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Abstract

An ad hoc data formats any non-standard, semi-structured data
format for which robust data processing tools are not alhglan
this paper, we presentM\E, a new kind of mark-up language de-
signed to help users generate documentation and data piages
tools for ad hoc text data. More specifically, given a new ad ho
data source, an WNE programmer will edit the document to add
a number of simple annotations, which serve to specify itgagy
tic structure. Annotations include elements that speaifiystants,
optional data, alternatives, enumerations, sequendaslatadata,
and recursive patterns. TheNAE system uses a combination of
user annotations and the raw data itself to extract a coffitest
grammar from the document. This context-free grammar can th
be used to parse the data and transform it intx®n parse tree,
which may be viewed through a browser for analysis or detnggi
purposes. In addition, the MNE system will generate BADS/ML
description [21], which may be saved as lasting documentaif
the data format or compiled into a host of useful data prangss
tools ranging from parsers, printers and traversal lilesto format
translators and query engines. Overal¥e simplifies the pro-
cess of generating descriptions for data formats and ingzrole
productivity of programmers who work with ad hoc data regyla
In addition to designing and implementingnAE, we have de-
vised a semantic theory for the core elements of the langidgs
semantic theory describes the editing process, which la@ssa
raw, unannotated text document into an annotated docurardt,
the grammar extraction process, which generates a cofrtext-
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various low-level chores like parsing and format transiatio ex-
tract the valuable information they need from their datakivig
these tasks more difficult is the fact that many ad hoc dasareete
limited or out-of-date documentation. Moreover, thesadatmats
evolve, so documentation that is up-to-date one month malgpe
recated the next.

1.1 Past Solutions

In the past, two starkly different research communitieg, pino-
gramming languages (PL) community and the machine learning
(ML) community, have attempted to apply their technolodies
help solve the problem of using ad hoc data files productively

PL Solutions. In the programming languages community, work
has centered on the development of a variety of domainfpeci
languages that allow data analysts to batttumentand program
with their ad hoc data. Examples of such languages inclusia B
TER[20], PACKETTYPES[23], DATASCRIPT[4], PADS[10, 21] and
BINPAC [27]. When used for documentation purposes, these lan-
guages provide a means to write clear, concise and devtasgec-
ifications of a data source’s syntax and important semantipgy-
ties. Moreover, the fact that the documentation produceekes
cutable {.e., there exist tools for checking that ad hoc data sources
adhere to the format specification given) means that theae &u-
tomatic way to check whether documentation is up to datellanda
behind. When used for programming support, these languagts
their associated compilers provide a means to generateigtyvar
of useful programming libraries for manipulating ad hocadat-

grammar from an annotated document. We also present an alter cluding parsers, printers, and visitors as well as endatb-gata

native characterization of system behavior by drawing uideas
from the field of relevance logic. This secondary charazggion,
which we callrelevance analysjspecifies a direct relationship be-
tween unannotated documents and the context-free gramhars
our system can generate from them. Relevance analysissallew
to prove a number of important theorems concerning the expre
siveness and utility of our system.

1. Introduction

The world is full of ad hoc data formats— those non-standard,
semi-structured data formats for which robust data praoggsols
are not available. Examples of ad hoc data formats incluedilh
lions of log files that are generated by web servers, file serve
billing systems, network monitors, content distributioystems,
and other applications that require monitoring, debuggngu-
pervision. Ad hoc data formats also commonly appear in time-co
putational sciences. For example, chemists deal with at 8xdif-
ferent file formats [1] on a regular basis. Biologists and gbigts
handle many more. In fact, just about anyone who has evetewrit
a computer program has, at some point, needed to creategmana
use and understand a variety of such formats.

processing tools.

While these language-based solutions have many useful, eve
essential features, there is still room for improvemenpadrticular,
producing descriptions of unknown data sources is stilmaeghat
tedious, time-consuming and error-prone process. Faatst, ex-
periments with theaDssysten} suggests that expert users can cre-
ate descriptions for many simple line-based system logsughly
one to two hours, on average, and sometimes less than that. Be
ginners take substantially longer — often a day or two to retet
vant parts of the manual, figure out the syntax, grasp the imgan
of various error messages and complete a robust descrigtmn
more complicated data sources, and especially for datxsswf
massive size, the process of creating descriptions becsassan-
tially more difficult, even for experts. Kathleen Fisher oes that
she struggled off-and-on for three weeks in her attemptssatibe
one particularly massive data file at AT&T that had the unfodte
property of switching formats after a million and a half lafe

Another related property dfaDs and similar languages is that
they tend to promote writing relatively complete specifigas of

1See table 2, page 10 of earlier work pabs [12] for anecdotal evidence
regarding creation of descriptions for a variety of simpjstem log for-

The data analysts and programmers who find themselves work- mats.

ing with ad hoc data formats waste significant amounts of time

2personal communication, 2008.



data sources. While this is often a positive factor, as speitifi-
cations serve as useful documentation, it can also sometimea
negative as it increases the start-up time for users who toees
a full description, but only want to extract key bits of infioation
necessary to perform a particular data processing task.

ML Solutions. On the other end of the spectrum, the machine
learning community has sought to tame ad hoc data sources by
developing algorithms for analyzing complex data sourced a
either automatically extracting key bits of informatioorin the data
sources in question [30, 17, 18, 3, 6] or inferring a gramrhat t
describes them [14, 7, 25, 31, 16, 13, 24, 28, 12].

1.2 ANNE: A New Approach

Given the challenges faced by both traditional ML approacre
traditional PL approaches, we have developed a new systdiadc
ANNE, to help improve the productivity of programmers who need
to understand, document, analyze and transform ad hoc &at d
In particular, we have focused on text data organized in-lipe
line or tabular formats, as this is the most common sort obugy
in systems log files and a variety of other domains. However, i
principle, our techniques are sufficiently general to haradly data

format that can be described as a context-free grammar.

Rather than requiring programmers to write complete data de
scriptions, as in the conventional PL approach, or simpbepting

Whereas the programming |anguages approaches incur somethe unvarnished results of a fU”y automatic, heUriStiCDﬂTgm,

significant startup cost, the machine learning approackesly
require less initial work by the programmer. For examplesin
pervised learning approaches, users must label some sftiketr
data to indicate the content of interest. Then, various inadkearn-
ing algorithms can be used to learn the features of the kedbelhta
in order to be able to extract it from its contéxStephen Soder-
land’s Whisk system was one of the first to do this effectively

as in the conventional ML approach,NAE combines ideas from
both communities in search of the best of all worlds. To beemor
specific, the process of generating a description for a @etichent
begins by having the user edit the text itself to add anranatthat
help describe it. These annotations, and the surroundiagno:
tated text, are used to generate a human-readgelms description.
ThePADS description may then be fed through theds compiler,

based on annotations from a few examples, the system was abledenerating a host of useful artifacts ranging from prograngnti-

to learn the structure of Craigslist apartment ads suffttienell
to allow extraction of key information. Even better, unsyised
approaches require no initial user input. They merely araly
given dataset, uncover patterns and produce a synthesiaed g
mar. In principal, perfect grammatical inference is implokes[14]
but, nevertheless, researchers such as Stolke and Omaohi&idr
have shown empirically that one can sometimes synthesefilus
grammars using statistical techniques and heuristic bearc

While fully automated approaches involving machine leagni
are usually easy to try, they often suffer from the joint peohs
of producingunreliable resultsand having those resultgrd to un-
derstandor analyze. By unreliable results, we do not mean unsound
results — rather we mean that the grammars produced may not be
particularly compact or well-organized. Moreover, evenewhan
automated system performs perfectly in a structural sehsell
generate a description teaming with machine-generatea:aidon
data subcomponents such anf on_237” or “Enum99.” Such
descriptions are naturally difficult for people to use anguiee a
human post-processing pass to add semantically meaniialgfod
tifiers.

Yet another difficulty with fully automatic grammar indueti is
that it appears difficult to design a single system that dpsraell
over a broad range of domains. For example, experience téth t
LEARNPADS system [12] suggests that though it works well for
the sorts of systems log files on which it has been tuned, ieean
ily be thrown off when it encounters data outside it's doméirthis
latter case, it often generates far more complex, diffitaHtead
and difficult-to-use descriptions than a human would. Thidbfem

braries for parsing, printing and traversal to end-to-eoold for
format-conversion, querying, and simple statistical gsial In ad-
dition to generating ®ADS description, the system will translate
the text data into a structuredML parse tree. ThamL parse tree
can be viewed through a browser, analyzed and used for datgugg
purposes.

The annotations that constitute thes®e language perform a
number of different roles including each of the following:

e associating user-friendly names with bits of text or deztwhs
generated from sub-documents

¢ defining atomic abstractions such dates, ip addresses, tand
urls using regular expressions,

identifying sequences, constants and enumerations,
delimiting tabular data and its headers,

relating different variants of a field to one another, and
introducing recursive descriptions.

Together this set of annotations is both convenient and gaive
and overall, the benefits of this new approach are numerous.

First, as in the PL approachesNAE provides the user with
great controlover the resulting description, when they want it. The
user can introduce meaningful, human-readable namedifidgre
correct atomic abstractions, and shape key parts of the geam
however they desire.

Second, again as in the PL approachesiNA is extremely
powerful For example, AINE easily supports tables and recursive
grammars even though identifying tables in text data is fcdif

commonly occurs when the data in question depends on some newmachine learning challenge [24, 28, 19] and learning casftee

basic format element — a new sort of date representatiofffeaetit
way of formatting phone numberstc. Humans draw upon their
worldly experience to identify, modularize, and espegjatlame
the new element effectively whereas theARNPADS algorithms
are often unable to tease apart the details of the new elefnoamt
the rest of the description and they certainly cannot ch@ossa-
sonable name for it. Hence, even thoughARNPADS, and other
systems like it, can certainly be improved, the overall apph has
some fundamental limitations.

3Naturally, if a lot of labelling is required of a machine learg approach,
then it too has a substantial startup time, perhaps eventmamehat of a PL
approach. A great deal depends upon the domain in which ggrbach is
used and the specifics of the approach itself.

grammars is even harder than the already-hard challengsaoi-
ing regular expressions.HARNPADS supports neither of these
features.

Third, as in the ML approachekess work is requiredf the pro-
grammer. Importantly, unannotated text in the surroundimgtext
is used to “fill in the blanks” left in a description using v@uis de-
fault mechanisms. This means that the programmer does met ha
to, and is not encouraged to, write the entire descriptiendé, in
some respects, MNE resembles a supervised learning approach ex-
cept that rather than using simple labels to identify im@ottdata,
ANNE uses more powerful, higher-level commands.

Fourth, the annotation language has small number of catstru
in it and, perhaps more subjectively, we find it is relativelysy
to use Ease of use comes from the fact that programmers can
stare directly at the text they are interested in and diyegthp an



207.136.97.49 - - [15/Cct/1997: 18: 46: 51 -0700]
207.136.97.49 - - [15/Cct/1997: 18: 46: 51 -0700]
pol ux. entel chile.net - - [15/Cct/1997:21:02: 07 -0700]
152.163. 207. 138 - - [15/Cct/1997:19: 06: 03 - 0700]
i p160. ri dgewood. nj . pub-i p. psi.net - -

"GET /turkey/amtyl.gif HTTP/1.0" 200 3013

"GET /turkey/clear.gif HTTP/1.0" 200 76

"GET /| atinam spoeadp. html HTTP/ 1. 0" 200 8540
"CGET /i mages/spot5.gif HTTP/1.0" 304 -

[ 15/ Cct/1997: 23: 45: 48 - 0700]

"GET /what snew. ht i HTTP/ 1. 0" 404 168

ppp31.igc.org - ammesty [16/Cct/1997:08:40: 11 -0700] "GET /nenbers/afreport.html HTTP/1.0" 200 450

Figure 1. Excerpt from the web server lagj . 3000.

annotation around it to capture it. There is no counting dfifier
the possibility of off-by-one errors. In this way, the systeupports
a “what-you-annotate-is-what-you-get” style of inteiant The
XML -generation tool provides immediate feedback and fatéiita
debugging.

In addition to designing and implementingNAE, we have
developed an elegant theory to explain its semantics. Heisry
is based aroundDEALIZED ANNE (IA for short), a idealized
core annotation calculus. The semantics of the 1A programgmi
process is given by a relation between annotated and uretedot
documents and the semantics of IA itself is given by functtoat
generates context-free grammars from annotated documents

In order to understand the capabilities of |A in greater tepte
prove a number of theorems that characterize the kinds afi-gra

mars that can be generated by our system. In doing so, we in-

troduce an interesting new set of relations, inspired bgvaice
logic [2], that more precisely define the relationship betwgen-
erated grammars and the data they describe. We use thesen®la
to prove important theorems concerning the expressiveofessr
system.

Contributions. To summarize, this paper makes a number of im-
portant contributions:

¢ We introduce a highly practical, new technique for generati
of format specifications from text data. We illustrate it us
a number of examples and evaluate its effectiveness.

We develop an idealized, core annotation calculus thaticept

2.1 A Web Server Log

Our first example involves the problem of processing a weteser
log. The log itself is presented in Figure 1. System admiaiets
query, transform and analyze logs just like this (and hudslref
variants thereof) as part of their day-to-day job of assesshe
health and security of the systems they oversee.

The Preamble. The first step in processing any log like this is to
edit the file at the top to add the following linés.

L #
#i ncl ude "systens. config"
I #

This step adds the preamble defined by thesfilst ens. confi g,
which is presented in Figure 2. A config file such as this is com-
posed of a series of lines with one regular expression difinger

line. Each line begins with eithetef or exp and is followed by

a name and a regular expression. Those lines beginningexith

will exportthe named regular expression so it can be used in de-
scribing formats. Those lines beginning willef provide alocal
definitionfor the name. A local definition can be used in subsequent
def s orexps but is not in scope in the rest of the file. Comment
lines begin with & symbol.

The syst ens. confi g file has been specially designed for
system administrators dealing with log files. Consequeittyon-
tains many basic data types of use to them including datessti
ip addresses, email addresses, urls and others. This caifagu

the key elements of our design. We give a semantics to the file will be of less use to computational biologists or finah@n-

calculus to describe how MNE programming and grammar
extraction works.

We introduce a secondary characterization ofNk based on

alysts or chemists, but each new domain can create its owof set
common, reusable data definitions to speed up data format con
struction.

concepts drawn from relevance logic. We use this secondary |ntroducing Non-terminals. The next step is to identify, describe

characterization to analyze the expressive power of ouesys

and give names to elements of interest in the file. For instaac

We have implemented the system and combined it with the sysadmin might start with the first line after the preamble begin
PADS language and compiler, allowing users of our system to to edit it as follows (though the annotation process cart atany
easily generate useable documentation along with a suite of place in the file that happens to be conveniént).

programming libraries and end-to-end data processingtool

In the following section of the paper, we explain our langeiag
design and how to use it in more detail. In section 3, we dgvelo
the syntax and semanticSs#ALIZED ANNE. In section 4, we intro-
duce our relevance analysis and use it to prove key theorbmg a
the expressiveness obEALIZED ANNE. In Section 5, we com-
ment further on our experiences usingu®e to generate format
specifications and evaluate its effectiveness relativetb manual
construction ofPADS formats and the grammar induction system
developed in earlier work [12]. Section 6 describes relatedk
and Section 7 concludes.

2. ANNE by Example

ANNE is a language and system for deriving grammatical specifi-
cations and text processing tools directly from example fites.

In this section, we will illustrate the basic functionality the lan-
guage through a number of examples.

{Record: 207.136.97.49 - - \
[15/ Cct/1997: 18: 46: 51 -0700] \
"GET /turkey/amtyl.gif HTTP/1.0" 200 3013}

Intuitively, the simple annotation{Nane: ... }) begins the
process of defining a scannerless context-free grarfirvathis

case, the portion of the grammar so-defined involves a simgte
terminal namedRecor d:

Record ::= ...

Moreover, since there are no other annotations to guide rmiam
generation, the system uses a simple default rule to gentrat

4We will be highlighting text added to the file using a grey bgwiund.

5To format lines within the boundaries of the narrewgpl anconf style,
we will break lines where necessary with a slash and contimera indented
two spaces on the next line.

6 Note that if braces {” and “}" already appear in the file, a command line
switch can alter the bracketing syntax.



Regul ar Expression

def trip [0-9][0-9][0-9]\|[0-9][0-9]\|[0-9]

def db [0-9][0-9]

def zone [+-][0-1][0-9]00

def anmpm am | AM | pn | PM

def str [ A Za-z] [ A-Za-z0-9_\-] *

def strl [0-9A-Za-z]+

def dom \({str1}\.\)+{stri}

exp Tinme {db}:{db}:{db}\ ([ ]*{anpni\)?\([ \t]+{zone}\)?
exp IP {trip}\.{trip}\.{trip}\.{trip}

exp Email {strl1}@ don}

Figure 2. Excerpt fromsyst ens. confi g

right-hand side — it assumes the desired right-hand sidsiinple
concatenation of basic tokens derived by running a defautrl
over the data enclosed in braces.

Record ::= Num’.’ NumWs ’'-" W5 '-’ WS '[’

In order to maintain predictability and ease-of-use, th@tdefault
tokens has been kept to the barest minimum. It includes nismbe
(Num- integer or floating point), punctuation symbadsq.,’ [ ' or
.7 or’']’, etc), words or d), and whitespaca/). The default
tokenization scheme can be overridden by extending themiriea
with new programmer-defined tokens expressed as regulae&xp
sions. However, doing so changes the tokenization glolatithe
entire file, which is not particularly useful here.

Using the Preamble. Instead of overriding the preamble, we will
take advantage of some of the regular expression definiiions
syst ens. confi g to further refine the grammar for tiRecor d
non-terminal:

{Record: {IP<: 207.136.97.49} - -\

[ {Date<: 15/ Cct/1997 } : {Tinme<: 18:46:51 -0700} ] \
"GET /turkey/amtyl.gif HTTP/1.0" 200 3013}

Above, we used several annotations with the fdidanme<:

} to introduce regular expressions naniéahre. For instance, we

identified an ip addres$ P), a date Dat e) and atimeTi ne). All

of these named regular expressions were introduced in #anpr

ble (by including their definitions frorsyst ens. confi g). Af-

ter this refinement, our generated grammar has the follofang.
IP::=
Date ::
Tine ::
Record ::

SIPVWS'-" Ws'-' W6 '[' Date':' Time ']’

The right-hand sides dfP, Dat e and Ti ne will be regular ex-
pressions defined by the preamble.

Annotations for Termination Symbols. The next refinement of
the grammar involves dealing with the strifgET /t ur key/
amtyl.gif HTTP/ 1. 0". In many applications, the internal
structure of this string might be irrelevant. If this is thase, one
could simply wrap the contents of the string with an annotatf
the form{Nane>: ... }. In this caseNane introduces another
non-terminal into the grammar and the greater-than sigitatels
that the extent of non-terminal’s reach is defined by a teatitig
character — the character that follows the close brace. idettee
annotation used in context:
{Record: {I P<:207. 136. 97.49} - - \

[ {Dat e<: 15/ Cct/ 1997} : { Ti me<: 18: 46: 51 - 0700}] \

" {Message>: GET /turkey/amtyl.gif HTTP/1.0} " \

200 3013}

In the text above, the annotation introduces the Message nonter-
minal and it's extent is terminated by a quotation symboklSa

token can easily be defined by a regular expression, but iexper
with the PADS data description language [10] confirms that this id-
iom is extremely common in all kinds of log files. Building ini$
shorthand is a nice programmer convenience.

Generating XML and Debugging Results. At this point, the
“programming burden” has been minimal. It consists of idahg

the preamble in the data source and writing five simple annota
tions, which mainly involve naming key parts of the data-isHall

the job of describing the data may have taken a minute or two. T
debug the work, one can invoke theNAE compiler, which will
generate a number of artifacts, includingapsdescription and an
XML parse tree of the data. Viewing theiL through a browser,
as shown in the screen shot in Figure 3, reveals that the gaamm
generated so far only covers a subset of the data in the filorecb
lines indicate lines covered by the generated grammar asyedr
out lines indicate lines that are uncovered. A quick exatrona

of the first greyed out line indicates that there is more Vemna

in the data file than had been apparent at first glance. Fdeiyna
generating a complete cover is relatively easy with justarfeore
annotations.

Introducing Alternatives. Alternatives can be introduced into the
grammar in several ways. The simplest way is merely to use-a pa
ticular non-terminal name repeatedly. We illustrate tleishhique
below by using the non-termin&i ze twice, once around an in-
teger (which represents the normal case — the number of bytes
turned by the server is reported properly) and once arduntl
(which represents the non-standard case of no data avgilabl

{Record: {| P<: 207. 136. 97. 49} - - \
[{Date<: 15/ Cct/1997}: { Ti me<: 18: 46: 51 -0700}] \
"{Message>: GET /turkey/amtyl.gif HTTP/1.0}" 200 \
{Si ze: 30131} }

152.163.207. 138 - - \
[ 15/ Cct/1997: 19: 06: 03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size: - }

Such annotations extend the grammar with a union of two oemor
options:

Num + °’

Size ::= -
IPWs -

Record :: = WS- W5 ... Size
An alternative technique is to use a collection of annotetiof the
form {Narme/ Nanel: ...} and{Narme/ Narme2: ...} and

{Name/ Nane3: ...}, etc.as follows.

{Record: {| P<: 207. 136. 97. 49} - - \
[{Date<: 15/ Cct/1997}: { Ti me<: 18: 46: 51 -0700}] \
"{Message>: GET /turkey/amtyl.gif HTTP/1.0}" 200 \
{Si ze/S: 3013 }}

152.163.207.138 - - \
[ 15/ Cct/1997: 19: 06: 03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size/Dash: - }

This technique names the alternatives and generates theifod
equivalent grammar.

S ::= Num

Dash ::="-’

Size ::= S + Dash

Record ::= IPWs'-" W6 '-' WS ... Size

One reason to use the more verbose form with named alteesativ
is that it will generate a nicepPADS/ML description for the user —
one that uses datatype descriptions with well-named aactsits
(See Section 2.3).

There is one other detail to consider when it comes to alter-
natives: the most concise grammar is sometimes one in which a
ternatives overlappADS, and many other systems, use prioritized
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Figure 3. View of generateckmL after partial data description.

choice to disambiguate between overlapping alternativeSNNE,
priorities may be specified as integers using a syntax wadim
{Nanel/ Nane2[ priority]}.

Constants and Enumerations.  So far, the message in quotations

has been treated as an uninterpreted string rather than a sem

structured subdocument. To begin to break the string dowe, o
may want to specify that it always begins with the keywQHIT.
To generate a grammar that specifies this constraint, assegdo
the more liberal grammar that allows any word in that positiane
uses an equality annotatigiNane=. . . } or it's unnamed variant
{=. .. } asin the following example.

{Record: {I P<: 207. 136. 97. 49} - - \
[{ Dat e<: 15/ Cct/ 1997} : { Ti me<: 18: 46: 51 - 0700}] \
" {=CGET} {Message>:/turkey/amtyl.gif HTTP/1.0}" \
200 {Size/S:3013}}

On the other hand, however, after a round of debugging, ogétmi
notice that not all such strings begin wiBET — there are a small
number of other keywords such strings can begin wathit, POST,
HEAD, DELETE, LI NK, and UNLI NK. To generate a grammar
involving the list of keywords that actually appears in tfiig,
one can use an enumeration annotation. An enumeration tiemri
as{Nane/ / enunp: . .. }. It generates an initial grammar in the
same way that ouMessage specification generates a grammar
(by looking for a terminating symbol). That initial gramniamused

to parse the document at hand and collect all strings thathnthe

spec in the document. The final grammar is one defined using the

instances that match. For instance, we might annotate aunjgie
as follows.

{Record: {I P<: 207. 136. 97. 49} - - \
[{Dat e<: 15/ Qct/ 1997} : { Ti me<: 18: 46: 51 -0700}] \
" {Method//enum CGET} \
{Message>:/turkey/amtyl.gif HTTP/1.0}" 200 \
{Si ze/ S: 3013} }

If the web log contains examples BUT and POST in addition to
GET, the following grammar fragment will be generated.

Method ::= 'GET' + 'PUT + ' POST
Record ::= 1P ... "\"" Method W5 ...

Finishing up the Web Log Example. With just a few more an-
notations, the web log annotation job is complete. In totaljas
necessary to add the preamble and annotate four lines offtende
of the four lines only required annotating one bit of datae Whole
process might have taken five minutes. The resulting aremfde
and generated grammar are presented in Figure 4. Noticédyhat
default, the top-level non-terminal symbolSsur ce and that the
top-level grammatical rule is as follows.

Source ::= Record (NL Record)*

Annotated Web Log:

I #

#i ncl ude "systens. config"

1 #

{Record: { Sender: {I P<:207.136.97.49}} - {ID -} \
[ {Date<: 15/ Qct/1997 } : {Ti me<: 18:46:51 -0700} ] \
" {Method//enum CET } \

{Message>: /turkey/amtyl.gif HITP/1.0} " \
200 {Size/S: 3013 }}

{ Sender : { Host nanme<: pol ux. entelchile.net }} - -\
[ 15/ Cct/1997: 21: 02: 07 -0700] \
"GET /| atinanm spoeadp. html HTTP/1.0" 200 8540
152. 163. 207. 138 - - \
[ 15/ Qct/1997: 19: 06: 03 -0700] \
"CGET /images/spot5.gif HTTP/1.0" 304 \

{Si ze/ Dash: - }
bbbSl. igc.org - {ID: amesty} \
[16/ Cct/1997: 08: 40: 11 -0700] \
"GET / menbers/afreport. htm HTTP/ 1. 0" 200 450

Generated Grammar:

IP =

Hostnane ::== ...

Date ::=

Time ::= ...

Method ::='"GET" + 'PUT" + ' POST

Message ::= ...

S ::= Num

Dash ::="-"’

Size ::= S + Dash

Sender ::= | P + Hostnanme

Record::=IPV\8 - WS Sender W8
[’ Date ':' Time ']’ WS
"\"" Method WS Message '\"’' WS
Num WS Si ze

Source ::= Record (NL Record)*

Figure 4. Web Log Annotations and Generated Grammar. Regular
expression definitions of IP, Hosthame, Date, etc. are ethitt

In the line aboveNL is the newline character and the asterisk
is the familiar Kleene star. In other words, the entire seuga
sequence dRecor ds separated by newline characters. In general,
a programmer can create annotatations for any number détap-
items, which may be line-by-line descriptions or tables] AmNE

will produce a top-level grammar with the form

Source ::= (lteml+...+ltenk) (NL (lteml+. ..+l tenk))*



{E#h: Name GP Coals Assists Points +/-
Jason Bl ake, 78 25 38 63 -2

Al exei Poni kar ovsky, 82 23 38 61 6

o)

Name GP GCoals Assists Points +/-

Al exander Ovechki n, 79 56 54 110 10
82 22 66 88 3

Ni ckl as Backstrom

Figure 5. Fragment of an annotated document containing NHL
player statistics from the 2008-2009 season, one tablesper.t

2.2 Additional Language Features

The web log document discussed in the previous subsectimeis
example of the sort of ad hoc data source thaig was designed
to service. It used a good number of different kinds of antiarta,
but there are a number of other features of the language jwirc
describe more briefly in this section.

Repetition. The web log had an implicit, repeated structure at the
top-level, but no internal repetition. Many other ad hoaddés do.

To generate a grammar with a repeated sequence of items,ane m
use a starred annotation as in the following pipe-separaiatber
sequence, which is drawn from one of our data sources:

{Record[|]: 9152271| 9152271| 1| 0] 0] 0] 0| ... }

In the annotation aboveRecor d names a part of a grammar
involving a sequence of items in which each item is separated
by a’ | ' symbol. By default, if there are no further annotations,
the record element structure will be any character sequente
including the separator.

NoBar ::
Record :

::' .('NoBar (']’ NoBar)=*)?
Alternatively, the record elements can be specified exaging
the syntax{Nanmel/ Nane2*[ sep] : ...}, as in the following
example.
{Record/ El em[|]:
0/0j0]0f...}

9152271 {Elenfint]: 9152271/} | 1] \

The separator (defined in square brackets prior to the cadaop-
tional and, if desired, the programmer can add an optiomalitex-
tor string.

Optional data. Optional data occurs often. The annotat{dane?:
... } definesNan® to either be formatted as the grammar gener-
ated by “ . . " or the empty string.

Tables. The last important feature of MNE involves tables. Even
though tables can be specified using concatenation and &tan

it is worthwhile building specicial support for them as thegypear

frequently. Identifying tables is a useful programmer aarience

and also makes it easier to generate a good query interfatleefo
data.

Figure 5 shows a small portion of a document containing a se-
ries of tables describing NHL player statistics, with oneléaper
NHL team. Hockey aficionados use such data regularly to céenpu
player values and argue important points such as “Is Crosty b
ter than Ovechkin?” or “Was John Ferguson Junior the worsfd e
GM since the early 80s?” Tables such as the ones displayed her
often have a header row followed by some number of rows with
a fixed number of columns. UsingNNE, deriving a grammar for
such a table simply involves using one of the hash annotgtigin
ther {Nane#: ...} or {Name#h: ...}. Theh inthe second
variant indicates that the table has a header row that viarstsuc-
ture from the table data. The number and structure of thenwodu

ptype | P = Pstring_Mg(...)
ptype Hostname = Pstring_MgE(...)
ptype Date = Pstring_Mg(...)
ptype Time = Pstring_Mg(...)
ptype Message = Pstring_Me(...)
ptype Size =

S of Num
| Dash of

ptype Sender
IP of IP
| Hostnane of Hostnane

ptype Record
IP* Wo « - « WS » Sender » WS

* [ «» Date * ':' * Time x ']’

* Wo » "\"’ x Message *» '\"’ * WS x Int * Size

ptype Source = Record plist(No_sep, No_term

Figure 6. PADS/ML description generated from annotated web log.
Regular expression definitions of IP, Hostnaete, are omitted.

is determined by counting the number of each sort of tokervin e
ery line. If some tokernt appearsk times in every line then there
arek + 1 columns and serves as the separator between columns.
If more than one token satisfies this property, one such tikse-
lected heuristically (tokens that serve frequently as ispes such

as tab, comma, and vertical bar are prioritized). HoweVer,{dro-
grammer is free to specify the separator in question exjpliasing
square braces as in the Kleene star annotations.

Assertions.  In a number of situations, and particularly when data
is recursive, it is useful for a programmer to be able to dgbet
some part of the data satisfies a non-terminal definition awith
going to the trouble of annotating all its subparts. We alkaeh

}. For
example, given a simple string of paratheses suclf @6(¢))))

the simplest way to annotate the data is as follows.

{Parens?: ( {Parens!: ((())) }) }
This annotation scheme will give rise to the following graarm
= (0

Par ens Parens ')’)?

2.3 GeneratingPADS Descriptions

In the previous subsection, we explained the semantics @f th
ANNE language by presenting the context-free grammars that are
generated from each annotation scheme. These contexgrrae
mars are used to parse the data source and generataLaparse
tree that can be viewed through a broswer or processed using a
one of a number oML -based tools, languages or libraries.

In addition to generating structuredvL, an ANNE mark-up
will also generate ®ADS description [10, 11, 21]. TheADS de-
scription language uses augmented type declarations tilbes
the syntactic structure of a document as well as the progiagm
language data structures one generates by parsing the dotum
Figure 6 shows theaDs description generated from the annotated
web log presented in Figure 4.

A pADsdescription such as the one in Figure 6 can serve as per-
manent executable documentation for the data source. laksan
be used to generate a variety of libraries such as parserg; pr
ers, and traversal functions for processing other datacssuwith
the same format. Finally, theaps compiler can link generated li-
braries against various generic tools including a quenjren{f],
data synchronization engine [8], and various format tratioss.
Consequently, while using NE is a quick and simple process, the
result of this minimal bit of labour is an enduring piece ofian-



Regular Expressions:
b == e€lc|bb]|---

Annotated Documents:
ad == v|adiads...ady | {ad} | {[b] : v} | {A: ad}
| {A/inl:ad} | {A/inr : ad}
| {A/Aciem* : ad} | {A/Aciem*o i}

Figure 7. IDEALIZED ANNE documents.

Non-terminal Clauses:
s w= b|A|s1-s2:... 5n

Non-terminal Right-hand Sides:
r n= s s1ts2|?THs2|s1+7| Ax| Axo

Non-terminal Definitions:

G z= [J|GA=r"]
Grammars:
gram = (A,G)

Figure 8. Grammar Syntax.

readable documentation (tlkeDs description) and a valuable col-
lection of reusable tools.

3. |IDEALIZED ANNE

The previous section introducedNAE through a series of exam-
ples, but did not answer any general questions about theipiés
involved in the language design: What do these annotati@anfm

What grammars do they generate? When do we have sufficient dat

to generate a particular grammar? In this section, we makeeso
initial headway towards answering these more general iqumsst
by defining the syntax and semantics bElLIZED ANNE (l1A), a
simplified variant of the full AINE language that encapsulates its
essential features.

3.1

In the following formal work, we will letc range over characters
while v andw range over strings (oumannotated documentd\Ve
let “” denote the empty string andv2 denote the concatenation
of two strings. Meta-variablel ranges over non-terminal hames
and b ranges over regular expressions. We wiiléh) to denote
the language of regular expressibnRegular expressions with an
empty language are prohibited.

IDEALIZED ANNE Syntax and Programming

Syntax. The syntax ofannotated documents defined in Fig-
ure 7. An annotated document may either be unannotatedr(
a sequence of annotated documents ¢d-...ad, ). Other annota-
tions include the following.

¢ {ad} identifies a subdocument

e {[b] : v} identifies the datas as inhabiting the language of
regular expressiob.

e {A : ad} assigns a non-terminal to the format inferred from
annotated subdocumednd.

e {A/inl : ad} and{A/inr : ad} introduce the left- and right-
hand elements of a union respectively

o {A/Aciem* : ad} introduces a repetition named with ele-
ments named ;... Subdocumentd is used to inferd iem .

7= (anong
v; — ad; i=1.n
(a-con)
V1V2...0n — adiads...ad,
v — ad v € L(b)
Y (ad} (a-group) P TE R 0l - o] (a-re)
v — ad
———— (a-ham
v—{A:ad} ( ¢
v — ad i v — ad .
a-in a-inr
v — {A/inl : ad} ( ) v — {A/inr : ad} ( )
v —ad

v — {A/Actem* : ad} (a-rep)

S LA Ao ) (a-rep-empty

Figure 9. Document annotation.

to simplify certain inductive proofs. It need not be used by-p
grammers.

The programming process. In order to use DEALIZED ANNE, a
programmer need simply apply some collection of annotation
their data. This programming process is formalized by adumaignt
writtenv — ad, which relates an unannotated document any
one of its annotated variantgl. Figure 9 presents the annotation
rules. For instance, rulea{nong says that annotating a document
can involve doing nothing. Ruleafcon says that annotating a
document can involve subdividing the document into arhlfra
many subpieces, each of which is recursively annotated.ofll
the other rules simply wrap one of the particular annotaf@ms
around a subdocument (usually after recursively annajatire
subdocument).

3.2 Grammars

Syntax. The purpose of DEALIZED ANNE is to generate gram-
mars of the form given in Figure 8. Reading from the bottomhef t
figure towards the top, one sees that a grammar is a pair ofta sta
non-terminalA and finite partial maj from non-terminal names

to right-hand sides. A right-hand side may be a clayygeunion of
clauses {; + s2) or a repetition of some non-termindk. A right-
hand side may also be one of thigatial right-hand sides: {+ s)

or (s + 7) or Axq (other right-hand sides are calledmpletg. Intu-
itively, the ? symbol represents a missing part of the grammar, and
both ? and o symbols indicate that no underlying data is recog-
nized by that part of the grammar. Partial right-hand sidgsear
during the course of constructing a grammar (or inductivelthe
midst of our proofs), but should not appear in any final resiilt
clause §) is either a regular expressiob){a non-terminal 4), or

a sequence of clauses. . . sn.

Semantics. The semantics of grammars is defined by the judge-
ment- v € gram, which depends upon judgemer@is- v € r
andG ¢ v € s. Intuitively, the latter two may be read “stringis

{A/Aciem=o :} is a related annotation, added to the calculus in the language of (or s) when non-terminals are defined &y’



GFveEs

v e L(b) G(A)=r Gruover
Grroep @1 Grrvea  (@Mam9
GFCuv; € sy i=1..n (g-con)

GFCv1v2...0n € 81 -82 ... - Sn 9
GHves
GruveEs (g-clausg
GFv1 € 81 GFCoy € 59
Ghuv €s1+7 (g-sum]) GFuvy €74 s9 (g-suma
GFov € 51 GFoy € 59
Gk v € 514+ 59 (gsum3 Gk vy € 514+ 59 (gsum£}
GFev; €A i=1..n (g-rep) (g-rep-emp
GF oroaon € Ax 9P T w g, (9T
GFve A
_— -gram
Fue (A (Goam

Figure 10. Semantics of Grammars.

The rules defining this judgement are presented in Figurady
of these rules are self-explanatory. For instance, guf@amestates
that a string is in the language df provided it is in the language
of its defining right-hand side. In rulg-rep, a sequence of strings
is recognized. In a slight abuse of notation, we allewo be 0, in
which case we interpret the rule to say that the repetitiongaizes
the empty string.

The only unusual rules are the rules for the partial rightéha
sides. The rules for partial unions+ ? and ? + s state a value
is in their language provided it is in the known alternativeThe
rule for partial repetitionsixo states that the empty string is in its
language.

3.3 Grammar Extraction

Once a document has been annotated, HEALIZED ANNE run
time system can extract a grammar from it. This extracti@mtess
is implemented by recursively traversing the annotatedidmmt
and extracting partial grammars from the subpieces. A firaing
mar results fronfusing(i.e., combining in a special way) collec-
tions of partial grammars.

We will define the fusion relation (writte@; & G2) in a mo-
ment, but first we will direct the reader’s attention to Figulrl,
which presents the grammar extraction function itself.sThinc-
tion, writtenad ~~ (s, G), analyzes annotated document and
generates a clauseas well as partial grammas to describe it.

The first rule in the extraction definitiop{nong explains how
unannotated data will generate a description. This ocaufinbing
a sequence of regular expressions that matches the datse The
regular expressions are drawn from tihefault setD. The default
set for our implementation contains basic tokens such asatsn
words, whitespace and punctuation symbols. The choicefatitie
is unimportant in the theory.

ad ~~ (37G)
v €LMB:) b;eED  i=1lmn
V1V2...0p ~ (b1 - b2+ .o b, []) (p-nong
ad; ~ (SivGi) i=1.n
adiads...ad, ~ (31 ©82 ... Sn, GG .. Gn) (p-con)
d~(s6) v e L(b) _
= 56 "I - en
ad ~~ (37 G)
e~ (AGo[A=y) PMme
ady ~ (s1,G1) "
{A/inl : adi} ~ (A,G1 @ [A = 514+ 7)) (p-inl)
ads ~ (327 Gg) .
{A/in’l‘:adg}w (A7G2@[A:7—|—32]) (p-lnl’)
ad ~ (s,G)
{A/Aciem* : ad} ~ (A, G®[A = Aciem*]) (p-rep)
(p-rep-emp

{A/Aelem*() :} ~ (A7 [A = Aelem*O])

Figure 11. Grammar Extraction.

The next rule p-cor) explains how to handle a sequence of an-
notated subdocuments. In this case, each subdocumentygeha
recursively, producing a clause and a right-hand side. &beltis a
concatenation of clauses and a grammar formed by fusinghtege
the generated subgrammars.

Many of the other rules should now be relatively self-explany.
However, the reader should take note of rulpsn]) and @-inr),
as these rules are primary points where partial grammargeme
erated. Notice in particular that rulp-{nl) infers the shape of the
left-hand side of a union from its subdocument, but has norinf
mation about the right-hand side and hence leakés its place.
Rule (p-inr) behaves in a complementary fashion.

Grammar fusion. Intuitively, fusing two right-hand sides to-
gether involves eliminating thé symbols and replacing them with
real grammar parts. For instance, fusifig + 7) with (7 + s2)
results in(s1 + s2). Fusing two grammars together involves tak-
ing the union of the disjoint grammar parts and fusing togeth
the right-hand sides of the overlapping grammar parts. More
mally, the right-hand side fusion relationn @ r; is defined as the
symmetric closure of the following rules.

ror = r
(5147 D (?+s2) = s1+s2
(s1+82)D(s1+?7) = s1+s2
(s1+s52)®(?7+s2) = s1+52
Ax @ Axg = Ax

Given the right-hand side fusion, we define the fusion of twang
marsG; @ G as follows.D(G) denotes the domain of gramm@ar



(i.e.,the set of defined non-terminals).

Gi1(A4) if Ae D(Gy)andA ¢ D(Gz)
Gz2(A) if Ae D(G2)andA ¢ D(G1)
G1(A) ® G2(A)if A e D(G1) andA € D(Gz)

Finally, the fusion of two grammars with the same start syinbo
(A,G1) @ (A, Gz), is defined to bé A, G1 @ G2).

Gl@GQ(A) =

4. IDEALIZED ANNE Properties

Now that we have defined the semantics DEALIZED ANNE,
we can answer some important questions about its propentiés
expressive power. For instance, suppose one has some tizda
inhabits the language of a grammaram, is it the case that one
can annotate in such a way as to extragtram? Unfortunately,
the answer to this question is no. The simplest counter-pi@am

involves choosing the empty string as the data and a grammar GF

(A,[A = ¢ + Num]) as the target to extract. There is no way
to annotate the empty string to enable generation of the sigle
of the union. Since the answer to our first question m@® natural

follow-up is to ask what properties data needs to have inrorde

to extract a particular grammar from it. To answer this qoest
we develop a new analysis inspired by relevance logic. Thig n
analysis helps us give a more precise accounting of theaesdtip

between data and the grammars that can be extracted from them

4.1 Relevance Analysis

Relevance Logi¢2] is a well-known substructural logic that re-
quires every hypothesis hesed at least oncduring the course of
a proof. Interestingly, a very similar idea can be used taieng
value is able to generate a particular grammar: each gramrtegr
and all of its subparts, must also bged at least onc@ the deriva-
tion that a string belongs to the grammar.

Based on this intuition, we have developetkevance analysis
that directly relates grammars to the values that can gentram.
The central judgements for this analysis have the fG@rm,..; v €
randG . v € s. These judgements affirm that all elements of
G are used during the course of proving thais an element of:
ands respectively. A third judgemenit,..; v € gram, affirms that
all elements ofyram are used during the course of provings in

gram. Figure 12 presents the inference rules for these judgesment

Rule -re) provides an example of how these rules work. It
states thav is recognized by provided it is in£(b). Moreover,

this rule uses no parts of a grammar. Hence, the grammar to the

left of the turnstyle must be empty. Rule-famé states that ifG

is used in recognizing that belongs tor thenG & [A = r] is
used in recognizing that belongs toA. Rule -con states that

if G1 throughG,, are used in recognizing to s,, then the fusion
of these grammars is used to recognize the concatenatidmeof t
clauses.

It is also important to observe how the unions work. In partic
lar, there are rulesstsum) and g-sum2to explain what the partial
right-hand sides? + s ands + 7 use, but there are no rules for the
complete right-hand side; + s2. This is because no derivation
can use both the left-hand side and the right-hand side ofanun
simultaneously.

The rules for repetitions are also interesting. Notice thatrule
(e-rep is constrained so thais greater tha. This guarantees that
the underlying element grammar is used. The ralegp-emptyis
for the situation in which the empty string matches an iteratThe
entire reason for including the right-hand side, is to distinguish
this case in which the underlying element type is not used.

Our relevance analysis may be viewed as a relevance logic

primarily because the structural rules forchangendcontraction
are admissable buteakenings not.

v € L(b) Grr,qUvEr
-— (e-Ie e-nam
[]}—f.elveb( ) G@[A:r]l—ﬁelveA( ¢
Gi Ff‘el Vi € 84 1=1.n (e cor)
GG d...0G, FS vive..Uy € 8182+ ... " Sp,
GFvEs
—=—— (e-claus
Gl v €Es ( e
Ghig v € 51 GFio v2 € s2
—  (e-sum —_— (e-sum
rel V1 € 81+ 7 ( ) Ghlrev2 €7+ 52 ( 2
GiFigquvieA i=1l.n n>0
(e-rep

Gl @ G2 @ @ Gn Frel V1V2...Un € A*

(e-rep-empty

[] l_'rel “ S A*O
G }_r'el v E A
—F  (e-gra
v e (4,6 (&AM

Figure 12. Relevance analysis.

Lemma 1 (Exchange)
i IfG@[A=ra]®[B=rB|®Gati, veEsthen
Gi®[B=rp|®[A=r4]® G2ty v Es.
ii. IfGi[A=ral|®[B=rB|® Gz Fre v €rthen
Gi@[B=re)|®[A=ra]l®GatraqveEr.

Lemma 2 (Contraction)
i IfGF.,vesthenGE Gl v €Es.

i If GhrgqqverthenGe Gh,qver.

4.2 Relevant Properties.

The first main property of the relevance analysis is that sioisnd
with respect to ordinary grammar recognition. The proof s b
induction on the structure of the relevance judgement.

Theorem 3 (Relevance soundness.)
Ifre v € gram thent- v € gram.

A second important property is that the relevance analypis
proximatesthe ordinary grammar recognition relation in the fol-
lowing sense. We say that one right-hand sideis an approx-
imation of another right-hand side provided that there exists
yet another right-hand side; such thatr = r; @ r2. Likewise,
G, is an approximation ofz provided there exist&2 such that
G = G; @ Go. Finally, gram, is an approximation ofram pro-
vided there existgrams such thatgram = grami @ grams.
We writer; < r whenr; is an approximation of. We use sim-
ilar notation forG and gram. With these definitions in hand, the
approximation theorem is stated as follows.



Theorem 4 (Relevance approximates recognition.)
If v € gram, then there existgram: such thagrami < gram
andt,..; v € grami.

The proof of soundness is by induction on the structure of the
grammar recognition judgement.

The soundness and approximation theorems for our relevance
analysis implies it is tightly connected to ordinary granmmexog-
nition. However, the real interest in relevance analysesnst from
the following essential property: if a grammar is relevanatstring
then a programmer can usedALIZED ANNE to extract that gram-
mar from the string.

Theorem 5 (Relevance implies grammar extraction.)
i. If G ki, v € s, then there existad such thay — ad and
ad ~ (s,G);
. If G ke v € 7, then for anyA, there existaid such that
v — ad andad ~ (A,G @ [A =T7]).
If Fret v € gram, then there existad such thaty — ad and
ad ~» gram.

fii.

Partsi andii are proven by simultaneous induction on the the
derivations ofG ., v € sandG F,. v € r. Partiii follows
from partii. Moreover, by combining Theorems 5 with 3 and 4, we
obtain the following corollary, which states that for aninhabiting

a grammamgram, |IDEALIZED ANNE can generate a grammar for
v that approximategram.

Corollary 6 (Single datum grammar extraction.)
If - v € gram, then there existad such thatv — ad and
ad ~ gram' and- v € gram’ andgram’ < gram.

The grammar extraction theorem above states properties of a
single string, butbEALIZED ANNE can sometimes do more for us
when there is more that one string to annotate. To make tk& id
precise, we first define what it means to extract a grammar rom
collection of strings.

Definition 7 (Collective Extraction.)
For grammagram = (A, G) and data , vz, ..., Uk,
V1,02, ..., U~ gram iff there existsady, ..., ady, such that

o v; —ad;, foralli=1,... k;
e ad; ~ (si,G;) foralli =1, ..., k;
e G PGB ...H» G, =0G.

Next, we present the following theorem, which extends Gorol
lary 6 to collections of data items.

Theorem 8 (Sound collective extraction.)

Given some data; , va, ..., vk, if F v; € gram for all i, then there
existsgram’ such that ,va, ..., vy ~ gram’ and- v; € gram’
andgram’ < gram.

Finally, we give sufficient conditions under which some ecll
tion of data iscompletefor extracting a particular grammar. Intu-
itively, the collection is complete when a grammar can bédeie
up into pieces and each piecerédevantto some element of the
collection.

Definition 9 (Data is complete for a grammar.)
v1, V2, ...v% IS complete foyram if there exists
gramai, grames, ..., gramy, such that

oy v; € gram; foralli=1,... k, and

® grami © grams @ ... © gramy = gram

| Data Source [| #Annots | # Lines | Time(min) |

1967Transactions 6 1 5
ai.3000 14 4 10
yum.txt 6 1 15
rpmpkgs 2 1 1
railroad.txt 10 4 10
dibbler.1000 6 3 5
asl.log 7 2 5
scrollkeeper.log 4 1 3
pagelog 5 1 5
MER_T01.01.csv 1 1 1
crashreporter.log 4 1 3
Is-I 4 2 5
windowserverlast 5 1 10
netstat-an 10 3 10
boot.txt 7 1 5
quarterlyincome 3 2 5
corald.log.head 3 2 5
irvpivl.sel 7 1 15
latitude. txt 10 3 15

Table 1. Number of annotations, lines touched and time taken to
construct descriptions usingNNE.

Theorem 10 (Complete data enables full grammar extractior).
If v1,v2, ..., vk is complete fogram thenvy, va, ..., vk ~> gram.

To summarize, Theorem 10 may be interpreted as giving pro-
grammers sufficient conditiong€.,data completeness) for extract-
ing a particular context-free grammar from a data set. Tér®o8,
on the other hand, states that no matter what data one haadn ha
one can extract aapproximationof any grammar for that data.

One final observation is that some grammars do not laanye
complete data sets. In particular, empty grammars or grasma
with empty subcomponents such as the gramridrgA = A]) or
(A, [A =int + B, B = B]) do not have complete data. Likewise,
grammars with disconnected non-terminals do not have cetepl
data. DEALIZED ANNE cannot generate grammars with empty
subcomponents, but it can sometimes generate grammarsligith
connected non-terminals. The latter can occur if the diseoted
non-terminal describes some fragment of the data that isdds
scribed by some other connected non-terminal.

5. Evaluation

We conducted a series of experiments to compare USIRGEA
against the process of writingADs descriptions by hand and
against the process of learning descriptions automaficaing
LEARNPADS [12]. When comparing ANE with hand-written de-
scriptions, we focused on the time and efforts users desticat
creating descriptions; when comparinguRe with the LEARN-
PADS system, we focus on the readability and compactness of
descriptions. Our benchmark formats include 19 differehtac
data sources, drawn mainly from various different kindsystem
logs. The same benchmarks have been used previously tatvalu
the effectiveness afabsand its variants [12]. Those readers inter-
ested in the specifics can find the benchmarks on the web [26]. A
experiments were performed on a Dell desktop with two 2.8 GH
Intel Pentium Processors and 1 GB memory, running Fedora Cor
release 9.

Comparison with hand-written descriptions. In the first set of
experiments, we measured the time and effort spent conisiguc
descriptions using ANE For each benchmark, table 1 shows the
total number of annotations the programmer needed to agtstr
the description (# annots), the total number of lines thatewe



Data source Type Complexity || Desc. Size
A ] L ATL
1967Transactions|| 52 175 13 | 26
ai.3000 328 437 56 | 47
yum.txt* 84 640 17 | 74
rpmpkgs* 7 314 4 70
railroad.txt * 89 975 28 | 150
dibbler.1000 76 85 21 | 25
asl.log 551 1545 78 | 102
scrollkeeper.log 44 372 8 14
pagelog 206 729 23 | 22
MER_T01.01.csv 96 211 22 | 12
crashreporter.log *| 105 973 16 | 63
Is-I* 195 721 25 | 80
windowserverlast || 148 85 24 11
netstat-an 822 1324 57 | 138
boot.txt* 98 944 19 | 123
quarterlyincome 520 579 86 | 87
corald.log.head 793 1094 106 | 71
irvpivl.sel* 284 1334 44 ] 130
latitude. txt* 140 500 11 | 77

Table 2. ANNE (A) vs. LEARNPADS (L): Type complexity in
bits and description size in lines. Asterisks indicate niegful
qualitative differences in the performance of the two syste

annotated (# lines) and the approximate time in minutes Her t
user to complete the description. The number of annotatitiths
not include the preamble or the regular expressions deflreréin.

The table shows that for most of our benchmarks, the user
needed to insert anywhere from 1 to 14 annotations (with the

median being 5). On average, the user was required to aendtat
or 4 lines of data. The time taken varied between 5 and 15 ménut
In contrast, a previous study [12] of the time taken to wrhe t

same descriptions by hand showed users with some experienc
spent anywhere from 1/2 an hour to an hour or two. Part of the

reason users would take longer to write descriptions by hHand
that they can add additional information in the form of coaisits
— something that is not supported bynKE right now. However,
another good part of the reason is simply thatME is easier to
use.

Comparison with LEARNPADS. The second set of experiments,
presented in Table 2, compares the compactness of desnspti
generated by ANE vs. LEARNPADS. This table presents two
metrics: thetype complexityof the resulting description and the
number of lines of the resulting description when printelde Type
complexity measures the number of bits it would take to eacod
the syntax of thePADS description. It is one of the metrics that
the LEARNPADS system optimizes for. The number of lines of the
resulting description is simply the number of lines of outfrom
the respective pretty printers.

Differences of 20% or so are usually meaningless in thistabl
On the other hand, differences on the order of a factor of Daré
quite meaningful — we placed asterisks in Table 2 to inditdadse
formats for which the differences between the results prediby
ANNE and those by EARNPADS were significant. These signif-
icant differences occur for several reasons, but perhapsribst
pervasive is that the performance cEARNPADS is quite sensitive
to the set of basic tokens (definitions of times, dates, ipesids,
etc) that it starts out with. When the data is defined using uganti
ipated token types, EARNPADS often winds up learning terribly
complex grammars in an attempt to compensate. TReApro-
grammer, on the other hand, can adapt much more easily byhgaki
a slight adjustment in the preamble.

Notice that in one case, thei ndowser ver _| ast bench-
mark, the LEARNPADS system produces a much smaller descrip-
tion than ANNE. This occurs becauselARNPADS uses a heuris-
tic to simplify grammars, and in this case, it over-simp#fielimi-
nating some useful information about the format. The progrer
could have produced an equally simple description usimN&
had they chosen to do so.

6. Related Work

ANNE was designed to improve the productivity of data analysts by
providing a quick, simple way to generate documentationdate
processing tools for an ad hoc data source given the avitijabi
of example data. Many of its commands are directly inspired b
the design of domain-specific languages and language @tsns
such asPADS [10, 11, 21],DATASCRIPT[4], PACKETTYPES[23],
Demeter [20]BINPAC [27] and Erlang binaries [32, 15].

Some of these languages suctPasKETTYPES DATASCRIPT,
BINPAC, and Erlang binaries are designed specifically to work
with binary data. In theory, a variant of MNE could work with
binary data, but it seems unlikely that it would be particiyla
effective — ANNE will only work well when a human can stare at
a data source, uncover it’s structure, and add annotatioptace.
Visually uncovering the format of a binary data source andiragl
annotations to it does not seem plausible.

When it comes to the domain of semi-structured text data,
ANNE provides an alternative to writing format specificationkg(
PADSspecifications) by hand. The main advantage mfu& comes
in its ease-of-use and ability to fill in details such as sefuas,
terminating characters, and members of an enumerationmatto
ically. Having a machine fill in such details is both more cenv
nient and less error-prone than manually constructing #eiip-
tion. One limitation of ANNE right now is that it does not support
the full range ofPADS features. In particular, it is missing depen-
dency and constraints. We believe the overaliNk framework can

eSupport these features; we are currently working on extendur

theory and implementation to include them.

Potter's Wheel [29] is another system with some similasitie
to to ANNE in that it supports an interactive process to manage,
clean and transform data. UnlikeNAE, it uses a spreadsheet-style
interface to represent classical relational data and #s$igdo help
users detect errors and transform data to make it ready @ loa
into a commercial database. Whereas Potter's Wheel isdihib
managing relational tables,NNE is designed for a broader range
of context-free grammars. Whereas Potter's Wheel is arherfly
interactive transformation system,NAE is a descriptive system
that produces documentation and programming tools for lete.

Whereas Potter's Wheel operates over relational data, many
other data cleaning and transformation systems operatexaoue.

For example, SchemaScope [5] is a powerful new tool develope
by Bex, Neven and Vansummeren to inferdbs andxmL Schemas
from unknownxmL documents and to visualize and edit exist-
ing schema. The inference mechanisms used in SchemaScope
are highly effective as they are tuned to common propertfes o
DTDS [22]. Unfortunately, the grammar inference problem foc ho
data sources is substantially different from the schemerémice
problem forxmL in part because the basic tokenization problem
for ad hoc data is so ambiguous — there is no standard tagtbase
syntax to delineate different parts of an ad hoc documentth@n
contrary, ANNE was created to provide a means for programmers
to delineate and disambiguate elements of their data saurce

The machine learning community has developed a number of
tools that performwrapper induction where awrapperis a pro-
gram that can extract information from designated “slots”ai
document or set of documents. Two examples of such work are
Kushmerick’'s HLRT induction system [18, 17] and Soderland’



Whisk system [30]. One high-level difference between aesyst
like Whisk and one like AINE or PADS is that Whisk is designed
to work on data with very little regular structure. For exde)p
the working example in Soderland’s paper involved extmacnf
features such as price and location from Craigslist apartrad-
vertisements. Such advertisements are pseudo-Englishsbéund
have much less structure than web logs, for instance. Hevttis
Whisk and similar systems can be effective at solving thestite
in a haystack” problem, they are not designed to produce itk k
of documentation or programming tools thatiRe is.

7. Conclusions

In this paper, we have presented the design and implememtati
of ANNE, a new kind of “markup language” for text data. This
markup language allows users to specify the syntactic tstreic
of documents by adding annotations that indicate the poesen
of constants, enumerations, repetitions, optional dataes, and
recursive data. The markup language also allows users tortmp
from libraries of pre-defined regular expressions and toenparts

of their data as they choose. A mark-up can be used to gererate
context-free grammar, arML parse tree and BADS description.
ThexmL parse tree facilitates debugging and Ha@s description
serves as useful documentation that may be compiled intoy man
more useful tools. Experience withNAIE suggests that compact,
human-readable descriptions can be constructed quickigasily.

In addition, we have defined and analyzed the semantics of
ANNE. In the process of doing so, we have uncovered a fascinating

connection to relevance logic, which we have used to prowmnit
nating theorems concerning the expressiveness of ounsyste
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