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Abstract
An ad hoc data format is any nonstandard, semi-structured data for-
mat for which robust data processing tools are not easily available.
In this paper, we present ANNE, a new kind of markup language
designed to help users generate documentation and data process-
ing tools for ad hoc text data. More specifically, given a new ad
hoc data source, an ANNE programmer edits the document to add
a number of simple annotations, which serve to specify its syntac-
tic structure. Annotations include elements that specify constants,
optional data, alternatives, enumerations, sequences, tabular data,
and recursive patterns. The ANNE system uses a combination of
user annotations and the raw data itself to extract a context-free
grammar from the document. This context-free grammar can then
be used to parse the data and transform it into an XML parse tree,
which may be viewed through a browser for analysis or debugging
purposes. In addition, the ANNE system generates a PADS/ML de-
scription [19], which may be saved as lasting documentation of the
data format or compiled into a host of useful data processing tools.

In addition to designing and implementing ANNE, we have de-
vised a semantic theory for the core elements of the language. This
semantic theory describes the editing process, which translates a
raw, unannotated text document into an annotated document, and
the grammar extraction process, which generates a context-free
grammar from an annotated document. We also present an alter-
native characterization of system behavior by drawing upon ideas
from the field of relevance logic. This secondary characterization,
which we call relevance analysis, specifies a direct relationship be-
tween unannotated documents and the context-free grammars that
our system can generate from them. Relevance analysis allows us to
prove important theorems concerning the expressiveness and utility
of our system.

Categories and Subject Descriptors D.3.m [Programming lan-
guages]: Miscellaneous

General Terms Languages, Algorithms

Keywords Domain-specific Languages, Tool Generation, Ad Hoc
Data, PADS, ANNE

1. Introduction
The world is full of ad hoc data formats — those nonstandard,
semi-structured data formats for which robust data processing tools
are not easily available. Examples of ad hoc data formats include
the billions of log files that are generated by web servers, file
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servers, billing systems, network monitors, content distribution sys-
tems, and other applications that require monitoring, debugging or
supervision. The data analysts and programmers who find them-
selves working with ad hoc data formats waste significant amounts
of time on various low-level chores like parsing and format trans-
lation to extract the valuable information they need from their data.
Making these tasks more difficult is the fact that many ad hoc data
sets have limited or out-of-date documentation. Moreover, these
data formats evolve, so documentation that is up-to-date one month
may be deprecated the next.

In the past, two starkly different research communities, the
programming languages (PL) community and the machine learning
(ML) community, have attempted to apply their technologies to
help solve the problem of using ad hoc data files productively.

PL Solutions. In the programming languages community, work
has centered on the development of a variety of domain-specific
languages that allow data analysts to both document and program
with their ad hoc data. Examples of such languages include DEME-
TER [18], PACKETTYPES [21], DATASCRIPT [3], PADS [9, 19] and
BINPAC [25]. When used for documentation purposes, these lan-
guages provide a means to write clear, concise and declarative spec-
ifications of a data source’s syntax and important semantic proper-
ties. Moreover, the fact that the documentation produced is exe-
cutable (i.e., there exist tools for checking that ad hoc data sources
adhere to the format specification given) means that there is an au-
tomatic way to check whether documentation is up to date or falling
behind. When used for programming support, these languages and
their associated compilers provide a means to generate a variety of
useful programming libraries for manipulating ad hoc data includ-
ing parsers, printers, and end-to-end data processing tools.

While these language-based solutions have many useful, even
essential features, there is still room for improvement. In particular,
producing descriptions of unknown data sources is still a somewhat
tedious, time-consuming and error-prone process. For instance, ex-
periments with the PADS system1 suggest that expert users can cre-
ate descriptions for many simple line-based system logs in roughly
one to two hours, on average, and sometimes less than that. Be-
ginners take substantially longer – often a day or two to read rele-
vant parts of the manual, figure out the syntax, grasp the meaning
of various error messages and complete a robust description. For
more complicated data sources, and especially for data sources of
massive size, the process of creating descriptions becomes substan-
tially more difficult, even for experts. Kathleen Fisher reported that
she struggled off-and-on for three weeks in her attempts to describe
one particularly massive data file at AT&T that had the unfortunate
property of switching formats after a million and a half lines.2

ML Solutions. On the other end of the spectrum, the machine
learning community has sought to tame ad hoc data sources by
developing algorithms for analyzing complex data sources and

1 See table 2, page 10 of earlier work on PADS [11] for anecdotal evidence
regarding creation of descriptions for a variety of simple system log for-
mats.
2 Personal communication, 2008.



either automatically extracting key bits of information from the
data sources in question [28, 16, 2, 5] or inferring a grammar that
describes them [13, 6, 23, 29, 15, 12, 22, 26, 11].

Whereas the programming languages approaches incur some
significant start-up cost, the machine learning approaches usually
require less initial work by the programmer. For example, in su-
pervised learning approaches, users must label some subset of their
data to indicate the content of interest. Then, various machine learn-
ing algorithms can be used to learn the features of the labelled
data in order to be able to extract it from its context.Naturally, if
a lot of labelling is required of a machine learning approach, then
it too has a substantial start-up time, perhaps even more than that
of a PL approach. A great deal depends upon the domain in which
each approach is used and the specifics of the approach itself, but
once a machine learning model has been set up in one domain, it
can reduce the start-up time of other learning tasks in the same
domain to some degree. Even better, unsupervised approaches re-
quire no initial user input. They merely analyze a given dataset,
uncover patterns and produce a synthesized grammar. In principal,
perfect grammatical inference is impossible [13] but, nevertheless,
researchers such as Stolke and Omohundro [29] have shown em-
pirically that one can sometimes synthesize useful grammars using
statistical techniques and heuristic search.

While fully automated approaches involving machine learning
are usually easy to try, they often suffer from the joint problems
of producing unreliable results and having those results hard to un-
derstand or analyze. By unreliable results, we do not mean unsound
results — rather we mean that the grammars produced may not be
particularly compact or well-organized. Moreover, even when an
automated system performs perfectly in a structural sense, it will
generate a description teaming with machine-generated names for
data subcomponents such as “Union 237” or “Enum 99.” Such
descriptions are naturally difficult for people to use and require a
human post-processing pass to add semantically meaningful iden-
tifiers.

Yet another difficulty with fully automatic grammar induction is
that it appears difficult to design a single system that operates well
over a broad range of domains. For example, experience with the
LEARNPADS system [11] suggests that though it works well for
the sorts of systems log files on which it has been tuned, it can eas-
ily be thrown off when it encounters data outside its domain. In this
latter case, it often generates far more complex, difficult-to-read
and difficult-to-use descriptions than a human would. This problem
commonly occurs when the data in question depends on some new
basic format element – a new sort of date representation, a different
way of formatting phone numbers, etc. Humans draw upon their
worldly experience to identify, modularize, and especially, name
the new element effectively whereas the LEARNPADS algorithms
are often unable to tease apart the details of the new element from
the rest of the description and they certainly cannot choose a rea-
sonable name for it. Hence, even though LEARNPADS, and other
systems like it, can certainly be improved, the overall approach has
some fundamental limitations.

1.1 ANNE: A New Approach
Given the challenges faced by both traditional ML approaches and
traditional PL approaches, we have developed a new system, called
ANNE, to help improve the productivity of programmers who need
to understand, document, analyze and transform ad hoc text data.
In particular, we have focused on text data organized in line-by-
line or tabular formats, as this is the most common sort of layout
in systems log files and a variety of other domains. However, in
principle, our techniques are sufficiently general to handle any data
format that can be described as a context-free grammar.

Rather than requiring programmers to write complete data de-
scriptions, as in the conventional PL approach, or simply accepting
the unvarnished results of a fully automatic, heuristic algorithm,
as in the conventional ML approach, ANNE combines ideas from
both communities in search of the best of all worlds. To be more
specific, the process of generating a description for a text document
begins by having the user edit the text itself to add annotations that
help describe it. These annotations, and the surrounding unanno-
tated text, are used to generate a human-readable PADS description.
The PADS description may then be fed through the PADS compiler,
generating a host of useful artifacts ranging from programming li-
braries for parsing, printing and traversal to end-to-end tools for
format-conversion, querying, and simple statistical analysis. In ad-
dition to generating a PADS description, the system will translate
the text data into a structured XML parse tree. The XML parse tree
can be viewed through a browser, analyzed and used for debugging
purposes. In a word, with help of programmer annotations, ANNE
will translate the original text data into a set of data description end
products.

The annotations that constitute the ANNE language perform a
number of different roles including each of the following:

• associating user-friendly names with bits of text or descriptions
generated from sub-documents

• defining atomic abstractions such dates, ip addresses, times, and
urls using regular expressions,

• identifying sequences, constants and enumerations,
• delimiting tabular data and its headers,
• relating different variants of a field to one another, and
• introducing recursive descriptions.

Together this set of annotations is both convenient and powerful,
and overall, the benefits of this new approach are numerous.

First, as in the PL approaches, ANNE provides the user with
great control over the resulting description, when they want it. The
user can introduce meaningful, human-readable names, identify the
correct atomic abstractions, and shape key parts of the grammar
however they desire.

Second, again as in the PL approaches, ANNE is extremely
powerful. For example, ANNE easily supports tables and recursive
grammars even though identifying tables in text data is a difficult
machine learning challenge [22, 26, 17] and learning context-free
grammars is even harder than the already-hard challenge of learn-
ing regular expressions. LEARNPADS supports neither of these
features.

Third, as in the ML approaches, less work is required of the pro-
grammer. Importantly, unannotated text in the surrounding context
is used to “fill in the blanks” left in a description using various de-
fault mechanisms. This means that the programmer does not have
to, and is not encouraged to, write the entire description. Hence, in
some respects, ANNE resembles a supervised learning approach ex-
cept that rather than using simple labels to identify important data,
ANNE uses more powerful, higher-level commands.

Fourth, the annotation language has small number of constructs
in it and, perhaps more subjectively, we find it is relatively easy
to use. Ease of use comes from the fact that programmers can
stare directly at the text they are interested in and directly wrap an
annotation around it to capture it. There is no counting of fields or
the possibility of off-by-one errors. In this way, the system supports
a “what-you-annotate-is-what-you-get” style of interaction. The
XML-generation tool provides immediate feedback and facilitates
debugging.

In addition to designing and implementing ANNE, we have
developed an elegant theory to explain its semantics. This theory
is based around IDEALIZED ANNE (IA for short), an idealized



207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/clear.gif HTTP/1.0" 200 76
polux.entelchile.net - - [15/Oct/1997:21:02:07 -0700] "GET /latinam/spoeadp.html HTTP/1.0" 200 8540
152.163.207.138 - - [15/Oct/1997:19:06:03 -0700] "GET /images/spot5.gif HTTP/1.0" 304 -
ip160.ridgewood.nj.pub-ip.psi.net - - [15/Oct/1997:23:45:48 -0700] "GET /whatsnew.html HTTP/1.0" 404 168
ppp31.igc.org - amnesty [16/Oct/1997:08:40:11 -0700] "GET /members/afreport.html HTTP/1.0" 200 450
...

Figure 1. Excerpt from the web server log ai.3000.

core annotation calculus. The semantics of the IA programming
process is given by a relation between annotated and unannotated
documents and the semantics of IA itself is given by a function that
generates context-free grammars from annotated documents.

In order to understand the capabilities of IA in greater depth, we
prove theorems that characterize the kinds of grammars that can be
generated by our system. In doing so, we introduce an interesting
new set of relations, inspired by relevance logic [1], that more
precisely define the relationship between generated grammars and
the data they describe. We use these relations to prove important
theorems concerning the expressiveness of our system.

Contributions. To summarize, this paper makes a number of ma-
jor contributions:

• We introduce a highly practical, new technique for generation
of format specifications from text data. We illustrate its use on
a number of examples and evaluate its effectiveness.

• We develop an idealized, core annotation calculus that captures
the key elements of our design. We give a semantics to the
calculus to describe how ANNE programming and grammar
extraction works.

• We introduce a secondary characterization of ANNE based on
concepts drawn from relevance logic. We use this secondary
characterization to analyze the expressive power of our system.

• We have implemented the system and combined it with the
PADS language and compiler, allowing users of our system to
easily generate useable documentation along with a suite of
programming libraries and end-to-end data processing tools.

In the following section of the paper, we explain our language
design and how to use it in more detail. In section 3, we develop
the syntax and semantics IDEALIZED ANNE. In section 4, we intro-
duce our relevance analysis and use it to prove key theorems about
the expressiveness of IDEALIZED ANNE. In Section 5, we com-
ment further on our experiences using ANNE to generate format
specifications and evaluate its effectiveness relative to both manual
construction of PADS formats and the grammar induction system
developed in earlier work [11]. Section 6 describes related work
and Section 7 concludes.

2. ANNE by Example
ANNE is a language and system for deriving grammatical specifi-
cations and text processing tools directly from example text files.
In this section, we will illustrate the basic functionality of the lan-
guage through a number of examples.

2.1 A Web Server Log
Our first example involves the problem of processing a web server
log. We will be highlighting text added to the file using a grey back-
ground. The log itself is presented in Figure 1. System administra-
tors query, transform and analyze logs just like this (and hundreds
of variants thereof) as part of their day-to-day job of assessing the
health and security of the systems they oversee.

The Preamble. The first step in processing any log like this is to
edit the file at the top to add the following lines.

!#

#include "systems.config"

!#

This step adds the preamble defined by the file systems.config,
which is presented in Figure 2. A config file such as this is com-
posed of a series of lines with one regular expression definition
per line. Each line begins with either def or exp and is followed
by a name and a regular expression. Those lines beginning with
exp will export the named regular expression so it can be used
in describing formats. Those lines beginning with def provide a
local definition for the name. A local definition can be used in sub-
sequent defs or exps but is not in scope in the rest of the file.
Comment lines begin with a # symbol. The systems.config
file has been specially designed for system administrators dealing
with log files. Each new domain can create its own set of common,
reusable data definitions to speed up data format construction.

Introducing Nonterminals. The next step is to identify, describe
and give names to elements of interest in the file. For instance,
a sysadmin might start with the first line after the preamble and
begin to edit it as follows (though the annotation process can start
at any place in the file that happens to be convenient). To format
lines within the boundaries of the narrow sigplanconf style,
we will break lines where necessary with a slash and continue them
indented two spaces on the next line.

{Record: 207.136.97.49 - - \
[15/Oct/1997:18:46:51 -0700] \
"GET /turkey/amnty1.gif HTTP/1.0" 200 3013 }

Intuitively, the simple annotation {Name: ...} begins the pro-
cess of defining a scannerless context-free grammar. Note that if
braces “{” and “}” already appear in the file, a command line
switch can alter the bracketing syntax. In this case, the portion
of the grammar so-defined involves a single nonterminal named
Record. Moreover, since there are no other annotations to guide
grammar generation, the system uses a simple default rule to gen-
erate the right-hand side – it assumes the desired right-hand side is
a simple concatenation of basic tokens derived by running a default
lexer over the data enclosed in braces.

Record ::= Num ’.’ Num WS ’-’ WS ’-’ WS ’[’ ...

In order to maintain predictability and ease-of-use, the set of default
tokens has been kept to the barest minimum. It includes numbers
(Num – integer or floating point), punctuation symbols (e.g., ’[’ or
’.’ or ’]’, etc.), words (Word), and whitespace (WS). The default
tokenization scheme can be overridden by extending the preamble
with new programmer-defined tokens expressed as regular expres-
sions. However, doing so changes the tokenization globally for the
entire file, which is not particularly useful here.

Using the Preamble. Instead of overriding the preamble, we will
take advantage of some of the regular expression definitions in
systems.config to further refine the grammar for the Record
nonterminal:

{Record: {IP<: 207.136.97.49 } - - \

[ {Date<: 15/Oct/1997 } : {Time<: 18:46:51 -0700 } ] \
"GET /turkey/amnty1.gif HTTP/1.0" 200 3013}



# Name Regular Expression
def trip [0-9][0-9][0-9]\|[0-9][0-9]\|[0-9]
def db [0-9][0-9]
def zone [+-][0-1][0-9]00
def ampm am\|AM\|pm\|PM
...
exp Time {db}:{db}:{db}\([ ]*{ampm}\)?\([ \t]+{zone}\)?
exp IP {trip}\.{trip}\.{trip}\.{trip}
...

Figure 2. Excerpt from systems.config

Above, we used several annotations with the form {Name<: ...
} to introduce regular expressions named Name. For instance, we
identified an ip address (IP), a date (Date) and a time (Time). All
of these named regular expressions were introduced in the pream-
ble (by including their definitions from systems.config). Af-
ter this refinement, our generated grammar has the following form.

IP ::= ...
Date ::= ...
Time ::= ...
Record ::= IP WS ’-’ WS ’-’ WS ’[’ Date ’:’ Time ’]’ ...

The right-hand sides of IP, Date and Time will be regular ex-
pressions defined by the preamble.

Annotations for Termination Symbols. The next refinement of
the grammar involves dealing with the string "GET /turkey/
amnty1.gif HTTP/1.0". In many applications, the internal
structure of this string might be irrelevant. If this is the case, one
could simply wrap the contents of the string with an annotation of
the form {Name>: ...}. In this case, Name introduces another
nonterminal into the grammar and the greater-than sign indicates
that the extent of nonterminal’s reach is defined by a terminating
character – the character that follows the close brace. Here is the
annotation used in context:

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
" {Message>: GET /turkey/amnty1.gif HTTP/1.0 } " \
200 3013}

...

In the text above, the > annotation introduces the Message non-
terminal and its extent is terminated by a quotation symbol. Such a
token can easily be defined by a regular expression, but experience
with the PADS data description language [9] confirms that this id-
iom is extremely common in all kinds of log files. Building in this
shorthand is a nice programmer convenience.

Generating XML and Debugging Results. At this point, the
“programming burden” has been minimal. It consists of including
the preamble in the data source and writing five simple annota-
tions, which mainly involve naming key parts of the data. All-in-all
the job of describing the data may have taken a minute or two. To
debug the work, one can invoke the ANNE compiler, which will
generate a number of artifacts, including a PADS description and an
XML parse tree of the data. Viewing the XML through a browser,
as shown in the screen shot in Figure 3, reveals that the grammar
generated so far only covers a subset of the data in the file – colored
lines indicate lines covered by the generated grammar and greyed
out lines indicate lines that are uncovered. A quick examination
of the first greyed out line indicates that there is more variation
in the data file than had been apparent at first glance. Fortunately,
generating a complete cover is relatively easy with just a few more
annotations.

Introducing Alternatives. Alternatives can be introduced into the
grammar in several ways. The simplest way is merely to use a par-
ticular nonterminal name repeatedly. We illustrate this technique

below by using the nonterminal Size twice, once around an in-
teger (which represents the normal case – the number of bytes re-
turned by the server is reported properly) and once around "-"
(which represents the nonstandard case of no data available).

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
"{Message>:GET /turkey/amnty1.gif HTTP/1.0}" 200 \

{Size: 3013 } }
...
152.163.207.138 - - \
[15/Oct/1997:19:06:03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size: - }

Such annotations extend the grammar with a union of two or more
options:

Size ::= Num + ’-’
Record ::= IP WS ’-’ WS ’-’ WS ... Size

An alternative technique is to use a collection of annotations of the
form {Name/Name1: ...} and {Name/Name2: ...} and
{Name/Name3: ...}, etc. as follows.

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
"{Message>:GET /turkey/amnty1.gif HTTP/1.0}" 200 \

{Size/S: 3013 } }
...
152.163.207.138 - - \
[15/Oct/1997:19:06:03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size/Dash: - }

This technique names the alternatives and generates the following
equivalent grammar.

S ::= Num
Dash ::= ’-’
Size ::= S + Dash
Record ::= IP WS ’-’ WS ’-’ WS ... Size

One reason to use the more verbose form with named alternatives
is that it will generate a nicer PADS/ML description for the user –
one that is an ML-style description and uses data type descriptions
with well-named constructors (See Section 2.3).

There is one other detail to consider when it comes to alter-
natives: the most concise grammar is sometimes one in which al-
ternatives overlap. PADS, and many other systems, use prioritized
choice to disambiguate between overlapping alternatives. In ANNE,
priorities may be specified as integers using a syntax with the form
{Name1/Name2[priority]: ...}.
Finishing up the Web Log Example. With just a few more anno-
tations, the web log annotation job is complete. In total, it was nec-
essary to add the preamble and annotate four lines of text. Three of
the four lines only required annotating one bit of data. The whole
process might have taken five minutes. The resulting generated
grammar is presented in Figure 4. Notice that by default, the top-
level nonterminal symbol is Source and that the top-level gram-
matical rule is as follows.

Source ::= Record (NL Record)*

In the line above, NL is the newline character and the asterisk
is the familiar Kleene star. In other words, the entire source is a
sequence of Records separated by newline characters. In general,
a programmer can create annotations for any number of top-level
items, which may be line-by-line descriptions or tables, and ANNE
will produce a top-level grammar with the form

Source ::= (Item1+...+Itemk) (NL (Item1+...+Itemk))*

2.2 Additional Language Features
The web log document discussed in the previous subsection is one
example of the sort of ad hoc data source that ANNE was designed



Figure 3. View of generated XML after partial data description.

S ::= Num
Dash ::= ’-’
Size ::= S + Dash
Sender ::= IP + Hostname
ID ::= ’-’ + Word
Record ::= Sender WS ’-’ WS ID WS ’[’ Date ’:’ Time ’]’

WS ’\"’ Message ’\"’ WS Num WS Size
Source ::= Record (NL Record)*

Figure 4. Generated Grammar. Regular expression definitions of
IP, Hostname, Date, Time, and Message are omitted.

to service. It used a good number of different kinds of annotations,
but there are a number of other features of the language, which we
describe more briefly in this section.

Repetition. The web log had an implicit, repeated structure at the
top-level, but no internal repetition. Many other ad hoc data files do.
To generate a grammar with a repeated sequence of items, one may
use a starred annotation as in the following pipe-separated number
sequence, which is drawn from one of our data sources:

{Record*[|]: 9152271|9152271|1|0|0|0|0|... }

In the annotation above, Record names a part of a grammar
involving a sequence of items in which each item is separated
by a ’|’ symbol. By default, if there are no further annotations,
the record element structure will be any character sequence not
including the separator.

NoBar ::= ...
Record ::= (NoBar (’|’ NoBar)*)?

Alternatively, the record elements can be specified exactly using
the syntax {Name1/Name2*[sep]: ...}, as in the following
example.

{Record/Elem*[|]: 9152271| {Elem: 9152271 } |1| \

0|0|0|0|... }

The separator (defined in square brackets prior to the colon) is op-
tional and, if desired, the programmer can add an optional termina-
tor string.

Optional data. Optional data occurs often. The annotation {Name?:
...} defines Name to either be formatted as the grammar gener-
ated by “...” or the empty string.

Constants and Enumerations. In order to specify a nonterminal
that has a constant value, as opposed to generating a more liberal
grammar, one can uses an equality annotation {Name=: ...} or
its unnamed variant {=: ...}. Sometimes the nonterminal may
contain a small number of constant values instead of a single one,
and then, to generate a grammar involving the list of constants that

{E#h:Name GP Goals Assists Points +/-
Jason Blake, 78 25 38 63 -2
Alexei Ponikarovsky, 82 23 38 61 6
...}
Name GP Goals Assists Points +/-
Alexander Ovechkin, 79 56 54 110 10
Nicklas Backstrom, 82 22 66 88 3
...

Figure 5. Fragment of an annotated document containing NHL
player statistics from the 2008-2009 season, one table per team.

ptype IP = Pstring_ME(...)
ptype Hostname = Pstring_ME(...)
...
ptype Size =
S of Num

| Dash of ’-’
ptype Sender =
IP of IP

| Hostname of Hostname
ptype ID =
’-’

| Num
ptype Record = Sender * WS * ’-’ * WS * ID * WS * ’[’

* Date * ’:’ * Time * ’]’ * WS * ’\"’ * Message

* ’\"’ * WS * Int * Size
ptype Source = Record plist(No_sep, No_term)

Figure 6. PADS/ML description generated from annotated web log.
Regular expression definitions of IP, Hostname, etc. are omitted.

actually appear in the file, one can use an enumeration annotation.
An enumeration is written as {Name//enum>:...}. It generates
an initial grammar in the same way that our termination symbol
specification generates a grammar (by looking for a terminating
symbol). That initial grammar is used to parse the document at
hand and collect all strings that match the spec in the document.
The final grammar is one defined using the instances that match.

Tables. The last important feature of ANNE involves tables. Even
though tables can be specified using concatenation and Kleene star,
it is worthwhile building special support for them as they appear
frequently. Identifying tables is a useful programmer convenience
and also makes it easier to generate a good query interface for the
data.

Figure 5 shows a small portion of a document containing a se-
ries of tables describing NHL player statistics, with one table per
NHL team. Hockey aficionados use such data regularly to compute
player values and argue important points such as “Is Crosby bet-
ter than Ovechkin?” or “Was John Ferguson Junior the worst Leafs
GM since the early 80s?” Tables such as the ones displayed here
often have a header row followed by some number of rows with



a fixed number of columns. Using ANNE, deriving a grammar for
such a table simply involves using one of the hash annotations, ei-
ther {Name#: ...} or {Name#h: ...}. The h in the second
variant indicates that the table has a header row that varies in struc-
ture from the table data. The number and structure of the columns
is determined by counting the number of each sort of token in ev-
ery line. If some token t appears k times in every line then there
are k + 1 columns and t serves as the separator between columns.
If more than one token satisfies this property, one such token is se-
lected heuristically (tokens that serve frequently as separators such
as tab, comma, and vertical bar are prioritized). However, the pro-
grammer is free to specify the separator in question explicitly using
square braces as in the Kleene star annotations.

Assertions. In a number of situations, and particularly when data
is recursive, it is useful for a programmer to be able to assert that
some part of the data satisfies a nonterminal definition without go-
ing to the trouble of annotating all its subparts. We allow such as-
sertions through annotations with the form {Name!:...}. For ex-
ample, given a simple string of parentheses such as “(((())))”,
the simplest way to annotate the data is as follows.

{Parens?: ( {Parens!: ((())) } ) }

An annotation associates the data enclosed in braces with a non-
terminal name, but it doesn’t generate a grammar rule for the non-
terminal. Thus, the above annotation scheme will give rise to the
following grammar.

Parens ::= (’(’ Parens ’)’)?

2.3 Generating PADS Descriptions
In the previous subsection, we explained the semantics of the
ANNE language by presenting the context-free grammars that are
generated from each annotation scheme. These context-free gram-
mars are used to parse the data source and generate an XML parse
tree that can be viewed through a browser or processed using any
one of a number of XML-based tools, languages or libraries.

In addition to generating structured XML, an ANNE mark-up
will also generate a PADS description [9, 10, 19]. The PADS de-
scription language uses augmented type declarations to describe
the syntactic structure of a document as well as the programming
language data structures one generates by parsing the document.
Figure 6 shows the PADS description generated from the annotated
web log presented in Figure 4.

A PADS description such as the one in Figure 6 can serve as per-
manent executable documentation for the data source. It can also
be used to generate a variety of libraries such as parsers, print-
ers, and traversal functions for processing other data sources with
the same format. Finally, the PADS compiler can link generated li-
braries against various generic tools including a query engine [8],
data synchronization engine [7], and various format translators.
Consequently, while using ANNE is a quick and simple process, the
result of this minimal bit of labour is an enduring piece of human-
readable documentation (the PADS description) and a valuable col-
lection of reusable tools.

3. IDEALIZED ANNE
The previous section introduced ANNE through a series of exam-
ples, but did not answer any general questions about the principles
involved in the language design: What do these annotations mean?
What grammars do they generate? When do we have sufficient data
to generate a particular grammar? In this section, we make some
initial headway towards answering these more general questions
by defining the syntax and semantics of IDEALIZED ANNE (IA), a
simplified variant of the full ANNE language that encapsulates its

Regular Expressions:
b ::= ε | c | b.b | · · ·

Annotated Documents:
ad ::= v | ad1ad2...adn | {ad} | {[b] : v} | {A : ad}

| {A/inl : ad} | {A/inr : ad}
| {A/Aelem∗ : ad} | {A/Aelem∗0 :}
| {A! : ad}

Figure 7. IDEALIZED ANNE documents.

Nonterminal Clauses:
s ::= b | A | s1 · s2 · ... · sn

Nonterminal Right-hand Sides:
r ::= s | s1 + s2 | ? + s2 | s1 +? | A∗ | A∗0

Nonterminal Definitions:
G ::= [] | G[A = r]

Grammars:
gram ::= (A,G)

Figure 8. Grammar Syntax.

essential features. IA doesn’t reflect features of optional data, con-
stants and enumerations, tables, while most of these features can be
represented by essential features in IA.

3.1 IDEALIZED ANNE Syntax and Programming
In the following formal work, we will let c range over characters
while v and w range over strings (our unannotated documents). We
let “” denote the empty string and v1v2 denote the concatenation
of two strings. Meta-variable A ranges over nonterminal names
and b ranges over regular expressions. We write L(b) to denote
the language of regular expression b. Regular expressions with an
empty language are prohibited.

Syntax. The syntax of annotated documents is defined in Fig-
ure 7. An annotated document may either be unannotated (v) or
a sequence of annotated documents (ad1ad2...adn). Other annota-
tions include the following.

• {ad} identifies a sub-document
• {[b] : v} identifies the data v as inhabiting the language of

regular expression b.
• {A : ad} assigns a nonterminal A to the format inferred from

annotated sub-document ad.
• {A/inl : ad} and {A/inr : ad} introduce the left- and right-

hand elements of a union respectively
• {A/Aelem∗ : ad} introduces a repetition named A with ele-

ments named Aelem. Sub-document ad is used to infer Aelem.
{A/Aelem∗0 :} is a related annotation, added to the calculus
to simplify certain inductive proofs. It need not be used by pro-
grammers. It’s semantically equivalent to ε.

• {A! : ad} claims that the data ad has the format given by A
without checking. Sub-document ad may be used to infer other
parts of the grammar.

The programming process. In order to use IDEALIZED ANNE, a
programmer need simply apply some collection of annotations to
their data. This programming process is formalized by a judgement
written v → ad, which relates an unannotated document v to any



v → ad

v → v (a-none)

vi → adi i = 1..n

v1v2...vn → ad1ad2...adn

(a-con)

v → ad

v → {ad}
(a-group)

v ∈ L(b)

v → {[b] : v}
(a-re)

v → ad

v → {A : ad}
(a-name)

v → ad

v → {A/inl : ad}
(a-inl)

v → ad

v → {A/inr : ad}
(a-inr)

v → ad

v → {A/Aelem∗ : ad}
(a-rep)

“”→ {A/Aelem∗0 :}
(a-rep-empty)

v → ad

v → {A! : ad}
(a-assert)

Figure 9. Document annotation.

one of its annotated variants ad. Figure 9 presents the annotation
rules. For instance, rule (a-none) says that annotating a document
can involve doing nothing. Rule (a-con) says that annotating a
document can involve subdividing the document into arbitrarily
many subpieces, each of which is recursively annotated. All of
the other rules simply wrap one of the particular annotation forms
around a sub-document (usually after recursively annotating the
sub-document, except for repetitions and assertions).

3.2 Grammars
Syntax. The purpose of IDEALIZED ANNE is to generate gram-
mars of the form given in Figure 8. Reading from the bottom of the
figure towards the top, one sees that a grammar is a pair of a start
nonterminal A and finite partial map G from nonterminal names to
right-hand sides. A right-hand side may be a clause s, a union of
clauses (s1 + s2) or a repetition of some nonterminal A∗. A right-
hand side may also be one of three partial right-hand sides: ( ?+ s)
or (s+?) orA∗0 (other right-hand sides are called complete). Intu-
itively, the ? symbol represents a missing part of the grammar, and
both ? and ∗0 symbols indicate that no underlying data is recog-
nized by that part of the grammar. Partial right-hand sides appear
during the course of constructing a grammar (or inductively in the
midst of our proofs), but should not appear in any final result. A
clause (s) is either a regular expression (b), a nonterminal (A), or a
sequence of clauses s1 . . . sn.

Semantics. The semantics of grammars is defined by the judge-
ment ` v ∈ gram, which depends upon judgements G ` v ∈ r
and G `c v ∈ s. Intuitively, the latter two may be read “string v
is in the language of r (or s) when nonterminals are defined by G.”
The rules defining this judgement are presented in Figure 10. Many
of these rules are self-explanatory. For instance, rule g-name states

G `c v ∈ s

v ∈ L(b)

G `c v ∈ b
(g-re)

G(A) = r G ` v ∈ r
G `c v ∈ A

(g-name)

G `c vi ∈ si i = 1..n

G `c v1v2...vn ∈ s1 · s2 · ... · sn
(g-con)

G ` v ∈ r

G `c v ∈ s
G ` v ∈ s (g-clause)

G `c v1 ∈ s1
G ` v1 ∈ s1+?

(g-sum1)
G `c v2 ∈ s2

G ` v2 ∈ ? + s2
(g-sum2)

G `c v1 ∈ s1
G ` v1 ∈ s1 + s2

(g-sum3)
G `c v2 ∈ s2

G ` v2 ∈ s1 + s2
(g-sum4)

G `c vi ∈ A i = 1..n

G ` v1v2...vn ∈ A∗
(g-rep)

G ` “” ∈ A∗0
(g-rep-emp)

` v ∈ gram

G ` v ∈ A
` v ∈ (A,G)

(g-gram)

Figure 10. Semantics of Grammars.

that a string is in the language of A provided it is in the language
of its defining right-hand side. In rule g-rep, a sequence of strings
is recognized. In a slight abuse of notation, we allow n to be 0, in
which case we interpret the rule to say that the repetition recognizes
the empty string.

The only unusual rules are the rules for the partial right-hand
sides. The rules for partial unions s+? and ? + s state a value
is in their language provided it is in the known alternative s. The
rule for partial repetitions A∗0 states that the empty string is in its
language.

3.3 Grammar Extraction
Once a document has been annotated, the IDEALIZED ANNE run
time system can extract a grammar from it. This extraction process
is implemented by recursively traversing the annotated document
and extracting partial grammars from the subpieces. A final gram-
mar results from fusing (i.e., combining in a special way) collec-
tions of partial grammars.

We will define the fusion relation (written G1 ⊕ G2) in a mo-
ment, but first we will direct the reader’s attention to Figure 11,
which presents the grammar extraction function itself. This func-
tion, written ad  (s,G), analyzes annotated document ad and
generates a clause s as well as partial grammar G to describe it.

The first rule in the extraction definition (p-none) explains how
unannotated data will generate a description. This occurs by find-
ing a sequence of regular expressions that matches the data. These
regular expressions are drawn from the default set D. The default
set for our implementation contains basic tokens such as numbers,
words, whitespace and punctuation symbols. The choice of defaults
is unimportant in the theory. Like Lexer, this tokenization pro-
cedure is deterministic, which means, for any string, IDEALIZED



ad (s,G)

vi ∈ L(bi) bi ∈ D i = 1..n

v1v2...vn  (b1 · b2 · ... · bn, [])
(p-none)

adi  (si,Gi) i = 1..n

ad1ad2...adn  (s1 · s2 · ... · sn,G1 ⊕ G2 ⊕ ...⊕ Gn)
(p-con)

ad (s,G)

{ad} (s,G)
(p-group)

v ∈ L(b)

{[b] : v} (b, [])
(p-re)

ad (s,G)

{A : ad} (A,G⊕ [A = s])
(p-name)

ad1  (s1,G1)

{A/inl : ad1} (A,G1 ⊕ [A = s1+?])
(p-inl)

ad2  (s2,G2)

{A/inr : ad2} (A,G2 ⊕ [A =? + s2])
(p-inr)

ad (s,G)

{A/Aelem∗ : ad} (A,G⊕ [A = Aelem∗])
(p-rep)

{A/Aelem∗0 :} (A, [A = Aelem∗0])
(p-rep-emp)

ad (s,G)

{A! : ad} (A,G)
(p-assert)

Figure 11. Grammar Extraction.

ANNE will produce exactly 1 concatenation of regular expressions
b1, ..., bk.

The next rule (p-con) explains how to handle a sequence of
annotated sub-documents. In this case, each sub-document is an-
alyzed recursively, producing a clause and a right-hand side. The
result is a concatenation of clauses and a grammar formed by fus-
ing together the generated subgrammars.

Many of the other rules should now be relatively self-explanatory.
However, the reader should take note of rules (p-inl) and (p-inr),
as these rules are primary points where partial grammars are gen-
erated. Notice in particular that rule (p-inl) infers the shape of the
left-hand side of a union from its sub-document, but has no infor-
mation about the right-hand side and hence leaves ? in its place.
Rule (p-inr) behaves in a complementary fashion.

In addition, rules (p-rep) and (p-assert) are other 2 rules that
should raise the reader’s attention. Rule (p-rep) infers the top-
level structure of a repetition and fuses A = Aelem∗ with partial
grammar G, whereas Aelem can be defined by any annotation
anywhere, inside its sub-document or from other documents. The
fusion of A = Aelem∗ with G or other grammar parts defined
elsewhere will bring the definition ofA together with the definition
of Aelem to create a final grammar of the repetition. For instance,
recall the example in Section 2.2, Aelem, in this case called Elem,
is defined relatively deeply within the string that makes up the
array. Rule (p-assert) discards the right-hand side generated from

its sub-document and instead uses the specified grammar symbol
A. It doesn’t generate any grammar rule, which means, the rule for
nonterminal A is generated from elsewhere.

Grammar fusion. Intuitively, fusing two right-hand sides to-
gether involves eliminating the ? symbols and replacing them with
real grammar parts. For instance, fusing (s1+?) with ( ? + s2)
results in (s1 + s2). Fusing two grammars together involves tak-
ing the union of the disjoint grammar parts and fusing together
the right-hand sides of the overlapping grammar parts. More for-
mally, the right-hand side fusion relation r1 ⊕ r2 is defined as the
symmetric closure of the following rules.

r ⊕ r = r
(s1 +?)⊕ ( ? + s2) = s1 + s2
(s1 + s2)⊕ (s1 +?) = s1 + s2
(s1 + s2)⊕ ( ? + s2) = s1 + s2
A ∗ ⊕A∗0 = A∗

We have chosen the weakest possible fusion operation – basing it
upon syntactic equality of grammars. A stronger fusion operation
could be based upon semantic equality of grammars, but this is
an undecidable problem for context-free grammars. We chose the
weak fusion operation because of its simplicity, predictability, ease
of understanding and implementation, and, importantly, because it
is effective in practice.

Given the right-hand side fusion, we define the fusion of two
grammars G1 ⊕ G2 as follows. D(G) denotes the domain of gram-
mar G (i.e., the set of defined nonterminals).

G1⊕G2(A) =

8<:G1(A) if A ∈ D(G1) and A 6∈ D(G2)
G2(A) if A ∈ D(G2) and A 6∈ D(G1)
G1(A)⊕ G2(A) if A ∈ D(G1) and A ∈ D(G2)

Finally, the fusion of two grammars with the same start symbol,
(A,G1)⊕ (A,G2), is defined to be (A,G1 ⊕ G2).

Formalism vs. Implementation. The observant reader will notice
that the formal system requires a few more annotations be made ex-
plicit than the implemented system. In other words, for the sake of
convenience and brevity, the implemented system performs some
simple ”annotation inference” for the user in various situations. For
example, consider the following text fragment.

{Foo: 123 }

{Foo: cat }

In formal system, inconsistent right-hand sides, number vs. word,
are rejected by the definition of fusion operator. In the implemented
system, however, rather than fail and ask the programmer to add
more annotations, we infer inl and inr union annotations as
follows:

{Foo/inl: 123 }

{Foo/inr: cat }

With these additional annotations in place, the formal system (and
the implementation) will successfully extract a union grammar.

Another difference between formal system and implementation
is that the implementation contains many “complex” annotations.
However, these additional complex annotations can be compiled
into the lower-level annotations presented the formal system. As an
example, consider the repetition operator used in Section 2.2:

{Record/Elem*[|]: 9152271| {Elem: 9152271 } |1| \

0|0|0|0|... }

This idiom may be compiled into the following collection of anno-
tations drawn from the formal system:



{NewRecord:{Record/NewElem*: 9152271| {NewElem:{Elem: \

9152271 } | } 1|0|0|0|0|...| }{Elem!: 0 }}

The extraction process will give rise to this grammar:
Elem ::= Num
NewElem ::= Elem ’|’
Record ::= NewElem*
NewRecord ::= Record Elem

4. IDEALIZED ANNE Properties
Now that we have defined the semantics of IDEALIZED ANNE, we
can answer some important questions about its properties and ex-
pressive power. For instance, suppose one has some data v that
inhabits the language of a grammar gram, is it always the case
that one can annotate v in such a way as to extract gram? Un-
fortunately, the answer to this question is no. The simplest counter-
example involves choosing the empty string as the data and a gram-
mar (A, [A = ε+Num]) as the target to extract — in this example,
there is no way to annotate the empty string to enable generation of
the right side of the union. However, we can extract (A, [A = ε])
— an approximation of the grammar we might have wanted.

Intuitively, we can extract [A = ε] but not [A = ε + Num],
because in the former case all branches of the grammar are used
during a parse of the empty string whereas in the latter case, some
branches (the Num branch) go unused during the parse. Hence, in
order to better understand the grammars that can be extracted from
data, we need a theory that captures those parts of the grammar
that are used during recognition of a string. That theory is closely
connected to the substructural logic known as relevance logic.

4.1 Relevance Analysis
Relevance Logic [1] is a simple logic requires every hypothesis be
used at least once during the course of a proof. If we think of gram-
mar rules as hypotheses in a proof, we can develop an analogous
theory in which each grammar rule, and all of its subparts, must
be used at least once in the derivation that a string belongs to the
grammar.

Based on this intuition, we have developed a relevance analysis
that directly relates grammars to the values that can generate them.
The central judgements for this analysis have the form G `rel v ∈
r and G `c

rel v ∈ s. These judgements affirm that all elements of
G are used during the course of proving that v is an element of r
and s respectively. A third judgement, `rel v ∈ gram, affirms that
all elements of gram are used during the course of proving v is in
gram. Figure 12 presents the inference rules for these judgements.

Rule (e-re) provides an example of how these rules work. It
states that v is recognized by b provided it is in L(b). Moreover,
this rule uses no parts of a grammar. Hence, the grammar to the
left of the turnstile must be empty. Rule (e-name) states that if G
is used in recognizing that v belongs to r then G ⊕ [A = r] is
used in recognizing that v belongs to A. Rule (e-con) states that if
G1 through Gn are used in recognizing s1 to sn then the grammar
fusion is used to recognize the concatenation of clauses.

It is also important to observe how the unions work. In particu-
lar, there are rules (e-sum1) and (e-sum2) to explain what the partial
right-hand sides ? + s and s+? use, but there are no rules for the
complete right-hand side s1 + s2. This is because no derivation
can use both the left-hand side and the right-hand side of a union
simultaneously.

The rules for repetitions are also interesting. Notice that the rule
(e-rep) is constrained so that i is greater than 0. This guarantees that
the underlying element grammar is used. The rule (e-rep-empty) is
for the situation in which the empty string matches an iteration. The

entire reason for including the right-hand sideA∗0 is to distinguish
this case in which the underlying element type is not used.

Our relevance analysis may be viewed as a relevance logic
primarily because the structural rules for exchange and contraction
are admissible but weakening is not.

4.2 Relevant Properties
The key property of relevance analysis stems from the following
essential property: if a grammar is relevant to a string then a pro-
grammer can use IDEALIZED ANNE to extract it from the string.
In particular, the programmer does not need to annotate with asser-
tions. In other words, assertions are not essential features and they
are only introduced for annotation convenience.

Theorem 1 (Relevance implies grammar extraction.)
i. If G `c

rel v ∈ s, then there exists ad such that v → ad,
ad  (s,G) and the rule (a-assert) has never been used in the
derivation of ad;

ii. If G `rel v ∈ r, then for any A, there exists ad such that
v → ad, ad  (A,G ⊕ [A = r]) and the rule (a-assert) has
never been used in the derivation of ad;

iii. If `rel v ∈ gram, then there exists ad such that v → ad and
ad gram.

The theorem above states properties of a single string, but IDE-
ALIZED ANNE can sometimes do more for us when there is more
than one string to annotate. To make this idea precise, we first de-
fine what it means to extract a grammar from a collection of strings.

Definition 2 (Collective Extraction.)
For grammar gram = (A,G) and data v1, v2, ..., vk,
v1, v2, ..., vk  gram iff there exists ad1, ..., adk such that

• vi → adi, for all i = 1, ..., k;
• adi  (si,Gi) for all i = 1, ..., k;
• G1 ⊕ G2 ⊕ ...⊕ Gk = G.

Next, we present the following theorem, which states that no
matter what data one has in hand, one can extract an approximation
of any grammar for that data, where approximate grammars are
defined as follows: (A,G1) is an approximation of (A,G) provided
that there exists G2 such that G = G1 ⊕ G2. We write (A,G1) ≤
(A,G) when (A,G1) is an approximation of (A,G).

Theorem 3 (Sound collective extraction.)
Given some data v1, v2, ..., vk, if ` vi ∈ gram for all i, then there
exists gram′ such that v1, v2, ..., vk  gram′ and ` vi ∈ gram′

and gram′ ≤ gram.

We proved Theorem 3 by showing that relevance analysis is
a sound approximation of ordinary grammar recognition and then
constructing the grammar gram′ from the grammars gram1, . . . ,
gramn that are relevant for each datum v1, . . . , vn.

To summarize, given a grammar gram and some data v, our
theoretical analysis has told us two useful facts: (1) if gram is a
grammar for v then IDEALIZED ANNE can extract some approxi-
mation to gram, and (2) if gram is relevant for v then IDEALIZED
ANNE can extract gram exactly. Given the second point, one might
say relevance analysis is a sound characterization of IDEALIZED
ANNE. However, it is not a complete characterization. There exist
some “unusual” grammars that are not relevant for any data, but
can be extracted by IDEALIZED ANNE. In particular, IDEALIZED
ANNE can extract grammars with disconnected nonterminals. One
simple example is the grammar (A, [A = int, B = int]). This
grammar is not relevant for any data, but can be extracted from two
example documents that each contain a single integer.



G `c
rel v ∈ s

v ∈ L(b)

[] `c
rel v ∈ b

(e-re)
G `rel v ∈ r

G⊕ [A = r] `c
rel v ∈ A

(e-name)

Gi `c
rel vi ∈ si i = 1..n

G1 ⊕ G2 ⊕ ...⊕ Gn `c
rel v1v2...vn ∈ s1 · s2 · ... · sn

(e-con)

G `rel v ∈ r

G `c
rel v ∈ s

G `rel v ∈ s
(e-clause)

G `c
rel v1 ∈ s1

G `rel v1 ∈ s1+?
(e-sum1)

G `c
rel v2 ∈ s2

G `rel v2 ∈ ? + s2
(e-sum2)

Gi `c
rel vi ∈ A i = 1..n n > 0

G1 ⊕ G2 ⊕ ...⊕ Gn `rel v1v2...vn ∈ A∗
(e-rep)

[] `rel “” ∈ A∗0
(e-rep-empty)

`rel v ∈ gram

G `rel v ∈ A
`rel v ∈ (A,G)

(e-gram)

Figure 12. Relevance analysis.

5. Evaluation
We conducted a series of experiments to compare using ANNE
against the process of writing PADS descriptions by hand and
against the process of learning descriptions automatically using
LEARNPADS [11]. When comparing ANNE with hand-written de-
scriptions, we focused on the time and efforts users dedicated to
creating descriptions; when comparing ANNE with the LEARN-
PADS system, we focus on the readability and compactness of
descriptions. Our benchmark formats include 19 different ad hoc
data sources, drawn mainly from various different kinds of system
logs. The same benchmarks have been used previously to evalu-
ate the effectiveness of PADS and its variants [11]. Those readers
interested in the specifics can find the benchmarks on the web [24].

Comparison with hand-written descriptions. In the first set of
experiments, we measured the time and effort spent constructing
descriptions using ANNE. For each benchmark, Table 1 shows the
total number of annotations the programmer needed to construct
the description (# annots), the total number of lines that were
annotated (# lines) and the approximate time in minutes for the
user to complete the description. The number of annotations did
not include the preamble or the regular expressions defined therein.

The table shows that for most of our benchmarks, the user
needed to insert anywhere from 1 to 14 annotations (with the
median being 5). On average, the user was required to annotate 3
or 4 lines of data. The time taken varied between 5 and 15 minutes.
In contrast, a previous study [11] of the time taken to write the
same descriptions by hand showed users with some experience
spent anywhere from 1/2 an hour to an hour or two. Part of the
reason users would take longer to write descriptions by hand is that
they can add additional information in the form of constraints –
something that is not supported by ANNE right now. However, from

Data Source # Annots # Lines Time(min)
1967Transactions 6 1 5
ai.3000 14 4 10
yum.txt 6 1 15
rpmpkgs 2 1 1
railroad.txt 10 4 10
dibbler.1000 6 3 5
asl.log 7 2 5
scrollkeeper.log 4 1 3
page log 5 1 5
MER T01 01.csv 1 1 1
crashreporter.log 4 1 3
ls-l 4 2 5
windowserver last 5 1 10
netstat-an 10 3 10
boot.txt 7 1 5
quarterlyincome 3 2 5
corald.log.head 3 2 5
irvpiv1.sel 7 1 15
latitude.txt 10 3 15

Table 1. Number of annotations, lines touched and time taken to
construct descriptions using ANNE.

Data source Type Complexity Desc. Size
A L A L

1967Transactions 52 175 13 26
ai.3000 328 437 56 47
yum.txt* 84 640 17 74
rpmpkgs* 7 314 4 70
railroad.txt * 89 975 28 150
dibbler.1000 76 85 21 25
asl.log 551 1545 78 102
scrollkeeper.log 44 372 8 14
page log 206 729 23 22
MER T01 01.csv 96 211 22 12
crashreporter.log * 105 973 16 63
ls-l* 195 721 25 80
windowserver last 148 85 24 11
netstat-an 822 1324 57 138
boot.txt* 98 944 19 123
quarterlyincome 520 579 86 87
corald.log.head 793 1094 106 71
irvpiv1.sel* 284 1334 44 130
latitude.txt* 140 500 11 77

Table 2. ANNE (A) vs. LEARNPADS (L): Type complexity in
bits and description size in lines. Asterisks indicate meaningful
qualitative differences in the performance of the two systems.

the experience of several PADS and ANNE programmers, the main
reason is simply that ANNE is easier to use.

Comparison with LEARNPADS. Before comparing LEARN-
PADS with ANNE in detail, we would like to review the basics
of how LEARNPADS works. LEARNPADS uses a multi-stage al-
gorithm to automatically discover the structural information in the
input data source according to which the format specification, pre-
sented as a PADS description, is generated. During the first stage,
LEARNPADS tokenizes the text data using a fixed set of base
tokens. During the second stage, it analyzes the distribution of
tokens found within the data and infers a candidate grammar. Dur-
ing the last stage, the system applies a set of rewriting rules to
optimize the candidate structure according to the minimum de-



total 275528
drwxr-xr-x 3 dpw fac 4096 Jan 21 2005 as9
drwxr-xr-x 4 dpw fac 4096 Jan 21 2005 as8
-rw-r--r-- 1 dpw fac 15878 Jan 23 2002 asynch.txt
drwxr-xr-x 2 dpw fac 4096 Jan 2 13:44 cv
...

Figure 13. Excerpt from ls-l

scription length principle, which balances specificity of a grammar
against compactness. Because of the nature of the second stage of
the algorithm, LEARNPADS is incapable of inferring context-free
grammars.

Table 2 presents a detailed comparison between the two sys-
tems. This table presents two metrics: the type complexity of the
resulting description and the number of lines of the resulting de-
scription when printed. The type complexity measures the number
of bits it would take to encode the syntax of the PADS description.
It is one of the metrics that the LEARNPADS system optimizes
for. The number of lines of the resulting description is simply the
number of lines of output from the respective pretty printers. Dif-
ferences of 20% or so are usually meaningless in this table. On
the other hand, differences on the order of a factor of 5 or 10 are
quite meaningful — we placed asterisks in Table 2 to indicate those
formats for which the differences between the results produced by
ANNE and those by LEARNPADS were very significant.

Significant differences occur for several reasons, but perhaps the
most pervasive is that the performance of LEARNPADS is quite
sensitive to the set of basic tokens (definitions of times, dates,
ip addresses, etc.) that it starts out with. Unfortunately, while the
LEARNPADS designers would like to create the “perfect” tok-
enizer, doing so for a broad set of formats is extremely difficult.
As one begins to add more and more token definitions to the token
set, the token definitions become mutually ambiguous with no ob-
vious way to resolve the ambiguities. For instance, the proper defi-
nition of URLs is incredibly broad and is ambiguous with just about
anything. Some date formats are ambiguous with URLs, file paths,
phone numbers, floating point numbers or IP addresses. As a re-
sult, the LEARNPADS strategy has been to use a relatively simple
default tokenizer. However, the consequence is that unanticipated
token types will show up in data files with some frequency and
when this happens, LEARNPADS often produces overly complex
grammars. ANNE does not suffer from this problem because users
can override the default tokenizer with local annotations whenever
they need to.

LEARNPADS will also do a suboptimal job learning some for-
mats because the rewriting heuristics it uses fail. As an example,
consider the ls-l data source presented in Figure 13. This data was
obtained by executing Unix command “ls -l.” The difficulty with
this data file is that it contains an insufficiently diverse set of ex-
amples from which to learn a accurate format. In particular, when
LEARNPADS is applied to such a data source, it fails to properly
generalize in the following ways:

• The access control strings are turned in to an enumeration of
four possibilities instead of a more general string description.

• The owner and group fields are turned in to constants dpw and
fac.

• There is a switch on the constant ”4096” because that file size
happens to show up uncharacteristically often in the file.

If the example data used was more varied, the learning system
would work as expected. More generally, since LEARNPADS is
driven by a statistical analysis and heuristic rewriting rules, its
results can be unpredictable, a problem that ANNE does not have.

In addition to sometimes undergeneralizing, LEARNPADS will
sometimes overgeneralize. For instance, Table 2 indicates that the
LEARNPADS system produced a much smaller description than
ANNE when applied to the windowserver last benchmark.
This occurs because LEARNPADS uses a heuristic to simplify
grammars, and in this case, it over-simplified, eliminating some
useful information about the format. Of course, if the simple de-
scription was the desired one, it would have been possible for the
ANNE programmer to generate it.

6. Related Work
ANNE was designed to improve the productivity of data analysts by
providing a quick, simple way to generate documentation and data
processing tools for an ad hoc data source given the availability
of example data. Many of its commands are directly inspired by
the design of domain-specific languages and language extensions
such as PADS [9, 10, 19], DATASCRIPT [3], PACKETTYPES [21],
Demeter [18], BINPAC [25] and Erlang binaries [30, 14].

ANNE is not designed to work in the binary domain - it will
only work well when a human can stare at a data source, uncover
it’s structure, and add annotations in place. When it comes to the
domain of semi-structured text data, ANNE provides an alternative
to writing format specifications (like PADS specifications) by hand.
The main advantage of ANNE comes in its ease-of-use and ability
to fill in details such as separators, terminating characters, and
members of an enumeration automatically. Having a machine fill
in such details is both more convenient and less error-prone than
manually constructing the description. One limitation of ANNE
right now is that it does not support the full range of PADS features.
In particular, it is missing dependency and constraints. We believe
the overall ANNE framework can support these features; we are
currently working on extending our theory and implementation to
include them.

Potter’s Wheel [27] is another system with some similarities
to to ANNE in that it supports an interactive process to manage,
clean and transform data. Unlike ANNE, it uses a spreadsheet-style
interface to represent classical relational data and its goal is to help
users detect errors and transform data to make it ready to load
into a commercial database. Whereas Potter’s Wheel is limited to
managing relational tables, ANNE is designed for a broader range
of context-free grammars; whereas Potter’s Wheel is an on-the-fly
interactive transformation system, ANNE is a descriptive system
that produces documentation and programming tools for later use.

Whereas Potter’s Wheel operates over relational data, many
other data cleaning and transformation systems operate over XML.
For example, SchemaScope [4] is a powerful new tool developed
by Bex, Neven and Vansummeren to infer DTDs and XML Schemas
from unknown XML documents and to visualize and edit exist-
ing schema. The inference mechanisms used in SchemaScope
are highly effective as they are tuned to common properties of
DTDs [20]. Unfortunately, the grammar inference problem for ad
hoc data sources is substantially different from the schema in-
ference problem for XML in part because the basic tokenization
problem for ad hoc data is so ambiguous — there is no standard
tag-based syntax to delineate different parts of an ad hoc docu-
ment. On the contrary, ANNE was created to provide a means for
programmers to delineate and disambiguate elements of their data
sources.

The machine learning community has developed a number of
tools that perform wrapper induction, where a wrapper is a pro-
gram that can extract information from designated “slots” in a doc-
ument or set of documents. Two examples of such work are Kush-
merick’s HLRT induction system [16] and Soderland’s Whisk sys-
tem [28]. One high-level difference between a system like Whisk
and one like ANNE or PADS is that Whisk is designed to work on



data with very little regular structure. For example, the working
example in Soderland’s paper involved extraction of features such
as price and location from Craigslist apartment advertisements.
Such advertisements are pseudo-English blurbs and have much less
structure than web logs, for instance. Hence, while Whisk and sim-
ilar systems can be effective at solving the information extraction
problem, they are not designed to produce the kind of documenta-
tion or programming tools that ANNE is.

7. Conclusions
In this paper, we have presented the design and implementation
of ANNE, a new kind of markup language for text data. This
markup language allows users to specify the syntactic structure
of documents by adding annotations that indicate the presence
of constants, enumerations, repetitions, optional data, tables, and
recursive data. The markup language also allows users to import
from libraries of pre-defined regular expressions and to name parts
of their data as they choose. A markup can be used to generate a
context-free grammar, an XML parse tree and a PADS description.
The XML parse tree facilitates debugging and the PADS description
serves as useful documentation that may be compiled into many
more useful tools. Experience with ANNE suggests that compact,
human-readable descriptions can be constructed more quickly than
by writing PADS descriptions by hand and more reliably than using
LEARNPADS.

In addition, we have defined and analyzed the semantics of
ANNE. In the process of doing so, we have uncovered a connec-
tion to relevance logic, which we have used to prove illuminating
theorems concerning the expressiveness of our system.
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