
A Context-free Markup Language for Semi-structured Text

Qian Xi
Princeton University

qxi@CS.Princeton.EDU

David Walker
Princeton University

dpw@CS.Princeton.EDU

Abstract
An ad hoc data formatis any non-standard, semi-structured data
format for which robust data processing tools are not available. In
this paper, we present ANNE, a new kind of mark-up language de-
signed to help users generate documentation and data processing
tools for ad hoc text data. More specifically, given a new ad hoc
data source, an ANNE programmer will edit the document to add
a number of simple annotations, which serve to specify its syntac-
tic structure. Annotations include elements that specify constants,
optional data, alternatives, enumerations, sequences, tabular data,
and recursive patterns. The ANNE system uses a combination of
user annotations and the raw data itself to extract a context-free
grammar from the document. This context-free grammar can then
be used to parse the data and transform it into anXML parse tree,
which may be viewed through a browser for analysis or debugging
purposes. In addition, the ANNE system will generate aPADS/ML
description [21], which may be saved as lasting documentation of
the data format or compiled into a host of useful data processing
tools ranging from parsers, printers and traversal libraries to format
translators and query engines. Overall, ANNE simplifies the pro-
cess of generating descriptions for data formats and improves the
productivity of programmers who work with ad hoc data regularly.

In addition to designing and implementing ANNE, we have de-
vised a semantic theory for the core elements of the language. This
semantic theory describes the editing process, which translates a
raw, unannotated text document into an annotated document,and
the grammar extraction process, which generates a context-free
grammar from an annotated document. We also present an alter-
native characterization of system behavior by drawing uponideas
from the field of relevance logic. This secondary characterization,
which we callrelevance analysis, specifies a direct relationship be-
tween unannotated documents and the context-free grammarsthat
our system can generate from them. Relevance analysis allows us
to prove a number of important theorems concerning the expres-
siveness and utility of our system.

1. Introduction
The world is full of ad hoc data formats— those non-standard,
semi-structured data formats for which robust data processing tools
are not available. Examples of ad hoc data formats include the bil-
lions of log files that are generated by web servers, file servers,
billing systems, network monitors, content distribution systems,
and other applications that require monitoring, debuggingor su-
pervision. Ad hoc data formats also commonly appear in the com-
putational sciences. For example, chemists deal with at least 90 dif-
ferent file formats [1] on a regular basis. Biologists and physicists
handle many more. In fact, just about anyone who has ever written
a computer program has, at some point, needed to create, manage,
use and understand a variety of such formats.

The data analysts and programmers who find themselves work-
ing with ad hoc data formats waste significant amounts of timeon

various low-level chores like parsing and format translation to ex-
tract the valuable information they need from their data. Making
these tasks more difficult is the fact that many ad hoc data sets have
limited or out-of-date documentation. Moreover, these data formats
evolve, so documentation that is up-to-date one month may bedep-
recated the next.

1.1 Past Solutions

In the past, two starkly different research communities, the pro-
gramming languages (PL) community and the machine learning
(ML) community, have attempted to apply their technologiesto
help solve the problem of using ad hoc data files productively.

PL Solutions. In the programming languages community, work
has centered on the development of a variety of domain-specific
languages that allow data analysts to bothdocumentandprogram
with their ad hoc data. Examples of such languages include DEME-
TER [20], PACKETTYPES[23], DATASCRIPT[4], PADS [10, 21] and
BINPAC [27]. When used for documentation purposes, these lan-
guages provide a means to write clear, concise and declarative spec-
ifications of a data source’s syntax and important semantic proper-
ties. Moreover, the fact that the documentation produced isexe-
cutable (i.e., there exist tools for checking that ad hoc data sources
adhere to the format specification given) means that there isan au-
tomatic way to check whether documentation is up to date or falling
behind. When used for programming support, these languagesand
their associated compilers provide a means to generate a variety
of useful programming libraries for manipulating ad hoc data in-
cluding parsers, printers, and visitors as well as end-to-end data
processing tools.

While these language-based solutions have many useful, even
essential features, there is still room for improvement. Inparticular,
producing descriptions of unknown data sources is still a somewhat
tedious, time-consuming and error-prone process. For instance, ex-
periments with thePADSsystem1 suggests that expert users can cre-
ate descriptions for many simple line-based system logs in roughly
one to two hours, on average, and sometimes less than that. Be-
ginners take substantially longer – often a day or two to readrele-
vant parts of the manual, figure out the syntax, grasp the meaning
of various error messages and complete a robust description. For
more complicated data sources, and especially for data sources of
massive size, the process of creating descriptions becomessubstan-
tially more difficult, even for experts. Kathleen Fisher reports that
she struggled off-and-on for three weeks in her attempts to describe
one particularly massive data file at AT&T that had the unfortunate
property of switching formats after a million and a half lines.2

Another related property ofPADS and similar languages is that
they tend to promote writing relatively complete specifications of

1 See table 2, page 10 of earlier work onPADS [12] for anecdotal evidence
regarding creation of descriptions for a variety of simple system log for-
mats.
2 Personal communication, 2008.

data sources. While this is often a positive factor, as such specifi-
cations serve as useful documentation, it can also sometimes be a
negative as it increases the start-up time for users who do not need
a full description, but only want to extract key bits of information
necessary to perform a particular data processing task.

ML Solutions. On the other end of the spectrum, the machine
learning community has sought to tame ad hoc data sources by
developing algorithms for analyzing complex data sources and
either automatically extracting key bits of information from the data
sources in question [30, 17, 18, 3, 6] or inferring a grammar that
describes them [14, 7, 25, 31, 16, 13, 24, 28, 12].

Whereas the programming languages approaches incur some
significant startup cost, the machine learning approaches usually
require less initial work by the programmer. For example, insu-
pervised learning approaches, users must label some subsetof their
data to indicate the content of interest. Then, various machine learn-
ing algorithms can be used to learn the features of the labelled data
in order to be able to extract it from its context.3 Stephen Soder-
land’s Whisk system was one of the first to do this effectively—
based on annotations from a few examples, the system was able
to learn the structure of Craigslist apartment ads sufficiently well
to allow extraction of key information. Even better, unsupervised
approaches require no initial user input. They merely analyze a
given dataset, uncover patterns and produce a synthesized gram-
mar. In principal, perfect grammatical inference is impossible [14]
but, nevertheless, researchers such as Stolke and Omohundro [31]
have shown empirically that one can sometimes synthesize useful
grammars using statistical techniques and heuristic search.

While fully automated approaches involving machine learning
are usually easy to try, they often suffer from the joint problems
of producingunreliable resultsand having those resultshard to un-
derstandor analyze. By unreliable results, we do not mean unsound
results — rather we mean that the grammars produced may not be
particularly compact or well-organized. Moreover, even when an
automated system performs perfectly in a structural sense,it will
generate a description teaming with machine-generated names for
data subcomponents such as “Union 237” or “Enum 99.” Such
descriptions are naturally difficult for people to use and require a
human post-processing pass to add semantically meaningfuliden-
tifiers.

Yet another difficulty with fully automatic grammar induction is
that it appears difficult to design a single system that operates well
over a broad range of domains. For example, experience with the
LEARNPADS system [12] suggests that though it works well for
the sorts of systems log files on which it has been tuned, it caneas-
ily be thrown off when it encounters data outside it’s domain. In this
latter case, it often generates far more complex, difficult-to-read
and difficult-to-use descriptions than a human would. This problem
commonly occurs when the data in question depends on some new
basic format element – a new sort of date representation, a different
way of formatting phone numbers,etc. Humans draw upon their
worldly experience to identify, modularize, and especially, name
the new element effectively whereas the LEARNPADS algorithms
are often unable to tease apart the details of the new elementfrom
the rest of the description and they certainly cannot choosea rea-
sonable name for it. Hence, even though LEARNPADS, and other
systems like it, can certainly be improved, the overall approach has
some fundamental limitations.

3 Naturally, if a lot of labelling is required of a machine learning approach,
then it too has a substantial startup time, perhaps even morethan that of a PL
approach. A great deal depends upon the domain in which each approach is
used and the specifics of the approach itself.

1.2 ANNE: A New Approach

Given the challenges faced by both traditional ML approaches and
traditional PL approaches, we have developed a new system, called
ANNE, to help improve the productivity of programmers who need
to understand, document, analyze and transform ad hoc text data.
In particular, we have focused on text data organized in line-by-
line or tabular formats, as this is the most common sort of layout
in systems log files and a variety of other domains. However, in
principle, our techniques are sufficiently general to handle any data
format that can be described as a context-free grammar.

Rather than requiring programmers to write complete data de-
scriptions, as in the conventional PL approach, or simply accepting
the unvarnished results of a fully automatic, heuristic algorithm,
as in the conventional ML approach, ANNE combines ideas from
both communities in search of the best of all worlds. To be more
specific, the process of generating a description for a text document
begins by having the user edit the text itself to add annotations that
help describe it. These annotations, and the surrounding unanno-
tated text, are used to generate a human-readablePADSdescription.
ThePADSdescription may then be fed through thePADScompiler,
generating a host of useful artifacts ranging from programming li-
braries for parsing, printing and traversal to end-to-end tools for
format-conversion, querying, and simple statistical analysis. In ad-
dition to generating aPADS description, the system will translate
the text data into a structuredXML parse tree. TheXML parse tree
can be viewed through a browser, analyzed and used for debugging
purposes.

The annotations that constitute the ANNE language perform a
number of different roles including each of the following:

• associating user-friendly names with bits of text or descriptions
generated from sub-documents

• defining atomic abstractions such dates, ip addresses, times, and
urls using regular expressions,

• identifying sequences, constants and enumerations,
• delimiting tabular data and its headers,
• relating different variants of a field to one another, and
• introducing recursive descriptions.

Together this set of annotations is both convenient and powerful.
and overall, the benefits of this new approach are numerous.

First, as in the PL approaches, ANNE provides the user with
great controlover the resulting description, when they want it. The
user can introduce meaningful, human-readable names, identify the
correct atomic abstractions, and shape key parts of the grammar
however they desire.

Second, again as in the PL approaches, ANNE is extremely
powerful. For example, ANNE easily supports tables and recursive
grammars even though identifying tables in text data is a difficult
machine learning challenge [24, 28, 19] and learning context-free
grammars is even harder than the already-hard challenge of learn-
ing regular expressions. LEARNPADS supports neither of these
features.

Third, as in the ML approaches,less work is requiredof the pro-
grammer. Importantly, unannotated text in the surroundingcontext
is used to “fill in the blanks” left in a description using various de-
fault mechanisms. This means that the programmer does not have
to, and is not encouraged to, write the entire description. Hence, in
some respects, ANNE resembles a supervised learning approach ex-
cept that rather than using simple labels to identify important data,
ANNE uses more powerful, higher-level commands.

Fourth, the annotation language has small number of constructs
in it and, perhaps more subjectively, we find it is relativelyeasy
to use. Ease of use comes from the fact that programmers can
stare directly at the text they are interested in and directly wrap an

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/clear.gif HTTP/1.0" 200 76
polux.entelchile.net - - [15/Oct/1997:21:02:07 -0700] "GET /latinam/spoeadp.html HTTP/1.0" 200 8540
152.163.207.138 - - [15/Oct/1997:19:06:03 -0700] "GET /images/spot5.gif HTTP/1.0" 304 -
ip160.ridgewood.nj.pub-ip.psi.net - - [15/Oct/1997:23:45:48 -0700] "GET /whatsnew.html HTTP/1.0" 404 168
ppp31.igc.org - amnesty [16/Oct/1997:08:40:11 -0700] "GET /members/afreport.html HTTP/1.0" 200 450
...

Figure 1. Excerpt from the web server logai.3000.

annotation around it to capture it. There is no counting of fields or
the possibility of off-by-one errors. In this way, the system supports
a “what-you-annotate-is-what-you-get” style of interaction. The
XML -generation tool provides immediate feedback and facilitates
debugging.

In addition to designing and implementing ANNE, we have
developed an elegant theory to explain its semantics. This theory
is based around IDEALIZED ANNE (IA for short), a idealized
core annotation calculus. The semantics of the IA programming
process is given by a relation between annotated and unannotated
documents and the semantics of IA itself is given by functionthat
generates context-free grammars from annotated documents.

In order to understand the capabilities of IA in greater depth, we
prove a number of theorems that characterize the kinds of gram-
mars that can be generated by our system. In doing so, we in-
troduce an interesting new set of relations, inspired by relevance
logic [2], that more precisely define the relationship between gen-
erated grammars and the data they describe. We use these relations
to prove important theorems concerning the expressivenessof our
system.

Contributions. To summarize, this paper makes a number of im-
portant contributions:

• We introduce a highly practical, new technique for generation
of format specifications from text data. We illustrate its use on
a number of examples and evaluate its effectiveness.

• We develop an idealized, core annotation calculus that captures
the key elements of our design. We give a semantics to the
calculus to describe how ANNE programming and grammar
extraction works.

• We introduce a secondary characterization of ANNE based on
concepts drawn from relevance logic. We use this secondary
characterization to analyze the expressive power of our system.

• We have implemented the system and combined it with the
PADS language and compiler, allowing users of our system to
easily generate useable documentation along with a suite of
programming libraries and end-to-end data processing tools.

In the following section of the paper, we explain our language
design and how to use it in more detail. In section 3, we develop
the syntax and semantics IDEALIZED ANNE. In section 4, we intro-
duce our relevance analysis and use it to prove key theorems about
the expressiveness of IDEALIZED ANNE. In Section 5, we com-
ment further on our experiences using ANNE to generate format
specifications and evaluate its effectiveness relative to both manual
construction ofPADS formats and the grammar induction system
developed in earlier work [12]. Section 6 describes relatedwork
and Section 7 concludes.

2. ANNE by Example
ANNE is a language and system for deriving grammatical specifi-
cations and text processing tools directly from example text files.
In this section, we will illustrate the basic functionalityof the lan-
guage through a number of examples.

2.1 A Web Server Log

Our first example involves the problem of processing a web server
log. The log itself is presented in Figure 1. System administrators
query, transform and analyze logs just like this (and hundreds of
variants thereof) as part of their day-to-day job of assessing the
health and security of the systems they oversee.

The Preamble. The first step in processing any log like this is to
edit the file at the top to add the following lines.4

!#

#include "systems.config"

!#

This step adds the preamble defined by the filesystems.config,
which is presented in Figure 2. A config file such as this is com-
posed of a series of lines with one regular expression definition per
line. Each line begins with eitherdef or exp and is followed by
a name and a regular expression. Those lines beginning withexp
will export the named regular expression so it can be used in de-
scribing formats. Those lines beginning withdef provide alocal
definitionfor the name. A local definition can be used in subsequent
defs orexps but is not in scope in the rest of the file. Comment
lines begin with a# symbol.

The systems.config file has been specially designed for
system administrators dealing with log files. Consequently, it con-
tains many basic data types of use to them including dates, times,
ip addresses, email addresses, urls and others. This configuration
file will be of less use to computational biologists or financial an-
alysts or chemists, but each new domain can create its own setof
common, reusable data definitions to speed up data format con-
struction.

Introducing Non-terminals. The next step is to identify, describe
and give names to elements of interest in the file. For instance, a
sysadmin might start with the first line after the preamble and begin
to edit it as follows (though the annotation process can start at any
place in the file that happens to be convenient).5

{Record: 207.136.97.49 - - \
[15/Oct/1997:18:46:51 -0700] \
"GET /turkey/amnty1.gif HTTP/1.0" 200 3013 }

Intuitively, the simple annotation ({Name: ...}) begins the
process of defining a scannerless context-free grammar.6 In this
case, the portion of the grammar so-defined involves a singlenon-
terminal namedRecord:

Record ::= ...

Moreover, since there are no other annotations to guide grammar
generation, the system uses a simple default rule to generate the

4 We will be highlighting text added to the file using a grey background.
5 To format lines within the boundaries of the narrowsigplanconf style,
we will break lines where necessary with a slash and continuethem indented
two spaces on the next line.
6 Note that if braces “{” and “}” already appear in the file, a command line
switch can alter the bracketing syntax.

Name Regular Expression
def trip [0-9][0-9][0-9]\|[0-9][0-9]\|[0-9]
def db [0-9][0-9]
def zone [+-][0-1][0-9]00
def ampm am\|AM\|pm\|PM
def str [A-Za-z][A-Za-z0-9_\-]*
def str1 [0-9A-Za-z]+
def dom \({str1}\.\)+{str1}
...
exp Time {db}:{db}:{db}\([]*{ampm}\)?\([\t]+{zone}\)?
exp IP {trip}\.{trip}\.{trip}\.{trip}
exp Email {str1}@{dom}
...

Figure 2. Excerpt fromsystems.config

right-hand side – it assumes the desired right-hand side is asimple
concatenation of basic tokens derived by running a default lexer
over the data enclosed in braces.

Record ::= Num ’.’ Num WS ’-’ WS ’-’ WS ’[’ ...

In order to maintain predictability and ease-of-use, the set of default
tokens has been kept to the barest minimum. It includes numbers
(Num – integer or floating point), punctuation symbols (e.g.,’[’ or
’.’ or’]’, etc.), words (Word), and whitespace (WS). The default
tokenization scheme can be overridden by extending the preamble
with new programmer-defined tokens expressed as regular expres-
sions. However, doing so changes the tokenization globallyfor the
entire file, which is not particularly useful here.

Using the Preamble. Instead of overriding the preamble, we will
take advantage of some of the regular expression definitionsin
systems.config to further refine the grammar for theRecord
non-terminal:

{Record: {IP<: 207.136.97.49 } - - \

[{Date<: 15/Oct/1997 } : {Time<: 18:46:51 -0700 }] \
"GET /turkey/amnty1.gif HTTP/1.0" 200 3013}

Above, we used several annotations with the form{Name<: ...
} to introduce regular expressions namedName. For instance, we
identified an ip address (IP), a date (Date) and a time (Time). All
of these named regular expressions were introduced in the pream-
ble (by including their definitions fromsystems.config). Af-
ter this refinement, our generated grammar has the followingform.

IP ::= ...
Date ::= ...
Time ::= ...
Record ::= IP WS ’-’ WS ’-’ WS ’[’ Date ’:’ Time ’]’ ...

The right-hand sides ofIP, Date andTime will be regular ex-
pressions defined by the preamble.

Annotations for Termination Symbols. The next refinement of
the grammar involves dealing with the string"GET /turkey/
amnty1.gif HTTP/1.0". In many applications, the internal
structure of this string might be irrelevant. If this is the case, one
could simply wrap the contents of the string with an annotation of
the form{Name>: ...}. In this case,Name introduces another
non-terminal into the grammar and the greater-than sign indicates
that the extent of non-terminal’s reach is defined by a terminating
character – the character that follows the close brace. Hereis the
annotation used in context:

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
" {Message>: GET /turkey/amnty1.gif HTTP/1.0 } " \
200 3013}

...

In the text above, the> annotation introduces the Message nonter-
minal and it’s extent is terminated by a quotation symbol. Such a

token can easily be defined by a regular expression, but experience
with thePADSdata description language [10] confirms that this id-
iom is extremely common in all kinds of log files. Building in this
shorthand is a nice programmer convenience.

Generating XML and Debugging Results. At this point, the
“programming burden” has been minimal. It consists of including
the preamble in the data source and writing five simple annota-
tions, which mainly involve naming key parts of the data. All-in-all
the job of describing the data may have taken a minute or two. To
debug the work, one can invoke the ANNE compiler, which will
generate a number of artifacts, including aPADSdescription and an
XML parse tree of the data. Viewing theXML through a browser,
as shown in the screen shot in Figure 3, reveals that the grammar
generated so far only covers a subset of the data in the file – colored
lines indicate lines covered by the generated grammar and greyed
out lines indicate lines that are uncovered. A quick examination
of the first greyed out line indicates that there is more variation
in the data file than had been apparent at first glance. Fortunately,
generating a complete cover is relatively easy with just a few more
annotations.

Introducing Alternatives. Alternatives can be introduced into the
grammar in several ways. The simplest way is merely to use a par-
ticular non-terminal name repeatedly. We illustrate this technique
below by using the non-terminalSize twice, once around an in-
teger (which represents the normal case – the number of bytesre-
turned by the server is reported properly) and once around"-"
(which represents the non-standard case of no data available).

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
"{Message>:GET /turkey/amnty1.gif HTTP/1.0}" 200 \

{Size: 3013 } }
...
152.163.207.138 - - \

[15/Oct/1997:19:06:03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size: - }

Such annotations extend the grammar with a union of two or more
options:

Size ::= Num + ’-’
Record ::= IP WS ’-’ WS ’-’ WS ... Size

An alternative technique is to use a collection of annotations of the
form {Name/Name1: ...} and {Name/Name2: ...} and
{Name/Name3: ...}, etc.as follows.

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
"{Message>:GET /turkey/amnty1.gif HTTP/1.0}" 200 \

{Size/S: 3013 }}
...
152.163.207.138 - - \

[15/Oct/1997:19:06:03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size/Dash: - }

This technique names the alternatives and generates the following
equivalent grammar.

S ::= Num
Dash ::= ’-’
Size ::= S + Dash
Record ::= IP WS ’-’ WS ’-’ WS ... Size

One reason to use the more verbose form with named alternatives
is that it will generate a nicerPADS/ML description for the user –
one that uses datatype descriptions with well-named constructors
(See Section 2.3).

There is one other detail to consider when it comes to alter-
natives: the most concise grammar is sometimes one in which al-
ternatives overlap.PADS, and many other systems, use prioritized

Figure 3. View of generatedXML after partial data description.

choice to disambiguate between overlapping alternatives.In ANNE,
priorities may be specified as integers using a syntax with the form
{Name1/Name2[priority]}.

Constants and Enumerations. So far, the message in quotations
has been treated as an uninterpreted string rather than a semi-
structured subdocument. To begin to break the string down, one
may want to specify that it always begins with the keywordGET.
To generate a grammar that specifies this constraint, as opposed to
the more liberal grammar that allows any word in that position, one
uses an equality annotation{Name=...} or it’s unnamed variant
{=...} as in the following example.

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
" {= GET } {Message>:/turkey/amnty1.gif HTTP/1.0}" \
200 {Size/S:3013}}

On the other hand, however, after a round of debugging, one might
notice that not all such strings begin withGET — there are a small
number of other keywords such strings can begin with:PUT,POST,
HEAD, DELETE, LINK, and UNLINK. To generate a grammar
involving the list of keywords that actually appears in thisfile,
one can use an enumeration annotation. An enumeration is written
as{Name//enum>:...}. It generates an initial grammar in the
same way that ourMessage specification generates a grammar
(by looking for a terminating symbol). That initial grammaris used
to parse the document at hand and collect all strings that match the
spec in the document. The final grammar is one defined using the
instances that match. For instance, we might annotate our example
as follows.

{Record:{IP<:207.136.97.49} - - \
[{Date<:15/Oct/1997}:{Time<:18:46:51 -0700}] \
" {Method//enum:GET } \
{Message>:/turkey/amnty1.gif HTTP/1.0}" 200 \
{Size/S:3013}}

If the web log contains examples ofPUT andPOST in addition to
GET, the following grammar fragment will be generated.

Method ::= ’GET’ + ’PUT’ + ’POST’
Record ::= IP ... ’\"’ Method WS ...

Finishing up the Web Log Example. With just a few more an-
notations, the web log annotation job is complete. In total,it was
necessary to add the preamble and annotate four lines of text. Three
of the four lines only required annotating one bit of data. The whole
process might have taken five minutes. The resulting annotated file
and generated grammar are presented in Figure 4. Notice thatby
default, the top-level non-terminal symbol isSource and that the
top-level grammatical rule is as follows.

Source ::= Record (NL Record)*

Annotated Web Log:

!#

#include "systems.config"

!#

{Record:{Sender:{IP<:207.136.97.49 }} - {ID: - } \

[{Date<: 15/Oct/1997 } : {Time<: 18:46:51 -0700 }] \

" {Method//enum:GET } \

{Message>: /turkey/amnty1.gif HTTP/1.0 } " \

200 {Size/S: 3013 }}
...
{Sender:{Hostname<:polux.entelchile.net }} - - \
[15/Oct/1997:21:02:07 -0700] \
"GET /latinam/spoeadp.html HTTP/1.0" 200 8540

152.163.207.138 - - \
[15/Oct/1997:19:06:03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 \

{Size/Dash: - }
...
ppp31.igc.org - {ID: amnesty } \

[16/Oct/1997:08:40:11 -0700] \
"GET /members/afreport.html HTTP/1.0" 200 450

Generated Grammar:

IP ::= ...
Hostname ::== ...
Date ::= ...
Time ::= ...
Method ::= ’GET’ + ’PUT’ + ’POST’
Message ::= ...
S ::= Num
Dash ::= ’-’
Size ::= S + Dash
Sender ::= IP + Hostname
Record ::= IP WS ’-’ WS Sender WS

’[’ Date ’:’ Time ’]’ WS
’\"’ Method WS Message ’\"’ WS
Num WS Size

Source ::= Record (NL Record)*

Figure 4. Web Log Annotations and Generated Grammar. Regular
expression definitions of IP, Hostname, Date, etc. are omitted.

In the line above,NL is the newline character and the asterisk
is the familiar Kleene star. In other words, the entire source is a
sequence ofRecords separated by newline characters. In general,
a programmer can create annotatations for any number of top-level
items, which may be line-by-line descriptions or tables, and ANNE
will produce a top-level grammar with the form

Source ::= (Item1+...+Itemk) (NL (Item1+...+Itemk))*

{E#h:Name GP Goals Assists Points +/-
Jason Blake, 78 25 38 63 -2
Alexei Ponikarovsky, 82 23 38 61 6
...}
Name GP Goals Assists Points +/-
Alexander Ovechkin, 79 56 54 110 10
Nicklas Backstrom, 82 22 66 88 3
...

Figure 5. Fragment of an annotated document containing NHL
player statistics from the 2008-2009 season, one table per team.

2.2 Additional Language Features

The web log document discussed in the previous subsection isone
example of the sort of ad hoc data source that ANNE was designed
to service. It used a good number of different kinds of annotations,
but there are a number of other features of the language, which we
describe more briefly in this section.

Repetition. The web log had an implicit, repeated structure at the
top-level, but no internal repetition. Many other ad hoc data files do.
To generate a grammar with a repeated sequence of items, one may
use a starred annotation as in the following pipe-separatednumber
sequence, which is drawn from one of our data sources:

{Record*[|]: 9152271|9152271|1|0|0|0|0|... }

In the annotation above,Record names a part of a grammar
involving a sequence of items in which each item is separated
by a’|’ symbol. By default, if there are no further annotations,
the record element structure will be any character sequencenot
including the separator.

NoBar ::= ...
Record ::= (NoBar (’|’ NoBar)*)?

Alternatively, the record elements can be specified exactlyusing
the syntax{Name1/Name2*[sep]: ...}, as in the following
example.

{Record/Elem*[|]: 9152271| {Elem[Int]: 9152271 } |1| \

0|0|0|0|... }

The separator (defined in square brackets prior to the colon)is op-
tional and, if desired, the programmer can add an optional termina-
tor string.

Optional data. Optional data occurs often. The annotation{Name?:
...} definesName to either be formatted as the grammar gener-
ated by “...” or the empty string.

Tables. The last important feature of ANNE involves tables. Even
though tables can be specified using concatenation and Kleene star,
it is worthwhile building specicial support for them as theyappear
frequently. Identifying tables is a useful programmer convenience
and also makes it easier to generate a good query interface for the
data.

Figure 5 shows a small portion of a document containing a se-
ries of tables describing NHL player statistics, with one table per
NHL team. Hockey aficionados use such data regularly to compute
player values and argue important points such as “Is Crosby bet-
ter than Ovechkin?” or “Was John Ferguson Junior the worst Leafs
GM since the early 80s?” Tables such as the ones displayed here
often have a header row followed by some number of rows with
a fixed number of columns. Using ANNE, deriving a grammar for
such a table simply involves using one of the hash annotations, ei-
ther{Name#: ...} or {Name#h: ...}. Theh in the second
variant indicates that the table has a header row that variesin struc-
ture from the table data. The number and structure of the columns

ptype IP = Pstring_ME(...)
ptype Hostname = Pstring_ME(...)
ptype Date = Pstring_ME(...)
ptype Time = Pstring_ME(...)
ptype Message = Pstring_ME(...)

ptype Size =
S of Num

| Dash of ’-’

ptype Sender =
IP of IP

| Hostname of Hostname

ptype Record =
IP * WS * ’-’ * WS * Sender * WS

* ’[’ * Date * ’:’ * Time * ’]’

* WS * ’\"’ * Message * ’\"’ * WS * Int * Size

ptype Source = Record plist(No_sep, No_term)

Figure 6. PADS/ML description generated from annotated web log.
Regular expression definitions of IP, Hostname,etc.are omitted.

is determined by counting the number of each sort of token in ev-
ery line. If some tokent appearsk times in every line then there
arek + 1 columns andt serves as the separator between columns.
If more than one token satisfies this property, one such tokenis se-
lected heuristically (tokens that serve frequently as separators such
as tab, comma, and vertical bar are prioritized). However, the pro-
grammer is free to specify the separator in question explicitly using
square braces as in the Kleene star annotations.

Assertions. In a number of situations, and particularly when data
is recursive, it is useful for a programmer to be able to assert that
some part of the data satisfies a non-terminal definition without
going to the trouble of annotating all its subparts. We allowsuch
assertions through annotations with the form{Name!:...}. For
example, given a simple string of paratheses such as “(((()))),”
the simplest way to annotate the data is as follows.

{Parens?: ({Parens!: ((())) }) }

This annotation scheme will give rise to the following grammar.

Parens ::= (’(’ Parens ’)’)?

2.3 GeneratingPADS Descriptions

In the previous subsection, we explained the semantics of the
ANNE language by presenting the context-free grammars that are
generated from each annotation scheme. These context-freegram-
mars are used to parse the data source and generate anXML parse
tree that can be viewed through a broswer or processed using any
one of a number ofXML -based tools, languages or libraries.

In addition to generating structuredXML , an ANNE mark-up
will also generate aPADS description [10, 11, 21]. ThePADS de-
scription language uses augmented type declarations to describe
the syntactic structure of a document as well as the programming
language data structures one generates by parsing the document.
Figure 6 shows thePADSdescription generated from the annotated
web log presented in Figure 4.

A PADSdescription such as the one in Figure 6 can serve as per-
manent executable documentation for the data source. It canalso
be used to generate a variety of libraries such as parsers, print-
ers, and traversal functions for processing other data sources with
the same format. Finally, thePADS compiler can link generated li-
braries against various generic tools including a query engine [9],
data synchronization engine [8], and various format translators.
Consequently, while using ANNE is a quick and simple process, the
result of this minimal bit of labour is an enduring piece of human-

Regular Expressions:
b ::= ǫ | c | b.b | · · ·

Annotated Documents:
ad ::= v | ad1ad2...adn | {ad} | {[b] : v} | {A : ad}

| {A/inl : ad} | {A/inr : ad}
| {A/Aelem∗ : ad} | {A/Aelem∗0 :}

Figure 7. IDEALIZED ANNE documents.

Non-terminal Clauses:
s ::= b | A | s1 · s2 · ... · sn

Non-terminal Right-hand Sides:
r ::= s | s1 + s2 | ? + s2 | s1 +? | A∗ | A∗0

Non-terminal Definitions:
G ::= [] | G[A = r]

Grammars:
gram ::= (A, G)

Figure 8. Grammar Syntax.

readable documentation (thePADSdescription) and a valuable col-
lection of reusable tools.

3. IDEALIZED ANNE

The previous section introduced ANNE through a series of exam-
ples, but did not answer any general questions about the principles
involved in the language design: What do these annotations mean?
What grammars do they generate? When do we have sufficient data
to generate a particular grammar? In this section, we make some
initial headway towards answering these more general questions
by defining the syntax and semantics of IDEALIZED ANNE (IA), a
simplified variant of the full ANNE language that encapsulates its
essential features.

3.1 IDEALIZED ANNE Syntax and Programming

In the following formal work, we will letc range over characters
while v andw range over strings (ourunannotated documents). We
let “” denote the empty string andv1v2 denote the concatenation
of two strings. Meta-variableA ranges over non-terminal names
and b ranges over regular expressions. We writeL(b) to denote
the language of regular expressionb. Regular expressions with an
empty language are prohibited.

Syntax. The syntax ofannotated documentsis defined in Fig-
ure 7. An annotated document may either be unannotated (v) or
a sequence of annotated documents (ad1ad2...adn). Other annota-
tions include the following.

• {ad} identifies a subdocument
• {[b] : v} identifies the datav as inhabiting the language of

regular expressionb.
• {A : ad} assigns a non-terminalA to the format inferred from

annotated subdocumentad.
• {A/inl : ad} and{A/inr : ad} introduce the left- and right-

hand elements of a union respectively
• {A/Aelem∗ : ad} introduces a repetition namedA with ele-

ments namedAelem. Subdocumentad is used to inferAelem.
{A/Aelem∗0 :} is a related annotation, added to the calculus

v → ad

v → v (a-none)

vi → adi i = 1..n

v1v2...vn → ad1ad2...adn

(a-con)

v → ad

v → {ad}
(a-group)

v ∈ L(b)

v → {[b] : v}
(a-re)

v → ad

v → {A : ad}
(a-name)

v → ad

v → {A/inl : ad}
(a-inl)

v → ad

v → {A/inr : ad}
(a-inr)

v → ad

v → {A/Aelem∗ : ad}
(a-rep)

“” → {A/Aelem∗0 :}
(a-rep-empty)

Figure 9. Document annotation.

to simplify certain inductive proofs. It need not be used by pro-
grammers.

The programming process. In order to use IDEALIZED ANNE, a
programmer need simply apply some collection of annotations to
their data. This programming process is formalized by a judgement
written v → ad, which relates an unannotated documentv to any
one of its annotated variantsad. Figure 9 presents the annotation
rules. For instance, rule (a-none) says that annotating a document
can involve doing nothing. Rule (a-con) says that annotating a
document can involve subdividing the document into arbitrarily
many subpieces, each of which is recursively annotated. Allof
the other rules simply wrap one of the particular annotationforms
around a subdocument (usually after recursively annotating the
subdocument).

3.2 Grammars

Syntax. The purpose of IDEALIZED ANNE is to generate gram-
mars of the form given in Figure 8. Reading from the bottom of the
figure towards the top, one sees that a grammar is a pair of a start
non-terminalA and finite partial mapG from non-terminal names
to right-hand sides. A right-hand side may be a clauses, a union of
clauses (s1 + s2) or a repetition of some non-terminalA∗. A right-
hand side may also be one of threepartial right-hand sides: (?+ s)
or (s +?) or A∗0 (other right-hand sides are calledcomplete). Intu-
itively, the ? symbol represents a missing part of the grammar, and
both ? and∗0 symbols indicate that no underlying data is recog-
nized by that part of the grammar. Partial right-hand sides appear
during the course of constructing a grammar (or inductivelyin the
midst of our proofs), but should not appear in any final result. A
clause (s) is either a regular expression (b), a non-terminal (A), or
a sequence of clausess1 . . . sn.

Semantics. The semantics of grammars is defined by the judge-
ment⊢ v ∈ gram, which depends upon judgementsG ⊢ v ∈ r
andG ⊢c v ∈ s. Intuitively, the latter two may be read “stringv is
in the language ofr (or s) when non-terminals are defined byG.”

G ⊢c v ∈ s

v ∈ L(b)

G ⊢c v ∈ b
(g-re)

G(A) = r G ⊢ v ∈ r

G ⊢c v ∈ A
(g-name)

G ⊢c vi ∈ si i = 1..n

G ⊢c v1v2...vn ∈ s1 · s2 · ... · sn

(g-con)

G ⊢ v ∈ r

G ⊢c v ∈ s
G ⊢ v ∈ s

(g-clause)

G ⊢c v1 ∈ s1

G ⊢ v1 ∈ s1+ ?
(g-sum1)

G ⊢c v2 ∈ s2

G ⊢ v2 ∈ ? + s2

(g-sum2)

G ⊢c v1 ∈ s1

G ⊢ v1 ∈ s1 + s2

(g-sum3)
G ⊢c v2 ∈ s2

G ⊢ v2 ∈ s1 + s2

(g-sum4)

G ⊢c vi ∈ A i = 1..n

G ⊢ v1v2...vn ∈ A∗
(g-rep)

G ⊢ “” ∈ A∗0

(g-rep-emp)

⊢ v ∈ gram

G ⊢ v ∈ A

⊢ v ∈ (A, G)
(g-gram)

Figure 10. Semantics of Grammars.

The rules defining this judgement are presented in Figure 10.Many
of these rules are self-explanatory. For instance, ruleg-namestates
that a string is in the language ofA provided it is in the language
of its defining right-hand side. In ruleg-rep, a sequence of strings
is recognized. In a slight abuse of notation, we allown to be 0, in
which case we interpret the rule to say that the repetition recognizes
the empty string.

The only unusual rules are the rules for the partial right-hand
sides. The rules for partial unionss+ ? and ? + s state a value
is in their language provided it is in the known alternatives. The
rule for partial repetitionsA∗0 states that the empty string is in its
language.

3.3 Grammar Extraction

Once a document has been annotated, the IDEALIZED ANNE run
time system can extract a grammar from it. This extraction process
is implemented by recursively traversing the annotated document
and extracting partial grammars from the subpieces. A final gram-
mar results fromfusing(i.e., combining in a special way) collec-
tions of partial grammars.

We will define the fusion relation (writtenG1 ⊕ G2) in a mo-
ment, but first we will direct the reader’s attention to Figure 11,
which presents the grammar extraction function itself. This func-
tion, written ad (s,G), analyzes annotated documentad and
generates a clauses as well as partial grammarG to describe it.

The first rule in the extraction definition (p-none) explains how
unannotated data will generate a description. This occurs by finding
a sequence of regular expressions that matches the data. These
regular expressions are drawn from thedefault setD. The default
set for our implementation contains basic tokens such as numbers,
words, whitespace and punctuation symbols. The choice of defaults
is unimportant in the theory.

ad (s, G)

vi ∈ L(bi) bi ∈ D i = 1..n

v1v2...vn (b1 · b2 · ... · bn, [])
(p-none)

adi (si, Gi) i = 1..n

ad1ad2...adn (s1 · s2 · ... · sn, G1 ⊕ G2 ⊕ ... ⊕ Gn)
(p-con)

ad (s, G)

{ad} (s, G)
(p-group)

v ∈ L(b)

{[b] : v} (b, [])
(p-re)

ad (s, G)

{A : ad} (A, G ⊕ [A = s])
(p-name)

ad1 (s1, G1)

{A/inl : ad1} (A, G1 ⊕ [A = s1+ ?])
(p-inl)

ad2 (s2, G2)

{A/inr : ad2} (A, G2 ⊕ [A =? + s2])
(p-inr)

ad (s, G)

{A/Aelem∗ : ad} (A,G ⊕ [A = Aelem∗])
(p-rep)

{A/Aelem∗0 :} (A, [A = Aelem∗0])
(p-rep-emp)

Figure 11. Grammar Extraction.

The next rule (p-con) explains how to handle a sequence of an-
notated subdocuments. In this case, each subdocument is analyzed
recursively, producing a clause and a right-hand side. The result is a
concatenation of clauses and a grammar formed by fusing together
the generated subgrammars.

Many of the other rules should now be relatively self-explanatory.
However, the reader should take note of rules (p-inl) and (p-inr),
as these rules are primary points where partial grammars aregen-
erated. Notice in particular that rule (p-inl) infers the shape of the
left-hand side of a union from its subdocument, but has no infor-
mation about the right-hand side and hence leaves? in its place.
Rule (p-inr) behaves in a complementary fashion.

Grammar fusion. Intuitively, fusing two right-hand sides to-
gether involves eliminating the? symbols and replacing them with
real grammar parts. For instance, fusing(s1+?) with (? + s2)
results in(s1 + s2). Fusing two grammars together involves tak-
ing the union of the disjoint grammar parts and fusing together
the right-hand sides of the overlapping grammar parts. Morefor-
mally, the right-hand side fusion relationr1 ⊕ r2 is defined as the
symmetric closure of the following rules.

r ⊕ r = r
(s1 + ?) ⊕ (? + s2) = s1 + s2

(s1 + s2) ⊕ (s1 + ?) = s1 + s2

(s1 + s2) ⊕ (? + s2) = s1 + s2

A ∗ ⊕A∗0 = A∗

Given the right-hand side fusion, we define the fusion of two gram-
marsG1 ⊕ G2 as follows.D(G) denotes the domain of grammarG

(i.e., the set of defined non-terminals).

G1⊕G2(A) =

8

<

:

G1(A) if A ∈ D(G1) andA 6∈ D(G2)
G2(A) if A ∈ D(G2) andA 6∈ D(G1)
G1(A) ⊕ G2(A) if A ∈ D(G1) andA ∈ D(G2)

Finally, the fusion of two grammars with the same start symbol,
(A, G1) ⊕ (A, G2), is defined to be(A,G1 ⊕ G2).

4. IDEALIZED ANNE Properties
Now that we have defined the semantics of IDEALIZED ANNE,
we can answer some important questions about its propertiesand
expressive power. For instance, suppose one has some datav that
inhabits the language of a grammargram, is it the case that one
can annotatev in such a way as to extractgram? Unfortunately,
the answer to this question is no. The simplest counter-example
involves choosing the empty string as the data and a grammar
(A, [A = ǫ + Num]) as the target to extract. There is no way
to annotate the empty string to enable generation of the right side
of the union. Since the answer to our first question wasno, a natural
follow-up is to ask what properties data needs to have in order
to extract a particular grammar from it. To answer this question,
we develop a new analysis inspired by relevance logic. This new
analysis helps us give a more precise accounting of the relationship
between data and the grammars that can be extracted from them.

4.1 Relevance Analysis

Relevance Logic[2] is a well-known substructural logic that re-
quires every hypothesis beused at least onceduring the course of
a proof. Interestingly, a very similar idea can be used to ensure a
value is able to generate a particular grammar: each grammarrule,
and all of its subparts, must also beused at least oncein the deriva-
tion that a string belongs to the grammar.

Based on this intuition, we have developed arelevance analysis
that directly relates grammars to the values that can generate them.
The central judgements for this analysis have the formG ⊢rel v ∈
r andG ⊢c

rel v ∈ s. These judgements affirm that all elements of
G are used during the course of proving thatv is an element ofr
ands respectively. A third judgement,⊢rel v ∈ gram, affirms that
all elements ofgram are used during the course of provingv is in
gram. Figure 12 presents the inference rules for these judgements.

Rule (e-re) provides an example of how these rules work. It
states thatv is recognized byb provided it is inL(b). Moreover,
this rule uses no parts of a grammar. Hence, the grammar to the
left of the turnstyle must be empty. Rule (e-name) states that ifG
is used in recognizing thatv belongs tor then G ⊕ [A = r] is
used in recognizing thatv belongs toA. Rule (e-con) states that
if G1 throughGn are used in recognizings1 to sn then the fusion
of these grammars is used to recognize the concatenation of the
clauses.

It is also important to observe how the unions work. In particu-
lar, there are rules (e-sum1) and (e-sum2) to explain what the partial
right-hand sides? + s ands +? use, but there are no rules for the
complete right-hand sides1 + s2. This is because no derivation
can use both the left-hand side and the right-hand side of a union
simultaneously.

The rules for repetitions are also interesting. Notice thatthe rule
(e-rep) is constrained so thati is greater than0. This guarantees that
the underlying element grammar is used. The rule (e-rep-empty) is
for the situation in which the empty string matches an iteration. The
entire reason for including the right-hand sideA∗0 is to distinguish
this case in which the underlying element type is not used.

Our relevance analysis may be viewed as a relevance logic
primarily because the structural rules forexchangeandcontraction
are admissable butweakeningis not.

G ⊢c

rel v ∈ s

v ∈ L(b)

[] ⊢c

rel v ∈ b
(e-re)

G ⊢rel v ∈ r

G ⊕ [A = r] ⊢c

rel v ∈ A
(e-name)

Gi ⊢
c

rel vi ∈ si i = 1..n

G1 ⊕ G2 ⊕ ... ⊕ Gn ⊢c

rel v1v2...vn ∈ s1 · s2 · ... · sn

(e-con)

G ⊢rel v ∈ r

G ⊢c

rel v ∈ s

G ⊢rel v ∈ s
(e-clause)

G ⊢c

rel v1 ∈ s1

G ⊢rel v1 ∈ s1+ ?
(e-sum1)

G ⊢c

rel v2 ∈ s2

G ⊢rel v2 ∈ ? + s2

(e-sum2)

Gi ⊢
c

rel vi ∈ A i = 1..n n > 0

G1 ⊕ G2 ⊕ ... ⊕ Gn ⊢rel v1v2...vn ∈ A∗
(e-rep)

[] ⊢rel “” ∈ A∗0

(e-rep-empty)

⊢rel v ∈ gram

G ⊢rel v ∈ A

⊢rel v ∈ (A,G)
(e-gram)

Figure 12. Relevance analysis.

Lemma 1 (Exchange)
i. If G1 ⊕ [A = rA] ⊕ [B = rB] ⊕ G2 ⊢c

rel v ∈ s then
G1 ⊕ [B = rB] ⊕ [A = rA] ⊕ G2 ⊢c

rel v ∈ s.
ii. If G1 ⊕ [A = rA] ⊕ [B = rB] ⊕ G2 ⊢rel v ∈ r then

G1 ⊕ [B = rB] ⊕ [A = rA] ⊕ G2 ⊢rel v ∈ r.

Lemma 2 (Contraction)
i. If G ⊢c

rel v ∈ s thenG ⊕ G ⊢c

rel v ∈ s.
ii. If G ⊢rel v ∈ r thenG ⊕ G ⊢rel v ∈ r.

4.2 Relevant Properties.

The first main property of the relevance analysis is that it issound
with respect to ordinary grammar recognition. The proof is by
induction on the structure of the relevance judgement.

Theorem 3 (Relevance soundness.)
If ⊢rel v ∈ gram then⊢ v ∈ gram.

A second important property is that the relevance analysisap-
proximatesthe ordinary grammar recognition relation in the fol-
lowing sense. We say that one right-hand sider1 is an approx-
imation of another right-hand sider provided that there exists
yet another right-hand sider2 such thatr = r1 ⊕ r2. Likewise,
G1 is an approximation ofG provided there existsG2 such that
G = G1 ⊕ G2. Finally, gram1 is an approximation ofgram pro-
vided there existsgram2 such thatgram = gram1 ⊕ gram2.
We write r1 ≤ r whenr1 is an approximation ofr. We use sim-
ilar notation forG andgram. With these definitions in hand, the
approximation theorem is stated as follows.

Theorem 4 (Relevance approximates recognition.)
If ⊢ v ∈ gram, then there existsgram1 such thatgram1 ≤ gram
and⊢rel v ∈ gram1.

The proof of soundness is by induction on the structure of the
grammar recognition judgement.

The soundness and approximation theorems for our relevance
analysis implies it is tightly connected to ordinary grammar recog-
nition. However, the real interest in relevance analysis stems from
the following essential property: if a grammar is relevant to a string
then a programmer can use IDEALIZED ANNE to extract that gram-
mar from the string.

Theorem 5 (Relevance implies grammar extraction.)
i. If G ⊢c

rel v ∈ s, then there existsad such thatv → ad and
ad (s, G);

ii. If G ⊢rel v ∈ r, then for anyA, there existsad such that
v → ad andad (A, G ⊕ [A = r]).

iii. If ⊢rel v ∈ gram, then there existsad such thatv → ad and
ad gram.

Parts i and ii are proven by simultaneous induction on the the
derivations ofG ⊢c

rel v ∈ s andG ⊢rel v ∈ r. Part iii follows
from partii . Moreover, by combining Theorems 5 with 3 and 4, we
obtain the following corollary, which states that for anyv inhabiting
a grammargram, IDEALIZED ANNE can generate a grammar for
v that approximatesgram.

Corollary 6 (Single datum grammar extraction.)
If ⊢ v ∈ gram, then there existsad such thatv → ad and
ad gram′ and⊢ v ∈ gram′ andgram′ ≤ gram.

The grammar extraction theorem above states properties of a
single string, but IDEALIZED ANNE can sometimes do more for us
when there is more that one string to annotate. To make this idea
precise, we first define what it means to extract a grammar froma
collection of strings.

Definition 7 (Collective Extraction.)
For grammargram = (A,G) and datav1, v2, ..., vk,
v1, v2, ..., vk gram iff there existsad1, ..., adk such that

• vi → adi, for all i = 1, ..., k;
• adi (si, Gi) for all i = 1, ..., k;
• G1 ⊕ G2 ⊕ ... ⊕ Gk = G.

Next, we present the following theorem, which extends Corol-
lary 6 to collections of data items.

Theorem 8 (Sound collective extraction.)
Given some datav1, v2, ..., vk, if ⊢ vi ∈ gram for all i, then there
existsgram′ such thatv1, v2, ..., vk gram′ and⊢ vi ∈ gram′

andgram′ ≤ gram.

Finally, we give sufficient conditions under which some collec-
tion of data iscompletefor extracting a particular grammar. Intu-
itively, the collection is complete when a grammar can be divided
up into pieces and each piece isrelevant to some element of the
collection.

Definition 9 (Data is complete for a grammar.)
v1, v2, ...vk is complete forgram if there exists
gram1, gram2, ..., gramk such that

• ⊢rel vi ∈ grami for all i = 1, ..., k, and
• gram1 ⊕ gram2 ⊕ ... ⊕ gramk = gram

Data Source # Annots # Lines Time(min)
1967Transactions 6 1 5
ai.3000 14 4 10
yum.txt 6 1 15
rpmpkgs 2 1 1
railroad.txt 10 4 10
dibbler.1000 6 3 5
asl.log 7 2 5
scrollkeeper.log 4 1 3
pagelog 5 1 5
MER T01 01.csv 1 1 1
crashreporter.log 4 1 3
ls-l 4 2 5
windowserverlast 5 1 10
netstat-an 10 3 10
boot.txt 7 1 5
quarterlyincome 3 2 5
corald.log.head 3 2 5
irvpiv1.sel 7 1 15
latitude.txt 10 3 15

Table 1. Number of annotations, lines touched and time taken to
construct descriptions using ANNE.

Theorem 10 (Complete data enables full grammar extraction.)
If v1, v2, ..., vk is complete forgram thenv1, v2, ..., vk gram.

To summarize, Theorem 10 may be interpreted as giving pro-
grammers sufficient conditions (i.e.,data completeness) for extract-
ing a particular context-free grammar from a data set. Theorem 8,
on the other hand, states that no matter what data one has in hand,
one can extract anapproximationof any grammar for that data.

One final observation is that some grammars do not haveany
complete data sets. In particular, empty grammars or grammars
with empty subcomponents such as the grammars(A, [A = A]) or
(A, [A = int + B, B = B]) do not have complete data. Likewise,
grammars with disconnected non-terminals do not have complete
data. IDEALIZED ANNE cannot generate grammars with empty
subcomponents, but it can sometimes generate grammars withdis-
connected non-terminals. The latter can occur if the disconnected
non-terminal describes some fragment of the data that is also de-
scribed by some other connected non-terminal.

5. Evaluation
We conducted a series of experiments to compare using ANNE
against the process of writingPADS descriptions by hand and
against the process of learning descriptions automatically using
LEARNPADS [12]. When comparing ANNE with hand-written de-
scriptions, we focused on the time and efforts users dedicated to
creating descriptions; when comparing ANNE with the LEARN-
PADS system, we focus on the readability and compactness of
descriptions. Our benchmark formats include 19 different ad hoc
data sources, drawn mainly from various different kinds of system
logs. The same benchmarks have been used previously to evaluate
the effectiveness ofPADSand its variants [12]. Those readers inter-
ested in the specifics can find the benchmarks on the web [26]. All
experiments were performed on a Dell desktop with two 2.80 GHz
Intel Pentium Processors and 1 GB memory, running Fedora Core
release 9.

Comparison with hand-written descriptions. In the first set of
experiments, we measured the time and effort spent constructing
descriptions using ANNE For each benchmark, table 1 shows the
total number of annotations the programmer needed to construct
the description (# annots), the total number of lines that were

Data source Type Complexity Desc. Size
A L A L

1967Transactions 52 175 13 26
ai.3000 328 437 56 47
yum.txt* 84 640 17 74
rpmpkgs* 7 314 4 70
railroad.txt * 89 975 28 150
dibbler.1000 76 85 21 25
asl.log 551 1545 78 102
scrollkeeper.log 44 372 8 14
pagelog 206 729 23 22
MER T01 01.csv 96 211 22 12
crashreporter.log * 105 973 16 63
ls-l* 195 721 25 80
windowserverlast 148 85 24 11
netstat-an 822 1324 57 138
boot.txt* 98 944 19 123
quarterlyincome 520 579 86 87
corald.log.head 793 1094 106 71
irvpiv1.sel* 284 1334 44 130
latitude.txt* 140 500 11 77

Table 2. ANNE (A) vs. LEARNPADS (L): Type complexity in
bits and description size in lines. Asterisks indicate meaningful
qualitative differences in the performance of the two systems.

annotated (# lines) and the approximate time in minutes for the
user to complete the description. The number of annotationsdid
not include the preamble or the regular expressions defined therein.

The table shows that for most of our benchmarks, the user
needed to insert anywhere from 1 to 14 annotations (with the
median being 5). On average, the user was required to annotate 3
or 4 lines of data. The time taken varied between 5 and 15 minutes.
In contrast, a previous study [12] of the time taken to write the
same descriptions by hand showed users with some experience
spent anywhere from 1/2 an hour to an hour or two. Part of the
reason users would take longer to write descriptions by handis
that they can add additional information in the form of constraints
– something that is not supported by ANNE right now. However,
another good part of the reason is simply that ANNE is easier to
use.

Comparison with L EARNPADS. The second set of experiments,
presented in Table 2, compares the compactness of descriptions
generated by ANNE vs. LEARNPADS. This table presents two
metrics: thetype complexityof the resulting description and the
number of lines of the resulting description when printed. The type
complexity measures the number of bits it would take to encode
the syntax of thePADS description. It is one of the metrics that
the LEARNPADS system optimizes for. The number of lines of the
resulting description is simply the number of lines of output from
the respective pretty printers.

Differences of 20% or so are usually meaningless in this table.
On the other hand, differences on the order of a factor of 5 or 10 are
quite meaningful — we placed asterisks in Table 2 to indicatethose
formats for which the differences between the results produced by
ANNE and those by LEARNPADS were significant. These signif-
icant differences occur for several reasons, but perhaps the most
pervasive is that the performance of LEARNPADS is quite sensitive
to the set of basic tokens (definitions of times, dates, ip addresses,
etc.) that it starts out with. When the data is defined using unantic-
ipated token types, LEARNPADS often winds up learning terribly
complex grammars in an attempt to compensate. The ANNE pro-
grammer, on the other hand, can adapt much more easily by making
a slight adjustment in the preamble.

Notice that in one case, thewindowserver last bench-
mark, the LEARNPADS system produces a much smaller descrip-
tion than ANNE. This occurs because LEARNPADS uses a heuris-
tic to simplify grammars, and in this case, it over-simplifies, elimi-
nating some useful information about the format. The programmer
could have produced an equally simple description using ANNE
had they chosen to do so.

6. Related Work
ANNE was designed to improve the productivity of data analysts by
providing a quick, simple way to generate documentation anddata
processing tools for an ad hoc data source given the availability
of example data. Many of its commands are directly inspired by
the design of domain-specific languages and language extensions
such asPADS [10, 11, 21],DATASCRIPT [4], PACKETTYPES[23],
Demeter [20],BINPAC [27] and Erlang binaries [32, 15].

Some of these languages such asPACKETTYPES, DATASCRIPT,
BINPAC, and Erlang binaries are designed specifically to work
with binary data. In theory, a variant of ANNE could work with
binary data, but it seems unlikely that it would be particularly
effective — ANNE will only work well when a human can stare at
a data source, uncover it’s structure, and add annotations in place.
Visually uncovering the format of a binary data source and adding
annotations to it does not seem plausible.

When it comes to the domain of semi-structured text data,
ANNE provides an alternative to writing format specifications (like
PADSspecifications) by hand. The main advantage of ANNE comes
in its ease-of-use and ability to fill in details such as separators,
terminating characters, and members of an enumeration automat-
ically. Having a machine fill in such details is both more conve-
nient and less error-prone than manually constructing the descrip-
tion. One limitation of ANNE right now is that it does not support
the full range ofPADS features. In particular, it is missing depen-
dency and constraints. We believe the overall ANNE framework can
support these features; we are currently working on extending our
theory and implementation to include them.

Potter’s Wheel [29] is another system with some similarities
to to ANNE in that it supports an interactive process to manage,
clean and transform data. Unlike ANNE, it uses a spreadsheet-style
interface to represent classical relational data and its goal is to help
users detect errors and transform data to make it ready to load
into a commercial database. Whereas Potter’s Wheel is limited to
managing relational tables, ANNE is designed for a broader range
of context-free grammars. Whereas Potter’s Wheel is an on-the-fly
interactive transformation system, ANNE is a descriptive system
that produces documentation and programming tools for later use.

Whereas Potter’s Wheel operates over relational data, many
other data cleaning and transformation systems operate over XML .
For example, SchemaScope [5] is a powerful new tool developed
by Bex, Neven and Vansummeren to inferDTDs andXML Schemas
from unknown XML documents and to visualize and edit exist-
ing schema. The inference mechanisms used in SchemaScope
are highly effective as they are tuned to common properties of
DTDs [22]. Unfortunately, the grammar inference problem for hoc
data sources is substantially different from the schema inference
problem forXML in part because the basic tokenization problem
for ad hoc data is so ambiguous — there is no standard tag-based
syntax to delineate different parts of an ad hoc document. Onthe
contrary, ANNE was created to provide a means for programmers
to delineate and disambiguate elements of their data sources.

The machine learning community has developed a number of
tools that performwrapper induction, where awrapper is a pro-
gram that can extract information from designated “slots” in a
document or set of documents. Two examples of such work are
Kushmerick’s HLRT induction system [18, 17] and Soderland’s

Whisk system [30]. One high-level difference between a system
like Whisk and one like ANNE or PADS is that Whisk is designed
to work on data with very little regular structure. For example,
the working example in Soderland’s paper involved extraction of
features such as price and location from Craigslist apartment ad-
vertisements. Such advertisements are pseudo-English blurbs and
have much less structure than web logs, for instance. Hence,while
Whisk and similar systems can be effective at solving the “needle
in a haystack” problem, they are not designed to produce the kind
of documentation or programming tools that ANNE is.

7. Conclusions
In this paper, we have presented the design and implementation
of ANNE, a new kind of “markup language” for text data. This
markup language allows users to specify the syntactic structure
of documents by adding annotations that indicate the presence
of constants, enumerations, repetitions, optional data, tables, and
recursive data. The markup language also allows users to import
from libraries of pre-defined regular expressions and to name parts
of their data as they choose. A mark-up can be used to generatea
context-free grammar, anXML parse tree and aPADS description.
TheXML parse tree facilitates debugging and thePADSdescription
serves as useful documentation that may be compiled into many
more useful tools. Experience with ANNE suggests that compact,
human-readable descriptions can be constructed quickly and easily.

In addition, we have defined and analyzed the semantics of
ANNE. In the process of doing so, we have uncovered a fascinating
connection to relevance logic, which we have used to prove illumi-
nating theorems concerning the expressiveness of our system.

Acknowledgments
We would like to thank Kathleen Fisher, Nate Foster and Kenny
Zhu for many fruitful conversations on this topic.

This material is based upon work supported by the NSF under
grants 0612147 and 0615062 and by a gift from Google. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the NSF or Google.

References
[1] Open babel.http://openbabel.org/wiki/Main_Page,

2009.
[2] A. R. Anderson, N. Belnap, and J. Dunn.Entailment: The Logic of

Relevance and Necessity. Princeton University Press, Princeton, NJ,
1975.

[3] A. Arasu and H. Garcia-Molina. Extracting structured data from web
pages. InACM SIGMOD International conference on management
of data, pages 337–348, 2003.

[4] G. Back. DataScript - A specification and scripting language
for binary data. InGenerative Programming and Component
Engineering, volume 2487, pages 66–77. Lecture Notes in Computer
Science, 2002.

[5] G. J. Bex, F. Neven, and S. Vansummeren. SchemaScope: a system
for inferring and cleaning xml schemas. InSIGMOD, pages 1259–
1262, 2008.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. pages 109–118, San
Francisco, CA, USA, 2001.

[7] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages
using rfsas.Theor. Comput. Sci., 313(2):267–294, 2004.

[8] M. Fernandez, K. Fisher, J. Foster, M. Greenberg, and Y. Mandel-
baum. A generic programming toolkit for PADS/ML: First-class
upgrades for third-party developers. InPADL, pages 133–149, 2008.

[9] M. F. Fernández, K. Fisher, R. Gruber, and Y. Mandelbaum. PADX:
Querying large-scale ad hoc data with xquery. InProgramming
Language Technologies for XML, Jan. 2006.

[10] K. Fisher and R. Gruber. PADS: A domain specific languagefor
processing ad hoc data. InPLDI, pages 295–304, 2005.

[11] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. InPOPL, 2006.

[12] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt toshovels:
Fully automatic tool generation from ad hoc data. InPOPL, pages
421–434, Jan. 2008.

[13] P. Garcı́a and E. Vidal. Inference of k-testable languages in the strict
sense and application to syntactic pattern recognition.IEEE Trans.
Pattern Anal. Mach. Intell., 12(9):920–925, 1990.

[14] E. M. Gold. Language identification in the limit.Information and
Control, 10(5):447–474, 1967.

[15] P. Gustafsson and K. Sagonas. Adaptive pattern matching on binary
data. InEuropean Symposium on Programming, pages 124–139.
Springer, Mar. 2004.

[16] T. W. Hong and K. L. Clark. Using grammatical inference to automate
information extraction from the Web.Lecture Notes in Computer
Science, 2168:216+, 2001.

[17] N. Kushmerick.Wrapper induction for information extraction. PhD
thesis, University of Washington, 1997. Department of Computer
Science and Engineering.

[18] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction
for information extraction. pages 729–737, 1997.

[19] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the
structure of web sites for automatic segmentation of tables. pages
119–130, New York, NY, USA, 2004.

[20] K. J. Lieberherr and A. J. Riel. Demeter: A CASE study of software
growth through parameterized classes. 1(3):8–22, August,September
1988.

[21] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez, and A. Gleyzer.
PADS/ML: A functional data description language. InPOPL, 2007.

[22] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness
and complexity of XML schema.ACM Trans. Database Syst.,
31(3):770–813, 2006.

[23] P. McCann and S. Chandra. PacketTypes: Abstract specificationa of
network protocol messages. InACM Conference of Special Interest
Group on Data Communications, pages 321–333. ACM Press, August
2000.

[24] H. T. Ng, C. Y. Lim, and J. L. T. Koo. Learning to recognizetables in
free text. pages 443–450, Morristown, NJ, USA, 1999.

[25] J. Oncina and P. Garcia. Inferring regular languages inpolynomial
updated time.Machine Perception and Artificial Intelligence, 1:29–
61, 1992.

[26] PADS project.http://www.padsproj.org/, 2007.
[27] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: ayacc

for writing application protocol parsers. InIMC ’06: Proceedings of
the 6th ACM SIGCOMM conference on Internet measurement, pages
289–300, New York, NY, USA, 2006. ACM.

[28] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction
using conditional random fields. InSIGIR, pages 235–242, New
York, NY, USA, 2003.

[29] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. InInternational Conference on Very Large Data
Bases, pages 381 – 390, 2001.

[30] S. Soderland. Learning information extraction rules for semi-
structured and free text.Machine Learning, 34(1-3):233–272, 1999.

[31] A. Stolcke and S. Omohundro. Inducing probabilistic grammars
by bayesian model merging. InInternational Conference on
Grammatical Inference, 1994.

[32] C. Wikström and T. Rogvall. Protocol programming in Erlang using
binaries. InFifth International Erlang/OTP User Conference, Oct.
1999.

