
Do Abstract Machines Make Abstract Heat?

Benjamin Schulz

December 15, 2011

Symbolic computation occupies its own universe with its own laws. Intu-
itively, such abstract and purely symbolic universes are also extremely orderly.
Given this order, it seems only natural that formal logic should provide a pow-
erful tool for reasoning about phenomena in the symbolic universes of com-
putation. This is no idle observation; nearly a century of intellectual labor
has developed and analyzed the deep and remarkable relation between logic
and computation, yielding useful tools in the form of type systems, theorem
provers, model checkers, and novel programming language paradigms. Logic is
an essential tool for computer science because it makes precise and clear the
ways in which programs are, in their essence, simple and orderly.

In a precise and very well-defined sense, programs are also fundamentally
complex and disorderly. This fact should not be completely surprising, or even
wholly controversial; there are well-known theoretical limits to what logic can
reveal about programs. It is in the face of exactly such complexity and disorder
that logic is powerless. The implications of this observation, however, are pro-
found; the pioneering work of Kolmogorov, Solomonoff, and Chaitin illustrated
that even purely symbolic, computational universes are subject to the same
tendency to complexity and disorder observed in the physical universe. Just as
the study of dynamic physical systems promises a deeper understanding of phe-
nomena that heretofore confounded the physical sciences, a deeper exploration
of complexity offers the potential for new and powerful tools for analyzing and
understanding computational systems.

Unfortunately, most developments in computational complexity have been
confined to pure mathematics and to the theory of abstract computation. Tools
for precisely analyzing the structure and degree of program complexity, how-
ever, would find application in virtually all fields of computer science, and lay the
foundations of a methodology that would solidifiy the position of software de-
velopment as a genuine engineering practice. Programming language research,
with its awareness of the breadth and diversity of computational paradigms,
its dynamic synthesis of theoretical and practical aspects of computing, and
its mastery of program analysis and transformation, is uniquely positioned to
realize the theoretical consequences of program complexity as practical tools.
In order for these results to take shape, however, researchers must widen their
view to encompass both halves of the dual nature of computation, as something
essentially simple in structure but inescapably complex in its consequences.

1


