state the operational semantics, we extend the
language of terms to include references to functions (fun(l))
and access controls (cfp(l)) found in the code store. The
token nils represents the empty stack and l[v1] :: v2 repre-
sents a stack with an activation record for function l and
argument v1 on top and v2 following.4 The meta variables
v, v1, v2, etc. range over values.

The last new term is store l[x] = e1 in e2, a command
to store a value (the result of evaluating e1) on the stack,
in the activation record for the function associated with l.
The code e2 can read the value off the stack by referring
to x. To indicate the constraint that the bound variable
in the store expression does not appear free in e2, we write
store l[ ] = e1 in e2

In order to determine the complete, current stack given
an expression e that contains many store instructions, we
break that expression into a redex and an evaluation context
E and then apply the following function to E (where @ is
intended to be a function that concatenates two stacks):
4Stacks are fairly list-like. However, the list values are nil
and cons(v1, v2).

Γ ` e : τ

x :τ ∈ Γ
Γ ` x : τ

Γ ` s : string Γ ` () : unit

Γ ` ds; e : τ

Γ ` let ds in e : τ

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ, x :τ1 ` e : τ2

Γ ` λx :τ1.e : τ1 → τ2

Γ ` nil : τ list

Γ ` e1 : τ Γ ` e2 : τ list

Γ ` cons(e1, e2) : τ list

Γ ` e : τ list Γ ` e1 : τ1 Γ, x :τ, y :τ list ` e2 : τ1

Γ ` lcase e(nil ⇒ e1|cons(x, y) ⇒ e2) : τ1

Γ ` e : stack Γ ` e1 : τ1 (x 6∈ Dom(Γ))
Γ ` e′ : {ai∈1..n

i } list ctxt(before, {ai∈1..n
i }, p, x)⇒ Γ′

Γ, Γ′, y :stack ` e2 : τ1 Γ, z :stack ` e3 : τ1

Γ ` scase e(nils ⇒ e1|e′ as p(x)@ y ⇒ e2| @ z ⇒ e3) : τ1

Γ ` e1 : τ Γ ` e2 : {resw :τ}
Γ ` return e1 to e2 : τ ′

Γ ` e : {labr}
Γ ` label e : string

(x 6∈ Dom(Γ))
Γ ` e1 : {ai∈1..n

i } list ctxt(t, {ai∈1..n
i }, p, x)⇒ Γ′

body(t, vol, {ai∈1..n
i })⇒ τ2 Γ, Γ′, y :stack ` e2 : τ2

Γ ` advice t vol(e1 as p(x)@ y)= e2 : advice

Γ ` e1 : advice Γ ` e2 : τ

Γ ` e1 >> e2 : τ

Γ ` e1 : advice Γ ` e2 : τ

Γ ` e1 << e2 : τ

Γ ` e : τ1 τ1 ≤ τ2

Γ ` e : τ2

Γ ` ds; e : τ

Γ ` e : τ
Γ ` .; e : τ

Γ ` e1 : τ1 Γ, x :τ1 ` ds; e2 : τ2

Γ `(valx = e1) ds; e2 : τ2

Γ, f :τ1 → τ2, x :τ1 ` e1 : τ2

Γ, f :τ1 → τ2, p :{ai∈1..n
i } ` ds; e : τ

{labelr, argr :τ1, argw :τ1, resr :τ2, resw :τ2} ≤ {ai∈1..n
i }

Γ `(fun f(p :{ai∈1..n
i })(x :τ1):τ2 = e1) ds; e : τ

Figure 4: Term Typing



e ::= ... | fun(l) | cfp(l) | nils | l[v1] :: v2

| store l[x] = e1 in e2

| store l[ ] = e1 in e2

v ::= s | () | fun(l) | cfp(l) | λx :τ.e
| nil | cons(v1, v2) | nils | l[v1] :: v2

| advice t vol(ptv @ y)= e
ptv ::= v as p(x)
E ::= [] | E e | v E

| let(valx = E) ds in e
| nil | cons(E, e) | cons(v, E)
| lcaseE(nil ⇒ e1|cons(x, y) ⇒ e2)

| returnE to e | return v toE | labelE
| scaseE(nils ⇒ e1|e as p(x)@ y ⇒ e2| @ z ⇒ e3)

| scase v(nils ⇒ e1|E as p(x)@ y ⇒ e2| @ z ⇒ e3)

| advice t vol(E as p(x)@ y)= e
| E >> e | E << e
| store l[x] = E in e | store l[ ] = v inE

C ::= · | C, l →((fun f(x :τ1):τ2 = e), {ai∈1..n
i })

A ::= · | A, advice t vol(E as p(x)@ y)= e
M ::= < C, A, e >

Figure 5: Run-time data

stack([]) = nils
stack(store l[x] = v inE) = stack(E)@ (l[v] :: nils)
stack(E) = recursively apply stack to

nested context within E

Dynamic Access Control Checks.Our operational se-
mantics will contain explicit (dynamic) access control checks.
In well-typed programs, these access control checks never
fail, and therefore, they need not be implemented. The ac-
cess control check for converting a label to a string simply
verifies that the labr permission has been granted for that
label. The access control checks for reading and writing ar-
guments and results of functions are slightly more involved:
readcheck(t, {ai∈1..n

i }, x, e) is valid if

• t = before and x ∈ FV (e) implies argr :τ ∈ {ai∈1..n
i }

• t = after and x ∈ FV (e) implies resr :τ ∈ {ai∈1..n
i }

writecheck(t, {ai∈1..n
i }) is valid if

• t = before implies argw :τ ∈ {ai∈1..n
i }

• t = after implies resw :τ ∈ {ai∈1..n
i }

The readcheck predicate determines whether a value bound
to a variable x is read in the expression e by examining the
free variables of e. This check is sufficient, but even if e does
contain x, e will not necessarily read it. We have specified
the access control check in this manner as it appears to be
the simplest and most elegant approach.5

5Refining the calculus with explicit substitutions might al-
low us specify necessary and sufficient conditions on read
access, but this minor benefit does not justify the additional
machinery we would need.

< C, A, e > 7−→β< C′, A′, e′ >

< C, A, let · in e > 7−→β< C, A, e >

< C, A, let(valx = v) ds in e > 7−→β< C, A, (let ds in e)[v/x] >

< C, A, let(fun f(p :{ai∈1..n
i })(x :τ1):τ2 = e1) ds in e2 > 7−→β

< C, l 7−→((fun f(x :τ1):τ2 = e1), {ai∈1..n
i }), A,

(let ds in e2)[fun(l)/f ][cfp(l)/p]) >

< C, A,(λx :τ.e) v > 7−→β< C, A, e[v/x] >

C(l) =(..., {labr, . . .}) labelToString(l) = s

< C, A, label cfp(l)> 7−→β< C, A, s >

< C, A, store l[x] = v1 in e2 > 7−→β

< C, A, store l[ ] = v1 in e2[v1/x] >

< C, A, store l[ ] = v1 in v2 > 7−→β< C, A, v2 >

l /∈ stack(E) C(l) =(..., {ai∈1..n
i }) writecheck(after, {ai∈1..n

i })
< C, A, store l[ ] = v1 inE[return v2 to cfp(l)] > 7−→β< C, A, v2 >

< C, A, lcasenil(nil ⇒ e1|cons(x, y) ⇒ e2)> 7−→β< C, A, e1 >

< C, A, lcase cons(v1, v2)(nil ⇒ e1|cons(x, y) ⇒ e2)> 7−→β

< C, A, e2[v1/x][v2/y] >

< C, A, scasenils(nils ⇒ e1|ptv @ y ⇒ e2| @ z ⇒ e3)> 7−→β

< C, A, e1 >

v1 |= ptv ⇒ θ C(l) =(..., {ai∈1..n
i })

ptv = v as p(x) readcheck(before, {ai∈1..n
i }, x, e)

< C, A, scase l[v1] :: v2(nils ⇒ e1|ptv @ y ⇒ e2| @ z ⇒ e3)> 7−→β

< C, A, θ(e2)[v2/y] >

v1 6|= ptv

< C, A, scase v1 :: v2(nils ⇒ e1|ptv @ y ⇒ e2| @ z ⇒ e3)> 7−→β

< C, A, e3[v2/z] >

< C, A, (advice t vol(ptv @ y)= e1 >> e2) > 7−→β

< C, (A, advice t vol(ptv @ y)= e1), e2 >

< C, A, (advice t vol(ptv @ y)= e1 << e2) > 7−→β

< C, (advice t vol(ptv @ y)= e1, A), e2 >

< C, A, e > 7−→< C′, A′, e′ >

< C, A, e > 7−→β< C′, A′, e′ >

< C, A, E[e] > 7−→< C′, A′, E[e′] >

l /∈ stack(E)

< C, A, E[return v2 to cfp(l)] > 7−→< C, A, return v2 to cfp(l)>

C(l) =((fun f(x :τ1):τ2 = e), {ai∈1..n
i })

compose(before, A, l :τ1, stack(E), {ai∈1..n
i })⇒ bef

compose(after, A, l :τ2, stack(E), {ai∈1..n
i })⇒ aft

e′′′ =

 store l[x] = bef v in
let(val y = e[fun(l)/f ])in
aft y


< C, A, E[fun(l) v] > 7−→< C, A, E[e′′′] >

Figure 6: Operational semantics



Evaluation Rules.Figure 6 specifies program evaluation
using two judgments. The first judgment (7−→β) specifies
the operation of basic commands that may appear within
some evaluation context. The second judgment (7−→) spec-
ifies top-level evaluation.

The first three rules for the 7−→β relation specify execution
of let declarations. The most interesting is the rule for pro-
cessing function declarations. It adds the function together
with its access control specification to the code store and
then substitutes fun(l) for the function variable and cfp(l)
for the CFP variable in the rest of the declarations.

The next interesting rule is the rule for evaluating the
label operation. It depends upon an unspecified operator
(labelToString) that generates a string from a label l (the
implementation generates a string from the source text). It
also checks the access controls associated with the CFP to
ensure that access has been granted.

The store and returnto instructions are implemented by
three rules. First, when evaluation of the primary argument
of store results in a value v1, this value is substituted for x
throughout e2. Second, since store l[ ] = v1 inE is an eval-
uation context, evaluation can proceed underneath a store

instruction.6 When evaluation of the body of the store in-
struction produces a value v2, the function that produced
the store expression is deemed to “return” and the store

expression is eliminated, leaving only v2. When a returnto

expression appears in the context of a store expression, the
value returned replaces the entire store expression.

The rules for lcase are ordinary but the rules for scase in-
volve some additional definitions. The second rule for scase
depends upon a partial function, written l[v] |= ptv ⇒ θ for
matching a CFP pattern and generating a substitution θ.
The function is defined as follows.

l ∈ l1, . . . , ln

l[v] |= [cfp(l1), . . . , cfp(ln)] as p(x)⇒ [cfp(l)/p][v/x]

We write l[v] 6|= ptv if l[v] does not match the CFP pattern.
This second scase rule also checks for violation of the access
control policy for l using the readcheck predicate.

The rules for the 7−→ relation include a rule that allows
a basic reduction rule to be applied in any evaluation con-
text and a rule to terminate execution abnormally with a
return v1 to cfp(l)instruction. The last rule explains how to
evaluate a recursive function application. Intuitively, recur-
sive function application is processed in the following steps:

• Look up the code for the function in the code store C.

• Determine the code to run before the function due to
before advice (bef).

• Determine the code to run after the function due to
after advice (aft).

• Use the store instruction to store the function argu-
ment on the stack and then put the three things above
together to form the code that will be run as the body
of the recursive function.

Determining the code to run before and after a function
call due to advice is done with the help of the compose func-
tion, which is presented in Figure 7. While it looks some-
what complicated, it simply runs across the the advice store
6The use of here indicates that the first step, substitution
for the bound variable, has been completed.

selecting all of the advice that are triggered by the current
function and composes their bodies together. It performs
the appropriate access control checks along the way.

Properties.We have proven that our type system is sound
with respect to our operational semantics using Progress and
Preservation theorems. This strategy requires that we ex-
tend the typing relation to cover all of the run-time in terms
in the language as well as the other elements of the abstract
machine (i.e., the code store and aspect store). We omit the
the details due to lack of space. The final judgment defining
the well-typed abstract machine states has the form ` M ok.
The statement of Progress and Preservation follows.

Theorem 3.1 (Progress). If ` < C, A, e > ok then
either e is a value, or e is (return v to cfp(l)), or there exists
a machine state M such that < C, A, e > 7−→ M .

Theorem 3.2 (Preservation). If ` M ok and M 7−→
M ′ then ` M ′ ok.

4. DISCUSSION

4.1 Implementation
We are in the process of implementing our language as

an extension to SML/NJ. Our implementation parses pro-
grams written in the syntax explored in Section 2. They are
elaborated into an extension of SML/NJ’s ABSYN internal
language, where typechecking occurs. Our extensions of AB-
SYN correspond closely with the formal language described
in Section 3. We compile away the aspect-oriented features
during the type-preserving translation from ABSYN to the
main intermediate representation, a typed lambda calculus
called LAMBDA. One of the advantages of our design is
that all the implementation work occurs in the core lan-
guage. The module system and its sophisticated semantics
remain intact. The compilation manager does as well since,
unlike some aspect-oriented languages, AspectML supports
separate compilation. At the time of writing, we have imple-
mented the parser and typechecker for the language and are
working on the translation. We hope to complete it shortly.

4.2 Future Work
There are many directions for future research; the most

interesting are the design choices concerning advice for poly-
morphic functions. Consider the identity function id with
type ∀α.α → α. What type can we give a (read-only) CFP
for this function? We might try ∀α.{argr : α, resr : α}. In
this case, we could instantiate α with the type int and write
well-typed advice with the form

advice before <| [$id[int]] as p(x:int) |> @ _ =

print (Int.toString x)

In order for this scheme to be sound, this advice must only
be triggered when the identity function is used at type int.
Consequently, this strategy requires that we interpret ML
polymorphism using a type-passing semantics.

A second alternative is to generalize the type of CFPs
to allow type variables to be bound within the constructor:
{∀α.(argr :α, resr :α)}. In this case, the usual type instan-
tiation would be disallowed; instead, programmers would be
able to declare advice with bodies that operate paramet-
rically with respect to α. Currently, we only support the
label operation on CFPs from polymorphic functions.



compose(t, A, l :τ, v, {ai∈1..n
i })⇒ λz :τ.e

compose(t, ·, l :τ, v, {ai∈1..n
i })⇒ λz :τ.z

cfp(l)∈ v compose(t, A, l :τ, vs, {ai∈1..n
i })⇒ λz :τ.e′ readcheck(t, {ai∈1..n

i }, x, e)

compose(t, advice t stable(v as p(x)@ y)= e, A, l :τ, vs, {ai∈1..n
i })⇒ λx :τ.(e[cfp(l)/p][vs/y];(λz :τ.e′)x)

cfp(l)∈ v compose(t, A, l :τ, vs, {ai∈1..n
i })⇒ λz :τ.e′ readcheck(t, {ai∈1..n

i }, x, e) writecheck(t, {ai∈1..n
i })

compose(t, advice t volatile(v as p(x)@ y)= e, A, l :τ, vs, {ai∈1..n
i })⇒ λx :τ.((λz :τ.e′)(e[cfp(l)/p][vs/y]))

cfp(l) /∈ v compose(t, A, l :τ, vs, {ai∈1..n
i })⇒ λz :τ.e′

compose(t, advice t vol(v as p(x)@ y)= e, A, l :τ, vs, {ai∈1..n
i })⇒ λz :τ.e′

Figure 7: Operational semantics: Aspect Composition

4.3 Related Work
Our language design is inspired by earlier work by Walker,

Zdancewic and Ligatti [9], which was in turn influenced
by earlier work on the semantics of aspect-oriented lan-
guages [10, 3, 7]. WZL define a low-level, typed calculus
with first-class advice and CFPs. They then show how some
conventional, high-level features from aspect-oriented lan-
guages like AspectJ can be compiled into the low-level cal-
culus. The design in this paper is derived from elements of
both the high-level (before and after advice) and low-level
languages (the returnto statement). We then added useful
variations of the ideas (e.g., stable and volatile advice; our
stack patterns), developed the access controls and their type
system, and studied the interactions between modules, in-
formation hiding and advice. Another difference is that we
give a semantics to our language directly rather than defin-
ing it by a translation from high-level language to low-level
language.

The only other functional aspect-oriented language that
we are aware of is the Scheme derivative developed by Tucker
and Krishnamurthy [8]. Among other things, they explain
how functional programmers can make effective use of first-
class advice. However, since their language is untyped, pro-
grammers have no mechanisms (beyond static scoping) to
protect their code from unwanted interference by aspects,
which is the central topic of this paper.

Jagadeesan, Jeffrey and Riely have developed a type sys-
tem for an object- and aspect-oriented language [4], which
extends their earlier work on untyped languages [5]. They
show that weaving, the translation that implements aspect-
oriented features in terms of object-oriented features, pre-
serves typing. This work is orthogonal to our main research
results concerning access controls. However, it would be
interesting to know how to transfer our results from a func-
tional to an object-oriented setting and Jagadeesan’s calcu-
lus might be a good place to start this investigation.
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